// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #include "src/base/platform/platform.h" #include "src/execution/isolate.h" #include "src/heap/factory-inl.h" #include "src/init/v8.h" #include "src/numbers/conversions.h" #include "src/objects/heap-number-inl.h" #include "src/objects/objects.h" #include "src/objects/smi.h" #include "test/cctest/cctest.h" namespace v8 { namespace internal { TEST(Hex) { CHECK_EQ(0.0, StringToDouble("0x0", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0X0", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(1.0, StringToDouble("0x1", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(16.0, StringToDouble("0x10", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(255.0, StringToDouble("0xFF", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(175.0, StringToDouble("0xAF", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0x0", ALLOW_HEX)); CHECK_EQ(0.0, StringToDouble("0X0", ALLOW_HEX)); CHECK_EQ(1.0, StringToDouble("0x1", ALLOW_HEX)); CHECK_EQ(16.0, StringToDouble("0x10", ALLOW_HEX)); CHECK_EQ(255.0, StringToDouble("0xFF", ALLOW_HEX)); CHECK_EQ(175.0, StringToDouble("0xAF", ALLOW_HEX)); } TEST(Octal) { CHECK_EQ(0.0, StringToDouble("0o0", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0O0", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(1.0, StringToDouble("0o1", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(7.0, StringToDouble("0o7", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(8.0, StringToDouble("0o10", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(63.0, StringToDouble("0o77", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0o0", ALLOW_OCTAL)); CHECK_EQ(0.0, StringToDouble("0O0", ALLOW_OCTAL)); CHECK_EQ(1.0, StringToDouble("0o1", ALLOW_OCTAL)); CHECK_EQ(7.0, StringToDouble("0o7", ALLOW_OCTAL)); CHECK_EQ(8.0, StringToDouble("0o10", ALLOW_OCTAL)); CHECK_EQ(63.0, StringToDouble("0o77", ALLOW_OCTAL)); } TEST(ImplicitOctal) { CHECK_EQ(0.0, StringToDouble("0", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("00", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(1.0, StringToDouble("01", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(7.0, StringToDouble("07", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(8.0, StringToDouble("010", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(63.0, StringToDouble("077", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0", ALLOW_HEX)); CHECK_EQ(0.0, StringToDouble("00", ALLOW_HEX)); CHECK_EQ(1.0, StringToDouble("01", ALLOW_HEX)); CHECK_EQ(7.0, StringToDouble("07", ALLOW_HEX)); CHECK_EQ(10.0, StringToDouble("010", ALLOW_HEX)); CHECK_EQ(77.0, StringToDouble("077", ALLOW_HEX)); const double x = 010000000000; // Power of 2, no rounding errors. CHECK_EQ(x * x * x * x * x, StringToDouble("01" "0000000000" "0000000000" "0000000000" "0000000000" "0000000000", ALLOW_IMPLICIT_OCTAL)); } TEST(Binary) { CHECK_EQ(0.0, StringToDouble("0b0", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0B0", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(1.0, StringToDouble("0b1", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(2.0, StringToDouble("0b10", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(3.0, StringToDouble("0b11", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0b0", ALLOW_BINARY)); CHECK_EQ(0.0, StringToDouble("0B0", ALLOW_BINARY)); CHECK_EQ(1.0, StringToDouble("0b1", ALLOW_BINARY)); CHECK_EQ(2.0, StringToDouble("0b10", ALLOW_BINARY)); CHECK_EQ(3.0, StringToDouble("0b11", ALLOW_BINARY)); } TEST(MalformedOctal) { CHECK_EQ(8.0, StringToDouble("08", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(81.0, StringToDouble("081", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(78.0, StringToDouble("078", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK(std::isnan(StringToDouble("07.7", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL))); CHECK(std::isnan(StringToDouble("07.8", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL))); CHECK(std::isnan(StringToDouble("07e8", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL))); CHECK(std::isnan(StringToDouble("07e7", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL))); CHECK_EQ(8.7, StringToDouble("08.7", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(8e7, StringToDouble("08e7", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.001, StringToDouble("0.001", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.713, StringToDouble("0.713", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(8.0, StringToDouble("08", ALLOW_HEX)); CHECK_EQ(81.0, StringToDouble("081", ALLOW_HEX)); CHECK_EQ(78.0, StringToDouble("078", ALLOW_HEX)); CHECK_EQ(7.7, StringToDouble("07.7", ALLOW_HEX)); CHECK_EQ(7.8, StringToDouble("07.8", ALLOW_HEX)); CHECK_EQ(7e8, StringToDouble("07e8", ALLOW_HEX)); CHECK_EQ(7e7, StringToDouble("07e7", ALLOW_HEX)); CHECK_EQ(8.7, StringToDouble("08.7", ALLOW_HEX)); CHECK_EQ(8e7, StringToDouble("08e7", ALLOW_HEX)); CHECK_EQ(0.001, StringToDouble("0.001", ALLOW_HEX)); CHECK_EQ(0.713, StringToDouble("0.713", ALLOW_HEX)); } TEST(TrailingJunk) { CHECK_EQ(8.0, StringToDouble("8q", ALLOW_TRAILING_JUNK)); CHECK_EQ(63.0, StringToDouble("077qqq", ALLOW_IMPLICIT_OCTAL | ALLOW_TRAILING_JUNK)); CHECK_EQ(10.0, StringToDouble("10e", ALLOW_IMPLICIT_OCTAL | ALLOW_TRAILING_JUNK)); CHECK_EQ(10.0, StringToDouble("10e-", ALLOW_IMPLICIT_OCTAL | ALLOW_TRAILING_JUNK)); } TEST(NonStrDecimalLiteral) { CHECK(std::isnan( StringToDouble(" ", NO_FLAGS, std::numeric_limits<double>::quiet_NaN()))); CHECK(std::isnan( StringToDouble("", NO_FLAGS, std::numeric_limits<double>::quiet_NaN()))); CHECK(std::isnan( StringToDouble(" ", NO_FLAGS, std::numeric_limits<double>::quiet_NaN()))); CHECK_EQ(0.0, StringToDouble("", NO_FLAGS)); CHECK_EQ(0.0, StringToDouble(" ", NO_FLAGS)); } TEST(IntegerStrLiteral) { CHECK_EQ(0.0, StringToDouble("0.0", NO_FLAGS)); CHECK_EQ(0.0, StringToDouble("0", NO_FLAGS)); CHECK_EQ(0.0, StringToDouble("00", NO_FLAGS)); CHECK_EQ(0.0, StringToDouble("000", NO_FLAGS)); CHECK_EQ(1.0, StringToDouble("1", NO_FLAGS)); CHECK_EQ(-1.0, StringToDouble("-1", NO_FLAGS)); CHECK_EQ(-1.0, StringToDouble(" -1 ", NO_FLAGS)); CHECK_EQ(1.0, StringToDouble(" +1 ", NO_FLAGS)); CHECK(std::isnan(StringToDouble(" - 1 ", NO_FLAGS))); CHECK(std::isnan(StringToDouble(" + 1 ", NO_FLAGS))); CHECK_EQ(0.0, StringToDouble("0e0", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0e1", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0e-1", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0e-100000", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0e+100000", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0.", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); } TEST(LongNumberStr) { CHECK_EQ(1e10, StringToDouble("1" "0000000000", NO_FLAGS)); CHECK_EQ(1e20, StringToDouble("1" "0000000000" "0000000000", NO_FLAGS)); CHECK_EQ(1e60, StringToDouble("1" "0000000000" "0000000000" "0000000000" "0000000000" "0000000000" "0000000000", NO_FLAGS)); CHECK_EQ(1e-2, StringToDouble("." "0" "1", NO_FLAGS)); CHECK_EQ(1e-11, StringToDouble("." "0000000000" "1", NO_FLAGS)); CHECK_EQ(1e-21, StringToDouble("." "0000000000" "0000000000" "1", NO_FLAGS)); CHECK_EQ(1e-61, StringToDouble("." "0000000000" "0000000000" "0000000000" "0000000000" "0000000000" "0000000000" "1", NO_FLAGS)); // x = 24414062505131248.0 and y = 24414062505131252.0 are representable in // double. Check chat z = (x + y) / 2 is rounded to x... CHECK_EQ(24414062505131248.0, StringToDouble("24414062505131250.0", NO_FLAGS)); // ... and z = (x + y) / 2 + delta is rounded to y. CHECK_EQ(24414062505131252.0, StringToDouble("24414062505131250.000000001", NO_FLAGS)); } TEST(MaximumSignificantDigits) { char num[] = "4.4501477170144020250819966727949918635852426585926051135169509" "122872622312493126406953054127118942431783801370080830523154578" "251545303238277269592368457430440993619708911874715081505094180" "604803751173783204118519353387964161152051487413083163272520124" "606023105869053620631175265621765214646643181420505164043632222" "668006474326056011713528291579642227455489682133472873831754840" "341397809846934151055619529382191981473003234105366170879223151" "087335413188049110555339027884856781219017754500629806224571029" "581637117459456877330110324211689177656713705497387108207822477" "584250967061891687062782163335299376138075114200886249979505279" "101870966346394401564490729731565935244123171539810221213221201" "847003580761626016356864581135848683152156368691976240370422601" "6998291015625000000000000000000000000000000000e-308"; CHECK_EQ(4.4501477170144017780491e-308, StringToDouble(num, NO_FLAGS)); // Changes the result of strtod (at least in glibc implementation). num[sizeof(num) - 8] = '1'; CHECK_EQ(4.4501477170144022721148e-308, StringToDouble(num, NO_FLAGS)); } TEST(MinimumExponent) { // Same test but with different point-position. char num[] = "445014771701440202508199667279499186358524265859260511351695091" "228726223124931264069530541271189424317838013700808305231545782" "515453032382772695923684574304409936197089118747150815050941806" "048037511737832041185193533879641611520514874130831632725201246" "060231058690536206311752656217652146466431814205051640436322226" "680064743260560117135282915796422274554896821334728738317548403" "413978098469341510556195293821919814730032341053661708792231510" "873354131880491105553390278848567812190177545006298062245710295" "816371174594568773301103242116891776567137054973871082078224775" "842509670618916870627821633352993761380751142008862499795052791" "018709663463944015644907297315659352441231715398102212132212018" "470035807616260163568645811358486831521563686919762403704226016" "998291015625000000000000000000000000000000000e-1108"; CHECK_EQ(4.4501477170144017780491e-308, StringToDouble(num, NO_FLAGS)); // Changes the result of strtod (at least in glibc implementation). num[sizeof(num) - 8] = '1'; CHECK_EQ(4.4501477170144022721148e-308, StringToDouble(num, NO_FLAGS)); } TEST(MaximumExponent) { char num[] = "0.16e309"; CHECK_EQ(1.59999999999999997765e+308, StringToDouble(num, NO_FLAGS)); } TEST(ExponentNumberStr) { CHECK_EQ(1e1, StringToDouble("1e1", NO_FLAGS)); CHECK_EQ(1e1, StringToDouble("1e+1", NO_FLAGS)); CHECK_EQ(1e-1, StringToDouble("1e-1", NO_FLAGS)); CHECK_EQ(1e100, StringToDouble("1e+100", NO_FLAGS)); CHECK_EQ(1e-100, StringToDouble("1e-100", NO_FLAGS)); CHECK_EQ(1e-106, StringToDouble(".000001e-100", NO_FLAGS)); } using OneBit1 = base::BitField<uint32_t, 0, 1>; using OneBit2 = base::BitField<uint32_t, 7, 1>; using EightBit1 = base::BitField<uint32_t, 0, 8>; using EightBit2 = base::BitField<uint32_t, 13, 8>; TEST(BitField) { uint32_t x; // One bit bit field can hold values 0 and 1. CHECK(!OneBit1::is_valid(static_cast<uint32_t>(-1))); CHECK(!OneBit2::is_valid(static_cast<uint32_t>(-1))); for (unsigned i = 0; i < 2; i++) { CHECK(OneBit1::is_valid(i)); x = OneBit1::encode(i); CHECK_EQ(i, OneBit1::decode(x)); CHECK(OneBit2::is_valid(i)); x = OneBit2::encode(i); CHECK_EQ(i, OneBit2::decode(x)); } CHECK(!OneBit1::is_valid(2)); CHECK(!OneBit2::is_valid(2)); // Eight bit bit field can hold values from 0 tp 255. CHECK(!EightBit1::is_valid(static_cast<uint32_t>(-1))); CHECK(!EightBit2::is_valid(static_cast<uint32_t>(-1))); for (unsigned i = 0; i < 256; i++) { CHECK(EightBit1::is_valid(i)); x = EightBit1::encode(i); CHECK_EQ(i, EightBit1::decode(x)); CHECK(EightBit2::is_valid(i)); x = EightBit2::encode(i); CHECK_EQ(i, EightBit2::decode(x)); } CHECK(!EightBit1::is_valid(256)); CHECK(!EightBit2::is_valid(256)); } using UpperBits = base::BitField64<int, 61, 3>; using MiddleBits = base::BitField64<int, 31, 2>; TEST(BitField64) { uint64_t x; // Test most significant bits. x = 0xE000'0000'0000'0000; CHECK(x == UpperBits::encode(7)); CHECK_EQ(7, UpperBits::decode(x)); // Test the 32/64-bit boundary bits. x = 0x0000'0001'8000'0000; CHECK(x == MiddleBits::encode(3)); CHECK_EQ(3, MiddleBits::decode(x)); } static void CheckNonArrayIndex(bool expected, const char* chars) { auto isolate = CcTest::i_isolate(); auto string = isolate->factory()->NewStringFromAsciiChecked(chars); CHECK_EQ(expected, IsSpecialIndex(*string)); } TEST(SpecialIndexParsing) { auto isolate = CcTest::i_isolate(); HandleScope scope(isolate); CheckNonArrayIndex(false, ""); CheckNonArrayIndex(false, "-"); CheckNonArrayIndex(true, "0"); CheckNonArrayIndex(true, "-0"); CheckNonArrayIndex(false, "01"); CheckNonArrayIndex(false, "-01"); CheckNonArrayIndex(true, "0.5"); CheckNonArrayIndex(true, "-0.5"); CheckNonArrayIndex(true, "1"); CheckNonArrayIndex(true, "-1"); CheckNonArrayIndex(true, "10"); CheckNonArrayIndex(true, "-10"); CheckNonArrayIndex(true, "NaN"); CheckNonArrayIndex(true, "Infinity"); CheckNonArrayIndex(true, "-Infinity"); CheckNonArrayIndex(true, "4294967295"); CheckNonArrayIndex(true, "429496.7295"); CheckNonArrayIndex(true, "1.3333333333333333"); CheckNonArrayIndex(false, "1.3333333333333339"); CheckNonArrayIndex(true, "1.333333333333331e+222"); CheckNonArrayIndex(true, "-1.3333333333333211e+222"); CheckNonArrayIndex(false, "-1.3333333333333311e+222"); CheckNonArrayIndex(true, "429496.7295"); CheckNonArrayIndex(false, "43s3"); CheckNonArrayIndex(true, "4294967296"); CheckNonArrayIndex(true, "-4294967296"); CheckNonArrayIndex(true, "999999999999999"); CheckNonArrayIndex(false, "9999999999999999"); CheckNonArrayIndex(true, "-999999999999999"); CheckNonArrayIndex(false, "-9999999999999999"); CheckNonArrayIndex(false, "42949672964294967296429496729694966"); } TEST(NoHandlesForTryNumberToSize) { i::Isolate* isolate = CcTest::i_isolate(); size_t result = 0; { SealHandleScope no_handles(isolate); Smi smi = Smi::FromInt(1); CHECK(TryNumberToSize(smi, &result)); CHECK_EQ(result, 1u); } result = 0; { HandleScope scope(isolate); Handle<HeapNumber> heap_number1 = isolate->factory()->NewHeapNumber(2.0); { SealHandleScope no_handles(isolate); CHECK(TryNumberToSize(*heap_number1, &result)); CHECK_EQ(result, 2u); } Handle<HeapNumber> heap_number2 = isolate->factory()->NewHeapNumber( static_cast<double>(std::numeric_limits<size_t>::max()) + 10000.0); { SealHandleScope no_handles(isolate); CHECK(!TryNumberToSize(*heap_number2, &result)); } } } TEST(TryNumberToSizeWithMaxSizePlusOne) { i::Isolate* isolate = CcTest::i_isolate(); { HandleScope scope(isolate); // 1 << 64, larger than the limit of size_t. double value = 18446744073709551616.0; size_t result = 0; Handle<HeapNumber> heap_number = isolate->factory()->NewHeapNumber(value); CHECK(!TryNumberToSize(*heap_number, &result)); } } TEST(PositiveNumberToUint32) { i::Isolate* isolate = CcTest::i_isolate(); i::Factory* factory = isolate->factory(); uint32_t max = std::numeric_limits<uint32_t>::max(); HandleScope scope(isolate); // Test Smi conversions. Handle<Object> number = handle(Smi::FromInt(0), isolate); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = handle(Smi::FromInt(-1), isolate); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = handle(Smi::FromInt(-1), isolate); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = handle(Smi::FromInt(Smi::kMinValue), isolate); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = handle(Smi::FromInt(Smi::kMaxValue), isolate); CHECK_EQ(PositiveNumberToUint32(*number), static_cast<uint32_t>(Smi::kMaxValue)); // Test Double conversions. number = factory->NewHeapNumber(0.0); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = factory->NewHeapNumber(0.999); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = factory->NewHeapNumber(1.999); CHECK_EQ(PositiveNumberToUint32(*number), 1u); number = factory->NewHeapNumber(-12.0); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = factory->NewHeapNumber(12000.0); CHECK_EQ(PositiveNumberToUint32(*number), 12000u); number = factory->NewHeapNumber(static_cast<double>(Smi::kMaxValue) + 1); CHECK_EQ(PositiveNumberToUint32(*number), static_cast<uint32_t>(Smi::kMaxValue) + 1); number = factory->NewHeapNumber(max); CHECK_EQ(PositiveNumberToUint32(*number), max); number = factory->NewHeapNumber(static_cast<double>(max) * 1000); CHECK_EQ(PositiveNumberToUint32(*number), max); number = factory->NewHeapNumber(std::numeric_limits<double>::max()); CHECK_EQ(PositiveNumberToUint32(*number), max); number = factory->NewHeapNumber(std::numeric_limits<double>::infinity()); CHECK_EQ(PositiveNumberToUint32(*number), max); number = factory->NewHeapNumber(-1.0 * std::numeric_limits<double>::infinity()); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = factory->NewHeapNumber(std::nan("")); CHECK_EQ(PositiveNumberToUint32(*number), 0u); } } // namespace internal } // namespace v8