// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/signature.h" #include "src/handles.h" #include "src/objects-inl.h" #include "src/v8.h" #include "src/zone/zone-containers.h" #include "src/wasm/function-body-decoder.h" #include "src/wasm/leb-helper.h" #include "src/wasm/wasm-constants.h" #include "src/wasm/wasm-module-builder.h" #include "src/wasm/wasm-module.h" #include "src/wasm/wasm-opcodes.h" #include "src/v8memory.h" namespace v8 { namespace internal { namespace wasm { namespace { // Emit a section code and the size as a padded varint that can be patched // later. size_t EmitSection(SectionCode code, ZoneBuffer& buffer) { // Emit the section code. buffer.write_u8(code); // Emit a placeholder for the length. return buffer.reserve_u32v(); } // Patch the size of a section after it's finished. void FixupSection(ZoneBuffer& buffer, size_t start) { buffer.patch_u32v(start, static_cast<uint32_t>(buffer.offset() - start - kPaddedVarInt32Size)); } } // namespace WasmFunctionBuilder::WasmFunctionBuilder(WasmModuleBuilder* builder) : builder_(builder), locals_(builder->zone()), signature_index_(0), func_index_(static_cast<uint32_t>(builder->functions_.size())), body_(builder->zone(), 256), i32_temps_(builder->zone()), i64_temps_(builder->zone()), f32_temps_(builder->zone()), f64_temps_(builder->zone()), direct_calls_(builder->zone()), asm_offsets_(builder->zone(), 8) {} void WasmFunctionBuilder::EmitI32V(int32_t val) { body_.write_i32v(val); } void WasmFunctionBuilder::EmitU32V(uint32_t val) { body_.write_u32v(val); } void WasmFunctionBuilder::SetSignature(FunctionSig* sig) { DCHECK(!locals_.has_sig()); locals_.set_sig(sig); signature_index_ = builder_->AddSignature(sig); } uint32_t WasmFunctionBuilder::AddLocal(ValueType type) { DCHECK(locals_.has_sig()); return locals_.AddLocals(1, type); } void WasmFunctionBuilder::EmitGetLocal(uint32_t local_index) { EmitWithU32V(kExprGetLocal, local_index); } void WasmFunctionBuilder::EmitSetLocal(uint32_t local_index) { EmitWithU32V(kExprSetLocal, local_index); } void WasmFunctionBuilder::EmitTeeLocal(uint32_t local_index) { EmitWithU32V(kExprTeeLocal, local_index); } void WasmFunctionBuilder::EmitCode(const byte* code, uint32_t code_size) { body_.write(code, code_size); } void WasmFunctionBuilder::Emit(WasmOpcode opcode) { body_.write_u8(opcode); } void WasmFunctionBuilder::EmitWithU8(WasmOpcode opcode, const byte immediate) { body_.write_u8(opcode); body_.write_u8(immediate); } void WasmFunctionBuilder::EmitWithU8U8(WasmOpcode opcode, const byte imm1, const byte imm2) { body_.write_u8(opcode); body_.write_u8(imm1); body_.write_u8(imm2); } void WasmFunctionBuilder::EmitWithI32V(WasmOpcode opcode, int32_t immediate) { body_.write_u8(opcode); body_.write_i32v(immediate); } void WasmFunctionBuilder::EmitWithU32V(WasmOpcode opcode, uint32_t immediate) { body_.write_u8(opcode); body_.write_u32v(immediate); } void WasmFunctionBuilder::EmitI32Const(int32_t value) { EmitWithI32V(kExprI32Const, value); } void WasmFunctionBuilder::EmitI64Const(int64_t value) { body_.write_u8(kExprI64Const); body_.write_i64v(value); } void WasmFunctionBuilder::EmitF32Const(float value) { body_.write_u8(kExprF32Const); body_.write_f32(value); } void WasmFunctionBuilder::EmitF64Const(double value) { body_.write_u8(kExprF64Const); body_.write_f64(value); } void WasmFunctionBuilder::EmitDirectCallIndex(uint32_t index) { DirectCallIndex call; call.offset = body_.size(); call.direct_index = index; direct_calls_.push_back(call); byte placeholder_bytes[kMaxVarInt32Size] = {0}; EmitCode(placeholder_bytes, arraysize(placeholder_bytes)); } void WasmFunctionBuilder::SetName(Vector<const char> name) { name_ = name; } void WasmFunctionBuilder::AddAsmWasmOffset(size_t call_position, size_t to_number_position) { // We only want to emit one mapping per byte offset. DCHECK(asm_offsets_.size() == 0 || body_.size() > last_asm_byte_offset_); DCHECK_LE(body_.size(), kMaxUInt32); uint32_t byte_offset = static_cast<uint32_t>(body_.size()); asm_offsets_.write_u32v(byte_offset - last_asm_byte_offset_); last_asm_byte_offset_ = byte_offset; DCHECK_GE(std::numeric_limits<uint32_t>::max(), call_position); uint32_t call_position_u32 = static_cast<uint32_t>(call_position); asm_offsets_.write_i32v(call_position_u32 - last_asm_source_position_); DCHECK_GE(std::numeric_limits<uint32_t>::max(), to_number_position); uint32_t to_number_position_u32 = static_cast<uint32_t>(to_number_position); asm_offsets_.write_i32v(to_number_position_u32 - call_position_u32); last_asm_source_position_ = to_number_position_u32; } void WasmFunctionBuilder::SetAsmFunctionStartPosition( size_t function_position) { DCHECK_EQ(0, asm_func_start_source_position_); DCHECK_GE(std::numeric_limits<uint32_t>::max(), function_position); uint32_t function_position_u32 = static_cast<uint32_t>(function_position); // Must be called before emitting any asm.js source position. DCHECK_EQ(0, asm_offsets_.size()); asm_func_start_source_position_ = function_position_u32; last_asm_source_position_ = function_position_u32; } void WasmFunctionBuilder::DeleteCodeAfter(size_t position) { DCHECK_LE(position, body_.size()); body_.Truncate(position); } void WasmFunctionBuilder::WriteSignature(ZoneBuffer& buffer) const { buffer.write_u32v(signature_index_); } void WasmFunctionBuilder::WriteBody(ZoneBuffer& buffer) const { size_t locals_size = locals_.Size(); buffer.write_size(locals_size + body_.size()); buffer.EnsureSpace(locals_size); byte** ptr = buffer.pos_ptr(); locals_.Emit(*ptr); (*ptr) += locals_size; // UGLY: manual bump of position pointer if (body_.size() > 0) { size_t base = buffer.offset(); buffer.write(body_.begin(), body_.size()); for (DirectCallIndex call : direct_calls_) { buffer.patch_u32v( base + call.offset, call.direct_index + static_cast<uint32_t>(builder_->function_imports_.size())); } } } void WasmFunctionBuilder::WriteAsmWasmOffsetTable(ZoneBuffer& buffer) const { if (asm_func_start_source_position_ == 0 && asm_offsets_.size() == 0) { buffer.write_size(0); return; } size_t locals_enc_size = LEBHelper::sizeof_u32v(locals_.Size()); size_t func_start_size = LEBHelper::sizeof_u32v(asm_func_start_source_position_); buffer.write_size(asm_offsets_.size() + locals_enc_size + func_start_size); // Offset of the recorded byte offsets. DCHECK_GE(kMaxUInt32, locals_.Size()); buffer.write_u32v(static_cast<uint32_t>(locals_.Size())); // Start position of the function. buffer.write_u32v(asm_func_start_source_position_); buffer.write(asm_offsets_.begin(), asm_offsets_.size()); } WasmModuleBuilder::WasmModuleBuilder(Zone* zone) : zone_(zone), signatures_(zone), function_imports_(zone), function_exports_(zone), global_imports_(zone), functions_(zone), data_segments_(zone), indirect_functions_(zone), globals_(zone), signature_map_(zone), start_function_index_(-1), min_memory_size_(16), max_memory_size_(0), has_max_memory_size_(false), has_shared_memory_(false) {} WasmFunctionBuilder* WasmModuleBuilder::AddFunction(FunctionSig* sig) { functions_.push_back(new (zone_) WasmFunctionBuilder(this)); // Add the signature if one was provided here. if (sig) functions_.back()->SetSignature(sig); return functions_.back(); } void WasmModuleBuilder::AddDataSegment(const byte* data, uint32_t size, uint32_t dest) { data_segments_.push_back({ZoneVector<byte>(zone()), dest}); ZoneVector<byte>& vec = data_segments_.back().data; for (uint32_t i = 0; i < size; i++) { vec.push_back(data[i]); } } uint32_t WasmModuleBuilder::AddSignature(FunctionSig* sig) { auto sig_entry = signature_map_.find(*sig); if (sig_entry != signature_map_.end()) return sig_entry->second; uint32_t index = static_cast<uint32_t>(signatures_.size()); signature_map_.emplace(*sig, index); signatures_.push_back(sig); return index; } uint32_t WasmModuleBuilder::AllocateIndirectFunctions(uint32_t count) { uint32_t index = static_cast<uint32_t>(indirect_functions_.size()); DCHECK_GE(FLAG_wasm_max_table_size, index); if (count > FLAG_wasm_max_table_size - index) { return std::numeric_limits<uint32_t>::max(); } indirect_functions_.resize(indirect_functions_.size() + count); return index; } void WasmModuleBuilder::SetIndirectFunction(uint32_t indirect, uint32_t direct) { indirect_functions_[indirect] = direct; } uint32_t WasmModuleBuilder::AddImport(Vector<const char> name, FunctionSig* sig) { function_imports_.push_back({name, AddSignature(sig)}); return static_cast<uint32_t>(function_imports_.size() - 1); } uint32_t WasmModuleBuilder::AddGlobalImport(Vector<const char> name, ValueType type) { global_imports_.push_back({name, ValueTypes::ValueTypeCodeFor(type)}); return static_cast<uint32_t>(global_imports_.size() - 1); } void WasmModuleBuilder::MarkStartFunction(WasmFunctionBuilder* function) { start_function_index_ = function->func_index(); } void WasmModuleBuilder::AddExport(Vector<const char> name, WasmFunctionBuilder* function) { function_exports_.push_back({name, function->func_index()}); } uint32_t WasmModuleBuilder::AddGlobal(ValueType type, bool exported, bool mutability, const WasmInitExpr& init) { globals_.push_back({type, exported, mutability, init}); return static_cast<uint32_t>(globals_.size() - 1); } void WasmModuleBuilder::SetMinMemorySize(uint32_t value) { min_memory_size_ = value; } void WasmModuleBuilder::SetMaxMemorySize(uint32_t value) { has_max_memory_size_ = true; max_memory_size_ = value; } void WasmModuleBuilder::SetHasSharedMemory() { has_shared_memory_ = true; } void WasmModuleBuilder::WriteTo(ZoneBuffer& buffer) const { // == Emit magic ============================================================= buffer.write_u32(kWasmMagic); buffer.write_u32(kWasmVersion); // == Emit signatures ======================================================== if (signatures_.size() > 0) { size_t start = EmitSection(kTypeSectionCode, buffer); buffer.write_size(signatures_.size()); for (FunctionSig* sig : signatures_) { buffer.write_u8(kWasmFunctionTypeCode); buffer.write_size(sig->parameter_count()); for (auto param : sig->parameters()) { buffer.write_u8(ValueTypes::ValueTypeCodeFor(param)); } buffer.write_size(sig->return_count()); for (auto ret : sig->returns()) { buffer.write_u8(ValueTypes::ValueTypeCodeFor(ret)); } } FixupSection(buffer, start); } // == Emit imports =========================================================== if (global_imports_.size() + function_imports_.size() > 0) { size_t start = EmitSection(kImportSectionCode, buffer); buffer.write_size(global_imports_.size() + function_imports_.size()); for (auto import : global_imports_) { buffer.write_u32v(0); // module name (length) buffer.write_string(import.name); // field name buffer.write_u8(kExternalGlobal); buffer.write_u8(import.type_code); buffer.write_u8(0); // immutable } for (auto import : function_imports_) { buffer.write_u32v(0); // module name (length) buffer.write_string(import.name); // field name buffer.write_u8(kExternalFunction); buffer.write_u32v(import.sig_index); } FixupSection(buffer, start); } // == Emit function signatures =============================================== uint32_t num_function_names = 0; if (functions_.size() > 0) { size_t start = EmitSection(kFunctionSectionCode, buffer); buffer.write_size(functions_.size()); for (auto function : functions_) { function->WriteSignature(buffer); if (!function->name_.is_empty()) ++num_function_names; } FixupSection(buffer, start); } // == emit function table ==================================================== if (indirect_functions_.size() > 0) { size_t start = EmitSection(kTableSectionCode, buffer); buffer.write_u8(1); // table count buffer.write_u8(kLocalAnyFunc); buffer.write_u8(kHasMaximumFlag); buffer.write_size(indirect_functions_.size()); buffer.write_size(indirect_functions_.size()); FixupSection(buffer, start); } // == emit memory declaration ================================================ { size_t start = EmitSection(kMemorySectionCode, buffer); buffer.write_u8(1); // memory count if (has_shared_memory_) { buffer.write_u8(has_max_memory_size_ ? MemoryFlags::kSharedAndMaximum : MemoryFlags::kSharedNoMaximum); } else { buffer.write_u8(has_max_memory_size_ ? MemoryFlags::kMaximum : MemoryFlags::kNoMaximum); } buffer.write_u32v(min_memory_size_); if (has_max_memory_size_) { buffer.write_u32v(max_memory_size_); } FixupSection(buffer, start); } // == Emit globals =========================================================== if (globals_.size() > 0) { size_t start = EmitSection(kGlobalSectionCode, buffer); buffer.write_size(globals_.size()); for (auto global : globals_) { buffer.write_u8(ValueTypes::ValueTypeCodeFor(global.type)); buffer.write_u8(global.mutability ? 1 : 0); switch (global.init.kind) { case WasmInitExpr::kI32Const: DCHECK_EQ(kWasmI32, global.type); buffer.write_u8(kExprI32Const); buffer.write_i32v(global.init.val.i32_const); break; case WasmInitExpr::kI64Const: DCHECK_EQ(kWasmI64, global.type); buffer.write_u8(kExprI64Const); buffer.write_i64v(global.init.val.i64_const); break; case WasmInitExpr::kF32Const: DCHECK_EQ(kWasmF32, global.type); buffer.write_u8(kExprF32Const); buffer.write_f32(global.init.val.f32_const); break; case WasmInitExpr::kF64Const: DCHECK_EQ(kWasmF64, global.type); buffer.write_u8(kExprF64Const); buffer.write_f64(global.init.val.f64_const); break; case WasmInitExpr::kGlobalIndex: buffer.write_u8(kExprGetGlobal); buffer.write_u32v(global.init.val.global_index); break; default: { // No initializer, emit a default value. switch (global.type) { case kWasmI32: buffer.write_u8(kExprI32Const); // LEB encoding of 0. buffer.write_u8(0); break; case kWasmI64: buffer.write_u8(kExprI64Const); // LEB encoding of 0. buffer.write_u8(0); break; case kWasmF32: buffer.write_u8(kExprF32Const); buffer.write_f32(0.f); break; case kWasmF64: buffer.write_u8(kExprF64Const); buffer.write_f64(0.); break; default: UNREACHABLE(); } } } buffer.write_u8(kExprEnd); } FixupSection(buffer, start); } // == emit exports =========================================================== if (!function_exports_.empty()) { size_t start = EmitSection(kExportSectionCode, buffer); buffer.write_size(function_exports_.size()); for (auto function_export : function_exports_) { buffer.write_string(function_export.name); buffer.write_u8(kExternalFunction); buffer.write_size(function_export.function_index + function_imports_.size()); } FixupSection(buffer, start); } // == emit start function index ============================================== if (start_function_index_ >= 0) { size_t start = EmitSection(kStartSectionCode, buffer); buffer.write_size(start_function_index_ + function_imports_.size()); FixupSection(buffer, start); } // == emit function table elements =========================================== if (indirect_functions_.size() > 0) { size_t start = EmitSection(kElementSectionCode, buffer); buffer.write_u8(1); // count of entries buffer.write_u8(0); // table index buffer.write_u8(kExprI32Const); // offset buffer.write_u32v(0); buffer.write_u8(kExprEnd); buffer.write_size(indirect_functions_.size()); // element count for (auto index : indirect_functions_) { buffer.write_size(index + function_imports_.size()); } FixupSection(buffer, start); } // == emit code ============================================================== if (functions_.size() > 0) { size_t start = EmitSection(kCodeSectionCode, buffer); buffer.write_size(functions_.size()); for (auto function : functions_) { function->WriteBody(buffer); } FixupSection(buffer, start); } // == emit data segments ===================================================== if (data_segments_.size() > 0) { size_t start = EmitSection(kDataSectionCode, buffer); buffer.write_size(data_segments_.size()); for (auto segment : data_segments_) { buffer.write_u8(0); // linear memory segment buffer.write_u8(kExprI32Const); // initializer expression for dest buffer.write_u32v(segment.dest); buffer.write_u8(kExprEnd); buffer.write_u32v(static_cast<uint32_t>(segment.data.size())); buffer.write(&segment.data[0], segment.data.size()); } FixupSection(buffer, start); } // == Emit names ============================================================= if (num_function_names > 0 || !function_imports_.empty()) { // Emit the section code. buffer.write_u8(kUnknownSectionCode); // Emit a placeholder for the length. size_t start = buffer.reserve_u32v(); // Emit the section string. buffer.write_size(4); buffer.write(reinterpret_cast<const byte*>("name"), 4); // Emit a subsection for the function names. buffer.write_u8(NameSectionKindCode::kFunction); // Emit a placeholder for the subsection length. size_t functions_start = buffer.reserve_u32v(); // Emit the function names. // Imports are always named. uint32_t num_imports = static_cast<uint32_t>(function_imports_.size()); buffer.write_size(num_imports + num_function_names); uint32_t function_index = 0; for (; function_index < num_imports; ++function_index) { const WasmFunctionImport* import = &function_imports_[function_index]; DCHECK(!import->name.is_empty()); buffer.write_u32v(function_index); buffer.write_string(import->name); } if (num_function_names > 0) { for (auto function : functions_) { DCHECK_EQ(function_index, function->func_index() + function_imports_.size()); if (!function->name_.is_empty()) { buffer.write_u32v(function_index); buffer.write_string(function->name_); } ++function_index; } } FixupSection(buffer, functions_start); FixupSection(buffer, start); } } void WasmModuleBuilder::WriteAsmJsOffsetTable(ZoneBuffer& buffer) const { // == Emit asm.js offset table =============================================== buffer.write_size(functions_.size()); // Emit the offset table per function. for (auto function : functions_) { function->WriteAsmWasmOffsetTable(buffer); } // Append a 0 to indicate that this is an encoded table. buffer.write_u8(0); } } // namespace wasm } // namespace internal } // namespace v8