// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "api.h" #include "arguments.h" #include "ast.h" #include "code-stubs.h" #include "cpu-profiler.h" #include "gdb-jit.h" #include "ic-inl.h" #include "stub-cache.h" #include "vm-state-inl.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------- // StubCache implementation. StubCache::StubCache(Isolate* isolate) : isolate_(isolate) { } void StubCache::Initialize() { ASSERT(IsPowerOf2(kPrimaryTableSize)); ASSERT(IsPowerOf2(kSecondaryTableSize)); Clear(); } Code* StubCache::Set(Name* name, Map* map, Code* code) { // Get the flags from the code. Code::Flags flags = Code::RemoveTypeFromFlags(code->flags()); // Validate that the name does not move on scavenge, and that we // can use identity checks instead of structural equality checks. ASSERT(!heap()->InNewSpace(name)); ASSERT(name->IsUniqueName()); // The state bits are not important to the hash function because // the stub cache only contains monomorphic stubs. Make sure that // the bits are the least significant so they will be the ones // masked out. ASSERT(Code::ExtractICStateFromFlags(flags) == MONOMORPHIC); STATIC_ASSERT((Code::ICStateField::kMask & 1) == 1); // Make sure that the code type is not included in the hash. ASSERT(Code::ExtractTypeFromFlags(flags) == 0); // Compute the primary entry. int primary_offset = PrimaryOffset(name, flags, map); Entry* primary = entry(primary_, primary_offset); Code* old_code = primary->value; // If the primary entry has useful data in it, we retire it to the // secondary cache before overwriting it. if (old_code != isolate_->builtins()->builtin(Builtins::kIllegal)) { Map* old_map = primary->map; Code::Flags old_flags = Code::RemoveTypeFromFlags(old_code->flags()); int seed = PrimaryOffset(primary->key, old_flags, old_map); int secondary_offset = SecondaryOffset(primary->key, old_flags, seed); Entry* secondary = entry(secondary_, secondary_offset); *secondary = *primary; } // Update primary cache. primary->key = name; primary->value = code; primary->map = map; isolate()->counters()->megamorphic_stub_cache_updates()->Increment(); return code; } Handle<Code> StubCache::FindIC(Handle<Name> name, Handle<Map> stub_holder_map, Code::Kind kind, Code::ExtraICState extra_state) { Code::Flags flags = Code::ComputeMonomorphicFlags(kind, extra_state); Handle<Object> probe(stub_holder_map->FindInCodeCache(*name, flags), isolate_); if (probe->IsCode()) return Handle<Code>::cast(probe); return Handle<Code>::null(); } Handle<Code> StubCache::FindIC(Handle<Name> name, Handle<JSObject> stub_holder, Code::Kind kind, Code::ExtraICState extra_ic_state) { return FindIC(name, Handle<Map>(stub_holder->map()), kind, extra_ic_state); } Handle<Code> StubCache::FindHandler(Handle<Name> name, Handle<JSObject> receiver, Code::Kind kind, StrictModeFlag strict_mode) { Code::ExtraICState extra_ic_state = Code::kNoExtraICState; if (kind == Code::STORE_IC || kind == Code::KEYED_STORE_IC) { extra_ic_state = Code::ComputeExtraICState( STANDARD_STORE, strict_mode); } Code::Flags flags = Code::ComputeMonomorphicFlags( Code::HANDLER, extra_ic_state, Code::NORMAL, kind); Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags), isolate_); if (probe->IsCode()) return Handle<Code>::cast(probe); return Handle<Code>::null(); } Handle<Code> StubCache::ComputeMonomorphicIC(Handle<HeapObject> receiver, Handle<Code> handler, Handle<Name> name, StrictModeFlag strict_mode) { Code::Kind kind = handler->handler_kind(); Handle<Map> map(receiver->map()); Handle<Code> ic = FindIC(name, map, kind, strict_mode); if (!ic.is_null()) return ic; if (kind == Code::LOAD_IC) { LoadStubCompiler ic_compiler(isolate()); ic = ic_compiler.CompileMonomorphicIC(map, handler, name); } else if (kind == Code::KEYED_LOAD_IC) { KeyedLoadStubCompiler ic_compiler(isolate()); ic = ic_compiler.CompileMonomorphicIC(map, handler, name); } else if (kind == Code::STORE_IC) { StoreStubCompiler ic_compiler(isolate(), strict_mode); ic = ic_compiler.CompileMonomorphicIC(map, handler, name); } else { ASSERT(kind == Code::KEYED_STORE_IC); KeyedStoreStubCompiler ic_compiler(isolate(), strict_mode, STANDARD_STORE); ic = ic_compiler.CompileMonomorphicIC(map, handler, name); } HeapObject::UpdateMapCodeCache(receiver, name, ic); return ic; } Handle<Code> StubCache::ComputeLoadNonexistent(Handle<Name> name, Handle<JSObject> receiver) { // If no global objects are present in the prototype chain, the load // nonexistent IC stub can be shared for all names for a given map // and we use the empty string for the map cache in that case. If // there are global objects involved, we need to check global // property cells in the stub and therefore the stub will be // specific to the name. Handle<Name> cache_name = factory()->empty_string(); Handle<JSObject> current; Handle<Object> next = receiver; Handle<JSGlobalObject> global; do { current = Handle<JSObject>::cast(next); next = Handle<Object>(current->GetPrototype(), isolate_); if (current->IsJSGlobalObject()) { global = Handle<JSGlobalObject>::cast(current); cache_name = name; } else if (!current->HasFastProperties()) { cache_name = name; } } while (!next->IsNull()); // Compile the stub that is either shared for all names or // name specific if there are global objects involved. Handle<Code> handler = FindHandler(cache_name, receiver, Code::LOAD_IC); if (!handler.is_null()) return handler; LoadStubCompiler compiler(isolate_); handler = compiler.CompileLoadNonexistent(receiver, current, cache_name, global); HeapObject::UpdateMapCodeCache(receiver, cache_name, handler); return handler; } Handle<Code> StubCache::ComputeKeyedLoadElement(Handle<Map> receiver_map) { Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC); Handle<Name> name = isolate()->factory()->KeyedLoadElementMonomorphic_string(); Handle<Object> probe(receiver_map->FindInCodeCache(*name, flags), isolate_); if (probe->IsCode()) return Handle<Code>::cast(probe); KeyedLoadStubCompiler compiler(isolate()); Handle<Code> code = compiler.CompileLoadElement(receiver_map); Map::UpdateCodeCache(receiver_map, name, code); return code; } Handle<Code> StubCache::ComputeKeyedStoreElement( Handle<Map> receiver_map, StrictModeFlag strict_mode, KeyedAccessStoreMode store_mode) { Code::ExtraICState extra_state = Code::ComputeExtraICState(store_mode, strict_mode); Code::Flags flags = Code::ComputeMonomorphicFlags( Code::KEYED_STORE_IC, extra_state); ASSERT(store_mode == STANDARD_STORE || store_mode == STORE_AND_GROW_NO_TRANSITION || store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS || store_mode == STORE_NO_TRANSITION_HANDLE_COW); Handle<String> name = isolate()->factory()->KeyedStoreElementMonomorphic_string(); Handle<Object> probe(receiver_map->FindInCodeCache(*name, flags), isolate_); if (probe->IsCode()) return Handle<Code>::cast(probe); KeyedStoreStubCompiler compiler(isolate(), strict_mode, store_mode); Handle<Code> code = compiler.CompileStoreElement(receiver_map); Map::UpdateCodeCache(receiver_map, name, code); ASSERT(Code::GetKeyedAccessStoreMode(code->extra_ic_state()) == store_mode); return code; } #define CALL_LOGGER_TAG(kind, type) \ (kind == Code::CALL_IC ? Logger::type : Logger::KEYED_##type) Handle<Code> StubCache::ComputeCallConstant(int argc, Code::Kind kind, Code::ExtraICState extra_state, Handle<Name> name, Handle<Object> object, Handle<JSObject> holder, Handle<JSFunction> function) { // Compute the check type and the map. InlineCacheHolderFlag cache_holder = IC::GetCodeCacheForObject(*object, *holder); Handle<JSObject> stub_holder(IC::GetCodeCacheHolder( isolate_, *object, cache_holder)); // Compute check type based on receiver/holder. CheckType check = RECEIVER_MAP_CHECK; if (object->IsString()) { check = STRING_CHECK; } else if (object->IsSymbol()) { check = SYMBOL_CHECK; } else if (object->IsNumber()) { check = NUMBER_CHECK; } else if (object->IsBoolean()) { check = BOOLEAN_CHECK; } if (check != RECEIVER_MAP_CHECK && !function->IsBuiltin() && function->shared()->is_classic_mode()) { // Calling non-strict non-builtins with a value as the receiver // requires boxing. return Handle<Code>::null(); } Code::Flags flags = Code::ComputeMonomorphicFlags( kind, extra_state, Code::CONSTANT, argc, cache_holder); Handle<Object> probe(stub_holder->map()->FindInCodeCache(*name, flags), isolate_); if (probe->IsCode()) return Handle<Code>::cast(probe); CallStubCompiler compiler(isolate_, argc, kind, extra_state, cache_holder); Handle<Code> code = compiler.CompileCallConstant(object, holder, name, check, function); code->set_check_type(check); ASSERT(flags == code->flags()); PROFILE(isolate_, CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), *code, *name)); GDBJIT(AddCode(GDBJITInterface::CALL_IC, *name, *code)); if (CallStubCompiler::CanBeCached(function)) { HeapObject::UpdateMapCodeCache(stub_holder, name, code); } return code; } Handle<Code> StubCache::ComputeCallField(int argc, Code::Kind kind, Code::ExtraICState extra_state, Handle<Name> name, Handle<Object> object, Handle<JSObject> holder, PropertyIndex index) { // Compute the check type and the map. InlineCacheHolderFlag cache_holder = IC::GetCodeCacheForObject(*object, *holder); Handle<JSObject> stub_holder(IC::GetCodeCacheHolder( isolate_, *object, cache_holder)); // TODO(1233596): We cannot do receiver map check for non-JS objects // because they may be represented as immediates without a // map. Instead, we check against the map in the holder. if (object->IsNumber() || object->IsSymbol() || object->IsBoolean() || object->IsString()) { object = holder; } Code::Flags flags = Code::ComputeMonomorphicFlags( kind, extra_state, Code::FIELD, argc, cache_holder); Handle<Object> probe(stub_holder->map()->FindInCodeCache(*name, flags), isolate_); if (probe->IsCode()) return Handle<Code>::cast(probe); CallStubCompiler compiler(isolate_, argc, kind, extra_state, cache_holder); Handle<Code> code = compiler.CompileCallField(Handle<JSObject>::cast(object), holder, index, name); ASSERT(flags == code->flags()); PROFILE(isolate_, CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), *code, *name)); GDBJIT(AddCode(GDBJITInterface::CALL_IC, *name, *code)); HeapObject::UpdateMapCodeCache(stub_holder, name, code); return code; } Handle<Code> StubCache::ComputeCallInterceptor(int argc, Code::Kind kind, Code::ExtraICState extra_state, Handle<Name> name, Handle<Object> object, Handle<JSObject> holder) { // Compute the check type and the map. InlineCacheHolderFlag cache_holder = IC::GetCodeCacheForObject(*object, *holder); Handle<JSObject> stub_holder(IC::GetCodeCacheHolder( isolate_, *object, cache_holder)); // TODO(1233596): We cannot do receiver map check for non-JS objects // because they may be represented as immediates without a // map. Instead, we check against the map in the holder. if (object->IsNumber() || object->IsSymbol() || object->IsBoolean() || object->IsString()) { object = holder; } Code::Flags flags = Code::ComputeMonomorphicFlags( kind, extra_state, Code::INTERCEPTOR, argc, cache_holder); Handle<Object> probe(stub_holder->map()->FindInCodeCache(*name, flags), isolate_); if (probe->IsCode()) return Handle<Code>::cast(probe); CallStubCompiler compiler(isolate(), argc, kind, extra_state, cache_holder); Handle<Code> code = compiler.CompileCallInterceptor(Handle<JSObject>::cast(object), holder, name); ASSERT(flags == code->flags()); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), *code, *name)); GDBJIT(AddCode(GDBJITInterface::CALL_IC, *name, *code)); HeapObject::UpdateMapCodeCache(stub_holder, name, code); return code; } Handle<Code> StubCache::ComputeCallGlobal(int argc, Code::Kind kind, Code::ExtraICState extra_state, Handle<Name> name, Handle<JSObject> receiver, Handle<GlobalObject> holder, Handle<PropertyCell> cell, Handle<JSFunction> function) { Code::Flags flags = Code::ComputeMonomorphicFlags( kind, extra_state, Code::NORMAL, argc); Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags), isolate_); if (probe->IsCode()) return Handle<Code>::cast(probe); CallStubCompiler compiler(isolate(), argc, kind, extra_state); Handle<Code> code = compiler.CompileCallGlobal(receiver, holder, cell, function, name); ASSERT(flags == code->flags()); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), *code, *name)); GDBJIT(AddCode(GDBJITInterface::CALL_IC, *name, *code)); if (CallStubCompiler::CanBeCached(function)) { HeapObject::UpdateMapCodeCache(receiver, name, code); } return code; } static void FillCache(Isolate* isolate, Handle<Code> code) { Handle<UnseededNumberDictionary> dictionary = UnseededNumberDictionary::Set(isolate->factory()->non_monomorphic_cache(), code->flags(), code); isolate->heap()->public_set_non_monomorphic_cache(*dictionary); } Code* StubCache::FindCallInitialize(int argc, RelocInfo::Mode mode, Code::Kind kind) { Code::ExtraICState extra_state = CallICBase::StringStubState::encode(DEFAULT_STRING_STUB) | CallICBase::Contextual::encode(mode == RelocInfo::CODE_TARGET_CONTEXT); Code::Flags flags = Code::ComputeFlags(kind, UNINITIALIZED, extra_state, Code::NORMAL, argc); UnseededNumberDictionary* dictionary = isolate()->heap()->non_monomorphic_cache(); int entry = dictionary->FindEntry(isolate(), flags); ASSERT(entry != -1); Object* code = dictionary->ValueAt(entry); // This might be called during the marking phase of the collector // hence the unchecked cast. return reinterpret_cast<Code*>(code); } Handle<Code> StubCache::ComputeCallInitialize(int argc, RelocInfo::Mode mode, Code::Kind kind) { Code::ExtraICState extra_state = CallICBase::StringStubState::encode(DEFAULT_STRING_STUB) | CallICBase::Contextual::encode(mode == RelocInfo::CODE_TARGET_CONTEXT); Code::Flags flags = Code::ComputeFlags(kind, UNINITIALIZED, extra_state, Code::NORMAL, argc); Handle<UnseededNumberDictionary> cache = isolate_->factory()->non_monomorphic_cache(); int entry = cache->FindEntry(isolate_, flags); if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry))); StubCompiler compiler(isolate_); Handle<Code> code = compiler.CompileCallInitialize(flags); FillCache(isolate_, code); return code; } Handle<Code> StubCache::ComputeCallInitialize(int argc, RelocInfo::Mode mode) { return ComputeCallInitialize(argc, mode, Code::CALL_IC); } Handle<Code> StubCache::ComputeKeyedCallInitialize(int argc) { return ComputeCallInitialize(argc, RelocInfo::CODE_TARGET, Code::KEYED_CALL_IC); } Handle<Code> StubCache::ComputeCallPreMonomorphic( int argc, Code::Kind kind, Code::ExtraICState extra_state) { Code::Flags flags = Code::ComputeFlags(kind, PREMONOMORPHIC, extra_state, Code::NORMAL, argc); Handle<UnseededNumberDictionary> cache = isolate_->factory()->non_monomorphic_cache(); int entry = cache->FindEntry(isolate_, flags); if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry))); StubCompiler compiler(isolate_); Handle<Code> code = compiler.CompileCallPreMonomorphic(flags); FillCache(isolate_, code); return code; } Handle<Code> StubCache::ComputeCallNormal(int argc, Code::Kind kind, Code::ExtraICState extra_state) { Code::Flags flags = Code::ComputeFlags(kind, MONOMORPHIC, extra_state, Code::NORMAL, argc); Handle<UnseededNumberDictionary> cache = isolate_->factory()->non_monomorphic_cache(); int entry = cache->FindEntry(isolate_, flags); if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry))); StubCompiler compiler(isolate_); Handle<Code> code = compiler.CompileCallNormal(flags); FillCache(isolate_, code); return code; } Handle<Code> StubCache::ComputeCallArguments(int argc) { Code::Flags flags = Code::ComputeFlags(Code::KEYED_CALL_IC, MEGAMORPHIC, Code::kNoExtraICState, Code::NORMAL, argc); Handle<UnseededNumberDictionary> cache = isolate_->factory()->non_monomorphic_cache(); int entry = cache->FindEntry(isolate_, flags); if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry))); StubCompiler compiler(isolate_); Handle<Code> code = compiler.CompileCallArguments(flags); FillCache(isolate_, code); return code; } Handle<Code> StubCache::ComputeCallMegamorphic( int argc, Code::Kind kind, Code::ExtraICState extra_state) { Code::Flags flags = Code::ComputeFlags(kind, MEGAMORPHIC, extra_state, Code::NORMAL, argc); Handle<UnseededNumberDictionary> cache = isolate_->factory()->non_monomorphic_cache(); int entry = cache->FindEntry(isolate_, flags); if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry))); StubCompiler compiler(isolate_); Handle<Code> code = compiler.CompileCallMegamorphic(flags); FillCache(isolate_, code); return code; } Handle<Code> StubCache::ComputeCallMiss(int argc, Code::Kind kind, Code::ExtraICState extra_state) { // MONOMORPHIC_PROTOTYPE_FAILURE state is used to make sure that miss stubs // and monomorphic stubs are not mixed up together in the stub cache. Code::Flags flags = Code::ComputeFlags(kind, MONOMORPHIC_PROTOTYPE_FAILURE, extra_state, Code::NORMAL, argc, OWN_MAP); Handle<UnseededNumberDictionary> cache = isolate_->factory()->non_monomorphic_cache(); int entry = cache->FindEntry(isolate_, flags); if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry))); StubCompiler compiler(isolate_); Handle<Code> code = compiler.CompileCallMiss(flags); FillCache(isolate_, code); return code; } Handle<Code> StubCache::ComputeCompareNil(Handle<Map> receiver_map, CompareNilICStub& stub) { Handle<String> name(isolate_->heap()->empty_string()); if (!receiver_map->is_shared()) { Handle<Code> cached_ic = FindIC(name, receiver_map, Code::COMPARE_NIL_IC, stub.GetExtraICState()); if (!cached_ic.is_null()) return cached_ic; } Handle<Code> ic = stub.GetCodeCopyFromTemplate(isolate_); ic->ReplaceNthObject(1, isolate_->heap()->meta_map(), *receiver_map); if (!receiver_map->is_shared()) { Map::UpdateCodeCache(receiver_map, name, ic); } return ic; } Handle<Code> StubCache::ComputeLoadElementPolymorphic( MapHandleList* receiver_maps) { Code::Flags flags = Code::ComputeFlags(Code::KEYED_LOAD_IC, POLYMORPHIC); Handle<PolymorphicCodeCache> cache = isolate_->factory()->polymorphic_code_cache(); Handle<Object> probe = cache->Lookup(receiver_maps, flags); if (probe->IsCode()) return Handle<Code>::cast(probe); CodeHandleList handlers(receiver_maps->length()); KeyedLoadStubCompiler compiler(isolate_); compiler.CompileElementHandlers(receiver_maps, &handlers); Handle<Code> code = compiler.CompilePolymorphicIC( receiver_maps, &handlers, factory()->empty_string(), Code::NORMAL, ELEMENT); isolate()->counters()->keyed_load_polymorphic_stubs()->Increment(); PolymorphicCodeCache::Update(cache, receiver_maps, flags, code); return code; } Handle<Code> StubCache::ComputePolymorphicIC(MapHandleList* receiver_maps, CodeHandleList* handlers, int number_of_valid_maps, Handle<Name> name, StrictModeFlag strict_mode) { Handle<Code> handler = handlers->at(0); Code::Kind kind = handler->handler_kind(); Code::StubType type = number_of_valid_maps == 1 ? handler->type() : Code::NORMAL; if (kind == Code::LOAD_IC) { LoadStubCompiler ic_compiler(isolate_); return ic_compiler.CompilePolymorphicIC( receiver_maps, handlers, name, type, PROPERTY); } else { ASSERT(kind == Code::STORE_IC); StoreStubCompiler ic_compiler(isolate_, strict_mode); return ic_compiler.CompilePolymorphicIC( receiver_maps, handlers, name, type, PROPERTY); } } Handle<Code> StubCache::ComputeStoreElementPolymorphic( MapHandleList* receiver_maps, KeyedAccessStoreMode store_mode, StrictModeFlag strict_mode) { ASSERT(store_mode == STANDARD_STORE || store_mode == STORE_AND_GROW_NO_TRANSITION || store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS || store_mode == STORE_NO_TRANSITION_HANDLE_COW); Handle<PolymorphicCodeCache> cache = isolate_->factory()->polymorphic_code_cache(); Code::ExtraICState extra_state = Code::ComputeExtraICState(store_mode, strict_mode); Code::Flags flags = Code::ComputeFlags(Code::KEYED_STORE_IC, POLYMORPHIC, extra_state); Handle<Object> probe = cache->Lookup(receiver_maps, flags); if (probe->IsCode()) return Handle<Code>::cast(probe); KeyedStoreStubCompiler compiler(isolate_, strict_mode, store_mode); Handle<Code> code = compiler.CompileStoreElementPolymorphic(receiver_maps); PolymorphicCodeCache::Update(cache, receiver_maps, flags, code); return code; } #ifdef ENABLE_DEBUGGER_SUPPORT Handle<Code> StubCache::ComputeCallDebugBreak(int argc, Code::Kind kind) { // Extra IC state is irrelevant for debug break ICs. They jump to // the actual call ic to carry out the work. Code::Flags flags = Code::ComputeFlags(kind, DEBUG_STUB, DEBUG_BREAK, Code::NORMAL, argc); Handle<UnseededNumberDictionary> cache = isolate_->factory()->non_monomorphic_cache(); int entry = cache->FindEntry(isolate_, flags); if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry))); StubCompiler compiler(isolate_); Handle<Code> code = compiler.CompileCallDebugBreak(flags); FillCache(isolate_, code); return code; } Handle<Code> StubCache::ComputeCallDebugPrepareStepIn(int argc, Code::Kind kind) { // Extra IC state is irrelevant for debug break ICs. They jump to // the actual call ic to carry out the work. Code::Flags flags = Code::ComputeFlags(kind, DEBUG_STUB, DEBUG_PREPARE_STEP_IN, Code::NORMAL, argc); Handle<UnseededNumberDictionary> cache = isolate_->factory()->non_monomorphic_cache(); int entry = cache->FindEntry(isolate_, flags); if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry))); StubCompiler compiler(isolate_); Handle<Code> code = compiler.CompileCallDebugPrepareStepIn(flags); FillCache(isolate_, code); return code; } #endif void StubCache::Clear() { Code* empty = isolate_->builtins()->builtin(Builtins::kIllegal); for (int i = 0; i < kPrimaryTableSize; i++) { primary_[i].key = heap()->empty_string(); primary_[i].map = NULL; primary_[i].value = empty; } for (int j = 0; j < kSecondaryTableSize; j++) { secondary_[j].key = heap()->empty_string(); secondary_[j].map = NULL; secondary_[j].value = empty; } } void StubCache::CollectMatchingMaps(SmallMapList* types, Handle<Name> name, Code::Flags flags, Handle<Context> native_context, Zone* zone) { for (int i = 0; i < kPrimaryTableSize; i++) { if (primary_[i].key == *name) { Map* map = primary_[i].map; // Map can be NULL, if the stub is constant function call // with a primitive receiver. if (map == NULL) continue; int offset = PrimaryOffset(*name, flags, map); if (entry(primary_, offset) == &primary_[i] && !TypeFeedbackOracle::CanRetainOtherContext(map, *native_context)) { types->AddMapIfMissing(Handle<Map>(map), zone); } } } for (int i = 0; i < kSecondaryTableSize; i++) { if (secondary_[i].key == *name) { Map* map = secondary_[i].map; // Map can be NULL, if the stub is constant function call // with a primitive receiver. if (map == NULL) continue; // Lookup in primary table and skip duplicates. int primary_offset = PrimaryOffset(*name, flags, map); // Lookup in secondary table and add matches. int offset = SecondaryOffset(*name, flags, primary_offset); if (entry(secondary_, offset) == &secondary_[i] && !TypeFeedbackOracle::CanRetainOtherContext(map, *native_context)) { types->AddMapIfMissing(Handle<Map>(map), zone); } } } } // ------------------------------------------------------------------------ // StubCompiler implementation. RUNTIME_FUNCTION(MaybeObject*, StoreCallbackProperty) { JSObject* recv = JSObject::cast(args[0]); ExecutableAccessorInfo* callback = ExecutableAccessorInfo::cast(args[1]); Address setter_address = v8::ToCData<Address>(callback->setter()); v8::AccessorSetterCallback fun = FUNCTION_CAST<v8::AccessorSetterCallback>(setter_address); ASSERT(fun != NULL); ASSERT(callback->IsCompatibleReceiver(recv)); Handle<Name> name = args.at<Name>(2); Handle<Object> value = args.at<Object>(3); HandleScope scope(isolate); // TODO(rossberg): Support symbols in the API. if (name->IsSymbol()) return *value; Handle<String> str = Handle<String>::cast(name); LOG(isolate, ApiNamedPropertyAccess("store", recv, *name)); PropertyCallbackArguments custom_args(isolate, callback->data(), recv, recv); custom_args.Call(fun, v8::Utils::ToLocal(str), v8::Utils::ToLocal(value)); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return *value; } /** * Attempts to load a property with an interceptor (which must be present), * but doesn't search the prototype chain. * * Returns |Heap::no_interceptor_result_sentinel()| if interceptor doesn't * provide any value for the given name. */ RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorOnly) { ASSERT(args.length() == StubCache::kInterceptorArgsLength); Handle<Name> name_handle = args.at<Name>(StubCache::kInterceptorArgsNameIndex); Handle<InterceptorInfo> interceptor_info = args.at<InterceptorInfo>(StubCache::kInterceptorArgsInfoIndex); // TODO(rossberg): Support symbols in the API. if (name_handle->IsSymbol()) return isolate->heap()->no_interceptor_result_sentinel(); Handle<String> name = Handle<String>::cast(name_handle); Address getter_address = v8::ToCData<Address>(interceptor_info->getter()); v8::NamedPropertyGetterCallback getter = FUNCTION_CAST<v8::NamedPropertyGetterCallback>(getter_address); ASSERT(getter != NULL); Handle<JSObject> receiver = args.at<JSObject>(StubCache::kInterceptorArgsThisIndex); Handle<JSObject> holder = args.at<JSObject>(StubCache::kInterceptorArgsHolderIndex); PropertyCallbackArguments callback_args( isolate, interceptor_info->data(), *receiver, *holder); { // Use the interceptor getter. HandleScope scope(isolate); v8::Handle<v8::Value> r = callback_args.Call(getter, v8::Utils::ToLocal(name)); RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!r.IsEmpty()) { Handle<Object> result = v8::Utils::OpenHandle(*r); result->VerifyApiCallResultType(); return *v8::Utils::OpenHandle(*r); } } return isolate->heap()->no_interceptor_result_sentinel(); } static MaybeObject* ThrowReferenceError(Isolate* isolate, Name* name) { // If the load is non-contextual, just return the undefined result. // Note that both keyed and non-keyed loads may end up here, so we // can't use either LoadIC or KeyedLoadIC constructors. HandleScope scope(isolate); IC ic(IC::NO_EXTRA_FRAME, isolate); ASSERT(ic.target()->is_load_stub() || ic.target()->is_keyed_load_stub()); if (!ic.SlowIsUndeclaredGlobal()) return isolate->heap()->undefined_value(); // Throw a reference error. Handle<Name> name_handle(name); Handle<Object> error = isolate->factory()->NewReferenceError("not_defined", HandleVector(&name_handle, 1)); return isolate->Throw(*error); } static Handle<Object> LoadWithInterceptor(Arguments* args, PropertyAttributes* attrs) { ASSERT(args->length() == StubCache::kInterceptorArgsLength); Handle<Name> name_handle = args->at<Name>(StubCache::kInterceptorArgsNameIndex); Handle<InterceptorInfo> interceptor_info = args->at<InterceptorInfo>(StubCache::kInterceptorArgsInfoIndex); Handle<JSObject> receiver_handle = args->at<JSObject>(StubCache::kInterceptorArgsThisIndex); Handle<JSObject> holder_handle = args->at<JSObject>(StubCache::kInterceptorArgsHolderIndex); Isolate* isolate = receiver_handle->GetIsolate(); // TODO(rossberg): Support symbols in the API. if (name_handle->IsSymbol()) { return JSObject::GetPropertyPostInterceptor( holder_handle, receiver_handle, name_handle, attrs); } Handle<String> name = Handle<String>::cast(name_handle); Address getter_address = v8::ToCData<Address>(interceptor_info->getter()); v8::NamedPropertyGetterCallback getter = FUNCTION_CAST<v8::NamedPropertyGetterCallback>(getter_address); ASSERT(getter != NULL); PropertyCallbackArguments callback_args(isolate, interceptor_info->data(), *receiver_handle, *holder_handle); { HandleScope scope(isolate); // Use the interceptor getter. v8::Handle<v8::Value> r = callback_args.Call(getter, v8::Utils::ToLocal(name)); RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object); if (!r.IsEmpty()) { *attrs = NONE; Handle<Object> result = v8::Utils::OpenHandle(*r); result->VerifyApiCallResultType(); return scope.CloseAndEscape(result); } } Handle<Object> result = JSObject::GetPropertyPostInterceptor( holder_handle, receiver_handle, name_handle, attrs); return result; } /** * Loads a property with an interceptor performing post interceptor * lookup if interceptor failed. */ RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorForLoad) { PropertyAttributes attr = NONE; HandleScope scope(isolate); Handle<Object> result = LoadWithInterceptor(&args, &attr); RETURN_IF_EMPTY_HANDLE(isolate, result); // If the property is present, return it. if (attr != ABSENT) return *result; return ThrowReferenceError(isolate, Name::cast(args[0])); } RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorForCall) { PropertyAttributes attr; HandleScope scope(isolate); Handle<Object> result = LoadWithInterceptor(&args, &attr); RETURN_IF_EMPTY_HANDLE(isolate, result); // This is call IC. In this case, we simply return the undefined result which // will lead to an exception when trying to invoke the result as a // function. return *result; } RUNTIME_FUNCTION(MaybeObject*, StoreInterceptorProperty) { HandleScope scope(isolate); ASSERT(args.length() == 4); Handle<JSObject> recv(JSObject::cast(args[0])); Handle<Name> name(Name::cast(args[1])); Handle<Object> value(args[2], isolate); ASSERT(args.smi_at(3) == kStrictMode || args.smi_at(3) == kNonStrictMode); StrictModeFlag strict_mode = static_cast<StrictModeFlag>(args.smi_at(3)); ASSERT(recv->HasNamedInterceptor()); PropertyAttributes attr = NONE; Handle<Object> result = JSObject::SetPropertyWithInterceptor( recv, name, value, attr, strict_mode); RETURN_IF_EMPTY_HANDLE(isolate, result); return *result; } RUNTIME_FUNCTION(MaybeObject*, KeyedLoadPropertyWithInterceptor) { JSObject* receiver = JSObject::cast(args[0]); ASSERT(args.smi_at(1) >= 0); uint32_t index = args.smi_at(1); return receiver->GetElementWithInterceptor(receiver, index); } Handle<Code> StubCompiler::CompileCallInitialize(Code::Flags flags) { int argc = Code::ExtractArgumentsCountFromFlags(flags); Code::Kind kind = Code::ExtractKindFromFlags(flags); Code::ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags); if (kind == Code::CALL_IC) { CallIC::GenerateInitialize(masm(), argc, extra_state); } else { KeyedCallIC::GenerateInitialize(masm(), argc); } Handle<Code> code = GetCodeWithFlags(flags, "CompileCallInitialize"); isolate()->counters()->call_initialize_stubs()->Increment(); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_INITIALIZE_TAG), *code, code->arguments_count())); GDBJIT(AddCode(GDBJITInterface::CALL_INITIALIZE, *code)); return code; } Handle<Code> StubCompiler::CompileCallPreMonomorphic(Code::Flags flags) { int argc = Code::ExtractArgumentsCountFromFlags(flags); // The code of the PreMonomorphic stub is the same as the code // of the Initialized stub. They just differ on the code object flags. Code::Kind kind = Code::ExtractKindFromFlags(flags); Code::ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags); if (kind == Code::CALL_IC) { CallIC::GenerateInitialize(masm(), argc, extra_state); } else { KeyedCallIC::GenerateInitialize(masm(), argc); } Handle<Code> code = GetCodeWithFlags(flags, "CompileCallPreMonomorphic"); isolate()->counters()->call_premonomorphic_stubs()->Increment(); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_PRE_MONOMORPHIC_TAG), *code, code->arguments_count())); GDBJIT(AddCode(GDBJITInterface::CALL_PRE_MONOMORPHIC, *code)); return code; } Handle<Code> StubCompiler::CompileCallNormal(Code::Flags flags) { int argc = Code::ExtractArgumentsCountFromFlags(flags); Code::Kind kind = Code::ExtractKindFromFlags(flags); if (kind == Code::CALL_IC) { // Call normal is always with a explict receiver. ASSERT(!CallIC::Contextual::decode( Code::ExtractExtraICStateFromFlags(flags))); CallIC::GenerateNormal(masm(), argc); } else { KeyedCallIC::GenerateNormal(masm(), argc); } Handle<Code> code = GetCodeWithFlags(flags, "CompileCallNormal"); isolate()->counters()->call_normal_stubs()->Increment(); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_NORMAL_TAG), *code, code->arguments_count())); GDBJIT(AddCode(GDBJITInterface::CALL_NORMAL, *code)); return code; } Handle<Code> StubCompiler::CompileCallMegamorphic(Code::Flags flags) { int argc = Code::ExtractArgumentsCountFromFlags(flags); Code::Kind kind = Code::ExtractKindFromFlags(flags); Code::ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags); if (kind == Code::CALL_IC) { CallIC::GenerateMegamorphic(masm(), argc, extra_state); } else { KeyedCallIC::GenerateMegamorphic(masm(), argc); } Handle<Code> code = GetCodeWithFlags(flags, "CompileCallMegamorphic"); isolate()->counters()->call_megamorphic_stubs()->Increment(); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_MEGAMORPHIC_TAG), *code, code->arguments_count())); GDBJIT(AddCode(GDBJITInterface::CALL_MEGAMORPHIC, *code)); return code; } Handle<Code> StubCompiler::CompileCallArguments(Code::Flags flags) { int argc = Code::ExtractArgumentsCountFromFlags(flags); KeyedCallIC::GenerateNonStrictArguments(masm(), argc); Handle<Code> code = GetCodeWithFlags(flags, "CompileCallArguments"); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(Code::ExtractKindFromFlags(flags), CALL_MEGAMORPHIC_TAG), *code, code->arguments_count())); GDBJIT(AddCode(GDBJITInterface::CALL_MEGAMORPHIC, *code)); return code; } Handle<Code> StubCompiler::CompileCallMiss(Code::Flags flags) { int argc = Code::ExtractArgumentsCountFromFlags(flags); Code::Kind kind = Code::ExtractKindFromFlags(flags); Code::ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags); if (kind == Code::CALL_IC) { CallIC::GenerateMiss(masm(), argc, extra_state); } else { KeyedCallIC::GenerateMiss(masm(), argc); } Handle<Code> code = GetCodeWithFlags(flags, "CompileCallMiss"); isolate()->counters()->call_megamorphic_stubs()->Increment(); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_MISS_TAG), *code, code->arguments_count())); GDBJIT(AddCode(GDBJITInterface::CALL_MISS, *code)); return code; } #ifdef ENABLE_DEBUGGER_SUPPORT Handle<Code> StubCompiler::CompileCallDebugBreak(Code::Flags flags) { Debug::GenerateCallICDebugBreak(masm()); Handle<Code> code = GetCodeWithFlags(flags, "CompileCallDebugBreak"); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(Code::ExtractKindFromFlags(flags), CALL_DEBUG_BREAK_TAG), *code, code->arguments_count())); return code; } Handle<Code> StubCompiler::CompileCallDebugPrepareStepIn(Code::Flags flags) { // Use the same code for the the step in preparations as we do for the // miss case. int argc = Code::ExtractArgumentsCountFromFlags(flags); Code::Kind kind = Code::ExtractKindFromFlags(flags); if (kind == Code::CALL_IC) { // For the debugger extra ic state is irrelevant. CallIC::GenerateMiss(masm(), argc, Code::kNoExtraICState); } else { KeyedCallIC::GenerateMiss(masm(), argc); } Handle<Code> code = GetCodeWithFlags(flags, "CompileCallDebugPrepareStepIn"); PROFILE(isolate(), CodeCreateEvent( CALL_LOGGER_TAG(kind, CALL_DEBUG_PREPARE_STEP_IN_TAG), *code, code->arguments_count())); return code; } #endif // ENABLE_DEBUGGER_SUPPORT #undef CALL_LOGGER_TAG Handle<Code> StubCompiler::GetCodeWithFlags(Code::Flags flags, const char* name) { // Create code object in the heap. CodeDesc desc; masm_.GetCode(&desc); Handle<Code> code = factory()->NewCode(desc, flags, masm_.CodeObject()); #ifdef ENABLE_DISASSEMBLER if (FLAG_print_code_stubs) { CodeTracer::Scope trace_scope(isolate()->GetCodeTracer()); code->Disassemble(name, trace_scope.file()); } #endif return code; } Handle<Code> StubCompiler::GetCodeWithFlags(Code::Flags flags, Handle<Name> name) { return (FLAG_print_code_stubs && !name.is_null() && name->IsString()) ? GetCodeWithFlags(flags, *Handle<String>::cast(name)->ToCString()) : GetCodeWithFlags(flags, NULL); } void StubCompiler::LookupPostInterceptor(Handle<JSObject> holder, Handle<Name> name, LookupResult* lookup) { holder->LocalLookupRealNamedProperty(*name, lookup); if (lookup->IsFound()) return; if (holder->GetPrototype()->IsNull()) return; holder->GetPrototype()->Lookup(*name, lookup); } #define __ ACCESS_MASM(masm()) Register LoadStubCompiler::HandlerFrontendHeader( Handle<JSObject> object, Register object_reg, Handle<JSObject> holder, Handle<Name> name, Label* miss) { return CheckPrototypes(object, object_reg, holder, scratch1(), scratch2(), scratch3(), name, miss, SKIP_RECEIVER); } // HandlerFrontend for store uses the name register. It has to be restored // before a miss. Register StoreStubCompiler::HandlerFrontendHeader( Handle<JSObject> object, Register object_reg, Handle<JSObject> holder, Handle<Name> name, Label* miss) { return CheckPrototypes(object, object_reg, holder, this->name(), scratch1(), scratch2(), name, miss, SKIP_RECEIVER); } Register BaseLoadStoreStubCompiler::HandlerFrontend(Handle<JSObject> object, Register object_reg, Handle<JSObject> holder, Handle<Name> name, Label* success) { Label miss; Register reg = HandlerFrontendHeader(object, object_reg, holder, name, &miss); HandlerFrontendFooter(name, success, &miss); return reg; } void LoadStubCompiler::NonexistentHandlerFrontend( Handle<JSObject> object, Handle<JSObject> last, Handle<Name> name, Label* success, Handle<JSGlobalObject> global) { Label miss; Register holder = HandlerFrontendHeader(object, receiver(), last, name, &miss); if (!last->HasFastProperties() && !last->IsJSGlobalObject() && !last->IsJSGlobalProxy()) { if (!name->IsUniqueName()) { ASSERT(name->IsString()); name = factory()->InternalizeString(Handle<String>::cast(name)); } ASSERT(last->property_dictionary()->FindEntry(*name) == NameDictionary::kNotFound); GenerateDictionaryNegativeLookup(masm(), &miss, holder, name, scratch2(), scratch3()); } // If the last object in the prototype chain is a global object, // check that the global property cell is empty. if (!global.is_null()) { GenerateCheckPropertyCell(masm(), global, name, scratch2(), &miss); } HandlerFrontendFooter(name, success, &miss); } Handle<Code> LoadStubCompiler::CompileLoadField( Handle<JSObject> object, Handle<JSObject> holder, Handle<Name> name, PropertyIndex field, Representation representation) { Label miss; Register reg = HandlerFrontendHeader(object, receiver(), holder, name, &miss); GenerateLoadField(reg, holder, field, representation); __ bind(&miss); TailCallBuiltin(masm(), MissBuiltin(kind())); // Return the generated code. return GetCode(kind(), Code::FIELD, name); } Handle<Code> LoadStubCompiler::CompileLoadConstant( Handle<JSObject> object, Handle<JSObject> holder, Handle<Name> name, Handle<Object> value) { Label success; HandlerFrontend(object, receiver(), holder, name, &success); __ bind(&success); GenerateLoadConstant(value); // Return the generated code. return GetCode(kind(), Code::CONSTANT, name); } Handle<Code> LoadStubCompiler::CompileLoadCallback( Handle<JSObject> object, Handle<JSObject> holder, Handle<Name> name, Handle<ExecutableAccessorInfo> callback) { Label success; Register reg = CallbackHandlerFrontend( object, receiver(), holder, name, &success, callback); __ bind(&success); GenerateLoadCallback(reg, callback); // Return the generated code. return GetCode(kind(), Code::CALLBACKS, name); } Handle<Code> LoadStubCompiler::CompileLoadCallback( Handle<JSObject> object, Handle<JSObject> holder, Handle<Name> name, const CallOptimization& call_optimization) { ASSERT(call_optimization.is_simple_api_call()); Label success; Handle<JSFunction> callback = call_optimization.constant_function(); CallbackHandlerFrontend( object, receiver(), holder, name, &success, callback); __ bind(&success); GenerateLoadCallback(call_optimization); // Return the generated code. return GetCode(kind(), Code::CALLBACKS, name); } Handle<Code> LoadStubCompiler::CompileLoadInterceptor( Handle<JSObject> object, Handle<JSObject> holder, Handle<Name> name) { Label success; LookupResult lookup(isolate()); LookupPostInterceptor(holder, name, &lookup); Register reg = HandlerFrontend(object, receiver(), holder, name, &success); __ bind(&success); // TODO(368): Compile in the whole chain: all the interceptors in // prototypes and ultimate answer. GenerateLoadInterceptor(reg, object, holder, &lookup, name); // Return the generated code. return GetCode(kind(), Code::INTERCEPTOR, name); } void LoadStubCompiler::GenerateLoadPostInterceptor( Register interceptor_reg, Handle<JSObject> interceptor_holder, Handle<Name> name, LookupResult* lookup) { Label success; Handle<JSObject> holder(lookup->holder()); if (lookup->IsField()) { PropertyIndex field = lookup->GetFieldIndex(); if (interceptor_holder.is_identical_to(holder)) { GenerateLoadField( interceptor_reg, holder, field, lookup->representation()); } else { // We found FIELD property in prototype chain of interceptor's holder. // Retrieve a field from field's holder. Register reg = HandlerFrontend( interceptor_holder, interceptor_reg, holder, name, &success); __ bind(&success); GenerateLoadField( reg, holder, field, lookup->representation()); } } else { // We found CALLBACKS property in prototype chain of interceptor's // holder. ASSERT(lookup->type() == CALLBACKS); Handle<ExecutableAccessorInfo> callback( ExecutableAccessorInfo::cast(lookup->GetCallbackObject())); ASSERT(callback->getter() != NULL); Register reg = CallbackHandlerFrontend( interceptor_holder, interceptor_reg, holder, name, &success, callback); __ bind(&success); GenerateLoadCallback(reg, callback); } } Handle<Code> BaseLoadStoreStubCompiler::CompileMonomorphicIC( Handle<Map> receiver_map, Handle<Code> handler, Handle<Name> name) { MapHandleList receiver_maps(1); receiver_maps.Add(receiver_map); CodeHandleList handlers(1); handlers.Add(handler); Code::StubType type = handler->type(); return CompilePolymorphicIC(&receiver_maps, &handlers, name, type, PROPERTY); } Handle<Code> LoadStubCompiler::CompileLoadViaGetter( Handle<JSObject> object, Handle<JSObject> holder, Handle<Name> name, Handle<JSFunction> getter) { Label success; HandlerFrontend(object, receiver(), holder, name, &success); __ bind(&success); GenerateLoadViaGetter(masm(), receiver(), getter); // Return the generated code. return GetCode(kind(), Code::CALLBACKS, name); } Handle<Code> StoreStubCompiler::CompileStoreTransition( Handle<JSObject> object, LookupResult* lookup, Handle<Map> transition, Handle<Name> name) { Label miss, slow; // Ensure no transitions to deprecated maps are followed. __ CheckMapDeprecated(transition, scratch1(), &miss); // Check that we are allowed to write this. if (object->GetPrototype()->IsJSObject()) { Handle<JSObject> holder; // holder == object indicates that no property was found. if (lookup->holder() != *object) { holder = Handle<JSObject>(lookup->holder()); } else { // Find the top object. holder = object; do { holder = Handle<JSObject>(JSObject::cast(holder->GetPrototype())); } while (holder->GetPrototype()->IsJSObject()); } Register holder_reg = HandlerFrontendHeader(object, receiver(), holder, name, &miss); // If no property was found, and the holder (the last object in the // prototype chain) is in slow mode, we need to do a negative lookup on the // holder. if (lookup->holder() == *object) { GenerateNegativeHolderLookup(masm(), holder, holder_reg, name, &miss); } } GenerateStoreTransition(masm(), object, lookup, transition, name, receiver(), this->name(), value(), scratch1(), scratch2(), scratch3(), &miss, &slow); // Handle store cache miss. GenerateRestoreName(masm(), &miss, name); TailCallBuiltin(masm(), MissBuiltin(kind())); GenerateRestoreName(masm(), &slow, name); TailCallBuiltin(masm(), SlowBuiltin(kind())); // Return the generated code. return GetCode(kind(), Code::TRANSITION, name); } Handle<Code> StoreStubCompiler::CompileStoreField(Handle<JSObject> object, LookupResult* lookup, Handle<Name> name) { Label miss; HandlerFrontendHeader(object, receiver(), object, name, &miss); // Generate store field code. GenerateStoreField(masm(), object, lookup, receiver(), this->name(), value(), scratch1(), scratch2(), &miss); // Handle store cache miss. __ bind(&miss); TailCallBuiltin(masm(), MissBuiltin(kind())); // Return the generated code. return GetCode(kind(), Code::FIELD, name); } Handle<Code> StoreStubCompiler::CompileStoreViaSetter( Handle<JSObject> object, Handle<JSObject> holder, Handle<Name> name, Handle<JSFunction> setter) { Label success; HandlerFrontend(object, receiver(), holder, name, &success); __ bind(&success); GenerateStoreViaSetter(masm(), setter); return GetCode(kind(), Code::CALLBACKS, name); } Handle<Code> KeyedLoadStubCompiler::CompileLoadElement( Handle<Map> receiver_map) { ElementsKind elements_kind = receiver_map->elements_kind(); if (receiver_map->has_fast_elements() || receiver_map->has_external_array_elements()) { Handle<Code> stub = KeyedLoadFastElementStub( receiver_map->instance_type() == JS_ARRAY_TYPE, elements_kind).GetCode(isolate()); __ DispatchMap(receiver(), scratch1(), receiver_map, stub, DO_SMI_CHECK); } else { Handle<Code> stub = KeyedLoadDictionaryElementStub().GetCode(isolate()); __ DispatchMap(receiver(), scratch1(), receiver_map, stub, DO_SMI_CHECK); } TailCallBuiltin(masm(), Builtins::kKeyedLoadIC_Miss); // Return the generated code. return GetICCode(kind(), Code::NORMAL, factory()->empty_string()); } Handle<Code> KeyedStoreStubCompiler::CompileStoreElement( Handle<Map> receiver_map) { ElementsKind elements_kind = receiver_map->elements_kind(); bool is_jsarray = receiver_map->instance_type() == JS_ARRAY_TYPE; Handle<Code> stub; if (receiver_map->has_fast_elements() || receiver_map->has_external_array_elements()) { stub = KeyedStoreFastElementStub( is_jsarray, elements_kind, store_mode_).GetCode(isolate()); } else { stub = KeyedStoreElementStub(is_jsarray, elements_kind, store_mode_).GetCode(isolate()); } __ DispatchMap(receiver(), scratch1(), receiver_map, stub, DO_SMI_CHECK); TailCallBuiltin(masm(), Builtins::kKeyedStoreIC_Miss); // Return the generated code. return GetICCode(kind(), Code::NORMAL, factory()->empty_string()); } #undef __ void StubCompiler::TailCallBuiltin(MacroAssembler* masm, Builtins::Name name) { Handle<Code> code(masm->isolate()->builtins()->builtin(name)); GenerateTailCall(masm, code); } void BaseLoadStoreStubCompiler::JitEvent(Handle<Name> name, Handle<Code> code) { #ifdef ENABLE_GDB_JIT_INTERFACE GDBJITInterface::CodeTag tag; if (kind_ == Code::LOAD_IC) { tag = GDBJITInterface::LOAD_IC; } else if (kind_ == Code::KEYED_LOAD_IC) { tag = GDBJITInterface::KEYED_LOAD_IC; } else if (kind_ == Code::STORE_IC) { tag = GDBJITInterface::STORE_IC; } else { tag = GDBJITInterface::KEYED_STORE_IC; } GDBJIT(AddCode(tag, *name, *code)); #endif } void BaseLoadStoreStubCompiler::InitializeRegisters() { if (kind_ == Code::LOAD_IC) { registers_ = LoadStubCompiler::registers(); } else if (kind_ == Code::KEYED_LOAD_IC) { registers_ = KeyedLoadStubCompiler::registers(); } else if (kind_ == Code::STORE_IC) { registers_ = StoreStubCompiler::registers(); } else { registers_ = KeyedStoreStubCompiler::registers(); } } Handle<Code> BaseLoadStoreStubCompiler::GetICCode(Code::Kind kind, Code::StubType type, Handle<Name> name, InlineCacheState state) { Code::Flags flags = Code::ComputeFlags(kind, state, extra_state(), type); Handle<Code> code = GetCodeWithFlags(flags, name); PROFILE(isolate(), CodeCreateEvent(log_kind(code), *code, *name)); JitEvent(name, code); return code; } Handle<Code> BaseLoadStoreStubCompiler::GetCode(Code::Kind kind, Code::StubType type, Handle<Name> name) { Code::Flags flags = Code::ComputeFlags( Code::HANDLER, MONOMORPHIC, extra_state(), type, kind); Handle<Code> code = GetCodeWithFlags(flags, name); PROFILE(isolate(), CodeCreateEvent(log_kind(code), *code, *name)); JitEvent(name, code); return code; } void KeyedLoadStubCompiler::CompileElementHandlers(MapHandleList* receiver_maps, CodeHandleList* handlers) { for (int i = 0; i < receiver_maps->length(); ++i) { Handle<Map> receiver_map = receiver_maps->at(i); Handle<Code> cached_stub; if ((receiver_map->instance_type() & kNotStringTag) == 0) { cached_stub = isolate()->builtins()->KeyedLoadIC_String(); } else { bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE; ElementsKind elements_kind = receiver_map->elements_kind(); if (IsFastElementsKind(elements_kind) || IsExternalArrayElementsKind(elements_kind)) { cached_stub = KeyedLoadFastElementStub(is_js_array, elements_kind).GetCode(isolate()); } else { ASSERT(elements_kind == DICTIONARY_ELEMENTS); cached_stub = KeyedLoadDictionaryElementStub().GetCode(isolate()); } } handlers->Add(cached_stub); } } Handle<Code> KeyedStoreStubCompiler::CompileStoreElementPolymorphic( MapHandleList* receiver_maps) { // Collect MONOMORPHIC stubs for all |receiver_maps|. CodeHandleList handlers(receiver_maps->length()); MapHandleList transitioned_maps(receiver_maps->length()); for (int i = 0; i < receiver_maps->length(); ++i) { Handle<Map> receiver_map(receiver_maps->at(i)); Handle<Code> cached_stub; Handle<Map> transitioned_map = receiver_map->FindTransitionedMap(receiver_maps); // TODO(mvstanton): The code below is doing pessimistic elements // transitions. I would like to stop doing that and rely on Allocation Site // Tracking to do a better job of ensuring the data types are what they need // to be. Not all the elements are in place yet, pessimistic elements // transitions are still important for performance. bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE; ElementsKind elements_kind = receiver_map->elements_kind(); if (!transitioned_map.is_null()) { cached_stub = ElementsTransitionAndStoreStub( elements_kind, transitioned_map->elements_kind(), is_js_array, store_mode_).GetCode(isolate()); } else { if (receiver_map->has_fast_elements() || receiver_map->has_external_array_elements()) { cached_stub = KeyedStoreFastElementStub( is_js_array, elements_kind, store_mode_).GetCode(isolate()); } else { cached_stub = KeyedStoreElementStub( is_js_array, elements_kind, store_mode_).GetCode(isolate()); } } ASSERT(!cached_stub.is_null()); handlers.Add(cached_stub); transitioned_maps.Add(transitioned_map); } Handle<Code> code = CompileStorePolymorphic(receiver_maps, &handlers, &transitioned_maps); isolate()->counters()->keyed_store_polymorphic_stubs()->Increment(); PROFILE(isolate(), CodeCreateEvent(Logger::KEYED_STORE_POLYMORPHIC_IC_TAG, *code, 0)); return code; } void KeyedStoreStubCompiler::GenerateStoreDictionaryElement( MacroAssembler* masm) { KeyedStoreIC::GenerateSlow(masm); } CallStubCompiler::CallStubCompiler(Isolate* isolate, int argc, Code::Kind kind, Code::ExtraICState extra_state, InlineCacheHolderFlag cache_holder) : StubCompiler(isolate), arguments_(argc), kind_(kind), extra_state_(extra_state), cache_holder_(cache_holder) { } bool CallStubCompiler::HasCustomCallGenerator(Handle<JSFunction> function) { if (function->shared()->HasBuiltinFunctionId()) { BuiltinFunctionId id = function->shared()->builtin_function_id(); #define CALL_GENERATOR_CASE(name) if (id == k##name) return true; CUSTOM_CALL_IC_GENERATORS(CALL_GENERATOR_CASE) #undef CALL_GENERATOR_CASE } CallOptimization optimization(function); return optimization.is_simple_api_call(); } bool CallStubCompiler::CanBeCached(Handle<JSFunction> function) { if (function->shared()->HasBuiltinFunctionId()) { BuiltinFunctionId id = function->shared()->builtin_function_id(); #define CALL_GENERATOR_CASE(name) if (id == k##name) return false; SITE_SPECIFIC_CALL_GENERATORS(CALL_GENERATOR_CASE) #undef CALL_GENERATOR_CASE } return true; } Handle<Code> CallStubCompiler::CompileCustomCall( Handle<Object> object, Handle<JSObject> holder, Handle<Cell> cell, Handle<JSFunction> function, Handle<String> fname, Code::StubType type) { ASSERT(HasCustomCallGenerator(function)); if (function->shared()->HasBuiltinFunctionId()) { BuiltinFunctionId id = function->shared()->builtin_function_id(); #define CALL_GENERATOR_CASE(name) \ if (id == k##name) { \ return CallStubCompiler::Compile##name##Call(object, \ holder, \ cell, \ function, \ fname, \ type); \ } CUSTOM_CALL_IC_GENERATORS(CALL_GENERATOR_CASE) #undef CALL_GENERATOR_CASE } CallOptimization optimization(function); ASSERT(optimization.is_simple_api_call()); return CompileFastApiCall(optimization, object, holder, cell, function, fname); } Handle<Code> CallStubCompiler::GetCode(Code::StubType type, Handle<Name> name) { int argc = arguments_.immediate(); Code::Flags flags = Code::ComputeMonomorphicFlags(kind_, extra_state_, type, argc, cache_holder_); return GetCodeWithFlags(flags, name); } Handle<Code> CallStubCompiler::GetCode(Handle<JSFunction> function) { Handle<String> function_name; if (function->shared()->name()->IsString()) { function_name = Handle<String>(String::cast(function->shared()->name())); } return GetCode(Code::CONSTANT, function_name); } CallOptimization::CallOptimization(LookupResult* lookup) { if (lookup->IsFound() && lookup->IsCacheable() && lookup->IsConstantFunction()) { // We only optimize constant function calls. Initialize(Handle<JSFunction>(lookup->GetConstantFunction())); } else { Initialize(Handle<JSFunction>::null()); } } CallOptimization::CallOptimization(Handle<JSFunction> function) { Initialize(function); } int CallOptimization::GetPrototypeDepthOfExpectedType( Handle<JSObject> object, Handle<JSObject> holder) const { ASSERT(is_simple_api_call()); if (expected_receiver_type_.is_null()) return 0; int depth = 0; while (!object.is_identical_to(holder)) { if (object->IsInstanceOf(*expected_receiver_type_)) return depth; object = Handle<JSObject>(JSObject::cast(object->GetPrototype())); if (!object->map()->is_hidden_prototype()) return kInvalidProtoDepth; ++depth; } if (holder->IsInstanceOf(*expected_receiver_type_)) return depth; return kInvalidProtoDepth; } void CallOptimization::Initialize(Handle<JSFunction> function) { constant_function_ = Handle<JSFunction>::null(); is_simple_api_call_ = false; expected_receiver_type_ = Handle<FunctionTemplateInfo>::null(); api_call_info_ = Handle<CallHandlerInfo>::null(); if (function.is_null() || !function->is_compiled()) return; constant_function_ = function; AnalyzePossibleApiFunction(function); } void CallOptimization::AnalyzePossibleApiFunction(Handle<JSFunction> function) { if (!function->shared()->IsApiFunction()) return; Handle<FunctionTemplateInfo> info(function->shared()->get_api_func_data()); // Require a C++ callback. if (info->call_code()->IsUndefined()) return; api_call_info_ = Handle<CallHandlerInfo>(CallHandlerInfo::cast(info->call_code())); // Accept signatures that either have no restrictions at all or // only have restrictions on the receiver. if (!info->signature()->IsUndefined()) { Handle<SignatureInfo> signature = Handle<SignatureInfo>(SignatureInfo::cast(info->signature())); if (!signature->args()->IsUndefined()) return; if (!signature->receiver()->IsUndefined()) { expected_receiver_type_ = Handle<FunctionTemplateInfo>( FunctionTemplateInfo::cast(signature->receiver())); } } is_simple_api_call_ = true; } } } // namespace v8::internal