// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Review notes: // // - The use of macros in these inline functions may seem superfluous // but it is absolutely needed to make sure gcc generates optimal // code. gcc is not happy when attempting to inline too deep. // #ifndef V8_OBJECTS_INL_H_ #define V8_OBJECTS_INL_H_ #include "src/base/atomicops.h" #include "src/base/bits.h" #include "src/builtins/builtins.h" #include "src/contexts-inl.h" #include "src/conversions-inl.h" #include "src/factory.h" #include "src/feedback-vector-inl.h" #include "src/field-index-inl.h" #include "src/field-type.h" #include "src/handles-inl.h" #include "src/heap/heap-inl.h" #include "src/heap/heap.h" #include "src/isolate-inl.h" #include "src/isolate.h" #include "src/keys.h" #include "src/layout-descriptor-inl.h" #include "src/lookup-cache-inl.h" #include "src/lookup.h" #include "src/objects.h" #include "src/objects/arguments-inl.h" #include "src/objects/hash-table-inl.h" #include "src/objects/hash-table.h" #include "src/objects/literal-objects.h" #include "src/objects/module-inl.h" #include "src/objects/regexp-match-info.h" #include "src/objects/scope-info.h" #include "src/property.h" #include "src/prototype.h" #include "src/transitions-inl.h" #include "src/v8memory.h" // Has to be the last include (doesn't have include guards): #include "src/objects/object-macros.h" namespace v8 { namespace internal { PropertyDetails::PropertyDetails(Smi* smi) { value_ = smi->value(); } Smi* PropertyDetails::AsSmi() const { // Ensure the upper 2 bits have the same value by sign extending it. This is // necessary to be able to use the 31st bit of the property details. int value = value_ << 1; return Smi::FromInt(value >> 1); } int PropertyDetails::field_width_in_words() const { DCHECK(location() == kField); if (!FLAG_unbox_double_fields) return 1; if (kDoubleSize == kPointerSize) return 1; return representation().IsDouble() ? kDoubleSize / kPointerSize : 1; } TYPE_CHECKER(BreakPoint, TUPLE2_TYPE) TYPE_CHECKER(BreakPointInfo, TUPLE2_TYPE) TYPE_CHECKER(ByteArray, BYTE_ARRAY_TYPE) TYPE_CHECKER(BytecodeArray, BYTECODE_ARRAY_TYPE) TYPE_CHECKER(CallHandlerInfo, TUPLE2_TYPE) TYPE_CHECKER(Cell, CELL_TYPE) TYPE_CHECKER(Code, CODE_TYPE) TYPE_CHECKER(ConstantElementsPair, TUPLE2_TYPE) TYPE_CHECKER(CoverageInfo, FIXED_ARRAY_TYPE) TYPE_CHECKER(FixedDoubleArray, FIXED_DOUBLE_ARRAY_TYPE) TYPE_CHECKER(Foreign, FOREIGN_TYPE) TYPE_CHECKER(FreeSpace, FREE_SPACE_TYPE) TYPE_CHECKER(HashTable, HASH_TABLE_TYPE) TYPE_CHECKER(HeapNumber, HEAP_NUMBER_TYPE) TYPE_CHECKER(JSArrayBuffer, JS_ARRAY_BUFFER_TYPE) TYPE_CHECKER(JSArray, JS_ARRAY_TYPE) TYPE_CHECKER(JSAsyncFromSyncIterator, JS_ASYNC_FROM_SYNC_ITERATOR_TYPE) TYPE_CHECKER(JSAsyncGeneratorObject, JS_ASYNC_GENERATOR_OBJECT_TYPE) TYPE_CHECKER(JSBoundFunction, JS_BOUND_FUNCTION_TYPE) TYPE_CHECKER(JSContextExtensionObject, JS_CONTEXT_EXTENSION_OBJECT_TYPE) TYPE_CHECKER(JSDataView, JS_DATA_VIEW_TYPE) TYPE_CHECKER(JSDate, JS_DATE_TYPE) TYPE_CHECKER(JSError, JS_ERROR_TYPE) TYPE_CHECKER(JSFunction, JS_FUNCTION_TYPE) TYPE_CHECKER(JSGlobalObject, JS_GLOBAL_OBJECT_TYPE) TYPE_CHECKER(JSMap, JS_MAP_TYPE) TYPE_CHECKER(JSMessageObject, JS_MESSAGE_OBJECT_TYPE) TYPE_CHECKER(JSPromiseCapability, JS_PROMISE_CAPABILITY_TYPE) TYPE_CHECKER(JSPromise, JS_PROMISE_TYPE) TYPE_CHECKER(JSRegExp, JS_REGEXP_TYPE) TYPE_CHECKER(JSSet, JS_SET_TYPE) TYPE_CHECKER(JSStringIterator, JS_STRING_ITERATOR_TYPE) TYPE_CHECKER(JSTypedArray, JS_TYPED_ARRAY_TYPE) TYPE_CHECKER(JSValue, JS_VALUE_TYPE) TYPE_CHECKER(JSWeakMap, JS_WEAK_MAP_TYPE) TYPE_CHECKER(JSWeakSet, JS_WEAK_SET_TYPE) TYPE_CHECKER(Map, MAP_TYPE) TYPE_CHECKER(MutableHeapNumber, MUTABLE_HEAP_NUMBER_TYPE) TYPE_CHECKER(Oddball, ODDBALL_TYPE) TYPE_CHECKER(PreParsedScopeData, TUPLE2_TYPE) TYPE_CHECKER(PropertyArray, PROPERTY_ARRAY_TYPE) TYPE_CHECKER(PropertyCell, PROPERTY_CELL_TYPE) TYPE_CHECKER(SmallOrderedHashMap, SMALL_ORDERED_HASH_MAP_TYPE) TYPE_CHECKER(SmallOrderedHashSet, SMALL_ORDERED_HASH_SET_TYPE) TYPE_CHECKER(SourcePositionTableWithFrameCache, TUPLE2_TYPE) TYPE_CHECKER(TransitionArray, TRANSITION_ARRAY_TYPE) TYPE_CHECKER(TypeFeedbackInfo, TUPLE3_TYPE) TYPE_CHECKER(WasmInstanceObject, WASM_INSTANCE_TYPE) TYPE_CHECKER(WasmMemoryObject, WASM_MEMORY_TYPE) TYPE_CHECKER(WasmModuleObject, WASM_MODULE_TYPE) TYPE_CHECKER(WasmTableObject, WASM_TABLE_TYPE) TYPE_CHECKER(WeakCell, WEAK_CELL_TYPE) TYPE_CHECKER(WeakFixedArray, FIXED_ARRAY_TYPE) #define TYPED_ARRAY_TYPE_CHECKER(Type, type, TYPE, ctype, size) \ TYPE_CHECKER(Fixed##Type##Array, FIXED_##TYPE##_ARRAY_TYPE) TYPED_ARRAYS(TYPED_ARRAY_TYPE_CHECKER) #undef TYPED_ARRAY_TYPE_CHECKER bool HeapObject::IsFixedArrayBase() const { return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase(); } bool HeapObject::IsFixedArray() const { InstanceType instance_type = map()->instance_type(); return instance_type == FIXED_ARRAY_TYPE || instance_type == HASH_TABLE_TYPE; } bool HeapObject::IsSloppyArgumentsElements() const { return IsFixedArray(); } bool HeapObject::IsJSSloppyArgumentsObject() const { return IsJSArgumentsObject(); } bool HeapObject::IsJSGeneratorObject() const { return map()->instance_type() == JS_GENERATOR_OBJECT_TYPE || IsJSAsyncGeneratorObject(); } bool HeapObject::IsBoilerplateDescription() const { return IsFixedArray(); } bool HeapObject::IsExternal() const { return map()->FindRootMap() == GetHeap()->external_map(); } #define IS_TYPE_FUNCTION_DEF(type_) \ bool Object::Is##type_() const { \ return IsHeapObject() && HeapObject::cast(this)->Is##type_(); \ } HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DEF) #undef IS_TYPE_FUNCTION_DEF #define IS_TYPE_FUNCTION_DEF(Type, Value) \ bool Object::Is##Type(Isolate* isolate) const { \ return this == isolate->heap()->Value(); \ } \ bool HeapObject::Is##Type(Isolate* isolate) const { \ return this == isolate->heap()->Value(); \ } ODDBALL_LIST(IS_TYPE_FUNCTION_DEF) #undef IS_TYPE_FUNCTION_DEF bool Object::IsNullOrUndefined(Isolate* isolate) const { Heap* heap = isolate->heap(); return this == heap->null_value() || this == heap->undefined_value(); } bool HeapObject::IsNullOrUndefined(Isolate* isolate) const { Heap* heap = isolate->heap(); return this == heap->null_value() || this == heap->undefined_value(); } bool HeapObject::IsString() const { return map()->instance_type() < FIRST_NONSTRING_TYPE; } bool HeapObject::IsName() const { return map()->instance_type() <= LAST_NAME_TYPE; } bool HeapObject::IsUniqueName() const { return IsInternalizedString() || IsSymbol(); } bool HeapObject::IsFunction() const { STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); return map()->instance_type() >= FIRST_FUNCTION_TYPE; } bool HeapObject::IsCallable() const { return map()->is_callable(); } bool HeapObject::IsConstructor() const { return map()->is_constructor(); } bool HeapObject::IsTemplateInfo() const { return IsObjectTemplateInfo() || IsFunctionTemplateInfo(); } bool HeapObject::IsInternalizedString() const { uint32_t type = map()->instance_type(); STATIC_ASSERT(kNotInternalizedTag != 0); return (type & (kIsNotStringMask | kIsNotInternalizedMask)) == (kStringTag | kInternalizedTag); } bool HeapObject::IsConsString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsCons(); } bool HeapObject::IsThinString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsThin(); } bool HeapObject::IsSlicedString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSliced(); } bool HeapObject::IsSeqString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential(); } bool HeapObject::IsSeqOneByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential() && String::cast(this)->IsOneByteRepresentation(); } bool HeapObject::IsSeqTwoByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential() && String::cast(this)->IsTwoByteRepresentation(); } bool HeapObject::IsExternalString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal(); } bool HeapObject::IsExternalOneByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal() && String::cast(this)->IsOneByteRepresentation(); } bool HeapObject::IsExternalTwoByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal() && String::cast(this)->IsTwoByteRepresentation(); } bool Object::IsNumber() const { return IsSmi() || IsHeapNumber(); } bool HeapObject::IsFiller() const { InstanceType instance_type = map()->instance_type(); return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE; } bool HeapObject::IsFixedTypedArrayBase() const { InstanceType instance_type = map()->instance_type(); return (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE && instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE); } bool HeapObject::IsJSReceiver() const { STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); return map()->instance_type() >= FIRST_JS_RECEIVER_TYPE; } bool HeapObject::IsJSObject() const { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return map()->IsJSObjectMap(); } bool HeapObject::IsJSProxy() const { return map()->IsJSProxyMap(); } bool HeapObject::IsJSMapIterator() const { InstanceType instance_type = map()->instance_type(); return (instance_type >= JS_MAP_KEY_ITERATOR_TYPE && instance_type <= JS_MAP_VALUE_ITERATOR_TYPE); } bool HeapObject::IsJSSetIterator() const { InstanceType instance_type = map()->instance_type(); return (instance_type == JS_SET_VALUE_ITERATOR_TYPE || instance_type == JS_SET_KEY_VALUE_ITERATOR_TYPE); } bool HeapObject::IsJSArrayIterator() const { InstanceType instance_type = map()->instance_type(); return (instance_type >= FIRST_ARRAY_ITERATOR_TYPE && instance_type <= LAST_ARRAY_ITERATOR_TYPE); } bool HeapObject::IsJSWeakCollection() const { return IsJSWeakMap() || IsJSWeakSet(); } bool HeapObject::IsJSCollection() const { return IsJSMap() || IsJSSet(); } bool HeapObject::IsDescriptorArray() const { return IsFixedArray(); } bool HeapObject::IsFrameArray() const { return IsFixedArray(); } bool HeapObject::IsArrayList() const { return IsFixedArray(); } bool HeapObject::IsRegExpMatchInfo() const { return IsFixedArray(); } bool Object::IsLayoutDescriptor() const { return IsSmi() || IsByteArray(); } bool HeapObject::IsFeedbackVector() const { return map() == GetHeap()->feedback_vector_map(); } bool HeapObject::IsFeedbackMetadata() const { return IsFixedArray(); } bool HeapObject::IsDeoptimizationInputData() const { // Must be a fixed array. if (!IsFixedArray()) return false; // There's no sure way to detect the difference between a fixed array and // a deoptimization data array. Since this is used for asserts we can // check that the length is zero or else the fixed size plus a multiple of // the entry size. int length = FixedArray::cast(this)->length(); if (length == 0) return true; length -= DeoptimizationInputData::kFirstDeoptEntryIndex; return length >= 0 && length % DeoptimizationInputData::kDeoptEntrySize == 0; } bool HeapObject::IsHandlerTable() const { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a handler table array. return true; } bool HeapObject::IsTemplateList() const { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a template list. if (FixedArray::cast(this)->length() < 1) return false; return true; } bool HeapObject::IsDependentCode() const { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a dependent codes array. return true; } bool HeapObject::IsContext() const { Map* map = this->map(); Heap* heap = GetHeap(); return ( map == heap->function_context_map() || map == heap->catch_context_map() || map == heap->with_context_map() || map == heap->native_context_map() || map == heap->block_context_map() || map == heap->module_context_map() || map == heap->eval_context_map() || map == heap->script_context_map() || map == heap->debug_evaluate_context_map()); } bool HeapObject::IsNativeContext() const { return map() == GetHeap()->native_context_map(); } bool HeapObject::IsScriptContextTable() const { return map() == GetHeap()->script_context_table_map(); } bool HeapObject::IsScopeInfo() const { return map() == GetHeap()->scope_info_map(); } template <> inline bool Is<JSFunction>(Object* obj) { return obj->IsJSFunction(); } bool HeapObject::IsAbstractCode() const { return IsBytecodeArray() || IsCode(); } bool HeapObject::IsStringWrapper() const { return IsJSValue() && JSValue::cast(this)->value()->IsString(); } bool HeapObject::IsBoolean() const { return IsOddball() && ((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0); } bool HeapObject::IsJSArrayBufferView() const { return IsJSDataView() || IsJSTypedArray(); } template <> inline bool Is<JSArray>(Object* obj) { return obj->IsJSArray(); } bool HeapObject::IsWeakHashTable() const { return IsHashTable(); } bool HeapObject::IsDictionary() const { return IsHashTable() && this != GetHeap()->string_table(); } bool Object::IsNameDictionary() const { return IsDictionary(); } bool Object::IsGlobalDictionary() const { return IsDictionary(); } bool Object::IsSeededNumberDictionary() const { return IsDictionary(); } bool HeapObject::IsUnseededNumberDictionary() const { return map() == GetHeap()->unseeded_number_dictionary_map(); } bool HeapObject::IsStringTable() const { return IsHashTable(); } bool HeapObject::IsStringSet() const { return IsHashTable(); } bool HeapObject::IsObjectHashSet() const { return IsHashTable(); } bool HeapObject::IsNormalizedMapCache() const { return NormalizedMapCache::IsNormalizedMapCache(this); } bool HeapObject::IsCompilationCacheTable() const { return IsHashTable(); } bool HeapObject::IsCodeCacheHashTable() const { return IsHashTable(); } bool HeapObject::IsMapCache() const { return IsHashTable(); } bool HeapObject::IsObjectHashTable() const { return IsHashTable(); } bool HeapObject::IsOrderedHashTable() const { return map() == GetHeap()->ordered_hash_table_map(); } bool Object::IsOrderedHashSet() const { return IsOrderedHashTable(); } bool Object::IsOrderedHashMap() const { return IsOrderedHashTable(); } bool Object::IsSmallOrderedHashTable() const { return IsSmallOrderedHashSet() || IsSmallOrderedHashMap(); } bool Object::IsPrimitive() const { return IsSmi() || HeapObject::cast(this)->map()->IsPrimitiveMap(); } // static Maybe<bool> Object::IsArray(Handle<Object> object) { if (object->IsSmi()) return Just(false); Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object); if (heap_object->IsJSArray()) return Just(true); if (!heap_object->IsJSProxy()) return Just(false); return JSProxy::IsArray(Handle<JSProxy>::cast(object)); } bool HeapObject::IsJSGlobalProxy() const { bool result = map()->instance_type() == JS_GLOBAL_PROXY_TYPE; DCHECK(!result || map()->is_access_check_needed()); return result; } bool HeapObject::IsUndetectable() const { return map()->is_undetectable(); } bool HeapObject::IsAccessCheckNeeded() const { if (IsJSGlobalProxy()) { const JSGlobalProxy* proxy = JSGlobalProxy::cast(this); JSGlobalObject* global = proxy->GetIsolate()->context()->global_object(); return proxy->IsDetachedFrom(global); } return map()->is_access_check_needed(); } bool HeapObject::IsStruct() const { switch (map()->instance_type()) { #define MAKE_STRUCT_CASE(NAME, Name, name) \ case NAME##_TYPE: \ return true; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE default: return false; } } #define MAKE_STRUCT_PREDICATE(NAME, Name, name) \ bool Object::Is##Name() const { \ return IsHeapObject() && HeapObject::cast(this)->Is##Name(); \ } \ bool HeapObject::Is##Name() const { \ return map()->instance_type() == NAME##_TYPE; \ } STRUCT_LIST(MAKE_STRUCT_PREDICATE) #undef MAKE_STRUCT_PREDICATE double Object::Number() const { DCHECK(IsNumber()); return IsSmi() ? static_cast<double>(reinterpret_cast<const Smi*>(this)->value()) : reinterpret_cast<const HeapNumber*>(this)->value(); } bool Object::IsNaN() const { return this->IsHeapNumber() && std::isnan(HeapNumber::cast(this)->value()); } bool Object::IsMinusZero() const { return this->IsHeapNumber() && i::IsMinusZero(HeapNumber::cast(this)->value()); } // ------------------------------------ // Cast operations CAST_ACCESSOR(AbstractCode) CAST_ACCESSOR(AccessCheckInfo) CAST_ACCESSOR(AccessorInfo) CAST_ACCESSOR(AccessorPair) CAST_ACCESSOR(AllocationMemento) CAST_ACCESSOR(AllocationSite) CAST_ACCESSOR(ArrayList) CAST_ACCESSOR(AsyncGeneratorRequest) CAST_ACCESSOR(BoilerplateDescription) CAST_ACCESSOR(ByteArray) CAST_ACCESSOR(BytecodeArray) CAST_ACCESSOR(CallHandlerInfo) CAST_ACCESSOR(Cell) CAST_ACCESSOR(Code) CAST_ACCESSOR(ConstantElementsPair) CAST_ACCESSOR(ContextExtension) CAST_ACCESSOR(DeoptimizationInputData) CAST_ACCESSOR(DependentCode) CAST_ACCESSOR(DescriptorArray) CAST_ACCESSOR(FixedArray) CAST_ACCESSOR(FixedArrayBase) CAST_ACCESSOR(FixedDoubleArray) CAST_ACCESSOR(FixedTypedArrayBase) CAST_ACCESSOR(Foreign) CAST_ACCESSOR(FunctionTemplateInfo) CAST_ACCESSOR(GlobalDictionary) CAST_ACCESSOR(HandlerTable) CAST_ACCESSOR(HeapObject) CAST_ACCESSOR(InterceptorInfo) CAST_ACCESSOR(JSArray) CAST_ACCESSOR(JSArrayBuffer) CAST_ACCESSOR(JSArrayBufferView) CAST_ACCESSOR(JSArrayIterator) CAST_ACCESSOR(JSAsyncFromSyncIterator) CAST_ACCESSOR(JSAsyncGeneratorObject) CAST_ACCESSOR(JSBoundFunction) CAST_ACCESSOR(JSDataView) CAST_ACCESSOR(JSDate) CAST_ACCESSOR(JSFunction) CAST_ACCESSOR(JSGeneratorObject) CAST_ACCESSOR(JSGlobalObject) CAST_ACCESSOR(JSGlobalProxy) CAST_ACCESSOR(JSMap) CAST_ACCESSOR(JSMapIterator) CAST_ACCESSOR(JSMessageObject) CAST_ACCESSOR(JSObject) CAST_ACCESSOR(JSPromise) CAST_ACCESSOR(JSPromiseCapability) CAST_ACCESSOR(JSProxy) CAST_ACCESSOR(JSReceiver) CAST_ACCESSOR(JSRegExp) CAST_ACCESSOR(JSSet) CAST_ACCESSOR(JSSetIterator) CAST_ACCESSOR(JSStringIterator) CAST_ACCESSOR(JSTypedArray) CAST_ACCESSOR(JSValue) CAST_ACCESSOR(JSWeakCollection) CAST_ACCESSOR(JSWeakMap) CAST_ACCESSOR(JSWeakSet) CAST_ACCESSOR(LayoutDescriptor) CAST_ACCESSOR(NameDictionary) CAST_ACCESSOR(NormalizedMapCache) CAST_ACCESSOR(Object) CAST_ACCESSOR(ObjectHashSet) CAST_ACCESSOR(ObjectHashTable) CAST_ACCESSOR(ObjectTemplateInfo) CAST_ACCESSOR(Oddball) CAST_ACCESSOR(OrderedHashMap) CAST_ACCESSOR(OrderedHashSet) CAST_ACCESSOR(PromiseReactionJobInfo) CAST_ACCESSOR(PromiseResolveThenableJobInfo) CAST_ACCESSOR(PropertyArray) CAST_ACCESSOR(PropertyCell) CAST_ACCESSOR(PrototypeInfo) CAST_ACCESSOR(RegExpMatchInfo) CAST_ACCESSOR(ScopeInfo) CAST_ACCESSOR(SeededNumberDictionary) CAST_ACCESSOR(SmallOrderedHashMap) CAST_ACCESSOR(SmallOrderedHashSet) CAST_ACCESSOR(Smi) CAST_ACCESSOR(SourcePositionTableWithFrameCache) CAST_ACCESSOR(StackFrameInfo) CAST_ACCESSOR(StringSet) CAST_ACCESSOR(StringTable) CAST_ACCESSOR(Struct) CAST_ACCESSOR(TemplateInfo) CAST_ACCESSOR(TemplateList) CAST_ACCESSOR(Tuple2) CAST_ACCESSOR(Tuple3) CAST_ACCESSOR(TypeFeedbackInfo) CAST_ACCESSOR(UnseededNumberDictionary) CAST_ACCESSOR(WeakCell) CAST_ACCESSOR(WeakFixedArray) CAST_ACCESSOR(WeakHashTable) bool Object::HasValidElements() { // Dictionary is covered under FixedArray. return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase(); } bool Object::KeyEquals(Object* second) { Object* first = this; if (second->IsNumber()) { if (first->IsNumber()) return first->Number() == second->Number(); Object* temp = first; first = second; second = temp; } if (first->IsNumber()) { DCHECK_LE(0, first->Number()); uint32_t expected = static_cast<uint32_t>(first->Number()); uint32_t index; return Name::cast(second)->AsArrayIndex(&index) && index == expected; } return Name::cast(first)->Equals(Name::cast(second)); } bool Object::FilterKey(PropertyFilter filter) { DCHECK(!IsPropertyCell()); if (IsSymbol()) { if (filter & SKIP_SYMBOLS) return true; if (Symbol::cast(this)->is_private()) return true; } else { if (filter & SKIP_STRINGS) return true; } return false; } Handle<Object> Object::NewStorageFor(Isolate* isolate, Handle<Object> object, Representation representation) { if (!representation.IsDouble()) return object; Handle<HeapNumber> result = isolate->factory()->NewHeapNumber(MUTABLE); if (object->IsUninitialized(isolate)) { result->set_value_as_bits(kHoleNanInt64); } else if (object->IsMutableHeapNumber()) { // Ensure that all bits of the double value are preserved. result->set_value_as_bits(HeapNumber::cast(*object)->value_as_bits()); } else { result->set_value(object->Number()); } return result; } Handle<Object> Object::WrapForRead(Isolate* isolate, Handle<Object> object, Representation representation) { DCHECK(!object->IsUninitialized(isolate)); if (!representation.IsDouble()) { DCHECK(object->FitsRepresentation(representation)); return object; } return isolate->factory()->NewHeapNumber(HeapNumber::cast(*object)->value()); } Representation Object::OptimalRepresentation() { if (!FLAG_track_fields) return Representation::Tagged(); if (IsSmi()) { return Representation::Smi(); } else if (FLAG_track_double_fields && IsHeapNumber()) { return Representation::Double(); } else if (FLAG_track_computed_fields && IsUninitialized(HeapObject::cast(this)->GetIsolate())) { return Representation::None(); } else if (FLAG_track_heap_object_fields) { DCHECK(IsHeapObject()); return Representation::HeapObject(); } else { return Representation::Tagged(); } } ElementsKind Object::OptimalElementsKind() { if (IsSmi()) return PACKED_SMI_ELEMENTS; if (IsNumber()) return PACKED_DOUBLE_ELEMENTS; return PACKED_ELEMENTS; } bool Object::FitsRepresentation(Representation representation) { if (FLAG_track_fields && representation.IsSmi()) { return IsSmi(); } else if (FLAG_track_double_fields && representation.IsDouble()) { return IsMutableHeapNumber() || IsNumber(); } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) { return IsHeapObject(); } else if (FLAG_track_fields && representation.IsNone()) { return false; } return true; } bool Object::ToUint32(uint32_t* value) const { if (IsSmi()) { int num = Smi::ToInt(this); if (num < 0) return false; *value = static_cast<uint32_t>(num); return true; } if (IsHeapNumber()) { double num = HeapNumber::cast(this)->value(); return DoubleToUint32IfEqualToSelf(num, value); } return false; } // static MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate, Handle<Object> object, const char* method_name) { if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object); return ToObject(isolate, object, isolate->native_context(), method_name); } // static MaybeHandle<Name> Object::ToName(Isolate* isolate, Handle<Object> input) { if (input->IsName()) return Handle<Name>::cast(input); return ConvertToName(isolate, input); } // static MaybeHandle<Object> Object::ToPropertyKey(Isolate* isolate, Handle<Object> value) { if (value->IsSmi() || HeapObject::cast(*value)->IsName()) return value; return ConvertToPropertyKey(isolate, value); } // static MaybeHandle<Object> Object::ToPrimitive(Handle<Object> input, ToPrimitiveHint hint) { if (input->IsPrimitive()) return input; return JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input), hint); } // static MaybeHandle<Object> Object::ToNumber(Handle<Object> input) { if (input->IsNumber()) return input; return ConvertToNumber(HeapObject::cast(*input)->GetIsolate(), input); } // static MaybeHandle<Object> Object::ToInteger(Isolate* isolate, Handle<Object> input) { if (input->IsSmi()) return input; return ConvertToInteger(isolate, input); } // static MaybeHandle<Object> Object::ToInt32(Isolate* isolate, Handle<Object> input) { if (input->IsSmi()) return input; return ConvertToInt32(isolate, input); } // static MaybeHandle<Object> Object::ToUint32(Isolate* isolate, Handle<Object> input) { if (input->IsSmi()) return handle(Smi::cast(*input)->ToUint32Smi(), isolate); return ConvertToUint32(isolate, input); } // static MaybeHandle<String> Object::ToString(Isolate* isolate, Handle<Object> input) { if (input->IsString()) return Handle<String>::cast(input); return ConvertToString(isolate, input); } // static MaybeHandle<Object> Object::ToLength(Isolate* isolate, Handle<Object> input) { if (input->IsSmi()) { int value = std::max(Smi::ToInt(*input), 0); return handle(Smi::FromInt(value), isolate); } return ConvertToLength(isolate, input); } // static MaybeHandle<Object> Object::ToIndex(Isolate* isolate, Handle<Object> input, MessageTemplate::Template error_index) { if (input->IsSmi() && Smi::ToInt(*input) >= 0) return input; return ConvertToIndex(isolate, input, error_index); } bool Object::HasSpecificClassOf(String* name) { return this->IsJSObject() && (JSObject::cast(this)->class_name() == name); } MaybeHandle<Object> Object::GetProperty(Handle<Object> object, Handle<Name> name) { LookupIterator it(object, name); if (!it.IsFound()) return it.factory()->undefined_value(); return GetProperty(&it); } MaybeHandle<Object> JSReceiver::GetProperty(Handle<JSReceiver> receiver, Handle<Name> name) { LookupIterator it(receiver, name, receiver); if (!it.IsFound()) return it.factory()->undefined_value(); return Object::GetProperty(&it); } MaybeHandle<Object> Object::GetElement(Isolate* isolate, Handle<Object> object, uint32_t index) { LookupIterator it(isolate, object, index); if (!it.IsFound()) return it.factory()->undefined_value(); return GetProperty(&it); } MaybeHandle<Object> JSReceiver::GetElement(Isolate* isolate, Handle<JSReceiver> receiver, uint32_t index) { LookupIterator it(isolate, receiver, index, receiver); if (!it.IsFound()) return it.factory()->undefined_value(); return Object::GetProperty(&it); } Handle<Object> JSReceiver::GetDataProperty(Handle<JSReceiver> object, Handle<Name> name) { LookupIterator it(object, name, object, LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); if (!it.IsFound()) return it.factory()->undefined_value(); return GetDataProperty(&it); } MaybeHandle<Object> Object::SetElement(Isolate* isolate, Handle<Object> object, uint32_t index, Handle<Object> value, LanguageMode language_mode) { LookupIterator it(isolate, object, index); MAYBE_RETURN_NULL( SetProperty(&it, value, language_mode, MAY_BE_STORE_FROM_KEYED)); return value; } MaybeHandle<Object> JSReceiver::GetPrototype(Isolate* isolate, Handle<JSReceiver> receiver) { // We don't expect access checks to be needed on JSProxy objects. DCHECK(!receiver->IsAccessCheckNeeded() || receiver->IsJSObject()); PrototypeIterator iter(isolate, receiver, kStartAtReceiver, PrototypeIterator::END_AT_NON_HIDDEN); do { if (!iter.AdvanceFollowingProxies()) return MaybeHandle<Object>(); } while (!iter.IsAtEnd()); return PrototypeIterator::GetCurrent(iter); } MaybeHandle<Object> JSReceiver::GetProperty(Isolate* isolate, Handle<JSReceiver> receiver, const char* name) { Handle<String> str = isolate->factory()->InternalizeUtf8String(name); return GetProperty(receiver, str); } // static MUST_USE_RESULT MaybeHandle<FixedArray> JSReceiver::OwnPropertyKeys( Handle<JSReceiver> object) { return KeyAccumulator::GetKeys(object, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES, GetKeysConversion::kConvertToString); } bool JSObject::PrototypeHasNoElements(Isolate* isolate, JSObject* object) { DisallowHeapAllocation no_gc; HeapObject* prototype = HeapObject::cast(object->map()->prototype()); HeapObject* null = isolate->heap()->null_value(); HeapObject* empty_fixed_array = isolate->heap()->empty_fixed_array(); HeapObject* empty_slow_element_dictionary = isolate->heap()->empty_slow_element_dictionary(); while (prototype != null) { Map* map = prototype->map(); if (map->instance_type() <= LAST_CUSTOM_ELEMENTS_RECEIVER) return false; HeapObject* elements = JSObject::cast(prototype)->elements(); if (elements != empty_fixed_array && elements != empty_slow_element_dictionary) { return false; } prototype = HeapObject::cast(map->prototype()); } return true; } Object** HeapObject::RawField(HeapObject* obj, int byte_offset) { return reinterpret_cast<Object**>(FIELD_ADDR(obj, byte_offset)); } int Smi::ToInt(const Object* object) { return Smi::cast(object)->value(); } MapWord MapWord::FromMap(const Map* map) { return MapWord(reinterpret_cast<uintptr_t>(map)); } Map* MapWord::ToMap() const { return reinterpret_cast<Map*>(value_); } bool MapWord::IsForwardingAddress() const { return HAS_SMI_TAG(reinterpret_cast<Object*>(value_)); } MapWord MapWord::FromForwardingAddress(HeapObject* object) { Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag; return MapWord(reinterpret_cast<uintptr_t>(raw)); } HeapObject* MapWord::ToForwardingAddress() { DCHECK(IsForwardingAddress()); return HeapObject::FromAddress(reinterpret_cast<Address>(value_)); } #ifdef VERIFY_HEAP void HeapObject::VerifyObjectField(int offset) { VerifyPointer(READ_FIELD(this, offset)); } void HeapObject::VerifySmiField(int offset) { CHECK(READ_FIELD(this, offset)->IsSmi()); } #endif Heap* HeapObject::GetHeap() const { Heap* heap = MemoryChunk::FromAddress( reinterpret_cast<Address>(const_cast<HeapObject*>(this))) ->heap(); SLOW_DCHECK(heap != NULL); return heap; } Isolate* HeapObject::GetIsolate() const { return GetHeap()->isolate(); } Map* HeapObject::map() const { return map_word().ToMap(); } void HeapObject::set_map(Map* value) { if (value != nullptr) { #ifdef VERIFY_HEAP value->GetHeap()->VerifyObjectLayoutChange(this, value); #endif } set_map_word(MapWord::FromMap(value)); if (value != nullptr) { // TODO(1600) We are passing NULL as a slot because maps can never be on // evacuation candidate. value->GetHeap()->incremental_marking()->RecordWrite(this, nullptr, value); } } Map* HeapObject::synchronized_map() const { return synchronized_map_word().ToMap(); } void HeapObject::synchronized_set_map(Map* value) { if (value != nullptr) { #ifdef VERIFY_HEAP value->GetHeap()->VerifyObjectLayoutChange(this, value); #endif } synchronized_set_map_word(MapWord::FromMap(value)); if (value != nullptr) { // TODO(1600) We are passing NULL as a slot because maps can never be on // evacuation candidate. value->GetHeap()->incremental_marking()->RecordWrite(this, nullptr, value); } } // Unsafe accessor omitting write barrier. void HeapObject::set_map_no_write_barrier(Map* value) { if (value != nullptr) { #ifdef VERIFY_HEAP value->GetHeap()->VerifyObjectLayoutChange(this, value); #endif } set_map_word(MapWord::FromMap(value)); } void HeapObject::set_map_after_allocation(Map* value, WriteBarrierMode mode) { set_map_word(MapWord::FromMap(value)); if (mode != SKIP_WRITE_BARRIER) { DCHECK(value != nullptr); // TODO(1600) We are passing NULL as a slot because maps can never be on // evacuation candidate. value->GetHeap()->incremental_marking()->RecordWrite(this, nullptr, value); } } HeapObject** HeapObject::map_slot() { return reinterpret_cast<HeapObject**>(FIELD_ADDR(this, kMapOffset)); } MapWord HeapObject::map_word() const { return MapWord( reinterpret_cast<uintptr_t>(RELAXED_READ_FIELD(this, kMapOffset))); } void HeapObject::set_map_word(MapWord map_word) { RELAXED_WRITE_FIELD(this, kMapOffset, reinterpret_cast<Object*>(map_word.value_)); } MapWord HeapObject::synchronized_map_word() const { return MapWord( reinterpret_cast<uintptr_t>(ACQUIRE_READ_FIELD(this, kMapOffset))); } void HeapObject::synchronized_set_map_word(MapWord map_word) { RELEASE_WRITE_FIELD( this, kMapOffset, reinterpret_cast<Object*>(map_word.value_)); } int HeapObject::Size() const { return SizeFromMap(map()); } double HeapNumber::value() const { return READ_DOUBLE_FIELD(this, kValueOffset); } void HeapNumber::set_value(double value) { WRITE_DOUBLE_FIELD(this, kValueOffset, value); } uint64_t HeapNumber::value_as_bits() const { return READ_UINT64_FIELD(this, kValueOffset); } void HeapNumber::set_value_as_bits(uint64_t bits) { WRITE_UINT64_FIELD(this, kValueOffset, bits); } int HeapNumber::get_exponent() { return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >> kExponentShift) - kExponentBias; } int HeapNumber::get_sign() { return READ_INT_FIELD(this, kExponentOffset) & kSignMask; } inline Object* OrderedHashMap::ValueAt(int entry) { DCHECK_LT(entry, this->UsedCapacity()); return get(EntryToIndex(entry) + kValueOffset); } ACCESSORS(JSReceiver, raw_properties_or_hash, Object, kPropertiesOrHashOffset) Object** FixedArray::GetFirstElementAddress() { return reinterpret_cast<Object**>(FIELD_ADDR(this, OffsetOfElementAt(0))); } bool FixedArray::ContainsOnlySmisOrHoles() { Object* the_hole = GetHeap()->the_hole_value(); Object** current = GetFirstElementAddress(); for (int i = 0; i < length(); ++i) { Object* candidate = *current++; if (!candidate->IsSmi() && candidate != the_hole) return false; } return true; } FixedArrayBase* JSObject::elements() const { Object* array = READ_FIELD(this, kElementsOffset); return static_cast<FixedArrayBase*>(array); } void AllocationSite::Initialize() { set_transition_info_or_boilerplate(Smi::kZero); SetElementsKind(GetInitialFastElementsKind()); set_nested_site(Smi::kZero); set_pretenure_data(0); set_pretenure_create_count(0); set_dependent_code(DependentCode::cast(GetHeap()->empty_fixed_array()), SKIP_WRITE_BARRIER); } bool AllocationSite::IsZombie() const { return pretenure_decision() == kZombie; } bool AllocationSite::IsMaybeTenure() const { return pretenure_decision() == kMaybeTenure; } bool AllocationSite::PretenuringDecisionMade() const { return pretenure_decision() != kUndecided; } void AllocationSite::MarkZombie() { DCHECK(!IsZombie()); Initialize(); set_pretenure_decision(kZombie); } ElementsKind AllocationSite::GetElementsKind() const { return ElementsKindBits::decode(transition_info()); } void AllocationSite::SetElementsKind(ElementsKind kind) { set_transition_info(ElementsKindBits::update(transition_info(), kind)); } bool AllocationSite::CanInlineCall() const { return DoNotInlineBit::decode(transition_info()) == 0; } void AllocationSite::SetDoNotInlineCall() { set_transition_info(DoNotInlineBit::update(transition_info(), true)); } bool AllocationSite::PointsToLiteral() const { Object* raw_value = transition_info_or_boilerplate(); DCHECK_EQ(!raw_value->IsSmi(), raw_value->IsJSArray() || raw_value->IsJSObject()); return !raw_value->IsSmi(); } // Heuristic: We only need to create allocation site info if the boilerplate // elements kind is the initial elements kind. bool AllocationSite::ShouldTrack(ElementsKind boilerplate_elements_kind) { return IsSmiElementsKind(boilerplate_elements_kind); } inline bool AllocationSite::CanTrack(InstanceType type) { if (FLAG_allocation_site_pretenuring) { // TurboFan doesn't care at all about String pretenuring feedback, // so don't bother even trying to track that. return type == JS_ARRAY_TYPE || type == JS_OBJECT_TYPE; } return type == JS_ARRAY_TYPE; } AllocationSite::PretenureDecision AllocationSite::pretenure_decision() const { return PretenureDecisionBits::decode(pretenure_data()); } void AllocationSite::set_pretenure_decision(PretenureDecision decision) { int value = pretenure_data(); set_pretenure_data(PretenureDecisionBits::update(value, decision)); } bool AllocationSite::deopt_dependent_code() const { return DeoptDependentCodeBit::decode(pretenure_data()); } void AllocationSite::set_deopt_dependent_code(bool deopt) { int value = pretenure_data(); set_pretenure_data(DeoptDependentCodeBit::update(value, deopt)); } int AllocationSite::memento_found_count() const { return MementoFoundCountBits::decode(pretenure_data()); } inline void AllocationSite::set_memento_found_count(int count) { int value = pretenure_data(); // Verify that we can count more mementos than we can possibly find in one // new space collection. DCHECK((GetHeap()->MaxSemiSpaceSize() / (Heap::kMinObjectSizeInWords * kPointerSize + AllocationMemento::kSize)) < MementoFoundCountBits::kMax); DCHECK(count < MementoFoundCountBits::kMax); set_pretenure_data(MementoFoundCountBits::update(value, count)); } int AllocationSite::memento_create_count() const { return pretenure_create_count(); } void AllocationSite::set_memento_create_count(int count) { set_pretenure_create_count(count); } bool AllocationSite::IncrementMementoFoundCount(int increment) { if (IsZombie()) return false; int value = memento_found_count(); set_memento_found_count(value + increment); return memento_found_count() >= kPretenureMinimumCreated; } inline void AllocationSite::IncrementMementoCreateCount() { DCHECK(FLAG_allocation_site_pretenuring); int value = memento_create_count(); set_memento_create_count(value + 1); } bool AllocationMemento::IsValid() const { return allocation_site()->IsAllocationSite() && !AllocationSite::cast(allocation_site())->IsZombie(); } AllocationSite* AllocationMemento::GetAllocationSite() const { DCHECK(IsValid()); return AllocationSite::cast(allocation_site()); } Address AllocationMemento::GetAllocationSiteUnchecked() const { return reinterpret_cast<Address>(allocation_site()); } void JSObject::EnsureCanContainHeapObjectElements(Handle<JSObject> object) { JSObject::ValidateElements(*object); ElementsKind elements_kind = object->map()->elements_kind(); if (!IsObjectElementsKind(elements_kind)) { if (IsHoleyElementsKind(elements_kind)) { TransitionElementsKind(object, HOLEY_ELEMENTS); } else { TransitionElementsKind(object, PACKED_ELEMENTS); } } } void JSObject::EnsureCanContainElements(Handle<JSObject> object, Object** objects, uint32_t count, EnsureElementsMode mode) { ElementsKind current_kind = object->GetElementsKind(); ElementsKind target_kind = current_kind; { DisallowHeapAllocation no_allocation; DCHECK(mode != ALLOW_COPIED_DOUBLE_ELEMENTS); bool is_holey = IsHoleyElementsKind(current_kind); if (current_kind == HOLEY_ELEMENTS) return; Object* the_hole = object->GetHeap()->the_hole_value(); for (uint32_t i = 0; i < count; ++i) { Object* current = *objects++; if (current == the_hole) { is_holey = true; target_kind = GetHoleyElementsKind(target_kind); } else if (!current->IsSmi()) { if (mode == ALLOW_CONVERTED_DOUBLE_ELEMENTS && current->IsNumber()) { if (IsSmiElementsKind(target_kind)) { if (is_holey) { target_kind = HOLEY_DOUBLE_ELEMENTS; } else { target_kind = PACKED_DOUBLE_ELEMENTS; } } } else if (is_holey) { target_kind = HOLEY_ELEMENTS; break; } else { target_kind = PACKED_ELEMENTS; } } } } if (target_kind != current_kind) { TransitionElementsKind(object, target_kind); } } void JSObject::EnsureCanContainElements(Handle<JSObject> object, Handle<FixedArrayBase> elements, uint32_t length, EnsureElementsMode mode) { Heap* heap = object->GetHeap(); if (elements->map() != heap->fixed_double_array_map()) { DCHECK(elements->map() == heap->fixed_array_map() || elements->map() == heap->fixed_cow_array_map()); if (mode == ALLOW_COPIED_DOUBLE_ELEMENTS) { mode = DONT_ALLOW_DOUBLE_ELEMENTS; } Object** objects = Handle<FixedArray>::cast(elements)->GetFirstElementAddress(); EnsureCanContainElements(object, objects, length, mode); return; } DCHECK(mode == ALLOW_COPIED_DOUBLE_ELEMENTS); if (object->GetElementsKind() == HOLEY_SMI_ELEMENTS) { TransitionElementsKind(object, HOLEY_DOUBLE_ELEMENTS); } else if (object->GetElementsKind() == PACKED_SMI_ELEMENTS) { Handle<FixedDoubleArray> double_array = Handle<FixedDoubleArray>::cast(elements); for (uint32_t i = 0; i < length; ++i) { if (double_array->is_the_hole(i)) { TransitionElementsKind(object, HOLEY_DOUBLE_ELEMENTS); return; } } TransitionElementsKind(object, PACKED_DOUBLE_ELEMENTS); } } void JSObject::SetMapAndElements(Handle<JSObject> object, Handle<Map> new_map, Handle<FixedArrayBase> value) { JSObject::MigrateToMap(object, new_map); DCHECK((object->map()->has_fast_smi_or_object_elements() || (*value == object->GetHeap()->empty_fixed_array()) || object->map()->has_fast_string_wrapper_elements()) == (value->map() == object->GetHeap()->fixed_array_map() || value->map() == object->GetHeap()->fixed_cow_array_map())); DCHECK((*value == object->GetHeap()->empty_fixed_array()) || (object->map()->has_fast_double_elements() == value->IsFixedDoubleArray())); object->set_elements(*value); } void JSObject::set_elements(FixedArrayBase* value, WriteBarrierMode mode) { WRITE_FIELD(this, kElementsOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, value, mode); } void JSObject::initialize_elements() { FixedArrayBase* elements = map()->GetInitialElements(); WRITE_FIELD(this, kElementsOffset, elements); } InterceptorInfo* JSObject::GetIndexedInterceptor() { return map()->GetIndexedInterceptor(); } InterceptorInfo* JSObject::GetNamedInterceptor() { return map()->GetNamedInterceptor(); } double Oddball::to_number_raw() const { return READ_DOUBLE_FIELD(this, kToNumberRawOffset); } void Oddball::set_to_number_raw(double value) { WRITE_DOUBLE_FIELD(this, kToNumberRawOffset, value); } void Oddball::set_to_number_raw_as_bits(uint64_t bits) { WRITE_UINT64_FIELD(this, kToNumberRawOffset, bits); } ACCESSORS(Oddball, to_string, String, kToStringOffset) ACCESSORS(Oddball, to_number, Object, kToNumberOffset) ACCESSORS(Oddball, type_of, String, kTypeOfOffset) byte Oddball::kind() const { return Smi::ToInt(READ_FIELD(this, kKindOffset)); } void Oddball::set_kind(byte value) { WRITE_FIELD(this, kKindOffset, Smi::FromInt(value)); } // static Handle<Object> Oddball::ToNumber(Handle<Oddball> input) { return handle(input->to_number(), input->GetIsolate()); } ACCESSORS(Cell, value, Object, kValueOffset) ACCESSORS(PropertyCell, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(PropertyCell, name, Name, kNameOffset) ACCESSORS(PropertyCell, value, Object, kValueOffset) ACCESSORS(PropertyCell, property_details_raw, Object, kDetailsOffset) PropertyDetails PropertyCell::property_details() { return PropertyDetails(Smi::cast(property_details_raw())); } void PropertyCell::set_property_details(PropertyDetails details) { set_property_details_raw(details.AsSmi()); } Object* WeakCell::value() const { return READ_FIELD(this, kValueOffset); } void WeakCell::clear() { // Either the garbage collector is clearing the cell or we are simply // initializing the root empty weak cell. DCHECK(GetHeap()->gc_state() == Heap::MARK_COMPACT || this == GetHeap()->empty_weak_cell()); WRITE_FIELD(this, kValueOffset, Smi::kZero); } void WeakCell::initialize(HeapObject* val) { WRITE_FIELD(this, kValueOffset, val); // We just have to execute the generational barrier here because we never // mark through a weak cell and collect evacuation candidates when we process // all weak cells. Heap* heap = val->GetHeap(); WriteBarrierMode mode = heap->incremental_marking()->marking_state()->IsBlack(this) ? UPDATE_WRITE_BARRIER : UPDATE_WEAK_WRITE_BARRIER; CONDITIONAL_WRITE_BARRIER(heap, this, kValueOffset, val, mode); } bool WeakCell::cleared() const { return value() == Smi::kZero; } int JSObject::GetHeaderSize() { // Check for the most common kind of JavaScript object before // falling into the generic switch. This speeds up the internal // field operations considerably on average. InstanceType type = map()->instance_type(); return type == JS_OBJECT_TYPE ? JSObject::kHeaderSize : GetHeaderSize(type); } inline bool IsSpecialReceiverInstanceType(InstanceType instance_type) { return instance_type <= LAST_SPECIAL_RECEIVER_TYPE; } // static int JSObject::GetEmbedderFieldCount(const Map* map) { int instance_size = map->instance_size(); if (instance_size == kVariableSizeSentinel) return 0; InstanceType instance_type = map->instance_type(); return ((instance_size - GetHeaderSize(instance_type)) >> kPointerSizeLog2) - map->GetInObjectProperties(); } int JSObject::GetEmbedderFieldCount() const { return GetEmbedderFieldCount(map()); } int JSObject::GetEmbedderFieldOffset(int index) { DCHECK(index < GetEmbedderFieldCount() && index >= 0); return GetHeaderSize() + (kPointerSize * index); } Object* JSObject::GetEmbedderField(int index) { DCHECK(index < GetEmbedderFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index)); } void JSObject::SetEmbedderField(int index, Object* value) { DCHECK(index < GetEmbedderFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. int offset = GetHeaderSize() + (kPointerSize * index); WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } void JSObject::SetEmbedderField(int index, Smi* value) { DCHECK(index < GetEmbedderFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. int offset = GetHeaderSize() + (kPointerSize * index); WRITE_FIELD(this, offset, value); } bool JSObject::IsUnboxedDoubleField(FieldIndex index) { if (!FLAG_unbox_double_fields) return false; return map()->IsUnboxedDoubleField(index); } bool Map::IsUnboxedDoubleField(FieldIndex index) const { if (!FLAG_unbox_double_fields) return false; if (index.is_hidden_field() || !index.is_inobject()) return false; return !layout_descriptor()->IsTagged(index.property_index()); } // Access fast-case object properties at index. The use of these routines // is needed to correctly distinguish between properties stored in-object and // properties stored in the properties array. Object* JSObject::RawFastPropertyAt(FieldIndex index) { DCHECK(!IsUnboxedDoubleField(index)); if (index.is_inobject()) { return READ_FIELD(this, index.offset()); } else { return property_array()->get(index.outobject_array_index()); } } double JSObject::RawFastDoublePropertyAt(FieldIndex index) { DCHECK(IsUnboxedDoubleField(index)); return READ_DOUBLE_FIELD(this, index.offset()); } uint64_t JSObject::RawFastDoublePropertyAsBitsAt(FieldIndex index) { DCHECK(IsUnboxedDoubleField(index)); return READ_UINT64_FIELD(this, index.offset()); } void JSObject::RawFastPropertyAtPut(FieldIndex index, Object* value) { if (index.is_inobject()) { int offset = index.offset(); WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } else { property_array()->set(index.outobject_array_index(), value); } } void JSObject::RawFastDoublePropertyAsBitsAtPut(FieldIndex index, uint64_t bits) { // Double unboxing is enabled only on 64-bit platforms. DCHECK_EQ(kDoubleSize, kPointerSize); Address field_addr = FIELD_ADDR(this, index.offset()); base::Relaxed_Store(reinterpret_cast<base::AtomicWord*>(field_addr), static_cast<base::AtomicWord>(bits)); } void JSObject::FastPropertyAtPut(FieldIndex index, Object* value) { if (IsUnboxedDoubleField(index)) { DCHECK(value->IsMutableHeapNumber()); // Ensure that all bits of the double value are preserved. RawFastDoublePropertyAsBitsAtPut(index, HeapNumber::cast(value)->value_as_bits()); } else { RawFastPropertyAtPut(index, value); } } void JSObject::WriteToField(int descriptor, PropertyDetails details, Object* value) { DCHECK_EQ(kField, details.location()); DCHECK_EQ(kData, details.kind()); DisallowHeapAllocation no_gc; FieldIndex index = FieldIndex::ForDescriptor(map(), descriptor); if (details.representation().IsDouble()) { // Nothing more to be done. if (value->IsUninitialized(this->GetIsolate())) { return; } // Manipulating the signaling NaN used for the hole and uninitialized // double field sentinel in C++, e.g. with bit_cast or value()/set_value(), // will change its value on ia32 (the x87 stack is used to return values // and stores to the stack silently clear the signalling bit). uint64_t bits; if (value->IsSmi()) { bits = bit_cast<uint64_t>(static_cast<double>(Smi::ToInt(value))); } else { DCHECK(value->IsHeapNumber()); bits = HeapNumber::cast(value)->value_as_bits(); } if (IsUnboxedDoubleField(index)) { RawFastDoublePropertyAsBitsAtPut(index, bits); } else { HeapNumber* box = HeapNumber::cast(RawFastPropertyAt(index)); DCHECK(box->IsMutableHeapNumber()); box->set_value_as_bits(bits); } } else { RawFastPropertyAtPut(index, value); } } int JSObject::GetInObjectPropertyOffset(int index) { return map()->GetInObjectPropertyOffset(index); } Object* JSObject::InObjectPropertyAt(int index) { int offset = GetInObjectPropertyOffset(index); return READ_FIELD(this, offset); } Object* JSObject::InObjectPropertyAtPut(int index, Object* value, WriteBarrierMode mode) { // Adjust for the number of properties stored in the object. int offset = GetInObjectPropertyOffset(index); WRITE_FIELD(this, offset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); return value; } void JSObject::InitializeBody(Map* map, int start_offset, Object* pre_allocated_value, Object* filler_value) { DCHECK(!filler_value->IsHeapObject() || !GetHeap()->InNewSpace(filler_value)); DCHECK(!pre_allocated_value->IsHeapObject() || !GetHeap()->InNewSpace(pre_allocated_value)); int size = map->instance_size(); int offset = start_offset; if (filler_value != pre_allocated_value) { int end_of_pre_allocated_offset = size - (map->unused_property_fields() * kPointerSize); DCHECK_LE(kHeaderSize, end_of_pre_allocated_offset); while (offset < end_of_pre_allocated_offset) { WRITE_FIELD(this, offset, pre_allocated_value); offset += kPointerSize; } } while (offset < size) { WRITE_FIELD(this, offset, filler_value); offset += kPointerSize; } } bool Map::TooManyFastProperties(StoreFromKeyed store_mode) const { if (unused_property_fields() != 0) return false; if (is_prototype_map()) return false; int minimum = store_mode == CERTAINLY_NOT_STORE_FROM_KEYED ? 128 : 12; int limit = Max(minimum, GetInObjectProperties()); int external = NumberOfFields() - GetInObjectProperties(); return external > limit; } void Struct::InitializeBody(int object_size) { Object* value = GetHeap()->undefined_value(); for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) { WRITE_FIELD(this, offset, value); } } bool Object::ToArrayLength(uint32_t* index) const { return Object::ToUint32(index); } bool Object::ToArrayIndex(uint32_t* index) const { return Object::ToUint32(index) && *index != kMaxUInt32; } void Object::VerifyApiCallResultType() { #if DEBUG if (IsSmi()) return; DCHECK(IsHeapObject()); Isolate* isolate = HeapObject::cast(this)->GetIsolate(); if (!(IsString() || IsSymbol() || IsJSReceiver() || IsHeapNumber() || IsUndefined(isolate) || IsTrue(isolate) || IsFalse(isolate) || IsNull(isolate))) { FATAL("API call returned invalid object"); } #endif // DEBUG } Object* FixedArray::get(int index) const { SLOW_DCHECK(index >= 0 && index < this->length()); return RELAXED_READ_FIELD(this, kHeaderSize + index * kPointerSize); } Object* PropertyArray::get(int index) const { DCHECK_GE(index, 0); DCHECK_LE(index, this->length()); return RELAXED_READ_FIELD(this, kHeaderSize + index * kPointerSize); } Handle<Object> FixedArray::get(FixedArray* array, int index, Isolate* isolate) { return handle(array->get(index), isolate); } template <class T> MaybeHandle<T> FixedArray::GetValue(Isolate* isolate, int index) const { Object* obj = get(index); if (obj->IsUndefined(isolate)) return MaybeHandle<T>(); return Handle<T>(T::cast(obj), isolate); } template <class T> Handle<T> FixedArray::GetValueChecked(Isolate* isolate, int index) const { Object* obj = get(index); CHECK(!obj->IsUndefined(isolate)); return Handle<T>(T::cast(obj), isolate); } bool FixedArray::is_the_hole(Isolate* isolate, int index) { return get(index)->IsTheHole(isolate); } void FixedArray::set(int index, Smi* value) { DCHECK_NE(map(), GetHeap()->fixed_cow_array_map()); DCHECK_LT(index, this->length()); DCHECK(reinterpret_cast<Object*>(value)->IsSmi()); int offset = kHeaderSize + index * kPointerSize; RELAXED_WRITE_FIELD(this, offset, value); } void FixedArray::set(int index, Object* value) { DCHECK_NE(GetHeap()->fixed_cow_array_map(), map()); DCHECK(IsFixedArray() || IsTransitionArray()); DCHECK_GE(index, 0); DCHECK_LT(index, this->length()); int offset = kHeaderSize + index * kPointerSize; RELAXED_WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } void PropertyArray::set(int index, Object* value) { DCHECK(IsPropertyArray()); DCHECK_GE(index, 0); DCHECK_LT(index, this->length()); int offset = kHeaderSize + index * kPointerSize; RELAXED_WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } double FixedDoubleArray::get_scalar(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); DCHECK(index >= 0 && index < this->length()); DCHECK(!is_the_hole(index)); return READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize); } uint64_t FixedDoubleArray::get_representation(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); DCHECK(index >= 0 && index < this->length()); int offset = kHeaderSize + index * kDoubleSize; return READ_UINT64_FIELD(this, offset); } Handle<Object> FixedDoubleArray::get(FixedDoubleArray* array, int index, Isolate* isolate) { if (array->is_the_hole(index)) { return isolate->factory()->the_hole_value(); } else { return isolate->factory()->NewNumber(array->get_scalar(index)); } } void FixedDoubleArray::set(int index, double value) { DCHECK(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); int offset = kHeaderSize + index * kDoubleSize; if (std::isnan(value)) { WRITE_DOUBLE_FIELD(this, offset, std::numeric_limits<double>::quiet_NaN()); } else { WRITE_DOUBLE_FIELD(this, offset, value); } DCHECK(!is_the_hole(index)); } void FixedDoubleArray::set_the_hole(Isolate* isolate, int index) { set_the_hole(index); } void FixedDoubleArray::set_the_hole(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); int offset = kHeaderSize + index * kDoubleSize; WRITE_UINT64_FIELD(this, offset, kHoleNanInt64); } bool FixedDoubleArray::is_the_hole(Isolate* isolate, int index) { return is_the_hole(index); } bool FixedDoubleArray::is_the_hole(int index) { return get_representation(index) == kHoleNanInt64; } double* FixedDoubleArray::data_start() { return reinterpret_cast<double*>(FIELD_ADDR(this, kHeaderSize)); } void FixedDoubleArray::FillWithHoles(int from, int to) { for (int i = from; i < to; i++) { set_the_hole(i); } } Object* WeakFixedArray::Get(int index) const { Object* raw = FixedArray::cast(this)->get(index + kFirstIndex); if (raw->IsSmi()) return raw; DCHECK(raw->IsWeakCell()); return WeakCell::cast(raw)->value(); } bool WeakFixedArray::IsEmptySlot(int index) const { DCHECK(index < Length()); return Get(index)->IsSmi(); } void WeakFixedArray::Clear(int index) { FixedArray::cast(this)->set(index + kFirstIndex, Smi::kZero); } int WeakFixedArray::Length() const { return FixedArray::cast(this)->length() - kFirstIndex; } int WeakFixedArray::last_used_index() const { return Smi::ToInt(FixedArray::cast(this)->get(kLastUsedIndexIndex)); } void WeakFixedArray::set_last_used_index(int index) { FixedArray::cast(this)->set(kLastUsedIndexIndex, Smi::FromInt(index)); } template <class T> T* WeakFixedArray::Iterator::Next() { if (list_ != NULL) { // Assert that list did not change during iteration. DCHECK_EQ(last_used_index_, list_->last_used_index()); while (index_ < list_->Length()) { Object* item = list_->Get(index_++); if (item != Empty()) return T::cast(item); } list_ = NULL; } return NULL; } int ArrayList::Length() const { if (FixedArray::cast(this)->length() == 0) return 0; return Smi::ToInt(FixedArray::cast(this)->get(kLengthIndex)); } void ArrayList::SetLength(int length) { return FixedArray::cast(this)->set(kLengthIndex, Smi::FromInt(length)); } Object* ArrayList::Get(int index) const { return FixedArray::cast(this)->get(kFirstIndex + index); } Object** ArrayList::Slot(int index) { return data_start() + kFirstIndex + index; } void ArrayList::Set(int index, Object* obj, WriteBarrierMode mode) { FixedArray::cast(this)->set(kFirstIndex + index, obj, mode); } void ArrayList::Clear(int index, Object* undefined) { DCHECK(undefined->IsUndefined(GetIsolate())); FixedArray::cast(this) ->set(kFirstIndex + index, undefined, SKIP_WRITE_BARRIER); } int RegExpMatchInfo::NumberOfCaptureRegisters() { DCHECK_GE(length(), kLastMatchOverhead); Object* obj = get(kNumberOfCapturesIndex); return Smi::ToInt(obj); } void RegExpMatchInfo::SetNumberOfCaptureRegisters(int value) { DCHECK_GE(length(), kLastMatchOverhead); set(kNumberOfCapturesIndex, Smi::FromInt(value)); } String* RegExpMatchInfo::LastSubject() { DCHECK_GE(length(), kLastMatchOverhead); Object* obj = get(kLastSubjectIndex); return String::cast(obj); } void RegExpMatchInfo::SetLastSubject(String* value) { DCHECK_GE(length(), kLastMatchOverhead); set(kLastSubjectIndex, value); } Object* RegExpMatchInfo::LastInput() { DCHECK_GE(length(), kLastMatchOverhead); return get(kLastInputIndex); } void RegExpMatchInfo::SetLastInput(Object* value) { DCHECK_GE(length(), kLastMatchOverhead); set(kLastInputIndex, value); } int RegExpMatchInfo::Capture(int i) { DCHECK_LT(i, NumberOfCaptureRegisters()); Object* obj = get(kFirstCaptureIndex + i); return Smi::ToInt(obj); } void RegExpMatchInfo::SetCapture(int i, int value) { DCHECK_LT(i, NumberOfCaptureRegisters()); set(kFirstCaptureIndex + i, Smi::FromInt(value)); } WriteBarrierMode HeapObject::GetWriteBarrierMode( const DisallowHeapAllocation& promise) { Heap* heap = GetHeap(); if (heap->incremental_marking()->IsMarking()) return UPDATE_WRITE_BARRIER; if (heap->InNewSpace(this)) return SKIP_WRITE_BARRIER; return UPDATE_WRITE_BARRIER; } AllocationAlignment HeapObject::RequiredAlignment() const { #ifdef V8_HOST_ARCH_32_BIT if ((IsFixedFloat64Array() || IsFixedDoubleArray()) && FixedArrayBase::cast(this)->length() != 0) { return kDoubleAligned; } if (IsHeapNumber()) return kDoubleUnaligned; #endif // V8_HOST_ARCH_32_BIT return kWordAligned; } void FixedArray::set(int index, Object* value, WriteBarrierMode mode) { DCHECK_NE(map(), GetHeap()->fixed_cow_array_map()); DCHECK_GE(index, 0); DCHECK_LT(index, this->length()); int offset = kHeaderSize + index * kPointerSize; RELAXED_WRITE_FIELD(this, offset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); } void PropertyArray::set(int index, Object* value, WriteBarrierMode mode) { DCHECK_GE(index, 0); DCHECK_LT(index, this->length()); int offset = kHeaderSize + index * kPointerSize; RELAXED_WRITE_FIELD(this, offset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); } void FixedArray::NoWriteBarrierSet(FixedArray* array, int index, Object* value) { DCHECK_NE(array->map(), array->GetHeap()->fixed_cow_array_map()); DCHECK_GE(index, 0); DCHECK_LT(index, array->length()); DCHECK(!array->GetHeap()->InNewSpace(value)); RELAXED_WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value); } void FixedArray::set_undefined(int index) { set_undefined(GetIsolate(), index); } void FixedArray::set_undefined(Isolate* isolate, int index) { FixedArray::NoWriteBarrierSet(this, index, isolate->heap()->undefined_value()); } void FixedArray::set_null(int index) { set_null(GetIsolate(), index); } void FixedArray::set_null(Isolate* isolate, int index) { FixedArray::NoWriteBarrierSet(this, index, isolate->heap()->null_value()); } void FixedArray::set_the_hole(int index) { set_the_hole(GetIsolate(), index); } void FixedArray::set_the_hole(Isolate* isolate, int index) { FixedArray::NoWriteBarrierSet(this, index, isolate->heap()->the_hole_value()); } void FixedArray::FillWithHoles(int from, int to) { Isolate* isolate = GetIsolate(); for (int i = from; i < to; i++) { set_the_hole(isolate, i); } } Object** FixedArray::data_start() { return HeapObject::RawField(this, kHeaderSize); } Object** PropertyArray::data_start() { return HeapObject::RawField(this, kHeaderSize); } Object** FixedArray::RawFieldOfElementAt(int index) { return HeapObject::RawField(this, OffsetOfElementAt(index)); } bool DescriptorArray::IsEmpty() { DCHECK(length() >= kFirstIndex || this == GetHeap()->empty_descriptor_array()); return length() < kFirstIndex; } int DescriptorArray::number_of_descriptors() { DCHECK(length() >= kFirstIndex || IsEmpty()); int len = length(); return len == 0 ? 0 : Smi::ToInt(get(kDescriptorLengthIndex)); } int DescriptorArray::number_of_descriptors_storage() { int len = length(); return len == 0 ? 0 : (len - kFirstIndex) / kEntrySize; } int DescriptorArray::NumberOfSlackDescriptors() { return number_of_descriptors_storage() - number_of_descriptors(); } void DescriptorArray::SetNumberOfDescriptors(int number_of_descriptors) { WRITE_FIELD( this, kDescriptorLengthOffset, Smi::FromInt(number_of_descriptors)); } inline int DescriptorArray::number_of_entries() { return number_of_descriptors(); } bool DescriptorArray::HasEnumCache() { return !IsEmpty() && !get(kEnumCacheBridgeIndex)->IsSmi(); } void DescriptorArray::CopyEnumCacheFrom(DescriptorArray* array) { set(kEnumCacheBridgeIndex, array->get(kEnumCacheBridgeIndex)); } FixedArray* DescriptorArray::GetEnumCache() { DCHECK(HasEnumCache()); FixedArray* bridge = FixedArray::cast(get(kEnumCacheBridgeIndex)); return FixedArray::cast(bridge->get(kEnumCacheBridgeCacheIndex)); } bool DescriptorArray::HasEnumIndicesCache() { if (IsEmpty()) return false; Object* object = get(kEnumCacheBridgeIndex); if (object->IsSmi()) return false; FixedArray* bridge = FixedArray::cast(object); return !bridge->get(kEnumCacheBridgeIndicesCacheIndex)->IsSmi(); } FixedArray* DescriptorArray::GetEnumIndicesCache() { DCHECK(HasEnumIndicesCache()); FixedArray* bridge = FixedArray::cast(get(kEnumCacheBridgeIndex)); return FixedArray::cast(bridge->get(kEnumCacheBridgeIndicesCacheIndex)); } // Perform a binary search in a fixed array. template <SearchMode search_mode, typename T> int BinarySearch(T* array, Name* name, int valid_entries, int* out_insertion_index) { DCHECK(search_mode == ALL_ENTRIES || out_insertion_index == NULL); int low = 0; int high = array->number_of_entries() - 1; uint32_t hash = name->hash_field(); int limit = high; DCHECK(low <= high); while (low != high) { int mid = low + (high - low) / 2; Name* mid_name = array->GetSortedKey(mid); uint32_t mid_hash = mid_name->hash_field(); if (mid_hash >= hash) { high = mid; } else { low = mid + 1; } } for (; low <= limit; ++low) { int sort_index = array->GetSortedKeyIndex(low); Name* entry = array->GetKey(sort_index); uint32_t current_hash = entry->hash_field(); if (current_hash != hash) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = sort_index + (current_hash > hash ? 0 : 1); } return T::kNotFound; } if (entry == name) { if (search_mode == ALL_ENTRIES || sort_index < valid_entries) { return sort_index; } return T::kNotFound; } } if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = limit + 1; } return T::kNotFound; } // Perform a linear search in this fixed array. len is the number of entry // indices that are valid. template <SearchMode search_mode, typename T> int LinearSearch(T* array, Name* name, int valid_entries, int* out_insertion_index) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { uint32_t hash = name->hash_field(); int len = array->number_of_entries(); for (int number = 0; number < len; number++) { int sorted_index = array->GetSortedKeyIndex(number); Name* entry = array->GetKey(sorted_index); uint32_t current_hash = entry->hash_field(); if (current_hash > hash) { *out_insertion_index = sorted_index; return T::kNotFound; } if (entry == name) return sorted_index; } *out_insertion_index = len; return T::kNotFound; } else { DCHECK_LE(valid_entries, array->number_of_entries()); DCHECK_NULL(out_insertion_index); // Not supported here. for (int number = 0; number < valid_entries; number++) { if (array->GetKey(number) == name) return number; } return T::kNotFound; } } template <SearchMode search_mode, typename T> int Search(T* array, Name* name, int valid_entries, int* out_insertion_index) { SLOW_DCHECK(array->IsSortedNoDuplicates()); if (valid_entries == 0) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = 0; } return T::kNotFound; } // Fast case: do linear search for small arrays. const int kMaxElementsForLinearSearch = 8; if (valid_entries <= kMaxElementsForLinearSearch) { return LinearSearch<search_mode>(array, name, valid_entries, out_insertion_index); } // Slow case: perform binary search. return BinarySearch<search_mode>(array, name, valid_entries, out_insertion_index); } int DescriptorArray::Search(Name* name, int valid_descriptors) { DCHECK(name->IsUniqueName()); return internal::Search<VALID_ENTRIES>(this, name, valid_descriptors, NULL); } int DescriptorArray::SearchWithCache(Isolate* isolate, Name* name, Map* map) { DCHECK(name->IsUniqueName()); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); if (number_of_own_descriptors == 0) return kNotFound; DescriptorLookupCache* cache = isolate->descriptor_lookup_cache(); int number = cache->Lookup(map, name); if (number == DescriptorLookupCache::kAbsent) { number = Search(name, number_of_own_descriptors); cache->Update(map, name, number); } return number; } PropertyDetails Map::GetLastDescriptorDetails() const { return instance_descriptors()->GetDetails(LastAdded()); } int Map::LastAdded() const { int number_of_own_descriptors = NumberOfOwnDescriptors(); DCHECK(number_of_own_descriptors > 0); return number_of_own_descriptors - 1; } int Map::NumberOfOwnDescriptors() const { return NumberOfOwnDescriptorsBits::decode(bit_field3()); } void Map::SetNumberOfOwnDescriptors(int number) { DCHECK(number <= instance_descriptors()->number_of_descriptors()); set_bit_field3(NumberOfOwnDescriptorsBits::update(bit_field3(), number)); } int Map::EnumLength() const { return EnumLengthBits::decode(bit_field3()); } void Map::SetEnumLength(int length) { if (length != kInvalidEnumCacheSentinel) { DCHECK(length >= 0); DCHECK(length == 0 || instance_descriptors()->HasEnumCache()); DCHECK(length <= NumberOfOwnDescriptors()); } set_bit_field3(EnumLengthBits::update(bit_field3(), length)); } FixedArrayBase* Map::GetInitialElements() const { FixedArrayBase* result = nullptr; if (has_fast_elements() || has_fast_string_wrapper_elements()) { result = GetHeap()->empty_fixed_array(); } else if (has_fast_sloppy_arguments_elements()) { result = GetHeap()->empty_sloppy_arguments_elements(); } else if (has_fixed_typed_array_elements()) { result = GetHeap()->EmptyFixedTypedArrayForMap(this); } else if (has_dictionary_elements()) { result = GetHeap()->empty_slow_element_dictionary(); } else { UNREACHABLE(); } DCHECK(!GetHeap()->InNewSpace(result)); return result; } Object** DescriptorArray::GetKeySlot(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return RawFieldOfElementAt(ToKeyIndex(descriptor_number)); } Object** DescriptorArray::GetDescriptorStartSlot(int descriptor_number) { return GetKeySlot(descriptor_number); } Object** DescriptorArray::GetDescriptorEndSlot(int descriptor_number) { return GetValueSlot(descriptor_number - 1) + 1; } Name* DescriptorArray::GetKey(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return Name::cast(get(ToKeyIndex(descriptor_number))); } int DescriptorArray::GetSortedKeyIndex(int descriptor_number) { return GetDetails(descriptor_number).pointer(); } Name* DescriptorArray::GetSortedKey(int descriptor_number) { return GetKey(GetSortedKeyIndex(descriptor_number)); } void DescriptorArray::SetSortedKey(int descriptor_index, int pointer) { PropertyDetails details = GetDetails(descriptor_index); set(ToDetailsIndex(descriptor_index), details.set_pointer(pointer).AsSmi()); } Object** DescriptorArray::GetValueSlot(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return RawFieldOfElementAt(ToValueIndex(descriptor_number)); } int DescriptorArray::GetValueOffset(int descriptor_number) { return OffsetOfElementAt(ToValueIndex(descriptor_number)); } Object* DescriptorArray::GetValue(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return get(ToValueIndex(descriptor_number)); } void DescriptorArray::SetValue(int descriptor_index, Object* value) { set(ToValueIndex(descriptor_index), value); } PropertyDetails DescriptorArray::GetDetails(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); Object* details = get(ToDetailsIndex(descriptor_number)); return PropertyDetails(Smi::cast(details)); } int DescriptorArray::GetFieldIndex(int descriptor_number) { DCHECK(GetDetails(descriptor_number).location() == kField); return GetDetails(descriptor_number).field_index(); } FieldType* DescriptorArray::GetFieldType(int descriptor_number) { DCHECK(GetDetails(descriptor_number).location() == kField); Object* wrapped_type = GetValue(descriptor_number); return Map::UnwrapFieldType(wrapped_type); } void DescriptorArray::Get(int descriptor_number, Descriptor* desc) { desc->Init(handle(GetKey(descriptor_number), GetIsolate()), handle(GetValue(descriptor_number), GetIsolate()), GetDetails(descriptor_number)); } void DescriptorArray::Set(int descriptor_number, Name* key, Object* value, PropertyDetails details) { // Range check. DCHECK(descriptor_number < number_of_descriptors()); set(ToKeyIndex(descriptor_number), key); set(ToValueIndex(descriptor_number), value); set(ToDetailsIndex(descriptor_number), details.AsSmi()); } void DescriptorArray::Set(int descriptor_number, Descriptor* desc) { Name* key = *desc->GetKey(); Object* value = *desc->GetValue(); Set(descriptor_number, key, value, desc->GetDetails()); } void DescriptorArray::Append(Descriptor* desc) { DisallowHeapAllocation no_gc; int descriptor_number = number_of_descriptors(); SetNumberOfDescriptors(descriptor_number + 1); Set(descriptor_number, desc); uint32_t hash = desc->GetKey()->Hash(); int insertion; for (insertion = descriptor_number; insertion > 0; --insertion) { Name* key = GetSortedKey(insertion - 1); if (key->Hash() <= hash) break; SetSortedKey(insertion, GetSortedKeyIndex(insertion - 1)); } SetSortedKey(insertion, descriptor_number); } void DescriptorArray::SwapSortedKeys(int first, int second) { int first_key = GetSortedKeyIndex(first); SetSortedKey(first, GetSortedKeyIndex(second)); SetSortedKey(second, first_key); } int HashTableBase::NumberOfElements() const { return Smi::ToInt(get(kNumberOfElementsIndex)); } int HashTableBase::NumberOfDeletedElements() const { return Smi::ToInt(get(kNumberOfDeletedElementsIndex)); } int HashTableBase::Capacity() const { return Smi::ToInt(get(kCapacityIndex)); } void HashTableBase::ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); } void HashTableBase::ElementRemoved() { SetNumberOfElements(NumberOfElements() - 1); SetNumberOfDeletedElements(NumberOfDeletedElements() + 1); } void HashTableBase::ElementsRemoved(int n) { SetNumberOfElements(NumberOfElements() - n); SetNumberOfDeletedElements(NumberOfDeletedElements() + n); } // static int HashTableBase::ComputeCapacity(int at_least_space_for) { // Add 50% slack to make slot collisions sufficiently unlikely. // See matching computation in HashTable::HasSufficientCapacityToAdd(). // Must be kept in sync with CodeStubAssembler::HashTableComputeCapacity(). int raw_cap = at_least_space_for + (at_least_space_for >> 1); int capacity = base::bits::RoundUpToPowerOfTwo32(raw_cap); return Max(capacity, kMinCapacity); } void HashTableBase::SetNumberOfElements(int nof) { set(kNumberOfElementsIndex, Smi::FromInt(nof)); } void HashTableBase::SetNumberOfDeletedElements(int nod) { set(kNumberOfDeletedElementsIndex, Smi::FromInt(nod)); } template <typename Key> Map* BaseShape<Key>::GetMap(Isolate* isolate) { return isolate->heap()->hash_table_map(); } template <typename Derived, typename Shape> int HashTable<Derived, Shape>::FindEntry(Key key) { return FindEntry(GetIsolate(), key); } template <typename Derived, typename Shape> int HashTable<Derived, Shape>::FindEntry(Isolate* isolate, Key key) { return FindEntry(isolate, key, Shape::Hash(isolate, key)); } // Find entry for key otherwise return kNotFound. template <typename Derived, typename Shape> int HashTable<Derived, Shape>::FindEntry(Isolate* isolate, Key key, int32_t hash) { uint32_t capacity = Capacity(); uint32_t entry = FirstProbe(hash, capacity); uint32_t count = 1; // EnsureCapacity will guarantee the hash table is never full. Object* undefined = isolate->heap()->undefined_value(); Object* the_hole = isolate->heap()->the_hole_value(); USE(the_hole); while (true) { Object* element = KeyAt(entry); // Empty entry. Uses raw unchecked accessors because it is called by the // string table during bootstrapping. if (element == undefined) break; if (!(Shape::kNeedsHoleCheck && the_hole == element)) { if (Shape::IsMatch(key, element)) return entry; } entry = NextProbe(entry, count++, capacity); } return kNotFound; } bool ObjectHashSet::Has(Isolate* isolate, Handle<Object> key, int32_t hash) { return FindEntry(isolate, key, hash) != kNotFound; } bool ObjectHashSet::Has(Isolate* isolate, Handle<Object> key) { Object* hash = key->GetHash(); if (!hash->IsSmi()) return false; return FindEntry(isolate, key, Smi::ToInt(hash)) != kNotFound; } bool StringSetShape::IsMatch(String* key, Object* value) { DCHECK(value->IsString()); return key->Equals(String::cast(value)); } uint32_t StringSetShape::Hash(Isolate* isolate, String* key) { return key->Hash(); } uint32_t StringSetShape::HashForObject(Isolate* isolate, Object* object) { return String::cast(object)->Hash(); } StringTableKey::StringTableKey(uint32_t hash_field) : HashTableKey(hash_field >> Name::kHashShift), hash_field_(hash_field) {} void StringTableKey::set_hash_field(uint32_t hash_field) { hash_field_ = hash_field; set_hash(hash_field >> Name::kHashShift); } Handle<Object> StringTableShape::AsHandle(Isolate* isolate, StringTableKey* key) { return key->AsHandle(isolate); } uint32_t StringTableShape::HashForObject(Isolate* isolate, Object* object) { return String::cast(object)->Hash(); } bool SeededNumberDictionary::requires_slow_elements() { Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi()) return false; return 0 != (Smi::ToInt(max_index_object) & kRequiresSlowElementsMask); } uint32_t SeededNumberDictionary::max_number_key() { DCHECK(!requires_slow_elements()); Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi()) return 0; uint32_t value = static_cast<uint32_t>(Smi::ToInt(max_index_object)); return value >> kRequiresSlowElementsTagSize; } void SeededNumberDictionary::set_requires_slow_elements() { set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask)); } template <class T> PodArray<T>* PodArray<T>::cast(Object* object) { SLOW_DCHECK(object->IsByteArray()); return reinterpret_cast<PodArray<T>*>(object); } template <class T> const PodArray<T>* PodArray<T>::cast(const Object* object) { SLOW_DCHECK(object->IsByteArray()); return reinterpret_cast<const PodArray<T>*>(object); } // static template <class T> Handle<PodArray<T>> PodArray<T>::New(Isolate* isolate, int length, PretenureFlag pretenure) { return Handle<PodArray<T>>::cast( isolate->factory()->NewByteArray(length * sizeof(T), pretenure)); } // static template <class Traits> STATIC_CONST_MEMBER_DEFINITION const InstanceType FixedTypedArray<Traits>::kInstanceType; template <class Traits> FixedTypedArray<Traits>* FixedTypedArray<Traits>::cast(Object* object) { SLOW_DCHECK(object->IsHeapObject() && HeapObject::cast(object)->map()->instance_type() == Traits::kInstanceType); return reinterpret_cast<FixedTypedArray<Traits>*>(object); } template <class Traits> const FixedTypedArray<Traits>* FixedTypedArray<Traits>::cast(const Object* object) { SLOW_DCHECK(object->IsHeapObject() && HeapObject::cast(object)->map()->instance_type() == Traits::kInstanceType); return reinterpret_cast<FixedTypedArray<Traits>*>(object); } DEFINE_DEOPT_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray) DEFINE_DEOPT_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(LiteralArray, FixedArray) DEFINE_DEOPT_ELEMENT_ACCESSORS(OsrBytecodeOffset, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(OsrPcOffset, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(OptimizationId, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(WeakCellCache, Object) DEFINE_DEOPT_ELEMENT_ACCESSORS(InliningPositions, PodArray<InliningPosition>) DEFINE_DEOPT_ENTRY_ACCESSORS(BytecodeOffsetRaw, Smi) DEFINE_DEOPT_ENTRY_ACCESSORS(TranslationIndex, Smi) DEFINE_DEOPT_ENTRY_ACCESSORS(Pc, Smi) BailoutId DeoptimizationInputData::BytecodeOffset(int i) { return BailoutId(BytecodeOffsetRaw(i)->value()); } void DeoptimizationInputData::SetBytecodeOffset(int i, BailoutId value) { SetBytecodeOffsetRaw(i, Smi::FromInt(value.ToInt())); } int DeoptimizationInputData::DeoptCount() { return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize; } int HandlerTable::GetRangeStart(int index) const { return Smi::ToInt(get(index * kRangeEntrySize + kRangeStartIndex)); } int HandlerTable::GetRangeEnd(int index) const { return Smi::ToInt(get(index * kRangeEntrySize + kRangeEndIndex)); } int HandlerTable::GetRangeHandler(int index) const { return HandlerOffsetField::decode( Smi::ToInt(get(index * kRangeEntrySize + kRangeHandlerIndex))); } int HandlerTable::GetRangeData(int index) const { return Smi::ToInt(get(index * kRangeEntrySize + kRangeDataIndex)); } void HandlerTable::SetRangeStart(int index, int value) { set(index * kRangeEntrySize + kRangeStartIndex, Smi::FromInt(value)); } void HandlerTable::SetRangeEnd(int index, int value) { set(index * kRangeEntrySize + kRangeEndIndex, Smi::FromInt(value)); } void HandlerTable::SetRangeHandler(int index, int offset, CatchPrediction prediction) { int value = HandlerOffsetField::encode(offset) | HandlerPredictionField::encode(prediction); set(index * kRangeEntrySize + kRangeHandlerIndex, Smi::FromInt(value)); } void HandlerTable::SetRangeData(int index, int value) { set(index * kRangeEntrySize + kRangeDataIndex, Smi::FromInt(value)); } void HandlerTable::SetReturnOffset(int index, int value) { set(index * kReturnEntrySize + kReturnOffsetIndex, Smi::FromInt(value)); } void HandlerTable::SetReturnHandler(int index, int offset) { int value = HandlerOffsetField::encode(offset); set(index * kReturnEntrySize + kReturnHandlerIndex, Smi::FromInt(value)); } int HandlerTable::NumberOfRangeEntries() const { return length() / kRangeEntrySize; } template <typename Derived, typename Shape> HashTable<Derived, Shape>* HashTable<Derived, Shape>::cast(Object* obj) { SLOW_DCHECK(obj->IsHashTable()); return reinterpret_cast<HashTable*>(obj); } template <typename Derived, typename Shape> const HashTable<Derived, Shape>* HashTable<Derived, Shape>::cast( const Object* obj) { SLOW_DCHECK(obj->IsHashTable()); return reinterpret_cast<const HashTable*>(obj); } SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset) SYNCHRONIZED_SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset) int PropertyArray::length() const { Object* value_obj = READ_FIELD(this, kLengthAndHashOffset); int value = Smi::ToInt(value_obj); return value & kLengthMask; } void PropertyArray::initialize_length(int len) { SLOW_DCHECK(len >= 0); SLOW_DCHECK(len < kMaxLength); WRITE_FIELD(this, kLengthAndHashOffset, Smi::FromInt(len)); } int PropertyArray::synchronized_length() const { Object* value_obj = ACQUIRE_READ_FIELD(this, kLengthAndHashOffset); int value = Smi::ToInt(value_obj); return value & kLengthMask; } int PropertyArray::Hash() const { Object* value_obj = READ_FIELD(this, kLengthAndHashOffset); int value = Smi::ToInt(value_obj); int hash = value & kHashMask; return hash; } void PropertyArray::SetHash(int masked_hash) { DCHECK_EQ(masked_hash & JSReceiver::kHashMask, masked_hash); Object* value_obj = READ_FIELD(this, kLengthAndHashOffset); int value = Smi::ToInt(value_obj); value = (value & kLengthMask) | masked_hash; WRITE_FIELD(this, kLengthAndHashOffset, Smi::FromInt(value)); } SMI_ACCESSORS(FreeSpace, size, kSizeOffset) RELAXED_SMI_ACCESSORS(FreeSpace, size, kSizeOffset) int FreeSpace::Size() { return size(); } FreeSpace* FreeSpace::next() { DCHECK(map() == GetHeap()->root(Heap::kFreeSpaceMapRootIndex) || (!GetHeap()->deserialization_complete() && map() == NULL)); DCHECK_LE(kNextOffset + kPointerSize, relaxed_read_size()); return reinterpret_cast<FreeSpace*>( Memory::Address_at(address() + kNextOffset)); } void FreeSpace::set_next(FreeSpace* next) { DCHECK(map() == GetHeap()->root(Heap::kFreeSpaceMapRootIndex) || (!GetHeap()->deserialization_complete() && map() == NULL)); DCHECK_LE(kNextOffset + kPointerSize, relaxed_read_size()); base::Relaxed_Store( reinterpret_cast<base::AtomicWord*>(address() + kNextOffset), reinterpret_cast<base::AtomicWord>(next)); } FreeSpace* FreeSpace::cast(HeapObject* o) { SLOW_DCHECK(!o->GetHeap()->deserialization_complete() || o->IsFreeSpace()); return reinterpret_cast<FreeSpace*>(o); } int ByteArray::Size() { return RoundUp(length() + kHeaderSize, kPointerSize); } byte ByteArray::get(int index) const { DCHECK(index >= 0 && index < this->length()); return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); } void ByteArray::set(int index, byte value) { DCHECK(index >= 0 && index < this->length()); WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value); } void ByteArray::copy_in(int index, const byte* buffer, int length) { DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index && index + length <= this->length()); byte* dst_addr = FIELD_ADDR(this, kHeaderSize + index * kCharSize); memcpy(dst_addr, buffer, length); } void ByteArray::copy_out(int index, byte* buffer, int length) { DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index && index + length <= this->length()); const byte* src_addr = FIELD_ADDR(this, kHeaderSize + index * kCharSize); memcpy(buffer, src_addr, length); } int ByteArray::get_int(int index) const { DCHECK(index >= 0 && index < this->length() / kIntSize); return READ_INT_FIELD(this, kHeaderSize + index * kIntSize); } void ByteArray::set_int(int index, int value) { DCHECK(index >= 0 && index < this->length() / kIntSize); WRITE_INT_FIELD(this, kHeaderSize + index * kIntSize, value); } uint32_t ByteArray::get_uint32(int index) const { DCHECK(index >= 0 && index < this->length() / kUInt32Size); return READ_UINT32_FIELD(this, kHeaderSize + index * kUInt32Size); } void ByteArray::set_uint32(int index, uint32_t value) { DCHECK(index >= 0 && index < this->length() / kUInt32Size); WRITE_UINT32_FIELD(this, kHeaderSize + index * kUInt32Size, value); } void ByteArray::clear_padding() { int data_size = length() + kHeaderSize; memset(address() + data_size, 0, Size() - data_size); } ByteArray* ByteArray::FromDataStartAddress(Address address) { DCHECK_TAG_ALIGNED(address); return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag); } int ByteArray::DataSize() const { return RoundUp(length(), kPointerSize); } int ByteArray::ByteArraySize() { return SizeFor(this->length()); } Address ByteArray::GetDataStartAddress() { return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize; } byte BytecodeArray::get(int index) { DCHECK(index >= 0 && index < this->length()); return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); } void BytecodeArray::set(int index, byte value) { DCHECK(index >= 0 && index < this->length()); WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value); } void BytecodeArray::set_frame_size(int frame_size) { DCHECK_GE(frame_size, 0); DCHECK(IsAligned(frame_size, static_cast<unsigned>(kPointerSize))); WRITE_INT_FIELD(this, kFrameSizeOffset, frame_size); } int BytecodeArray::frame_size() const { return READ_INT_FIELD(this, kFrameSizeOffset); } int BytecodeArray::register_count() const { return frame_size() / kPointerSize; } void BytecodeArray::set_parameter_count(int number_of_parameters) { DCHECK_GE(number_of_parameters, 0); // Parameter count is stored as the size on stack of the parameters to allow // it to be used directly by generated code. WRITE_INT_FIELD(this, kParameterSizeOffset, (number_of_parameters << kPointerSizeLog2)); } interpreter::Register BytecodeArray::incoming_new_target_or_generator_register() const { int register_operand = READ_INT_FIELD(this, kIncomingNewTargetOrGeneratorRegisterOffset); if (register_operand == 0) { return interpreter::Register::invalid_value(); } else { return interpreter::Register::FromOperand(register_operand); } } void BytecodeArray::set_incoming_new_target_or_generator_register( interpreter::Register incoming_new_target_or_generator_register) { if (!incoming_new_target_or_generator_register.is_valid()) { WRITE_INT_FIELD(this, kIncomingNewTargetOrGeneratorRegisterOffset, 0); } else { DCHECK(incoming_new_target_or_generator_register.index() < register_count()); DCHECK_NE(0, incoming_new_target_or_generator_register.ToOperand()); WRITE_INT_FIELD(this, kIncomingNewTargetOrGeneratorRegisterOffset, incoming_new_target_or_generator_register.ToOperand()); } } int BytecodeArray::interrupt_budget() const { return READ_INT_FIELD(this, kInterruptBudgetOffset); } void BytecodeArray::set_interrupt_budget(int interrupt_budget) { DCHECK_GE(interrupt_budget, 0); WRITE_INT_FIELD(this, kInterruptBudgetOffset, interrupt_budget); } int BytecodeArray::osr_loop_nesting_level() const { return READ_INT8_FIELD(this, kOSRNestingLevelOffset); } void BytecodeArray::set_osr_loop_nesting_level(int depth) { DCHECK(0 <= depth && depth <= AbstractCode::kMaxLoopNestingMarker); STATIC_ASSERT(AbstractCode::kMaxLoopNestingMarker < kMaxInt8); WRITE_INT8_FIELD(this, kOSRNestingLevelOffset, depth); } BytecodeArray::Age BytecodeArray::bytecode_age() const { // Bytecode is aged by the concurrent marker. return static_cast<Age>(RELAXED_READ_INT8_FIELD(this, kBytecodeAgeOffset)); } void BytecodeArray::set_bytecode_age(BytecodeArray::Age age) { DCHECK_GE(age, kFirstBytecodeAge); DCHECK_LE(age, kLastBytecodeAge); STATIC_ASSERT(kLastBytecodeAge <= kMaxInt8); // Bytecode is aged by the concurrent marker. RELAXED_WRITE_INT8_FIELD(this, kBytecodeAgeOffset, static_cast<int8_t>(age)); } int BytecodeArray::parameter_count() const { // Parameter count is stored as the size on stack of the parameters to allow // it to be used directly by generated code. return READ_INT_FIELD(this, kParameterSizeOffset) >> kPointerSizeLog2; } ACCESSORS(BytecodeArray, constant_pool, FixedArray, kConstantPoolOffset) ACCESSORS(BytecodeArray, handler_table, FixedArray, kHandlerTableOffset) ACCESSORS(BytecodeArray, source_position_table, Object, kSourcePositionTableOffset) void BytecodeArray::clear_padding() { int data_size = kHeaderSize + length(); memset(address() + data_size, 0, SizeFor(length()) - data_size); } Address BytecodeArray::GetFirstBytecodeAddress() { return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize; } ByteArray* BytecodeArray::SourcePositionTable() { Object* maybe_table = source_position_table(); if (maybe_table->IsByteArray()) return ByteArray::cast(maybe_table); DCHECK(maybe_table->IsSourcePositionTableWithFrameCache()); return SourcePositionTableWithFrameCache::cast(maybe_table) ->source_position_table(); } int BytecodeArray::BytecodeArraySize() { return SizeFor(this->length()); } int BytecodeArray::SizeIncludingMetadata() { int size = BytecodeArraySize(); size += constant_pool()->Size(); size += handler_table()->Size(); size += SourcePositionTable()->Size(); return size; } ACCESSORS(FixedTypedArrayBase, base_pointer, Object, kBasePointerOffset) void* FixedTypedArrayBase::external_pointer() const { intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset); return reinterpret_cast<void*>(ptr); } void FixedTypedArrayBase::set_external_pointer(void* value, WriteBarrierMode mode) { intptr_t ptr = reinterpret_cast<intptr_t>(value); WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr); } void* FixedTypedArrayBase::DataPtr() { return reinterpret_cast<void*>( reinterpret_cast<intptr_t>(base_pointer()) + reinterpret_cast<intptr_t>(external_pointer())); } int FixedTypedArrayBase::ElementSize(InstanceType type) { int element_size; switch (type) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case FIXED_##TYPE##_ARRAY_TYPE: \ element_size = size; \ break; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE default: UNREACHABLE(); } return element_size; } int FixedTypedArrayBase::DataSize(InstanceType type) const { if (base_pointer() == Smi::kZero) return 0; return length() * ElementSize(type); } int FixedTypedArrayBase::DataSize() const { return DataSize(map()->instance_type()); } size_t FixedTypedArrayBase::ByteLength() const { return static_cast<size_t>(length()) * static_cast<size_t>(ElementSize(map()->instance_type())); } int FixedTypedArrayBase::size() const { return OBJECT_POINTER_ALIGN(kDataOffset + DataSize()); } int FixedTypedArrayBase::TypedArraySize(InstanceType type) const { return OBJECT_POINTER_ALIGN(kDataOffset + DataSize(type)); } // static int FixedTypedArrayBase::TypedArraySize(InstanceType type, int length) { return OBJECT_POINTER_ALIGN(kDataOffset + length * ElementSize(type)); } uint8_t Uint8ArrayTraits::defaultValue() { return 0; } uint8_t Uint8ClampedArrayTraits::defaultValue() { return 0; } int8_t Int8ArrayTraits::defaultValue() { return 0; } uint16_t Uint16ArrayTraits::defaultValue() { return 0; } int16_t Int16ArrayTraits::defaultValue() { return 0; } uint32_t Uint32ArrayTraits::defaultValue() { return 0; } int32_t Int32ArrayTraits::defaultValue() { return 0; } float Float32ArrayTraits::defaultValue() { return std::numeric_limits<float>::quiet_NaN(); } double Float64ArrayTraits::defaultValue() { return std::numeric_limits<double>::quiet_NaN(); } template <class Traits> typename Traits::ElementType FixedTypedArray<Traits>::get_scalar(int index) { DCHECK((index >= 0) && (index < this->length())); ElementType* ptr = reinterpret_cast<ElementType*>(DataPtr()); return ptr[index]; } template <class Traits> void FixedTypedArray<Traits>::set(int index, ElementType value) { CHECK((index >= 0) && (index < this->length())); ElementType* ptr = reinterpret_cast<ElementType*>(DataPtr()); ptr[index] = value; } template <class Traits> typename Traits::ElementType FixedTypedArray<Traits>::from(int value) { return static_cast<ElementType>(value); } template <> inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from(int value) { if (value < 0) return 0; if (value > 0xFF) return 0xFF; return static_cast<uint8_t>(value); } template <class Traits> typename Traits::ElementType FixedTypedArray<Traits>::from(uint32_t value) { return static_cast<ElementType>(value); } template <> inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from(uint32_t value) { // We need this special case for Uint32 -> Uint8Clamped, because the highest // Uint32 values will be negative as an int, clamping to 0, rather than 255. if (value > 0xFF) return 0xFF; return static_cast<uint8_t>(value); } template <class Traits> typename Traits::ElementType FixedTypedArray<Traits>::from(double value) { return static_cast<ElementType>(DoubleToInt32(value)); } template <> inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from(double value) { // Handle NaNs and less than zero values which clamp to zero. if (!(value > 0)) return 0; if (value > 0xFF) return 0xFF; return static_cast<uint8_t>(lrint(value)); } template <> inline float FixedTypedArray<Float32ArrayTraits>::from(double value) { return static_cast<float>(value); } template <> inline double FixedTypedArray<Float64ArrayTraits>::from(double value) { return value; } template <class Traits> Handle<Object> FixedTypedArray<Traits>::get(FixedTypedArray<Traits>* array, int index) { return Traits::ToHandle(array->GetIsolate(), array->get_scalar(index)); } template <class Traits> void FixedTypedArray<Traits>::SetValue(uint32_t index, Object* value) { ElementType cast_value = Traits::defaultValue(); if (value->IsSmi()) { int int_value = Smi::ToInt(value); cast_value = from(int_value); } else if (value->IsHeapNumber()) { double double_value = HeapNumber::cast(value)->value(); cast_value = from(double_value); } else { // Clamp undefined to the default value. All other types have been // converted to a number type further up in the call chain. DCHECK(value->IsUndefined(GetIsolate())); } set(index, cast_value); } Handle<Object> Uint8ArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle<Object> Uint8ClampedArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle<Object> Int8ArrayTraits::ToHandle(Isolate* isolate, int8_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle<Object> Uint16ArrayTraits::ToHandle(Isolate* isolate, uint16_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle<Object> Int16ArrayTraits::ToHandle(Isolate* isolate, int16_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle<Object> Uint32ArrayTraits::ToHandle(Isolate* isolate, uint32_t scalar) { return isolate->factory()->NewNumberFromUint(scalar); } Handle<Object> Int32ArrayTraits::ToHandle(Isolate* isolate, int32_t scalar) { return isolate->factory()->NewNumberFromInt(scalar); } Handle<Object> Float32ArrayTraits::ToHandle(Isolate* isolate, float scalar) { return isolate->factory()->NewNumber(scalar); } Handle<Object> Float64ArrayTraits::ToHandle(Isolate* isolate, double scalar) { return isolate->factory()->NewNumber(scalar); } int Map::visitor_id() const { return READ_BYTE_FIELD(this, kVisitorIdOffset); } void Map::set_visitor_id(int id) { DCHECK_LE(0, id); DCHECK_LT(id, 256); WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast<byte>(id)); } int Map::instance_size() const { return RELAXED_READ_BYTE_FIELD(this, kInstanceSizeOffset) << kPointerSizeLog2; } int Map::inobject_properties_or_constructor_function_index() const { return RELAXED_READ_BYTE_FIELD( this, kInObjectPropertiesOrConstructorFunctionIndexOffset); } void Map::set_inobject_properties_or_constructor_function_index(int value) { DCHECK_LE(0, value); DCHECK_LT(value, 256); RELAXED_WRITE_BYTE_FIELD(this, kInObjectPropertiesOrConstructorFunctionIndexOffset, static_cast<byte>(value)); } int Map::GetInObjectProperties() const { DCHECK(IsJSObjectMap()); return inobject_properties_or_constructor_function_index(); } void Map::SetInObjectProperties(int value) { DCHECK(IsJSObjectMap()); set_inobject_properties_or_constructor_function_index(value); } int Map::GetConstructorFunctionIndex() const { DCHECK(IsPrimitiveMap()); return inobject_properties_or_constructor_function_index(); } void Map::SetConstructorFunctionIndex(int value) { DCHECK(IsPrimitiveMap()); set_inobject_properties_or_constructor_function_index(value); } int Map::GetInObjectPropertyOffset(int index) const { // Adjust for the number of properties stored in the object. index -= GetInObjectProperties(); DCHECK(index <= 0); return instance_size() + (index * kPointerSize); } Handle<Map> Map::AddMissingTransitionsForTesting( Handle<Map> split_map, Handle<DescriptorArray> descriptors, Handle<LayoutDescriptor> full_layout_descriptor) { return AddMissingTransitions(split_map, descriptors, full_layout_descriptor); } int HeapObject::SizeFromMap(Map* map) const { int instance_size = map->instance_size(); if (instance_size != kVariableSizeSentinel) return instance_size; // Only inline the most frequent cases. InstanceType instance_type = map->instance_type(); if (instance_type == FIXED_ARRAY_TYPE || instance_type == HASH_TABLE_TYPE || instance_type == TRANSITION_ARRAY_TYPE) { return FixedArray::SizeFor( reinterpret_cast<const FixedArray*>(this)->synchronized_length()); } if (instance_type == ONE_BYTE_STRING_TYPE || instance_type == ONE_BYTE_INTERNALIZED_STRING_TYPE) { // Strings may get concurrently truncated, hence we have to access its // length synchronized. return SeqOneByteString::SizeFor( reinterpret_cast<const SeqOneByteString*>(this)->synchronized_length()); } if (instance_type == BYTE_ARRAY_TYPE) { return ByteArray::SizeFor( reinterpret_cast<const ByteArray*>(this)->synchronized_length()); } if (instance_type == BYTECODE_ARRAY_TYPE) { return BytecodeArray::SizeFor( reinterpret_cast<const BytecodeArray*>(this)->synchronized_length()); } if (instance_type == FREE_SPACE_TYPE) { return reinterpret_cast<const FreeSpace*>(this)->relaxed_read_size(); } if (instance_type == STRING_TYPE || instance_type == INTERNALIZED_STRING_TYPE) { // Strings may get concurrently truncated, hence we have to access its // length synchronized. return SeqTwoByteString::SizeFor( reinterpret_cast<const SeqTwoByteString*>(this)->synchronized_length()); } if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) { return FixedDoubleArray::SizeFor( reinterpret_cast<const FixedDoubleArray*>(this)->synchronized_length()); } if (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE && instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE) { return reinterpret_cast<const FixedTypedArrayBase*>(this)->TypedArraySize( instance_type); } if (instance_type == SMALL_ORDERED_HASH_SET_TYPE) { return reinterpret_cast<const SmallOrderedHashSet*>(this)->Size(); } if (instance_type == PROPERTY_ARRAY_TYPE) { return PropertyArray::SizeFor( reinterpret_cast<const PropertyArray*>(this)->synchronized_length()); } if (instance_type == SMALL_ORDERED_HASH_MAP_TYPE) { return reinterpret_cast<const SmallOrderedHashMap*>(this)->Size(); } if (instance_type == FEEDBACK_VECTOR_TYPE) { return FeedbackVector::SizeFor( reinterpret_cast<const FeedbackVector*>(this)->length()); } DCHECK(instance_type == CODE_TYPE); return reinterpret_cast<const Code*>(this)->CodeSize(); } void Map::set_instance_size(int value) { DCHECK_EQ(0, value & (kPointerSize - 1)); value >>= kPointerSizeLog2; DCHECK(0 <= value && value < 256); RELAXED_WRITE_BYTE_FIELD(this, kInstanceSizeOffset, static_cast<byte>(value)); } void Map::clear_unused() { WRITE_BYTE_FIELD(this, kUnusedOffset, 0); } InstanceType Map::instance_type() const { return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset)); } void Map::set_instance_type(InstanceType value) { WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value); } int Map::unused_property_fields() const { return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset); } void Map::set_unused_property_fields(int value) { WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255)); } byte Map::bit_field() const { return READ_BYTE_FIELD(this, kBitFieldOffset); } void Map::set_bit_field(byte value) { WRITE_BYTE_FIELD(this, kBitFieldOffset, value); } byte Map::bit_field2() const { return READ_BYTE_FIELD(this, kBitField2Offset); } void Map::set_bit_field2(byte value) { WRITE_BYTE_FIELD(this, kBitField2Offset, value); } void Map::set_non_instance_prototype(bool value) { if (value) { set_bit_field(bit_field() | (1 << kHasNonInstancePrototype)); } else { set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype)); } } bool Map::has_non_instance_prototype() const { return ((1 << kHasNonInstancePrototype) & bit_field()) != 0; } void Map::set_is_constructor(bool value) { if (value) { set_bit_field(bit_field() | (1 << kIsConstructor)); } else { set_bit_field(bit_field() & ~(1 << kIsConstructor)); } } bool Map::is_constructor() const { return ((1 << kIsConstructor) & bit_field()) != 0; } void Map::set_has_hidden_prototype(bool value) { set_bit_field3(HasHiddenPrototype::update(bit_field3(), value)); } bool Map::has_hidden_prototype() const { return HasHiddenPrototype::decode(bit_field3()); } void Map::set_has_indexed_interceptor() { set_bit_field(bit_field() | (1 << kHasIndexedInterceptor)); } bool Map::has_indexed_interceptor() const { return ((1 << kHasIndexedInterceptor) & bit_field()) != 0; } void Map::set_is_undetectable() { set_bit_field(bit_field() | (1 << kIsUndetectable)); } bool Map::is_undetectable() const { return ((1 << kIsUndetectable) & bit_field()) != 0; } void Map::set_has_named_interceptor() { set_bit_field(bit_field() | (1 << kHasNamedInterceptor)); } bool Map::has_named_interceptor() const { return ((1 << kHasNamedInterceptor) & bit_field()) != 0; } void Map::set_is_access_check_needed(bool access_check_needed) { if (access_check_needed) { set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded)); } else { set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded)); } } bool Map::is_access_check_needed() const { return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0; } void Map::set_is_extensible(bool value) { if (value) { set_bit_field2(bit_field2() | (1 << kIsExtensible)); } else { set_bit_field2(bit_field2() & ~(1 << kIsExtensible)); } } bool Map::is_extensible() const { return ((1 << kIsExtensible) & bit_field2()) != 0; } void Map::set_is_prototype_map(bool value) { set_bit_field2(IsPrototypeMapBits::update(bit_field2(), value)); } bool Map::is_prototype_map() const { return IsPrototypeMapBits::decode(bit_field2()); } bool Map::is_abandoned_prototype_map() const { return is_prototype_map() && !owns_descriptors(); } bool Map::should_be_fast_prototype_map() const { if (!prototype_info()->IsPrototypeInfo()) return false; return PrototypeInfo::cast(prototype_info())->should_be_fast_map(); } void Map::set_elements_kind(ElementsKind elements_kind) { DCHECK(static_cast<int>(elements_kind) < kElementsKindCount); DCHECK(kElementsKindCount <= (1 << Map::ElementsKindBits::kSize)); set_bit_field2(Map::ElementsKindBits::update(bit_field2(), elements_kind)); DCHECK(this->elements_kind() == elements_kind); } ElementsKind Map::elements_kind() const { return Map::ElementsKindBits::decode(bit_field2()); } bool Map::has_fast_smi_elements() const { return IsSmiElementsKind(elements_kind()); } bool Map::has_fast_object_elements() const { return IsObjectElementsKind(elements_kind()); } bool Map::has_fast_smi_or_object_elements() const { return IsSmiOrObjectElementsKind(elements_kind()); } bool Map::has_fast_double_elements() const { return IsDoubleElementsKind(elements_kind()); } bool Map::has_fast_elements() const { return IsFastElementsKind(elements_kind()); } bool Map::has_sloppy_arguments_elements() const { return IsSloppyArgumentsElementsKind(elements_kind()); } bool Map::has_fast_sloppy_arguments_elements() const { return elements_kind() == FAST_SLOPPY_ARGUMENTS_ELEMENTS; } bool Map::has_fast_string_wrapper_elements() const { return elements_kind() == FAST_STRING_WRAPPER_ELEMENTS; } bool Map::has_fixed_typed_array_elements() const { return IsFixedTypedArrayElementsKind(elements_kind()); } bool Map::has_dictionary_elements() const { return IsDictionaryElementsKind(elements_kind()); } void Map::set_dictionary_map(bool value) { uint32_t new_bit_field3 = DictionaryMap::update(bit_field3(), value); new_bit_field3 = IsUnstable::update(new_bit_field3, value); set_bit_field3(new_bit_field3); } bool Map::is_dictionary_map() const { return DictionaryMap::decode(bit_field3()); } Code::Flags Code::flags() const { return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset)); } void Map::set_owns_descriptors(bool owns_descriptors) { set_bit_field3(OwnsDescriptors::update(bit_field3(), owns_descriptors)); } bool Map::owns_descriptors() const { return OwnsDescriptors::decode(bit_field3()); } void Map::set_is_callable() { set_bit_field(bit_field() | (1 << kIsCallable)); } bool Map::is_callable() const { return ((1 << kIsCallable) & bit_field()) != 0; } void Map::deprecate() { set_bit_field3(Deprecated::update(bit_field3(), true)); } bool Map::is_deprecated() const { return Deprecated::decode(bit_field3()); } void Map::set_migration_target(bool value) { set_bit_field3(IsMigrationTarget::update(bit_field3(), value)); } bool Map::is_migration_target() const { return IsMigrationTarget::decode(bit_field3()); } void Map::set_immutable_proto(bool value) { set_bit_field3(ImmutablePrototype::update(bit_field3(), value)); } bool Map::is_immutable_proto() const { return ImmutablePrototype::decode(bit_field3()); } void Map::set_new_target_is_base(bool value) { set_bit_field3(NewTargetIsBase::update(bit_field3(), value)); } bool Map::new_target_is_base() const { return NewTargetIsBase::decode(bit_field3()); } void Map::set_may_have_interesting_symbols(bool value) { set_bit_field3(MayHaveInterestingSymbols::update(bit_field3(), value)); } bool Map::may_have_interesting_symbols() const { return MayHaveInterestingSymbols::decode(bit_field3()); } void Map::set_construction_counter(int value) { set_bit_field3(ConstructionCounter::update(bit_field3(), value)); } int Map::construction_counter() const { return ConstructionCounter::decode(bit_field3()); } void Map::mark_unstable() { set_bit_field3(IsUnstable::update(bit_field3(), true)); } bool Map::is_stable() const { return !IsUnstable::decode(bit_field3()); } bool Map::CanBeDeprecated() const { int descriptor = LastAdded(); for (int i = 0; i <= descriptor; i++) { PropertyDetails details = instance_descriptors()->GetDetails(i); if (details.representation().IsNone()) return true; if (details.representation().IsSmi()) return true; if (details.representation().IsDouble()) return true; if (details.representation().IsHeapObject()) return true; if (details.kind() == kData && details.location() == kDescriptor) { return true; } } return false; } void Map::NotifyLeafMapLayoutChange() { if (is_stable()) { mark_unstable(); dependent_code()->DeoptimizeDependentCodeGroup( GetIsolate(), DependentCode::kPrototypeCheckGroup); } } bool Map::CanTransition() const { // Only JSObject and subtypes have map transitions and back pointers. STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE); return instance_type() >= FIRST_JS_OBJECT_TYPE; } bool Map::IsBooleanMap() const { return this == GetHeap()->boolean_map(); } bool Map::IsPrimitiveMap() const { STATIC_ASSERT(FIRST_PRIMITIVE_TYPE == FIRST_TYPE); return instance_type() <= LAST_PRIMITIVE_TYPE; } bool Map::IsJSReceiverMap() const { STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); return instance_type() >= FIRST_JS_RECEIVER_TYPE; } bool Map::IsJSObjectMap() const { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return instance_type() >= FIRST_JS_OBJECT_TYPE; } bool Map::IsJSArrayMap() const { return instance_type() == JS_ARRAY_TYPE; } bool Map::IsJSFunctionMap() const { return instance_type() == JS_FUNCTION_TYPE; } bool Map::IsStringMap() const { return instance_type() < FIRST_NONSTRING_TYPE; } bool Map::IsJSProxyMap() const { return instance_type() == JS_PROXY_TYPE; } bool Map::IsJSGlobalProxyMap() const { return instance_type() == JS_GLOBAL_PROXY_TYPE; } bool Map::IsJSGlobalObjectMap() const { return instance_type() == JS_GLOBAL_OBJECT_TYPE; } bool Map::IsJSTypedArrayMap() const { return instance_type() == JS_TYPED_ARRAY_TYPE; } bool Map::IsJSDataViewMap() const { return instance_type() == JS_DATA_VIEW_TYPE; } bool Map::IsSpecialReceiverMap() const { bool result = IsSpecialReceiverInstanceType(instance_type()); DCHECK_IMPLIES(!result, !has_named_interceptor() && !is_access_check_needed()); return result; } DependentCode* DependentCode::next_link() { return DependentCode::cast(get(kNextLinkIndex)); } void DependentCode::set_next_link(DependentCode* next) { set(kNextLinkIndex, next); } int DependentCode::flags() { return Smi::ToInt(get(kFlagsIndex)); } void DependentCode::set_flags(int flags) { set(kFlagsIndex, Smi::FromInt(flags)); } int DependentCode::count() { return CountField::decode(flags()); } void DependentCode::set_count(int value) { set_flags(CountField::update(flags(), value)); } DependentCode::DependencyGroup DependentCode::group() { return static_cast<DependencyGroup>(GroupField::decode(flags())); } void DependentCode::set_group(DependentCode::DependencyGroup group) { set_flags(GroupField::update(flags(), static_cast<int>(group))); } void DependentCode::set_object_at(int i, Object* object) { set(kCodesStartIndex + i, object); } Object* DependentCode::object_at(int i) { return get(kCodesStartIndex + i); } void DependentCode::clear_at(int i) { set_undefined(kCodesStartIndex + i); } void DependentCode::copy(int from, int to) { set(kCodesStartIndex + to, get(kCodesStartIndex + from)); } void Code::set_flags(Code::Flags flags) { STATIC_ASSERT(Code::NUMBER_OF_KINDS <= KindField::kMax + 1); WRITE_INT_FIELD(this, kFlagsOffset, flags); } Code::Kind Code::kind() const { return ExtractKindFromFlags(flags()); } bool Code::IsCodeStubOrIC() const { switch (kind()) { case STUB: case HANDLER: #define CASE_KIND(kind) case kind: IC_KIND_LIST(CASE_KIND) #undef CASE_KIND return true; default: return false; } } // For initialization. void Code::set_raw_kind_specific_flags1(int value) { WRITE_INT_FIELD(this, kKindSpecificFlags1Offset, value); } void Code::set_raw_kind_specific_flags2(int value) { WRITE_INT_FIELD(this, kKindSpecificFlags2Offset, value); } inline bool Code::is_interpreter_trampoline_builtin() const { Builtins* builtins = GetIsolate()->builtins(); return this == builtins->builtin(Builtins::kInterpreterEntryTrampoline) || this == builtins->builtin(Builtins::kInterpreterEnterBytecodeAdvance) || this == builtins->builtin(Builtins::kInterpreterEnterBytecodeDispatch); } inline bool Code::checks_optimization_marker() const { Builtins* builtins = GetIsolate()->builtins(); return this == builtins->builtin(Builtins::kCompileLazy) || this == builtins->builtin(Builtins::kInterpreterEntryTrampoline) || this == builtins->builtin(Builtins::kCheckOptimizationMarker); } inline bool Code::has_unwinding_info() const { return HasUnwindingInfoField::decode(READ_UINT32_FIELD(this, kFlagsOffset)); } inline void Code::set_has_unwinding_info(bool state) { uint32_t previous = READ_UINT32_FIELD(this, kFlagsOffset); uint32_t updated_value = HasUnwindingInfoField::update(previous, state); WRITE_UINT32_FIELD(this, kFlagsOffset, updated_value); } inline bool Code::has_tagged_params() const { int flags = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); return HasTaggedStackField::decode(flags); } inline void Code::set_has_tagged_params(bool value) { int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = HasTaggedStackField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } inline bool Code::is_turbofanned() const { return IsTurbofannedField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } inline void Code::set_is_turbofanned(bool value) { int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = IsTurbofannedField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } inline bool Code::can_have_weak_objects() const { DCHECK(kind() == OPTIMIZED_FUNCTION); return CanHaveWeakObjectsField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } inline void Code::set_can_have_weak_objects(bool value) { DCHECK(kind() == OPTIMIZED_FUNCTION); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = CanHaveWeakObjectsField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } inline bool Code::is_construct_stub() const { DCHECK(kind() == BUILTIN); return IsConstructStubField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } inline void Code::set_is_construct_stub(bool value) { DCHECK(kind() == BUILTIN); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = IsConstructStubField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } inline bool Code::is_promise_rejection() const { DCHECK(kind() == BUILTIN); return IsPromiseRejectionField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } inline void Code::set_is_promise_rejection(bool value) { DCHECK(kind() == BUILTIN); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = IsPromiseRejectionField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } inline bool Code::is_exception_caught() const { DCHECK(kind() == BUILTIN); return IsExceptionCaughtField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } inline void Code::set_is_exception_caught(bool value) { DCHECK(kind() == BUILTIN); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = IsExceptionCaughtField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } inline HandlerTable::CatchPrediction Code::GetBuiltinCatchPrediction() { if (is_promise_rejection()) return HandlerTable::PROMISE; if (is_exception_caught()) return HandlerTable::CAUGHT; return HandlerTable::UNCAUGHT; } bool Code::has_reloc_info_for_serialization() const { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); return FullCodeFlagsHasRelocInfoForSerialization::decode(flags); } void Code::set_has_reloc_info_for_serialization(bool value) { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); flags = FullCodeFlagsHasRelocInfoForSerialization::update(flags, value); WRITE_UINT32_FIELD(this, kFullCodeFlags, flags); } int Code::allow_osr_at_loop_nesting_level() const { DCHECK_EQ(FUNCTION, kind()); int fields = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); return AllowOSRAtLoopNestingLevelField::decode(fields); } void Code::set_allow_osr_at_loop_nesting_level(int level) { DCHECK_EQ(FUNCTION, kind()); DCHECK(level >= 0 && level <= AbstractCode::kMaxLoopNestingMarker); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = AllowOSRAtLoopNestingLevelField::update(previous, level); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } int Code::builtin_index() const { return READ_INT_FIELD(this, kBuiltinIndexOffset); } void Code::set_builtin_index(int index) { WRITE_INT_FIELD(this, kBuiltinIndexOffset, index); } unsigned Code::stack_slots() const { DCHECK(is_turbofanned()); return StackSlotsField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_stack_slots(unsigned slots) { CHECK(slots <= (1 << kStackSlotsBitCount)); DCHECK(is_turbofanned()); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = StackSlotsField::update(previous, slots); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } unsigned Code::safepoint_table_offset() const { DCHECK(is_turbofanned()); return SafepointTableOffsetField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)); } void Code::set_safepoint_table_offset(unsigned offset) { CHECK(offset <= (1 << kSafepointTableOffsetBitCount)); DCHECK(is_turbofanned()); DCHECK(IsAligned(offset, static_cast<unsigned>(kIntSize))); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = SafepointTableOffsetField::update(previous, offset); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } unsigned Code::back_edge_table_offset() const { DCHECK_EQ(FUNCTION, kind()); return BackEdgeTableOffsetField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)) << kPointerSizeLog2; } void Code::set_back_edge_table_offset(unsigned offset) { DCHECK_EQ(FUNCTION, kind()); DCHECK(IsAligned(offset, static_cast<unsigned>(kPointerSize))); offset = offset >> kPointerSizeLog2; int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = BackEdgeTableOffsetField::update(previous, offset); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } bool Code::back_edges_patched_for_osr() const { DCHECK_EQ(FUNCTION, kind()); return allow_osr_at_loop_nesting_level() > 0; } bool Code::marked_for_deoptimization() const { DCHECK(kind() == OPTIMIZED_FUNCTION); return MarkedForDeoptimizationField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_marked_for_deoptimization(bool flag) { DCHECK(kind() == OPTIMIZED_FUNCTION); DCHECK_IMPLIES(flag, AllowDeoptimization::IsAllowed(GetIsolate())); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = MarkedForDeoptimizationField::update(previous, flag); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } bool Code::deopt_already_counted() const { DCHECK(kind() == OPTIMIZED_FUNCTION); return DeoptAlreadyCountedField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_deopt_already_counted(bool flag) { DCHECK(kind() == OPTIMIZED_FUNCTION); DCHECK_IMPLIES(flag, AllowDeoptimization::IsAllowed(GetIsolate())); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = DeoptAlreadyCountedField::update(previous, flag); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } bool Code::is_inline_cache_stub() const { Kind kind = this->kind(); switch (kind) { #define CASE(name) case name: return true; IC_KIND_LIST(CASE) #undef CASE default: return false; } } bool Code::is_handler() const { return kind() == HANDLER; } bool Code::is_stub() const { return kind() == STUB; } bool Code::is_optimized_code() const { return kind() == OPTIMIZED_FUNCTION; } bool Code::is_wasm_code() const { return kind() == WASM_FUNCTION; } Address Code::constant_pool() { Address constant_pool = NULL; if (FLAG_enable_embedded_constant_pool) { int offset = constant_pool_offset(); if (offset < instruction_size()) { constant_pool = FIELD_ADDR(this, kHeaderSize + offset); } } return constant_pool; } Code::Flags Code::ComputeFlags(Kind kind, ExtraICState extra_ic_state) { // Compute the bit mask. unsigned int bits = KindField::encode(kind) | ExtraICStateField::encode(extra_ic_state); return static_cast<Flags>(bits); } Code::Flags Code::ComputeHandlerFlags(Kind handler_kind) { return ComputeFlags(Code::HANDLER, handler_kind); } Code::Kind Code::ExtractKindFromFlags(Flags flags) { return KindField::decode(flags); } ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) { return ExtraICStateField::decode(flags); } Code* Code::GetCodeFromTargetAddress(Address address) { HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize); // GetCodeFromTargetAddress might be called when marking objects during mark // sweep. reinterpret_cast is therefore used instead of the more appropriate // Code::cast. Code::cast does not work when the object's map is // marked. Code* result = reinterpret_cast<Code*>(code); return result; } Object* Code::GetObjectFromCodeEntry(Address code_entry) { return HeapObject::FromAddress(code_entry - Code::kHeaderSize); } Object* Code::GetObjectFromEntryAddress(Address location_of_address) { return GetObjectFromCodeEntry(Memory::Address_at(location_of_address)); } bool Code::CanContainWeakObjects() { return is_optimized_code() && can_have_weak_objects(); } bool Code::IsWeakObject(Object* object) { return (CanContainWeakObjects() && IsWeakObjectInOptimizedCode(object)); } bool Code::IsWeakObjectInOptimizedCode(Object* object) { if (object->IsMap()) { return Map::cast(object)->CanTransition(); } if (object->IsCell()) { object = Cell::cast(object)->value(); } else if (object->IsPropertyCell()) { object = PropertyCell::cast(object)->value(); } if (object->IsJSReceiver() || object->IsContext()) { return true; } return false; } int AbstractCode::instruction_size() { if (IsCode()) { return GetCode()->instruction_size(); } else { return GetBytecodeArray()->length(); } } ByteArray* AbstractCode::source_position_table() { if (IsCode()) { return GetCode()->SourcePositionTable(); } else { return GetBytecodeArray()->SourcePositionTable(); } } void AbstractCode::set_source_position_table(ByteArray* source_position_table) { if (IsCode()) { GetCode()->set_source_position_table(source_position_table); } else { GetBytecodeArray()->set_source_position_table(source_position_table); } } Object* AbstractCode::stack_frame_cache() { Object* maybe_table; if (IsCode()) { maybe_table = GetCode()->source_position_table(); } else { maybe_table = GetBytecodeArray()->source_position_table(); } if (maybe_table->IsSourcePositionTableWithFrameCache()) { return SourcePositionTableWithFrameCache::cast(maybe_table) ->stack_frame_cache(); } return Smi::kZero; } int AbstractCode::SizeIncludingMetadata() { if (IsCode()) { return GetCode()->SizeIncludingMetadata(); } else { return GetBytecodeArray()->SizeIncludingMetadata(); } } int AbstractCode::ExecutableSize() { if (IsCode()) { return GetCode()->ExecutableSize(); } else { return GetBytecodeArray()->BytecodeArraySize(); } } Address AbstractCode::instruction_start() { if (IsCode()) { return GetCode()->instruction_start(); } else { return GetBytecodeArray()->GetFirstBytecodeAddress(); } } Address AbstractCode::instruction_end() { if (IsCode()) { return GetCode()->instruction_end(); } else { return GetBytecodeArray()->GetFirstBytecodeAddress() + GetBytecodeArray()->length(); } } bool AbstractCode::contains(byte* inner_pointer) { return (address() <= inner_pointer) && (inner_pointer <= address() + Size()); } AbstractCode::Kind AbstractCode::kind() { if (IsCode()) { STATIC_ASSERT(AbstractCode::FUNCTION == static_cast<AbstractCode::Kind>(Code::FUNCTION)); return static_cast<AbstractCode::Kind>(GetCode()->kind()); } else { return INTERPRETED_FUNCTION; } } Code* AbstractCode::GetCode() { return Code::cast(this); } BytecodeArray* AbstractCode::GetBytecodeArray() { return BytecodeArray::cast(this); } Object* Map::prototype() const { return READ_FIELD(this, kPrototypeOffset); } void Map::set_prototype(Object* value, WriteBarrierMode mode) { DCHECK(value->IsNull(GetIsolate()) || value->IsJSReceiver()); WRITE_FIELD(this, kPrototypeOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, value, mode); } LayoutDescriptor* Map::layout_descriptor_gc_safe() const { Object* layout_desc = RELAXED_READ_FIELD(this, kLayoutDescriptorOffset); return LayoutDescriptor::cast_gc_safe(layout_desc); } bool Map::HasFastPointerLayout() const { Object* layout_desc = RELAXED_READ_FIELD(this, kLayoutDescriptorOffset); return LayoutDescriptor::IsFastPointerLayout(layout_desc); } void Map::UpdateDescriptors(DescriptorArray* descriptors, LayoutDescriptor* layout_desc) { set_instance_descriptors(descriptors); if (FLAG_unbox_double_fields) { if (layout_descriptor()->IsSlowLayout()) { set_layout_descriptor(layout_desc); } #ifdef VERIFY_HEAP // TODO(ishell): remove these checks from VERIFY_HEAP mode. if (FLAG_verify_heap) { CHECK(layout_descriptor()->IsConsistentWithMap(this)); CHECK(visitor_id() == Map::GetVisitorId(this)); } #else SLOW_DCHECK(layout_descriptor()->IsConsistentWithMap(this)); DCHECK(visitor_id() == Map::GetVisitorId(this)); #endif } } void Map::InitializeDescriptors(DescriptorArray* descriptors, LayoutDescriptor* layout_desc) { int len = descriptors->number_of_descriptors(); set_instance_descriptors(descriptors); SetNumberOfOwnDescriptors(len); if (FLAG_unbox_double_fields) { set_layout_descriptor(layout_desc); #ifdef VERIFY_HEAP // TODO(ishell): remove these checks from VERIFY_HEAP mode. if (FLAG_verify_heap) { CHECK(layout_descriptor()->IsConsistentWithMap(this)); } #else SLOW_DCHECK(layout_descriptor()->IsConsistentWithMap(this)); #endif set_visitor_id(Map::GetVisitorId(this)); } } ACCESSORS(Map, instance_descriptors, DescriptorArray, kDescriptorsOffset) ACCESSORS(Map, layout_descriptor, LayoutDescriptor, kLayoutDescriptorOffset) void Map::set_bit_field3(uint32_t bits) { if (kInt32Size != kPointerSize) { WRITE_UINT32_FIELD(this, kBitField3Offset + kInt32Size, 0); } WRITE_UINT32_FIELD(this, kBitField3Offset, bits); } uint32_t Map::bit_field3() const { return READ_UINT32_FIELD(this, kBitField3Offset); } LayoutDescriptor* Map::GetLayoutDescriptor() const { return FLAG_unbox_double_fields ? layout_descriptor() : LayoutDescriptor::FastPointerLayout(); } void Map::AppendDescriptor(Descriptor* desc) { DescriptorArray* descriptors = instance_descriptors(); int number_of_own_descriptors = NumberOfOwnDescriptors(); DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors); descriptors->Append(desc); SetNumberOfOwnDescriptors(number_of_own_descriptors + 1); // Properly mark the map if the {desc} is an "interesting symbol". if (desc->GetKey()->IsInterestingSymbol()) { set_may_have_interesting_symbols(true); } // This function does not support appending double field descriptors and // it should never try to (otherwise, layout descriptor must be updated too). #ifdef DEBUG PropertyDetails details = desc->GetDetails(); CHECK(details.location() != kField || !details.representation().IsDouble()); #endif } Object* Map::GetBackPointer() const { Object* object = constructor_or_backpointer(); if (object->IsMap()) { return object; } return GetIsolate()->heap()->undefined_value(); } Map* Map::ElementsTransitionMap() { DisallowHeapAllocation no_gc; return TransitionsAccessor(this, &no_gc) .SearchSpecial(GetHeap()->elements_transition_symbol()); } ACCESSORS(Map, raw_transitions, Object, kTransitionsOrPrototypeInfoOffset) Object* Map::prototype_info() const { DCHECK(is_prototype_map()); return READ_FIELD(this, Map::kTransitionsOrPrototypeInfoOffset); } void Map::set_prototype_info(Object* value, WriteBarrierMode mode) { DCHECK(is_prototype_map()); WRITE_FIELD(this, Map::kTransitionsOrPrototypeInfoOffset, value); CONDITIONAL_WRITE_BARRIER( GetHeap(), this, Map::kTransitionsOrPrototypeInfoOffset, value, mode); } void Map::SetBackPointer(Object* value, WriteBarrierMode mode) { DCHECK(instance_type() >= FIRST_JS_RECEIVER_TYPE); DCHECK(value->IsMap()); DCHECK(GetBackPointer()->IsUndefined(GetIsolate())); DCHECK(!value->IsMap() || Map::cast(value)->GetConstructor() == constructor_or_backpointer()); set_constructor_or_backpointer(value, mode); } ACCESSORS(Map, code_cache, FixedArray, kCodeCacheOffset) ACCESSORS(Map, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(Map, weak_cell_cache, Object, kWeakCellCacheOffset) ACCESSORS(Map, constructor_or_backpointer, Object, kConstructorOrBackPointerOffset) Object* Map::GetConstructor() const { Object* maybe_constructor = constructor_or_backpointer(); // Follow any back pointers. while (maybe_constructor->IsMap()) { maybe_constructor = Map::cast(maybe_constructor)->constructor_or_backpointer(); } return maybe_constructor; } FunctionTemplateInfo* Map::GetFunctionTemplateInfo() const { Object* constructor = GetConstructor(); if (constructor->IsJSFunction()) { DCHECK(JSFunction::cast(constructor)->shared()->IsApiFunction()); return JSFunction::cast(constructor)->shared()->get_api_func_data(); } DCHECK(constructor->IsFunctionTemplateInfo()); return FunctionTemplateInfo::cast(constructor); } void Map::SetConstructor(Object* constructor, WriteBarrierMode mode) { // Never overwrite a back pointer with a constructor. DCHECK(!constructor_or_backpointer()->IsMap()); set_constructor_or_backpointer(constructor, mode); } Handle<Map> Map::CopyInitialMap(Handle<Map> map) { return CopyInitialMap(map, map->instance_size(), map->GetInObjectProperties(), map->unused_property_fields()); } Object* JSBoundFunction::raw_bound_target_function() const { return READ_FIELD(this, kBoundTargetFunctionOffset); } ACCESSORS(JSBoundFunction, bound_target_function, JSReceiver, kBoundTargetFunctionOffset) ACCESSORS(JSBoundFunction, bound_this, Object, kBoundThisOffset) ACCESSORS(JSBoundFunction, bound_arguments, FixedArray, kBoundArgumentsOffset) ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset) ACCESSORS(JSFunction, feedback_vector_cell, Cell, kFeedbackVectorOffset) ACCESSORS(JSFunction, next_function_link, Object, kNextFunctionLinkOffset) ACCESSORS(JSGlobalObject, native_context, Context, kNativeContextOffset) ACCESSORS(JSGlobalObject, global_proxy, JSObject, kGlobalProxyOffset) ACCESSORS(JSGlobalProxy, native_context, Object, kNativeContextOffset) ACCESSORS(JSGlobalProxy, hash, Object, kHashOffset) ACCESSORS(AccessorInfo, name, Object, kNameOffset) SMI_ACCESSORS(AccessorInfo, flag, kFlagOffset) ACCESSORS(AccessorInfo, expected_receiver_type, Object, kExpectedReceiverTypeOffset) ACCESSORS(AccessorInfo, getter, Object, kGetterOffset) ACCESSORS(AccessorInfo, setter, Object, kSetterOffset) ACCESSORS(AccessorInfo, js_getter, Object, kJsGetterOffset) ACCESSORS(AccessorInfo, data, Object, kDataOffset) ACCESSORS(PromiseResolveThenableJobInfo, thenable, JSReceiver, kThenableOffset) ACCESSORS(PromiseResolveThenableJobInfo, then, JSReceiver, kThenOffset) ACCESSORS(PromiseResolveThenableJobInfo, resolve, JSFunction, kResolveOffset) ACCESSORS(PromiseResolveThenableJobInfo, reject, JSFunction, kRejectOffset) ACCESSORS(PromiseResolveThenableJobInfo, context, Context, kContextOffset); ACCESSORS(PromiseReactionJobInfo, value, Object, kValueOffset); ACCESSORS(PromiseReactionJobInfo, tasks, Object, kTasksOffset); ACCESSORS(PromiseReactionJobInfo, deferred_promise, Object, kDeferredPromiseOffset); ACCESSORS(PromiseReactionJobInfo, deferred_on_resolve, Object, kDeferredOnResolveOffset); ACCESSORS(PromiseReactionJobInfo, deferred_on_reject, Object, kDeferredOnRejectOffset); ACCESSORS(PromiseReactionJobInfo, context, Context, kContextOffset); ACCESSORS(AsyncGeneratorRequest, next, Object, kNextOffset) SMI_ACCESSORS(AsyncGeneratorRequest, resume_mode, kResumeModeOffset) ACCESSORS(AsyncGeneratorRequest, value, Object, kValueOffset) ACCESSORS(AsyncGeneratorRequest, promise, Object, kPromiseOffset) Map* PrototypeInfo::ObjectCreateMap() { return Map::cast(WeakCell::cast(object_create_map())->value()); } // static void PrototypeInfo::SetObjectCreateMap(Handle<PrototypeInfo> info, Handle<Map> map) { Handle<WeakCell> cell = Map::WeakCellForMap(map); info->set_object_create_map(*cell); } bool PrototypeInfo::HasObjectCreateMap() { Object* cache = object_create_map(); return cache->IsWeakCell() && !WeakCell::cast(cache)->cleared(); } bool FunctionTemplateInfo::instantiated() { return shared_function_info()->IsSharedFunctionInfo(); } FunctionTemplateInfo* FunctionTemplateInfo::GetParent(Isolate* isolate) { Object* parent = parent_template(); return parent->IsUndefined(isolate) ? nullptr : FunctionTemplateInfo::cast(parent); } ObjectTemplateInfo* ObjectTemplateInfo::GetParent(Isolate* isolate) { Object* maybe_ctor = constructor(); if (maybe_ctor->IsUndefined(isolate)) return nullptr; FunctionTemplateInfo* constructor = FunctionTemplateInfo::cast(maybe_ctor); while (true) { constructor = constructor->GetParent(isolate); if (constructor == nullptr) return nullptr; Object* maybe_obj = constructor->instance_template(); if (!maybe_obj->IsUndefined(isolate)) { return ObjectTemplateInfo::cast(maybe_obj); } } return nullptr; } ACCESSORS(PrototypeInfo, weak_cell, Object, kWeakCellOffset) ACCESSORS(PrototypeInfo, prototype_users, Object, kPrototypeUsersOffset) ACCESSORS(PrototypeInfo, object_create_map, Object, kObjectCreateMap) SMI_ACCESSORS(PrototypeInfo, registry_slot, kRegistrySlotOffset) ACCESSORS(PrototypeInfo, validity_cell, Object, kValidityCellOffset) SMI_ACCESSORS(PrototypeInfo, bit_field, kBitFieldOffset) BOOL_ACCESSORS(PrototypeInfo, bit_field, should_be_fast_map, kShouldBeFastBit) ACCESSORS(Tuple2, value1, Object, kValue1Offset) ACCESSORS(Tuple2, value2, Object, kValue2Offset) ACCESSORS(Tuple3, value3, Object, kValue3Offset) ACCESSORS(ContextExtension, scope_info, ScopeInfo, kScopeInfoOffset) ACCESSORS(ContextExtension, extension, Object, kExtensionOffset) SMI_ACCESSORS(ConstantElementsPair, elements_kind, kElementsKindOffset) ACCESSORS(ConstantElementsPair, constant_values, FixedArrayBase, kConstantValuesOffset) bool ConstantElementsPair::is_empty() const { return constant_values()->length() == 0; } ACCESSORS(AccessorPair, getter, Object, kGetterOffset) ACCESSORS(AccessorPair, setter, Object, kSetterOffset) ACCESSORS(AccessCheckInfo, callback, Object, kCallbackOffset) ACCESSORS(AccessCheckInfo, named_interceptor, Object, kNamedInterceptorOffset) ACCESSORS(AccessCheckInfo, indexed_interceptor, Object, kIndexedInterceptorOffset) ACCESSORS(AccessCheckInfo, data, Object, kDataOffset) ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset) ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset) ACCESSORS(InterceptorInfo, query, Object, kQueryOffset) ACCESSORS(InterceptorInfo, descriptor, Object, kDescriptorOffset) ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset) ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset) ACCESSORS(InterceptorInfo, definer, Object, kDefinerOffset) ACCESSORS(InterceptorInfo, data, Object, kDataOffset) SMI_ACCESSORS(InterceptorInfo, flags, kFlagsOffset) BOOL_ACCESSORS(InterceptorInfo, flags, can_intercept_symbols, kCanInterceptSymbolsBit) BOOL_ACCESSORS(InterceptorInfo, flags, all_can_read, kAllCanReadBit) BOOL_ACCESSORS(InterceptorInfo, flags, non_masking, kNonMasking) ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset) ACCESSORS(CallHandlerInfo, data, Object, kDataOffset) ACCESSORS(TemplateInfo, tag, Object, kTagOffset) ACCESSORS(TemplateInfo, serial_number, Object, kSerialNumberOffset) SMI_ACCESSORS(TemplateInfo, number_of_properties, kNumberOfProperties) ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset) ACCESSORS(TemplateInfo, property_accessors, Object, kPropertyAccessorsOffset) ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset) ACCESSORS(FunctionTemplateInfo, prototype_template, Object, kPrototypeTemplateOffset) ACCESSORS(FunctionTemplateInfo, prototype_provider_template, Object, kPrototypeProviderTemplateOffset) ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset) ACCESSORS(FunctionTemplateInfo, named_property_handler, Object, kNamedPropertyHandlerOffset) ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object, kIndexedPropertyHandlerOffset) ACCESSORS(FunctionTemplateInfo, instance_template, Object, kInstanceTemplateOffset) ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset) ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset) ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object, kInstanceCallHandlerOffset) ACCESSORS(FunctionTemplateInfo, access_check_info, Object, kAccessCheckInfoOffset) ACCESSORS(FunctionTemplateInfo, shared_function_info, Object, kSharedFunctionInfoOffset) ACCESSORS(FunctionTemplateInfo, cached_property_name, Object, kCachedPropertyNameOffset) SMI_ACCESSORS(FunctionTemplateInfo, flag, kFlagOffset) ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset) ACCESSORS(ObjectTemplateInfo, data, Object, kDataOffset) int ObjectTemplateInfo::embedder_field_count() const { Object* value = data(); DCHECK(value->IsSmi()); return EmbedderFieldCount::decode(Smi::ToInt(value)); } void ObjectTemplateInfo::set_embedder_field_count(int count) { return set_data( Smi::FromInt(EmbedderFieldCount::update(Smi::ToInt(data()), count))); } bool ObjectTemplateInfo::immutable_proto() const { Object* value = data(); DCHECK(value->IsSmi()); return IsImmutablePrototype::decode(Smi::ToInt(value)); } void ObjectTemplateInfo::set_immutable_proto(bool immutable) { return set_data(Smi::FromInt( IsImmutablePrototype::update(Smi::ToInt(data()), immutable))); } int TemplateList::length() const { return Smi::ToInt(FixedArray::cast(this)->get(kLengthIndex)); } Object* TemplateList::get(int index) const { return FixedArray::cast(this)->get(kFirstElementIndex + index); } void TemplateList::set(int index, Object* value) { FixedArray::cast(this)->set(kFirstElementIndex + index, value); } ACCESSORS(AllocationSite, transition_info_or_boilerplate, Object, kTransitionInfoOrBoilerplateOffset) JSObject* AllocationSite::boilerplate() const { DCHECK(PointsToLiteral()); return JSObject::cast(transition_info_or_boilerplate()); } void AllocationSite::set_boilerplate(JSObject* object, WriteBarrierMode mode) { set_transition_info_or_boilerplate(object, mode); } int AllocationSite::transition_info() const { DCHECK(!PointsToLiteral()); return Smi::cast(transition_info_or_boilerplate())->value(); } void AllocationSite::set_transition_info(int value) { DCHECK(!PointsToLiteral()); set_transition_info_or_boilerplate(Smi::FromInt(value), SKIP_WRITE_BARRIER); } ACCESSORS(AllocationSite, nested_site, Object, kNestedSiteOffset) SMI_ACCESSORS(AllocationSite, pretenure_data, kPretenureDataOffset) SMI_ACCESSORS(AllocationSite, pretenure_create_count, kPretenureCreateCountOffset) ACCESSORS(AllocationSite, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(AllocationSite, weak_next, Object, kWeakNextOffset) ACCESSORS(AllocationMemento, allocation_site, Object, kAllocationSiteOffset) SMI_ACCESSORS(StackFrameInfo, line_number, kLineNumberIndex) SMI_ACCESSORS(StackFrameInfo, column_number, kColumnNumberIndex) SMI_ACCESSORS(StackFrameInfo, script_id, kScriptIdIndex) ACCESSORS(StackFrameInfo, script_name, Object, kScriptNameIndex) ACCESSORS(StackFrameInfo, script_name_or_source_url, Object, kScriptNameOrSourceUrlIndex) ACCESSORS(StackFrameInfo, function_name, Object, kFunctionNameIndex) SMI_ACCESSORS(StackFrameInfo, flag, kFlagIndex) BOOL_ACCESSORS(StackFrameInfo, flag, is_eval, kIsEvalBit) BOOL_ACCESSORS(StackFrameInfo, flag, is_constructor, kIsConstructorBit) BOOL_ACCESSORS(StackFrameInfo, flag, is_wasm, kIsWasmBit) SMI_ACCESSORS(StackFrameInfo, id, kIdIndex) ACCESSORS(SourcePositionTableWithFrameCache, source_position_table, ByteArray, kSourcePositionTableIndex) ACCESSORS(SourcePositionTableWithFrameCache, stack_frame_cache, UnseededNumberDictionary, kStackFrameCacheIndex) SMI_ACCESSORS(FunctionTemplateInfo, length, kLengthOffset) BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype, kHiddenPrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check, kNeedsAccessCheckBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, read_only_prototype, kReadOnlyPrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, remove_prototype, kRemovePrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, do_not_cache, kDoNotCacheBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, accept_any_receiver, kAcceptAnyReceiver) FeedbackVector* JSFunction::feedback_vector() const { DCHECK(feedback_vector_cell()->value()->IsFeedbackVector()); return FeedbackVector::cast(feedback_vector_cell()->value()); } bool JSFunction::IsOptimized() { return code()->kind() == Code::OPTIMIZED_FUNCTION; } bool JSFunction::HasOptimizedCode() { return IsOptimized() || (has_feedback_vector() && feedback_vector()->has_optimized_code()); } bool JSFunction::HasOptimizationMarker() { return has_feedback_vector() && feedback_vector()->has_optimization_marker(); } void JSFunction::ClearOptimizationMarker() { DCHECK(has_feedback_vector()); DCHECK(!feedback_vector()->has_optimized_code()); feedback_vector()->SetOptimizationMarker(OptimizationMarker::kNone); } bool JSFunction::IsInterpreted() { return code()->is_interpreter_trampoline_builtin(); } bool JSFunction::ChecksOptimizationMarker() { return code()->checks_optimization_marker(); } bool JSFunction::IsMarkedForOptimization() { return has_feedback_vector() && feedback_vector()->optimization_marker() == OptimizationMarker::kCompileOptimized; } bool JSFunction::IsMarkedForConcurrentOptimization() { return has_feedback_vector() && feedback_vector()->optimization_marker() == OptimizationMarker::kCompileOptimizedConcurrent; } bool JSFunction::IsInOptimizationQueue() { return has_feedback_vector() && feedback_vector()->optimization_marker() == OptimizationMarker::kInOptimizationQueue; } void JSFunction::CompleteInobjectSlackTrackingIfActive() { if (has_initial_map() && initial_map()->IsInobjectSlackTrackingInProgress()) { initial_map()->CompleteInobjectSlackTracking(); } } bool Map::IsInobjectSlackTrackingInProgress() const { return construction_counter() != Map::kNoSlackTracking; } void Map::InobjectSlackTrackingStep() { if (!IsInobjectSlackTrackingInProgress()) return; int counter = construction_counter(); set_construction_counter(counter - 1); if (counter == kSlackTrackingCounterEnd) { CompleteInobjectSlackTracking(); } } AbstractCode* JSFunction::abstract_code() { if (IsInterpreted()) { return AbstractCode::cast(shared()->bytecode_array()); } else { return AbstractCode::cast(code()); } } Code* JSFunction::code() { return Code::cast(READ_FIELD(this, kCodeOffset)); } void JSFunction::set_code(Code* value) { DCHECK(!GetHeap()->InNewSpace(value)); WRITE_FIELD(this, kCodeOffset, value); GetHeap()->incremental_marking()->RecordWrite( this, HeapObject::RawField(this, kCodeOffset), value); } void JSFunction::set_code_no_write_barrier(Code* value) { DCHECK(!GetHeap()->InNewSpace(value)); WRITE_FIELD(this, kCodeOffset, value); } void JSFunction::ClearOptimizedCodeSlot(const char* reason) { if (has_feedback_vector() && feedback_vector()->has_optimized_code()) { if (FLAG_trace_opt) { PrintF("[evicting entry from optimizing code feedback slot (%s) for ", reason); ShortPrint(); PrintF("]\n"); } feedback_vector()->ClearOptimizedCode(); } } void JSFunction::SetOptimizationMarker(OptimizationMarker marker) { DCHECK(has_feedback_vector()); DCHECK(ChecksOptimizationMarker()); DCHECK(!HasOptimizedCode()); feedback_vector()->SetOptimizationMarker(marker); } void JSFunction::ReplaceCode(Code* code) { bool was_optimized = this->code()->kind() == Code::OPTIMIZED_FUNCTION; bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION; set_code(code); // Add/remove the function from the list of optimized functions for this // context based on the state change. if (!was_optimized && is_optimized) { context()->native_context()->AddOptimizedFunction(this); } else if (was_optimized && !is_optimized) { // TODO(titzer): linear in the number of optimized functions; fix! context()->native_context()->RemoveOptimizedFunction(this); } } bool JSFunction::has_feedback_vector() const { return !feedback_vector_cell()->value()->IsUndefined(GetIsolate()); } JSFunction::FeedbackVectorState JSFunction::GetFeedbackVectorState( Isolate* isolate) const { Cell* cell = feedback_vector_cell(); if (cell == isolate->heap()->undefined_cell()) { return TOP_LEVEL_SCRIPT_NEEDS_VECTOR; } else if (cell->value() == isolate->heap()->undefined_value() || !has_feedback_vector()) { return NEEDS_VECTOR; } return HAS_VECTOR; } Context* JSFunction::context() { return Context::cast(READ_FIELD(this, kContextOffset)); } bool JSFunction::has_context() const { return READ_FIELD(this, kContextOffset)->IsContext(); } JSObject* JSFunction::global_proxy() { return context()->global_proxy(); } Context* JSFunction::native_context() { return context()->native_context(); } void JSFunction::set_context(Object* value) { DCHECK(value->IsUndefined(GetIsolate()) || value->IsContext()); WRITE_FIELD(this, kContextOffset, value); WRITE_BARRIER(GetHeap(), this, kContextOffset, value); } ACCESSORS(JSFunction, prototype_or_initial_map, Object, kPrototypeOrInitialMapOffset) Map* JSFunction::initial_map() { return Map::cast(prototype_or_initial_map()); } bool JSFunction::has_initial_map() { return prototype_or_initial_map()->IsMap(); } bool JSFunction::has_instance_prototype() { return has_initial_map() || !prototype_or_initial_map()->IsTheHole(GetIsolate()); } bool JSFunction::has_prototype() { return map()->has_non_instance_prototype() || has_instance_prototype(); } Object* JSFunction::instance_prototype() { DCHECK(has_instance_prototype()); if (has_initial_map()) return initial_map()->prototype(); // When there is no initial map and the prototype is a JSObject, the // initial map field is used for the prototype field. return prototype_or_initial_map(); } Object* JSFunction::prototype() { DCHECK(has_prototype()); // If the function's prototype property has been set to a non-JSObject // value, that value is stored in the constructor field of the map. if (map()->has_non_instance_prototype()) { Object* prototype = map()->GetConstructor(); // The map must have a prototype in that field, not a back pointer. DCHECK(!prototype->IsMap()); DCHECK(!prototype->IsFunctionTemplateInfo()); return prototype; } return instance_prototype(); } bool JSFunction::is_compiled() { Builtins* builtins = GetIsolate()->builtins(); return code() != builtins->builtin(Builtins::kCompileLazy); } ACCESSORS(JSProxy, target, JSReceiver, kTargetOffset) ACCESSORS(JSProxy, handler, Object, kHandlerOffset) ACCESSORS(JSProxy, hash, Object, kHashOffset) bool JSProxy::IsRevoked() const { return !handler()->IsJSReceiver(); } ACCESSORS(JSCollection, table, Object, kTableOffset) ACCESSORS(JSCollectionIterator, table, Object, kTableOffset) ACCESSORS(JSCollectionIterator, index, Object, kIndexOffset) ACCESSORS(JSWeakCollection, table, Object, kTableOffset) ACCESSORS(JSWeakCollection, next, Object, kNextOffset) Address Foreign::foreign_address() { return AddressFrom<Address>(READ_INTPTR_FIELD(this, kForeignAddressOffset)); } void Foreign::set_foreign_address(Address value) { WRITE_INTPTR_FIELD(this, kForeignAddressOffset, OffsetFrom(value)); } template <class Derived> void SmallOrderedHashTable<Derived>::SetDataEntry(int entry, int relative_index, Object* value) { int entry_offset = GetDataEntryOffset(entry, relative_index); RELAXED_WRITE_FIELD(this, entry_offset, value); WRITE_BARRIER(GetHeap(), this, entry_offset, value); } ACCESSORS(JSGeneratorObject, function, JSFunction, kFunctionOffset) ACCESSORS(JSGeneratorObject, context, Context, kContextOffset) ACCESSORS(JSGeneratorObject, receiver, Object, kReceiverOffset) ACCESSORS(JSGeneratorObject, input_or_debug_pos, Object, kInputOrDebugPosOffset) SMI_ACCESSORS(JSGeneratorObject, resume_mode, kResumeModeOffset) SMI_ACCESSORS(JSGeneratorObject, continuation, kContinuationOffset) ACCESSORS(JSGeneratorObject, register_file, FixedArray, kRegisterFileOffset) bool JSGeneratorObject::is_suspended() const { DCHECK_LT(kGeneratorExecuting, 0); DCHECK_LT(kGeneratorClosed, 0); return continuation() >= 0; } bool JSGeneratorObject::is_closed() const { return continuation() == kGeneratorClosed; } bool JSGeneratorObject::is_executing() const { return continuation() == kGeneratorExecuting; } ACCESSORS(JSAsyncGeneratorObject, queue, HeapObject, kQueueOffset) ACCESSORS(JSAsyncGeneratorObject, awaited_promise, HeapObject, kAwaitedPromiseOffset) ACCESSORS(JSValue, value, Object, kValueOffset) HeapNumber* HeapNumber::cast(Object* object) { SLOW_DCHECK(object->IsHeapNumber() || object->IsMutableHeapNumber()); return reinterpret_cast<HeapNumber*>(object); } const HeapNumber* HeapNumber::cast(const Object* object) { SLOW_DCHECK(object->IsHeapNumber() || object->IsMutableHeapNumber()); return reinterpret_cast<const HeapNumber*>(object); } ACCESSORS(JSDate, value, Object, kValueOffset) ACCESSORS(JSDate, cache_stamp, Object, kCacheStampOffset) ACCESSORS(JSDate, year, Object, kYearOffset) ACCESSORS(JSDate, month, Object, kMonthOffset) ACCESSORS(JSDate, day, Object, kDayOffset) ACCESSORS(JSDate, weekday, Object, kWeekdayOffset) ACCESSORS(JSDate, hour, Object, kHourOffset) ACCESSORS(JSDate, min, Object, kMinOffset) ACCESSORS(JSDate, sec, Object, kSecOffset) SMI_ACCESSORS(JSMessageObject, type, kTypeOffset) ACCESSORS(JSMessageObject, argument, Object, kArgumentsOffset) ACCESSORS(JSMessageObject, script, Object, kScriptOffset) ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset) SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset) SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset) SMI_ACCESSORS(JSMessageObject, error_level, kErrorLevelOffset) INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset) INT_ACCESSORS(Code, prologue_offset, kPrologueOffset) INT_ACCESSORS(Code, constant_pool_offset, kConstantPoolOffset) #define CODE_ACCESSORS(name, type, offset) \ ACCESSORS_CHECKED2(Code, name, type, offset, true, \ !GetHeap()->InNewSpace(value)) CODE_ACCESSORS(relocation_info, ByteArray, kRelocationInfoOffset) CODE_ACCESSORS(handler_table, FixedArray, kHandlerTableOffset) CODE_ACCESSORS(deoptimization_data, FixedArray, kDeoptimizationDataOffset) CODE_ACCESSORS(source_position_table, Object, kSourcePositionTableOffset) CODE_ACCESSORS(trap_handler_index, Smi, kTrapHandlerIndex) CODE_ACCESSORS(raw_type_feedback_info, Object, kTypeFeedbackInfoOffset) CODE_ACCESSORS(next_code_link, Object, kNextCodeLinkOffset) #undef CODE_ACCESSORS void Code::WipeOutHeader() { WRITE_FIELD(this, kRelocationInfoOffset, nullptr); WRITE_FIELD(this, kHandlerTableOffset, nullptr); WRITE_FIELD(this, kDeoptimizationDataOffset, nullptr); WRITE_FIELD(this, kSourcePositionTableOffset, nullptr); // Do not wipe out major/minor keys on a code stub or IC if (!READ_FIELD(this, kTypeFeedbackInfoOffset)->IsSmi()) { WRITE_FIELD(this, kTypeFeedbackInfoOffset, nullptr); } WRITE_FIELD(this, kNextCodeLinkOffset, nullptr); } void Code::clear_padding() { memset(address() + kHeaderPaddingStart, 0, kHeaderSize - kHeaderPaddingStart); Address data_end = has_unwinding_info() ? unwinding_info_end() : instruction_end(); memset(data_end, 0, CodeSize() - (data_end - address())); } Object* Code::type_feedback_info() const { DCHECK(kind() == FUNCTION); return raw_type_feedback_info(); } void Code::set_type_feedback_info(Object* value, WriteBarrierMode mode) { DCHECK(kind() == FUNCTION); set_raw_type_feedback_info(value, mode); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kTypeFeedbackInfoOffset, value, mode); } ByteArray* Code::SourcePositionTable() const { Object* maybe_table = source_position_table(); if (maybe_table->IsByteArray()) return ByteArray::cast(maybe_table); DCHECK(maybe_table->IsSourcePositionTableWithFrameCache()); return SourcePositionTableWithFrameCache::cast(maybe_table) ->source_position_table(); } uint32_t Code::stub_key() const { DCHECK(IsCodeStubOrIC()); Smi* smi_key = Smi::cast(raw_type_feedback_info()); return static_cast<uint32_t>(smi_key->value()); } void Code::set_stub_key(uint32_t key) { DCHECK(IsCodeStubOrIC()); set_raw_type_feedback_info(Smi::FromInt(key)); } byte* Code::instruction_start() const { return const_cast<byte*>(FIELD_ADDR_CONST(this, kHeaderSize)); } byte* Code::instruction_end() const { return instruction_start() + instruction_size(); } int Code::GetUnwindingInfoSizeOffset() const { DCHECK(has_unwinding_info()); return RoundUp(kHeaderSize + instruction_size(), kInt64Size); } int Code::unwinding_info_size() const { DCHECK(has_unwinding_info()); return static_cast<int>( READ_UINT64_FIELD(this, GetUnwindingInfoSizeOffset())); } void Code::set_unwinding_info_size(int value) { DCHECK(has_unwinding_info()); WRITE_UINT64_FIELD(this, GetUnwindingInfoSizeOffset(), value); } byte* Code::unwinding_info_start() const { DCHECK(has_unwinding_info()); return const_cast<byte*>( FIELD_ADDR_CONST(this, GetUnwindingInfoSizeOffset())) + kInt64Size; } byte* Code::unwinding_info_end() const { DCHECK(has_unwinding_info()); return unwinding_info_start() + unwinding_info_size(); } int Code::body_size() const { int unpadded_body_size = has_unwinding_info() ? static_cast<int>(unwinding_info_end() - instruction_start()) : instruction_size(); return RoundUp(unpadded_body_size, kObjectAlignment); } int Code::SizeIncludingMetadata() const { int size = CodeSize(); size += relocation_info()->Size(); size += deoptimization_data()->Size(); size += handler_table()->Size(); if (kind() == FUNCTION) { size += SourcePositionTable()->Size(); } return size; } ByteArray* Code::unchecked_relocation_info() const { return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset)); } byte* Code::relocation_start() const { return unchecked_relocation_info()->GetDataStartAddress(); } int Code::relocation_size() const { return unchecked_relocation_info()->length(); } byte* Code::entry() const { return instruction_start(); } bool Code::contains(byte* inner_pointer) { return (address() <= inner_pointer) && (inner_pointer <= address() + Size()); } int Code::ExecutableSize() const { // Check that the assumptions about the layout of the code object holds. DCHECK_EQ(static_cast<int>(instruction_start() - address()), Code::kHeaderSize); return instruction_size() + Code::kHeaderSize; } int Code::CodeSize() const { return SizeFor(body_size()); } ACCESSORS(JSArray, length, Object, kLengthOffset) void* JSArrayBuffer::backing_store() const { intptr_t ptr = READ_INTPTR_FIELD(this, kBackingStoreOffset); return reinterpret_cast<void*>(ptr); } void JSArrayBuffer::set_backing_store(void* value, WriteBarrierMode mode) { intptr_t ptr = reinterpret_cast<intptr_t>(value); WRITE_INTPTR_FIELD(this, kBackingStoreOffset, ptr); } ACCESSORS(JSArrayBuffer, byte_length, Object, kByteLengthOffset) void* JSArrayBuffer::allocation_base() const { intptr_t ptr = READ_INTPTR_FIELD(this, kAllocationBaseOffset); return reinterpret_cast<void*>(ptr); } void JSArrayBuffer::set_allocation_base(void* value, WriteBarrierMode mode) { intptr_t ptr = reinterpret_cast<intptr_t>(value); WRITE_INTPTR_FIELD(this, kAllocationBaseOffset, ptr); } size_t JSArrayBuffer::allocation_length() const { return *reinterpret_cast<const size_t*>( FIELD_ADDR_CONST(this, kAllocationLengthOffset)); } void JSArrayBuffer::set_allocation_length(size_t value) { (*reinterpret_cast<size_t*>(FIELD_ADDR(this, kAllocationLengthOffset))) = value; } ArrayBuffer::Allocator::AllocationMode JSArrayBuffer::allocation_mode() const { using AllocationMode = ArrayBuffer::Allocator::AllocationMode; return has_guard_region() ? AllocationMode::kReservation : AllocationMode::kNormal; } void JSArrayBuffer::set_bit_field(uint32_t bits) { if (kInt32Size != kPointerSize) { #if V8_TARGET_LITTLE_ENDIAN WRITE_UINT32_FIELD(this, kBitFieldSlot + kInt32Size, 0); #else WRITE_UINT32_FIELD(this, kBitFieldSlot, 0); #endif } WRITE_UINT32_FIELD(this, kBitFieldOffset, bits); } uint32_t JSArrayBuffer::bit_field() const { return READ_UINT32_FIELD(this, kBitFieldOffset); } bool JSArrayBuffer::is_external() { return IsExternal::decode(bit_field()); } void JSArrayBuffer::set_is_external(bool value) { set_bit_field(IsExternal::update(bit_field(), value)); } bool JSArrayBuffer::is_neuterable() { return IsNeuterable::decode(bit_field()); } void JSArrayBuffer::set_is_neuterable(bool value) { set_bit_field(IsNeuterable::update(bit_field(), value)); } bool JSArrayBuffer::was_neutered() { return WasNeutered::decode(bit_field()); } void JSArrayBuffer::set_was_neutered(bool value) { set_bit_field(WasNeutered::update(bit_field(), value)); } bool JSArrayBuffer::is_shared() { return IsShared::decode(bit_field()); } void JSArrayBuffer::set_is_shared(bool value) { set_bit_field(IsShared::update(bit_field(), value)); } bool JSArrayBuffer::has_guard_region() const { return HasGuardRegion::decode(bit_field()); } void JSArrayBuffer::set_has_guard_region(bool value) { set_bit_field(HasGuardRegion::update(bit_field(), value)); } bool JSArrayBuffer::is_wasm_buffer() { return IsWasmBuffer::decode(bit_field()); } void JSArrayBuffer::set_is_wasm_buffer(bool value) { set_bit_field(IsWasmBuffer::update(bit_field(), value)); } Object* JSArrayBufferView::byte_offset() const { if (WasNeutered()) return Smi::kZero; return Object::cast(READ_FIELD(this, kByteOffsetOffset)); } void JSArrayBufferView::set_byte_offset(Object* value, WriteBarrierMode mode) { WRITE_FIELD(this, kByteOffsetOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kByteOffsetOffset, value, mode); } Object* JSArrayBufferView::byte_length() const { if (WasNeutered()) return Smi::kZero; return Object::cast(READ_FIELD(this, kByteLengthOffset)); } void JSArrayBufferView::set_byte_length(Object* value, WriteBarrierMode mode) { WRITE_FIELD(this, kByteLengthOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kByteLengthOffset, value, mode); } ACCESSORS(JSArrayBufferView, buffer, Object, kBufferOffset) #ifdef VERIFY_HEAP ACCESSORS(JSArrayBufferView, raw_byte_offset, Object, kByteOffsetOffset) ACCESSORS(JSArrayBufferView, raw_byte_length, Object, kByteLengthOffset) #endif bool JSArrayBufferView::WasNeutered() const { return JSArrayBuffer::cast(buffer())->was_neutered(); } Object* JSTypedArray::length() const { if (WasNeutered()) return Smi::kZero; return Object::cast(READ_FIELD(this, kLengthOffset)); } uint32_t JSTypedArray::length_value() const { if (WasNeutered()) return 0; uint32_t index = 0; CHECK(Object::cast(READ_FIELD(this, kLengthOffset))->ToArrayLength(&index)); return index; } void JSTypedArray::set_length(Object* value, WriteBarrierMode mode) { WRITE_FIELD(this, kLengthOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kLengthOffset, value, mode); } // static MaybeHandle<JSTypedArray> JSTypedArray::Validate(Isolate* isolate, Handle<Object> receiver, const char* method_name) { if (V8_UNLIKELY(!receiver->IsJSTypedArray())) { const MessageTemplate::Template message = MessageTemplate::kNotTypedArray; THROW_NEW_ERROR(isolate, NewTypeError(message), JSTypedArray); } Handle<JSTypedArray> array = Handle<JSTypedArray>::cast(receiver); if (V8_UNLIKELY(array->WasNeutered())) { const MessageTemplate::Template message = MessageTemplate::kDetachedOperation; Handle<String> operation = isolate->factory()->NewStringFromAsciiChecked(method_name); THROW_NEW_ERROR(isolate, NewTypeError(message, operation), JSTypedArray); } // spec describes to return `buffer`, but it may disrupt current // implementations, and it's much useful to return array for now. return array; } #ifdef VERIFY_HEAP ACCESSORS(JSTypedArray, raw_length, Object, kLengthOffset) #endif ACCESSORS(JSPromiseCapability, promise, Object, kPromiseOffset) ACCESSORS(JSPromiseCapability, resolve, Object, kResolveOffset) ACCESSORS(JSPromiseCapability, reject, Object, kRejectOffset) SMI_ACCESSORS(JSPromise, status, kStatusOffset) ACCESSORS(JSPromise, result, Object, kResultOffset) ACCESSORS(JSPromise, deferred_promise, Object, kDeferredPromiseOffset) ACCESSORS(JSPromise, deferred_on_resolve, Object, kDeferredOnResolveOffset) ACCESSORS(JSPromise, deferred_on_reject, Object, kDeferredOnRejectOffset) ACCESSORS(JSPromise, fulfill_reactions, Object, kFulfillReactionsOffset) ACCESSORS(JSPromise, reject_reactions, Object, kRejectReactionsOffset) SMI_ACCESSORS(JSPromise, flags, kFlagsOffset) BOOL_ACCESSORS(JSPromise, flags, has_handler, kHasHandlerBit) BOOL_ACCESSORS(JSPromise, flags, handled_hint, kHandledHintBit) ACCESSORS(JSRegExp, data, Object, kDataOffset) ACCESSORS(JSRegExp, flags, Object, kFlagsOffset) ACCESSORS(JSRegExp, source, Object, kSourceOffset) ACCESSORS(JSRegExp, last_index, Object, kLastIndexOffset) JSRegExp::Type JSRegExp::TypeTag() { Object* data = this->data(); if (data->IsUndefined(GetIsolate())) return JSRegExp::NOT_COMPILED; Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex)); return static_cast<JSRegExp::Type>(smi->value()); } int JSRegExp::CaptureCount() { switch (TypeTag()) { case ATOM: return 0; case IRREGEXP: return Smi::ToInt(DataAt(kIrregexpCaptureCountIndex)); default: UNREACHABLE(); } } JSRegExp::Flags JSRegExp::GetFlags() { DCHECK(this->data()->IsFixedArray()); Object* data = this->data(); Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex)); return Flags(smi->value()); } String* JSRegExp::Pattern() { DCHECK(this->data()->IsFixedArray()); Object* data = this->data(); String* pattern = String::cast(FixedArray::cast(data)->get(kSourceIndex)); return pattern; } Object* JSRegExp::CaptureNameMap() { DCHECK(this->data()->IsFixedArray()); DCHECK_EQ(TypeTag(), IRREGEXP); Object* value = DataAt(kIrregexpCaptureNameMapIndex); DCHECK_NE(value, Smi::FromInt(JSRegExp::kUninitializedValue)); return value; } Object* JSRegExp::DataAt(int index) { DCHECK(TypeTag() != NOT_COMPILED); return FixedArray::cast(data())->get(index); } void JSRegExp::SetDataAt(int index, Object* value) { DCHECK(TypeTag() != NOT_COMPILED); DCHECK(index >= kDataIndex); // Only implementation data can be set this way. FixedArray::cast(data())->set(index, value); } ElementsKind JSObject::GetElementsKind() { ElementsKind kind = map()->elements_kind(); #if VERIFY_HEAP && DEBUG FixedArrayBase* fixed_array = reinterpret_cast<FixedArrayBase*>(READ_FIELD(this, kElementsOffset)); // If a GC was caused while constructing this object, the elements // pointer may point to a one pointer filler map. if (ElementsAreSafeToExamine()) { Map* map = fixed_array->map(); if (IsSmiOrObjectElementsKind(kind)) { DCHECK(map == GetHeap()->fixed_array_map() || map == GetHeap()->fixed_cow_array_map()); } else if (IsDoubleElementsKind(kind)) { DCHECK(fixed_array->IsFixedDoubleArray() || fixed_array == GetHeap()->empty_fixed_array()); } else if (kind == DICTIONARY_ELEMENTS) { DCHECK(fixed_array->IsFixedArray()); DCHECK(fixed_array->IsDictionary()); } else { DCHECK(kind > DICTIONARY_ELEMENTS); } DCHECK(!IsSloppyArgumentsElementsKind(kind) || (elements()->IsFixedArray() && elements()->length() >= 2)); } #endif return kind; } bool JSObject::HasObjectElements() { return IsObjectElementsKind(GetElementsKind()); } bool JSObject::HasSmiElements() { return IsSmiElementsKind(GetElementsKind()); } bool JSObject::HasSmiOrObjectElements() { return IsSmiOrObjectElementsKind(GetElementsKind()); } bool JSObject::HasDoubleElements() { return IsDoubleElementsKind(GetElementsKind()); } bool JSObject::HasHoleyElements() { return IsHoleyElementsKind(GetElementsKind()); } bool JSObject::HasFastElements() { return IsFastElementsKind(GetElementsKind()); } bool JSObject::HasDictionaryElements() { return GetElementsKind() == DICTIONARY_ELEMENTS; } bool JSObject::HasFastArgumentsElements() { return GetElementsKind() == FAST_SLOPPY_ARGUMENTS_ELEMENTS; } bool JSObject::HasSlowArgumentsElements() { return GetElementsKind() == SLOW_SLOPPY_ARGUMENTS_ELEMENTS; } bool JSObject::HasSloppyArgumentsElements() { return IsSloppyArgumentsElementsKind(GetElementsKind()); } bool JSObject::HasStringWrapperElements() { return IsStringWrapperElementsKind(GetElementsKind()); } bool JSObject::HasFastStringWrapperElements() { return GetElementsKind() == FAST_STRING_WRAPPER_ELEMENTS; } bool JSObject::HasSlowStringWrapperElements() { return GetElementsKind() == SLOW_STRING_WRAPPER_ELEMENTS; } bool JSObject::HasFixedTypedArrayElements() { DCHECK_NOT_NULL(elements()); return map()->has_fixed_typed_array_elements(); } #define FIXED_TYPED_ELEMENTS_CHECK(Type, type, TYPE, ctype, size) \ bool JSObject::HasFixed##Type##Elements() { \ HeapObject* array = elements(); \ DCHECK(array != NULL); \ if (!array->IsHeapObject()) return false; \ return array->map()->instance_type() == FIXED_##TYPE##_ARRAY_TYPE; \ } TYPED_ARRAYS(FIXED_TYPED_ELEMENTS_CHECK) #undef FIXED_TYPED_ELEMENTS_CHECK bool JSObject::HasNamedInterceptor() { return map()->has_named_interceptor(); } bool JSObject::HasIndexedInterceptor() { return map()->has_indexed_interceptor(); } void JSGlobalObject::set_global_dictionary(GlobalDictionary* dictionary) { DCHECK(IsJSGlobalObject()); set_raw_properties_or_hash(dictionary); } GlobalDictionary* JSGlobalObject::global_dictionary() { DCHECK(!HasFastProperties()); DCHECK(IsJSGlobalObject()); return GlobalDictionary::cast(raw_properties_or_hash()); } SeededNumberDictionary* JSObject::element_dictionary() { DCHECK(HasDictionaryElements() || HasSlowStringWrapperElements()); return SeededNumberDictionary::cast(elements()); } // static Maybe<bool> Object::GreaterThan(Handle<Object> x, Handle<Object> y) { Maybe<ComparisonResult> result = Compare(x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kGreaterThan: return Just(true); case ComparisonResult::kLessThan: case ComparisonResult::kEqual: case ComparisonResult::kUndefined: return Just(false); } } return Nothing<bool>(); } // static Maybe<bool> Object::GreaterThanOrEqual(Handle<Object> x, Handle<Object> y) { Maybe<ComparisonResult> result = Compare(x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: return Just(true); case ComparisonResult::kLessThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing<bool>(); } // static Maybe<bool> Object::LessThan(Handle<Object> x, Handle<Object> y) { Maybe<ComparisonResult> result = Compare(x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kLessThan: return Just(true); case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing<bool>(); } // static Maybe<bool> Object::LessThanOrEqual(Handle<Object> x, Handle<Object> y) { Maybe<ComparisonResult> result = Compare(x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kEqual: case ComparisonResult::kLessThan: return Just(true); case ComparisonResult::kGreaterThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing<bool>(); } MaybeHandle<Object> Object::GetPropertyOrElement(Handle<Object> object, Handle<Name> name) { LookupIterator it = LookupIterator::PropertyOrElement(name->GetIsolate(), object, name); return GetProperty(&it); } MaybeHandle<Object> Object::SetPropertyOrElement(Handle<Object> object, Handle<Name> name, Handle<Object> value, LanguageMode language_mode, StoreFromKeyed store_mode) { LookupIterator it = LookupIterator::PropertyOrElement(name->GetIsolate(), object, name); MAYBE_RETURN_NULL(SetProperty(&it, value, language_mode, store_mode)); return value; } MaybeHandle<Object> Object::GetPropertyOrElement(Handle<Object> receiver, Handle<Name> name, Handle<JSReceiver> holder) { LookupIterator it = LookupIterator::PropertyOrElement( name->GetIsolate(), receiver, name, holder); return GetProperty(&it); } void JSReceiver::initialize_properties() { DCHECK(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array())); DCHECK(!GetHeap()->InNewSpace(GetHeap()->empty_property_dictionary())); if (map()->is_dictionary_map()) { WRITE_FIELD(this, kPropertiesOrHashOffset, GetHeap()->empty_property_dictionary()); } else { WRITE_FIELD(this, kPropertiesOrHashOffset, GetHeap()->empty_fixed_array()); } } bool JSReceiver::HasFastProperties() const { DCHECK_EQ(raw_properties_or_hash()->IsDictionary(), map()->is_dictionary_map()); return !map()->is_dictionary_map(); } NameDictionary* JSReceiver::property_dictionary() const { DCHECK(!IsJSGlobalObject()); DCHECK(!HasFastProperties()); Object* prop = raw_properties_or_hash(); if (prop->IsSmi()) { return GetHeap()->empty_property_dictionary(); } return NameDictionary::cast(prop); } // TODO(gsathya): Pass isolate directly to this function and access // the heap from this. PropertyArray* JSReceiver::property_array() const { DCHECK(HasFastProperties()); Object* prop = raw_properties_or_hash(); if (prop->IsSmi() || prop == GetHeap()->empty_fixed_array()) { return GetHeap()->empty_property_array(); } return PropertyArray::cast(prop); } Maybe<bool> JSReceiver::HasProperty(Handle<JSReceiver> object, Handle<Name> name) { LookupIterator it = LookupIterator::PropertyOrElement(object->GetIsolate(), object, name, object); return HasProperty(&it); } Maybe<bool> JSReceiver::HasOwnProperty(Handle<JSReceiver> object, uint32_t index) { if (object->IsJSModuleNamespace()) return Just(false); if (object->IsJSObject()) { // Shortcut. LookupIterator it(object->GetIsolate(), object, index, object, LookupIterator::OWN); return HasProperty(&it); } Maybe<PropertyAttributes> attributes = JSReceiver::GetOwnPropertyAttributes(object, index); MAYBE_RETURN(attributes, Nothing<bool>()); return Just(attributes.FromJust() != ABSENT); } Maybe<PropertyAttributes> JSReceiver::GetPropertyAttributes( Handle<JSReceiver> object, Handle<Name> name) { LookupIterator it = LookupIterator::PropertyOrElement(name->GetIsolate(), object, name, object); return GetPropertyAttributes(&it); } Maybe<PropertyAttributes> JSReceiver::GetOwnPropertyAttributes( Handle<JSReceiver> object, Handle<Name> name) { LookupIterator it = LookupIterator::PropertyOrElement( name->GetIsolate(), object, name, object, LookupIterator::OWN); return GetPropertyAttributes(&it); } Maybe<PropertyAttributes> JSReceiver::GetOwnPropertyAttributes( Handle<JSReceiver> object, uint32_t index) { LookupIterator it(object->GetIsolate(), object, index, object, LookupIterator::OWN); return GetPropertyAttributes(&it); } Maybe<bool> JSReceiver::HasElement(Handle<JSReceiver> object, uint32_t index) { LookupIterator it(object->GetIsolate(), object, index, object); return HasProperty(&it); } Maybe<PropertyAttributes> JSReceiver::GetElementAttributes( Handle<JSReceiver> object, uint32_t index) { Isolate* isolate = object->GetIsolate(); LookupIterator it(isolate, object, index, object); return GetPropertyAttributes(&it); } Maybe<PropertyAttributes> JSReceiver::GetOwnElementAttributes( Handle<JSReceiver> object, uint32_t index) { Isolate* isolate = object->GetIsolate(); LookupIterator it(isolate, object, index, object, LookupIterator::OWN); return GetPropertyAttributes(&it); } bool JSGlobalObject::IsDetached() { return JSGlobalProxy::cast(global_proxy())->IsDetachedFrom(this); } bool JSGlobalProxy::IsDetachedFrom(JSGlobalObject* global) const { const PrototypeIterator iter(this->GetIsolate(), const_cast<JSGlobalProxy*>(this)); return iter.GetCurrent() != global; } inline int JSGlobalProxy::SizeWithEmbedderFields(int embedder_field_count) { DCHECK_GE(embedder_field_count, 0); return kSize + embedder_field_count * kPointerSize; } Smi* JSReceiver::GetOrCreateIdentityHash(Isolate* isolate) { return IsJSProxy() ? JSProxy::cast(this)->GetOrCreateIdentityHash(isolate) : JSObject::cast(this)->GetOrCreateIdentityHash(isolate); } Object* JSReceiver::GetIdentityHash(Isolate* isolate) { return IsJSProxy() ? JSProxy::cast(this)->GetIdentityHash() : JSObject::cast(this)->GetIdentityHash(isolate); } bool AccessorInfo::all_can_read() { return BooleanBit::get(flag(), kAllCanReadBit); } void AccessorInfo::set_all_can_read(bool value) { set_flag(BooleanBit::set(flag(), kAllCanReadBit, value)); } bool AccessorInfo::all_can_write() { return BooleanBit::get(flag(), kAllCanWriteBit); } void AccessorInfo::set_all_can_write(bool value) { set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value)); } bool AccessorInfo::is_special_data_property() { return BooleanBit::get(flag(), kSpecialDataProperty); } void AccessorInfo::set_is_special_data_property(bool value) { set_flag(BooleanBit::set(flag(), kSpecialDataProperty, value)); } bool AccessorInfo::replace_on_access() { return BooleanBit::get(flag(), kReplaceOnAccess); } void AccessorInfo::set_replace_on_access(bool value) { set_flag(BooleanBit::set(flag(), kReplaceOnAccess, value)); } bool AccessorInfo::is_sloppy() { return BooleanBit::get(flag(), kIsSloppy); } void AccessorInfo::set_is_sloppy(bool value) { set_flag(BooleanBit::set(flag(), kIsSloppy, value)); } PropertyAttributes AccessorInfo::property_attributes() { return AttributesField::decode(static_cast<uint32_t>(flag())); } void AccessorInfo::set_property_attributes(PropertyAttributes attributes) { set_flag(AttributesField::update(flag(), attributes)); } bool FunctionTemplateInfo::IsTemplateFor(JSObject* object) { return IsTemplateFor(object->map()); } bool AccessorInfo::IsCompatibleReceiver(Object* receiver) { if (!HasExpectedReceiverType()) return true; if (!receiver->IsJSObject()) return false; return FunctionTemplateInfo::cast(expected_receiver_type()) ->IsTemplateFor(JSObject::cast(receiver)->map()); } bool AccessorInfo::HasExpectedReceiverType() { return expected_receiver_type()->IsFunctionTemplateInfo(); } Object* AccessorPair::get(AccessorComponent component) { return component == ACCESSOR_GETTER ? getter() : setter(); } void AccessorPair::set(AccessorComponent component, Object* value) { if (component == ACCESSOR_GETTER) { set_getter(value); } else { set_setter(value); } } void AccessorPair::SetComponents(Object* getter, Object* setter) { Isolate* isolate = GetIsolate(); if (!getter->IsNull(isolate)) set_getter(getter); if (!setter->IsNull(isolate)) set_setter(setter); } bool AccessorPair::Equals(AccessorPair* pair) { return (this == pair) || pair->Equals(getter(), setter()); } bool AccessorPair::Equals(Object* getter_value, Object* setter_value) { return (getter() == getter_value) && (setter() == setter_value); } bool AccessorPair::ContainsAccessor() { return IsJSAccessor(getter()) || IsJSAccessor(setter()); } bool AccessorPair::IsJSAccessor(Object* obj) { return obj->IsCallable() || obj->IsUndefined(GetIsolate()); } template <typename Derived, typename Shape> void Dictionary<Derived, Shape>::ClearEntry(int entry) { Object* the_hole = this->GetHeap()->the_hole_value(); PropertyDetails details = PropertyDetails::Empty(); Derived::cast(this)->SetEntry(entry, the_hole, the_hole, details); } template <typename Derived, typename Shape> void Dictionary<Derived, Shape>::SetEntry(int entry, Object* key, Object* value, PropertyDetails details) { DCHECK(Dictionary::kEntrySize == 2 || Dictionary::kEntrySize == 3); DCHECK(!key->IsName() || details.dictionary_index() > 0); int index = DerivedHashTable::EntryToIndex(entry); DisallowHeapAllocation no_gc; WriteBarrierMode mode = this->GetWriteBarrierMode(no_gc); this->set(index + Derived::kEntryKeyIndex, key, mode); this->set(index + Derived::kEntryValueIndex, value, mode); if (Shape::kHasDetails) DetailsAtPut(entry, details); } Object* GlobalDictionaryShape::Unwrap(Object* object) { return PropertyCell::cast(object)->name(); } Name* NameDictionary::NameAt(int entry) { return Name::cast(KeyAt(entry)); } PropertyCell* GlobalDictionary::CellAt(int entry) { DCHECK(KeyAt(entry)->IsPropertyCell()); return PropertyCell::cast(KeyAt(entry)); } bool GlobalDictionaryShape::IsLive(Isolate* isolate, Object* k) { Heap* heap = isolate->heap(); DCHECK_NE(heap->the_hole_value(), k); return k != heap->undefined_value(); } bool GlobalDictionaryShape::IsKey(Isolate* isolate, Object* k) { return IsLive(isolate, k) && !PropertyCell::cast(k)->value()->IsTheHole(isolate); } Name* GlobalDictionary::NameAt(int entry) { return CellAt(entry)->name(); } Object* GlobalDictionary::ValueAt(int entry) { return CellAt(entry)->value(); } void GlobalDictionary::SetEntry(int entry, Object* key, Object* value, PropertyDetails details) { DCHECK_EQ(key, PropertyCell::cast(value)->name()); set(EntryToIndex(entry) + kEntryKeyIndex, value); DetailsAtPut(entry, details); } bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) { DCHECK(other->IsNumber()); return key == static_cast<uint32_t>(other->Number()); } uint32_t UnseededNumberDictionaryShape::Hash(Isolate* isolate, uint32_t key) { return ComputeIntegerHash(key); } uint32_t UnseededNumberDictionaryShape::HashForObject(Isolate* isolate, Object* other) { DCHECK(other->IsNumber()); return ComputeIntegerHash(static_cast<uint32_t>(other->Number())); } Map* UnseededNumberDictionaryShape::GetMap(Isolate* isolate) { return isolate->heap()->unseeded_number_dictionary_map(); } uint32_t SeededNumberDictionaryShape::Hash(Isolate* isolate, uint32_t key) { return ComputeIntegerHash(key, isolate->heap()->HashSeed()); } uint32_t SeededNumberDictionaryShape::HashForObject(Isolate* isolate, Object* other) { DCHECK(other->IsNumber()); return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), isolate->heap()->HashSeed()); } Handle<Object> NumberDictionaryShape::AsHandle(Isolate* isolate, uint32_t key) { return isolate->factory()->NewNumberFromUint(key); } bool NameDictionaryShape::IsMatch(Handle<Name> key, Object* other) { DCHECK(other->IsTheHole(key->GetIsolate()) || Name::cast(other)->IsUniqueName()); DCHECK(key->IsUniqueName()); return *key == other; } uint32_t NameDictionaryShape::Hash(Isolate* isolate, Handle<Name> key) { return key->Hash(); } uint32_t NameDictionaryShape::HashForObject(Isolate* isolate, Object* other) { return Name::cast(other)->Hash(); } bool GlobalDictionaryShape::IsMatch(Handle<Name> key, Object* other) { DCHECK(PropertyCell::cast(other)->name()->IsUniqueName()); return *key == PropertyCell::cast(other)->name(); } uint32_t GlobalDictionaryShape::HashForObject(Isolate* isolate, Object* other) { return PropertyCell::cast(other)->name()->Hash(); } Handle<Object> NameDictionaryShape::AsHandle(Isolate* isolate, Handle<Name> key) { DCHECK(key->IsUniqueName()); return key; } template <typename Dictionary> PropertyDetails GlobalDictionaryShape::DetailsAt(Dictionary* dict, int entry) { DCHECK_LE(0, entry); // Not found is -1, which is not caught by get(). return dict->CellAt(entry)->property_details(); } template <typename Dictionary> void GlobalDictionaryShape::DetailsAtPut(Dictionary* dict, int entry, PropertyDetails value) { DCHECK_LE(0, entry); // Not found is -1, which is not caught by get(). PropertyCell* cell = dict->CellAt(entry); if (cell->property_details().IsReadOnly() != value.IsReadOnly()) { cell->dependent_code()->DeoptimizeDependentCodeGroup( cell->GetIsolate(), DependentCode::kPropertyCellChangedGroup); } cell->set_property_details(value); } bool ObjectHashTableShape::IsMatch(Handle<Object> key, Object* other) { return key->SameValue(other); } uint32_t ObjectHashTableShape::Hash(Isolate* isolate, Handle<Object> key) { return Smi::ToInt(key->GetHash()); } uint32_t ObjectHashTableShape::HashForObject(Isolate* isolate, Object* other) { return Smi::ToInt(other->GetHash()); } Handle<Object> ObjectHashTableShape::AsHandle(Isolate* isolate, Handle<Object> key) { return key; } Handle<ObjectHashTable> ObjectHashTable::Shrink(Handle<ObjectHashTable> table) { return DerivedHashTable::Shrink(table); } template <int entrysize> bool WeakHashTableShape<entrysize>::IsMatch(Handle<Object> key, Object* other) { if (other->IsWeakCell()) other = WeakCell::cast(other)->value(); return key->IsWeakCell() ? WeakCell::cast(*key)->value() == other : *key == other; } template <int entrysize> uint32_t WeakHashTableShape<entrysize>::Hash(Isolate* isolate, Handle<Object> key) { intptr_t hash = key->IsWeakCell() ? reinterpret_cast<intptr_t>(WeakCell::cast(*key)->value()) : reinterpret_cast<intptr_t>(*key); return (uint32_t)(hash & 0xFFFFFFFF); } template <int entrysize> uint32_t WeakHashTableShape<entrysize>::HashForObject(Isolate* isolate, Object* other) { if (other->IsWeakCell()) other = WeakCell::cast(other)->value(); intptr_t hash = reinterpret_cast<intptr_t>(other); return (uint32_t)(hash & 0xFFFFFFFF); } template <int entrysize> Handle<Object> WeakHashTableShape<entrysize>::AsHandle(Isolate* isolate, Handle<Object> key) { return key; } void Map::ClearCodeCache(Heap* heap) { // No write barrier is needed since empty_fixed_array is not in new space. // Please note this function is used during marking: // - MarkCompactCollector::MarkUnmarkedObject // - IncrementalMarking::Step WRITE_FIELD(this, kCodeCacheOffset, heap->empty_fixed_array()); } int Map::SlackForArraySize(int old_size, int size_limit) { const int max_slack = size_limit - old_size; CHECK_LE(0, max_slack); if (old_size < 4) { DCHECK_LE(1, max_slack); return 1; } return Min(max_slack, old_size / 4); } void JSArray::set_length(Smi* length) { // Don't need a write barrier for a Smi. set_length(static_cast<Object*>(length), SKIP_WRITE_BARRIER); } bool JSArray::SetLengthWouldNormalize(Heap* heap, uint32_t new_length) { return new_length > kMaxFastArrayLength; } bool JSArray::AllowsSetLength() { bool result = elements()->IsFixedArray() || elements()->IsFixedDoubleArray(); DCHECK(result == !HasFixedTypedArrayElements()); return result; } void JSArray::SetContent(Handle<JSArray> array, Handle<FixedArrayBase> storage) { EnsureCanContainElements(array, storage, storage->length(), ALLOW_COPIED_DOUBLE_ELEMENTS); DCHECK((storage->map() == array->GetHeap()->fixed_double_array_map() && IsDoubleElementsKind(array->GetElementsKind())) || ((storage->map() != array->GetHeap()->fixed_double_array_map()) && (IsObjectElementsKind(array->GetElementsKind()) || (IsSmiElementsKind(array->GetElementsKind()) && Handle<FixedArray>::cast(storage)->ContainsOnlySmisOrHoles())))); array->set_elements(*storage); array->set_length(Smi::FromInt(storage->length())); } bool JSArray::HasArrayPrototype(Isolate* isolate) { return map()->prototype() == *isolate->initial_array_prototype(); } int TypeFeedbackInfo::ic_total_count() { int current = Smi::ToInt(READ_FIELD(this, kStorage1Offset)); return ICTotalCountField::decode(current); } void TypeFeedbackInfo::set_ic_total_count(int count) { int value = Smi::ToInt(READ_FIELD(this, kStorage1Offset)); value = ICTotalCountField::update(value, ICTotalCountField::decode(count)); WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value)); } int TypeFeedbackInfo::ic_with_type_info_count() { int current = Smi::ToInt(READ_FIELD(this, kStorage2Offset)); return ICsWithTypeInfoCountField::decode(current); } void TypeFeedbackInfo::change_ic_with_type_info_count(int delta) { if (delta == 0) return; int value = Smi::ToInt(READ_FIELD(this, kStorage2Offset)); int new_count = ICsWithTypeInfoCountField::decode(value) + delta; // We can get negative count here when the type-feedback info is // shared between two code objects. The can only happen when // the debugger made a shallow copy of code object (see Heap::CopyCode). // Since we do not optimize when the debugger is active, we can skip // this counter update. if (new_count >= 0) { new_count &= ICsWithTypeInfoCountField::kMask; value = ICsWithTypeInfoCountField::update(value, new_count); WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value)); } } int TypeFeedbackInfo::ic_generic_count() { return Smi::ToInt(READ_FIELD(this, kStorage3Offset)); } void TypeFeedbackInfo::change_ic_generic_count(int delta) { if (delta == 0) return; int new_count = ic_generic_count() + delta; if (new_count >= 0) { new_count &= ~Smi::kMinValue; WRITE_FIELD(this, kStorage3Offset, Smi::FromInt(new_count)); } } void TypeFeedbackInfo::initialize_storage() { WRITE_FIELD(this, kStorage1Offset, Smi::kZero); WRITE_FIELD(this, kStorage2Offset, Smi::kZero); WRITE_FIELD(this, kStorage3Offset, Smi::kZero); } void TypeFeedbackInfo::change_own_type_change_checksum() { int value = Smi::ToInt(READ_FIELD(this, kStorage1Offset)); int checksum = OwnTypeChangeChecksum::decode(value); checksum = (checksum + 1) % (1 << kTypeChangeChecksumBits); value = OwnTypeChangeChecksum::update(value, checksum); // Ensure packed bit field is in Smi range. if (value > Smi::kMaxValue) value |= Smi::kMinValue; if (value < Smi::kMinValue) value &= ~Smi::kMinValue; WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value)); } void TypeFeedbackInfo::set_inlined_type_change_checksum(int checksum) { int value = Smi::ToInt(READ_FIELD(this, kStorage2Offset)); int mask = (1 << kTypeChangeChecksumBits) - 1; value = InlinedTypeChangeChecksum::update(value, checksum & mask); // Ensure packed bit field is in Smi range. if (value > Smi::kMaxValue) value |= Smi::kMinValue; if (value < Smi::kMinValue) value &= ~Smi::kMinValue; WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value)); } int TypeFeedbackInfo::own_type_change_checksum() { int value = Smi::ToInt(READ_FIELD(this, kStorage1Offset)); return OwnTypeChangeChecksum::decode(value); } bool TypeFeedbackInfo::matches_inlined_type_change_checksum(int checksum) { int value = Smi::ToInt(READ_FIELD(this, kStorage2Offset)); int mask = (1 << kTypeChangeChecksumBits) - 1; return InlinedTypeChangeChecksum::decode(value) == (checksum & mask); } Relocatable::Relocatable(Isolate* isolate) { isolate_ = isolate; prev_ = isolate->relocatable_top(); isolate->set_relocatable_top(this); } Relocatable::~Relocatable() { DCHECK_EQ(isolate_->relocatable_top(), this); isolate_->set_relocatable_top(prev_); } template<class Derived, class TableType> Object* OrderedHashTableIterator<Derived, TableType>::CurrentKey() { TableType* table(TableType::cast(this->table())); int index = Smi::ToInt(this->index()); Object* key = table->KeyAt(index); DCHECK(!key->IsTheHole(table->GetIsolate())); return key; } Object* JSMapIterator::CurrentValue() { OrderedHashMap* table(OrderedHashMap::cast(this->table())); int index = Smi::ToInt(this->index()); Object* value = table->ValueAt(index); DCHECK(!value->IsTheHole(table->GetIsolate())); return value; } // Predictably converts HeapObject* or Address to uint32 by calculating // offset of the address in respective MemoryChunk. static inline uint32_t ObjectAddressForHashing(void* object) { uint32_t value = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(object)); return value & MemoryChunk::kAlignmentMask; } static inline Handle<Object> MakeEntryPair(Isolate* isolate, uint32_t index, Handle<Object> value) { Handle<Object> key = isolate->factory()->Uint32ToString(index); Handle<FixedArray> entry_storage = isolate->factory()->NewUninitializedFixedArray(2); { entry_storage->set(0, *key, SKIP_WRITE_BARRIER); entry_storage->set(1, *value, SKIP_WRITE_BARRIER); } return isolate->factory()->NewJSArrayWithElements(entry_storage, PACKED_ELEMENTS, 2); } static inline Handle<Object> MakeEntryPair(Isolate* isolate, Handle<Object> key, Handle<Object> value) { Handle<FixedArray> entry_storage = isolate->factory()->NewUninitializedFixedArray(2); { entry_storage->set(0, *key, SKIP_WRITE_BARRIER); entry_storage->set(1, *value, SKIP_WRITE_BARRIER); } return isolate->factory()->NewJSArrayWithElements(entry_storage, PACKED_ELEMENTS, 2); } ACCESSORS(JSIteratorResult, value, Object, kValueOffset) ACCESSORS(JSIteratorResult, done, Object, kDoneOffset) ACCESSORS(JSArrayIterator, object, Object, kIteratedObjectOffset) ACCESSORS(JSArrayIterator, index, Object, kNextIndexOffset) ACCESSORS(JSArrayIterator, object_map, Object, kIteratedObjectMapOffset) ACCESSORS(JSAsyncFromSyncIterator, sync_iterator, JSReceiver, kSyncIteratorOffset) ACCESSORS(JSStringIterator, string, String, kStringOffset) SMI_ACCESSORS(JSStringIterator, index, kNextIndexOffset) } // namespace internal } // namespace v8 #include "src/objects/object-macros-undef.h" #endif // V8_OBJECTS_INL_H_