// Copyright 2018 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CODEGEN_TURBO_ASSEMBLER_H_ #define V8_CODEGEN_TURBO_ASSEMBLER_H_ #include <memory> #include "src/base/template-utils.h" #include "src/builtins/builtins.h" #include "src/codegen/assembler-arch.h" #include "src/roots/roots.h" namespace v8 { namespace internal { enum class JumpMode { kJump, // Does a direct jump to the given address kPushAndReturn // Pushes the given address as the current return address and // does a return }; // Common base class for platform-specific TurboAssemblers containing // platform-independent bits. // You will encounter two subclasses, TurboAssembler (derives from // TurboAssemblerBase), and MacroAssembler (derives from TurboAssembler). The // main difference is that MacroAssembler is allowed to access the isolate, and // TurboAssembler accesses the isolate in a very limited way. TurboAssembler // contains all the functionality that is used by Turbofan, and does not expect // to be running on the main thread. class V8_EXPORT_PRIVATE TurboAssemblerBase : public Assembler { public: // Constructors are declared public to inherit them in derived classes // with `using` directive. TurboAssemblerBase(Isolate* isolate, CodeObjectRequired create_code_object, std::unique_ptr<AssemblerBuffer> buffer = {}) : TurboAssemblerBase(isolate, AssemblerOptions::Default(isolate), create_code_object, std::move(buffer)) {} TurboAssemblerBase(Isolate* isolate, const AssemblerOptions& options, CodeObjectRequired create_code_object, std::unique_ptr<AssemblerBuffer> buffer = {}); Isolate* isolate() const { return isolate_; } Handle<HeapObject> CodeObject() const { DCHECK(!code_object_.is_null()); return code_object_; } bool root_array_available() const { return root_array_available_; } void set_root_array_available(bool v) { root_array_available_ = v; } bool trap_on_abort() const { return trap_on_abort_; } bool should_abort_hard() const { return hard_abort_; } void set_abort_hard(bool v) { hard_abort_ = v; } void set_builtin_index(int i) { maybe_builtin_index_ = i; } void set_has_frame(bool v) { has_frame_ = v; } bool has_frame() const { return has_frame_; } virtual void Jump(const ExternalReference& reference) = 0; // Calls the builtin given by the Smi in |builtin|. If builtins are embedded, // the trampoline Code object on the heap is not used. virtual void CallBuiltinByIndex(Register builtin_index) = 0; // Calls/jumps to the given Code object. If builtins are embedded, the // trampoline Code object on the heap is not used. virtual void CallCodeObject(Register code_object) = 0; virtual void JumpCodeObject(Register code_object, JumpMode jump_mode = JumpMode::kJump) = 0; // Loads the given Code object's entry point into the destination register. virtual void LoadCodeObjectEntry(Register destination, Register code_object) = 0; // Loads the given constant or external reference without embedding its direct // pointer. The produced code is isolate-independent. void IndirectLoadConstant(Register destination, Handle<HeapObject> object); void IndirectLoadExternalReference(Register destination, ExternalReference reference); virtual void LoadFromConstantsTable(Register destination, int constant_index) = 0; // Corresponds to: destination = kRootRegister + offset. virtual void LoadRootRegisterOffset(Register destination, intptr_t offset) = 0; // Corresponds to: destination = [kRootRegister + offset]. virtual void LoadRootRelative(Register destination, int32_t offset) = 0; virtual void LoadRoot(Register destination, RootIndex index) = 0; virtual void Trap() = 0; virtual void DebugBreak() = 0; static int32_t RootRegisterOffsetForRootIndex(RootIndex root_index); static int32_t RootRegisterOffsetForBuiltinIndex(int builtin_index); // Returns the root-relative offset to reference.address(). static intptr_t RootRegisterOffsetForExternalReference( Isolate* isolate, const ExternalReference& reference); // Returns the root-relative offset to the external reference table entry, // which itself contains reference.address(). static int32_t RootRegisterOffsetForExternalReferenceTableEntry( Isolate* isolate, const ExternalReference& reference); // An address is addressable through kRootRegister if it is located within // isolate->root_register_addressable_region(). static bool IsAddressableThroughRootRegister( Isolate* isolate, const ExternalReference& reference); #if defined(V8_TARGET_OS_WIN) || defined(V8_TARGET_OS_MACOSX) // Minimum page size. We must touch memory once per page when expanding the // stack, to avoid access violations. static constexpr int kStackPageSize = 4 * KB; #endif V8_INLINE void RecordCommentForOffHeapTrampoline(int builtin_index) { if (!FLAG_code_comments) return; std::ostringstream str; str << "[ Inlined Trampoline to " << Builtins::name(builtin_index); RecordComment(str.str().c_str()); } protected: Isolate* const isolate_ = nullptr; // This handle will be patched with the code object on installation. Handle<HeapObject> code_object_; // Whether kRootRegister has been initialized. bool root_array_available_ = true; // Immediately trap instead of calling {Abort} when debug code fails. bool trap_on_abort_ = FLAG_trap_on_abort; // Emit a C call to abort instead of a runtime call. bool hard_abort_ = false; // May be set while generating builtins. int maybe_builtin_index_ = Builtins::kNoBuiltinId; bool has_frame_ = false; DISALLOW_IMPLICIT_CONSTRUCTORS(TurboAssemblerBase); }; // Avoids emitting calls to the {Builtins::kAbort} builtin when emitting debug // code during the lifetime of this scope object. class V8_NODISCARD HardAbortScope { public: explicit HardAbortScope(TurboAssemblerBase* assembler) : assembler_(assembler), old_value_(assembler->should_abort_hard()) { assembler_->set_abort_hard(true); } ~HardAbortScope() { assembler_->set_abort_hard(old_value_); } private: TurboAssemblerBase* assembler_; bool old_value_; }; } // namespace internal } // namespace v8 #endif // V8_CODEGEN_TURBO_ASSEMBLER_H_