// Copyright 2018 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_EXECUTION_ISOLATE_DATA_H_ #define V8_EXECUTION_ISOLATE_DATA_H_ #include "src/builtins/builtins.h" #include "src/codegen/constants-arch.h" #include "src/codegen/external-reference-table.h" #include "src/execution/stack-guard.h" #include "src/execution/thread-local-top.h" #include "src/heap/linear-allocation-area.h" #include "src/roots/roots.h" #include "src/sandbox/external-pointer-table.h" #include "src/utils/utils.h" #include "testing/gtest/include/gtest/gtest_prod.h" // nogncheck namespace v8 { namespace internal { class Isolate; // IsolateData fields, defined as: V(Offset, Size, Name) #define ISOLATE_DATA_FIELDS(V) \ /* Misc. fields. */ \ V(kCageBaseOffset, kSystemPointerSize, cage_base) \ V(kStackGuardOffset, StackGuard::kSizeInBytes, stack_guard) \ /* Tier 0 tables (small but fast access). */ \ V(kBuiltinTier0EntryTableOffset, \ Builtins::kBuiltinTier0Count* kSystemPointerSize, \ builtin_tier0_entry_table) \ V(kBuiltinsTier0TableOffset, \ Builtins::kBuiltinTier0Count* kSystemPointerSize, builtin_tier0_table) \ /* Misc. fields. */ \ V(kEmbedderDataOffset, Internals::kNumIsolateDataSlots* kSystemPointerSize, \ embedder_data) \ V(kFastCCallCallerFPOffset, kSystemPointerSize, fast_c_call_caller_fp) \ V(kFastCCallCallerPCOffset, kSystemPointerSize, fast_c_call_caller_pc) \ V(kFastApiCallTargetOffset, kSystemPointerSize, fast_api_call_target) \ V(kLongTaskStatsCounterOffset, kSizetSize, long_task_stats_counter) \ /* Full tables (arbitrary size, potentially slower access). */ \ V(kRootsTableOffset, RootsTable::kEntriesCount* kSystemPointerSize, \ roots_table) \ V(kExternalReferenceTableOffset, ExternalReferenceTable::kSizeInBytes, \ external_reference_table) \ V(kThreadLocalTopOffset, ThreadLocalTop::kSizeInBytes, thread_local_top) \ V(kBuiltinEntryTableOffset, Builtins::kBuiltinCount* kSystemPointerSize, \ builtin_entry_table) \ V(kBuiltinTableOffset, Builtins::kBuiltinCount* kSystemPointerSize, \ builtin_table) \ /* Linear allocation areas for the heap's new and old space */ \ V(kNewAllocationInfo, LinearAllocationArea::kSize, new_allocation_info) \ V(kOldAllocationInfo, LinearAllocationArea::kSize, old_allocation_info) \ ISOLATE_DATA_FIELDS_SANDBOXED_EXTERNAL_POINTERS(V) \ V(kStackIsIterableOffset, kUInt8Size, stack_is_iterable) #ifdef V8_SANDBOXED_EXTERNAL_POINTERS #define ISOLATE_DATA_FIELDS_SANDBOXED_EXTERNAL_POINTERS(V) \ V(kExternalPointerTableOffset, ExternalPointerTable::kSize, \ external_pointer_table) #else #define ISOLATE_DATA_FIELDS_SANDBOXED_EXTERNAL_POINTERS(V) #endif // V8_SANDBOXED_EXTERNAL_POINTERS // This class contains a collection of data accessible from both C++ runtime // and compiled code (including builtins, interpreter bytecode handlers and // optimized code). The compiled code accesses the isolate data fields // indirectly via the root register. class IsolateData final { public: IsolateData(Isolate* isolate, Address cage_base) : cage_base_(cage_base), stack_guard_(isolate) {} IsolateData(const IsolateData&) = delete; IsolateData& operator=(const IsolateData&) = delete; static constexpr intptr_t kIsolateRootBias = kRootRegisterBias; // The value of the kRootRegister. Address isolate_root() const { return reinterpret_cast<Address>(this) + kIsolateRootBias; } // Root-register-relative offsets. #define V(Offset, Size, Name) \ static constexpr int Name##_offset() { return Offset - kIsolateRootBias; } ISOLATE_DATA_FIELDS(V) #undef V static constexpr int root_slot_offset(RootIndex root_index) { return roots_table_offset() + RootsTable::offset_of(root_index); } static constexpr int BuiltinEntrySlotOffset(Builtin id) { DCHECK(Builtins::IsBuiltinId(id)); return (Builtins::IsTier0(id) ? builtin_tier0_entry_table_offset() : builtin_entry_table_offset()) + Builtins::ToInt(id) * kSystemPointerSize; } // TODO(ishell): remove in favour of typified id version. static constexpr int builtin_slot_offset(int builtin_index) { return BuiltinSlotOffset(Builtins::FromInt(builtin_index)); } static constexpr int BuiltinSlotOffset(Builtin id) { return (Builtins::IsTier0(id) ? builtin_tier0_table_offset() : builtin_table_offset()) + Builtins::ToInt(id) * kSystemPointerSize; } #define V(Offset, Size, Name) \ Address Name##_address() { return reinterpret_cast<Address>(&Name##_); } ISOLATE_DATA_FIELDS(V) #undef V Address fast_c_call_caller_fp() const { return fast_c_call_caller_fp_; } Address fast_c_call_caller_pc() const { return fast_c_call_caller_pc_; } Address fast_api_call_target() const { return fast_api_call_target_; } // The value of kPointerCageBaseRegister. Address cage_base() const { return cage_base_; } StackGuard* stack_guard() { return &stack_guard_; } Address* builtin_tier0_entry_table() { return builtin_tier0_entry_table_; } Address* builtin_tier0_table() { return builtin_tier0_table_; } RootsTable& roots() { return roots_table_; } const RootsTable& roots() const { return roots_table_; } ExternalReferenceTable* external_reference_table() { return &external_reference_table_; } ThreadLocalTop& thread_local_top() { return thread_local_top_; } ThreadLocalTop const& thread_local_top() const { return thread_local_top_; } Address* builtin_entry_table() { return builtin_entry_table_; } Address* builtin_table() { return builtin_table_; } uint8_t stack_is_iterable() const { return stack_is_iterable_; } // Returns true if this address points to data stored in this instance. If // it's the case then the value can be accessed indirectly through the root // register. bool contains(Address address) const { STATIC_ASSERT(std::is_unsigned<Address>::value); Address start = reinterpret_cast<Address>(this); return (address - start) < sizeof(*this); } private: // Static layout definition. // // Note: The location of fields within IsolateData is significant. The // closer they are to the value of kRootRegister (i.e.: isolate_root()), the // cheaper it is to access them. See also: https://crbug.com/993264. // The recommended guideline is to put frequently-accessed fields close to // the beginning of IsolateData. #define FIELDS(V) \ ISOLATE_DATA_FIELDS(V) \ /* This padding aligns IsolateData size by 8 bytes. */ \ V(kPaddingOffset, \ 8 + RoundUp<8>(static_cast<int>(kPaddingOffset)) - kPaddingOffset) \ /* Total size. */ \ V(kSize, 0) DEFINE_FIELD_OFFSET_CONSTANTS(0, FIELDS) #undef FIELDS const Address cage_base_; // Fields related to the system and JS stack. In particular, this contains // the stack limit used by stack checks in generated code. StackGuard stack_guard_; // Tier 0 tables. See also builtin_entry_table_ and builtin_table_. Address builtin_tier0_entry_table_[Builtins::kBuiltinTier0Count] = {}; Address builtin_tier0_table_[Builtins::kBuiltinTier0Count] = {}; // These fields are accessed through the API, offsets must be kept in sync // with v8::internal::Internals (in include/v8-internal.h) constants. The // layout consistency is verified in Isolate::CheckIsolateLayout() using // runtime checks. void* embedder_data_[Internals::kNumIsolateDataSlots] = {}; // Stores the state of the caller for TurboAssembler::CallCFunction so that // the sampling CPU profiler can iterate the stack during such calls. These // are stored on IsolateData so that they can be stored to with only one move // instruction in compiled code. // // The FP and PC that are saved right before TurboAssembler::CallCFunction. Address fast_c_call_caller_fp_ = kNullAddress; Address fast_c_call_caller_pc_ = kNullAddress; // The address of the fast API callback right before it's executed from // generated code. Address fast_api_call_target_ = kNullAddress; // Used for implementation of LongTaskStats. Counts the number of potential // long tasks. size_t long_task_stats_counter_ = 0; RootsTable roots_table_; ExternalReferenceTable external_reference_table_; ThreadLocalTop thread_local_top_; // The entry points for builtins. This corresponds to // Code::InstructionStart() for each Code object in the builtins table below. // The entry table is in IsolateData for easy access through kRootRegister. Address builtin_entry_table_[Builtins::kBuiltinCount] = {}; // The entries in this array are tagged pointers to Code objects. Address builtin_table_[Builtins::kBuiltinCount] = {}; LinearAllocationArea new_allocation_info_; LinearAllocationArea old_allocation_info_; // Table containing pointers to external objects. #ifdef V8_SANDBOXED_EXTERNAL_POINTERS ExternalPointerTable external_pointer_table_; #endif // Whether the SafeStackFrameIterator can successfully iterate the current // stack. Only valid values are 0 or 1. uint8_t stack_is_iterable_ = 1; // Ensure the size is 8-byte aligned in order to make alignment of the field // following the IsolateData field predictable. This solves the issue with // C++ compilers for 32-bit platforms which are not consistent at aligning // int64_t fields. // In order to avoid dealing with zero-size arrays the padding size is always // in the range [8, 15). STATIC_ASSERT(kPaddingOffsetEnd + 1 - kPaddingOffset >= 8); char padding_[kPaddingOffsetEnd + 1 - kPaddingOffset]; V8_INLINE static void AssertPredictableLayout(); friend class Isolate; friend class Heap; FRIEND_TEST(HeapTest, ExternalLimitDefault); FRIEND_TEST(HeapTest, ExternalLimitStaysAboveDefaultForExplicitHandling); }; // IsolateData object must have "predictable" layout which does not change when // cross-compiling to another platform. Otherwise there may be compatibility // issues because of different compilers used for snapshot generator and // actual V8 code. void IsolateData::AssertPredictableLayout() { STATIC_ASSERT(std::is_standard_layout<RootsTable>::value); STATIC_ASSERT(std::is_standard_layout<ThreadLocalTop>::value); STATIC_ASSERT(std::is_standard_layout<ExternalReferenceTable>::value); STATIC_ASSERT(std::is_standard_layout<IsolateData>::value); #define V(Offset, Size, Name) \ STATIC_ASSERT(offsetof(IsolateData, Name##_) == Offset); ISOLATE_DATA_FIELDS(V) #undef V STATIC_ASSERT(sizeof(IsolateData) == IsolateData::kSize); } #undef ISOLATE_DATA_FIELDS_SANDBOXED_EXTERNAL_POINTERS #undef ISOLATE_DATA_FIELDS } // namespace internal } // namespace v8 #endif // V8_EXECUTION_ISOLATE_DATA_H_