// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/keys.h"

#include "src/api-arguments.h"
#include "src/elements.h"
#include "src/factory.h"
#include "src/identity-map.h"
#include "src/isolate-inl.h"
#include "src/objects-inl.h"
#include "src/property-descriptor.h"
#include "src/prototype.h"

namespace v8 {
namespace internal {

KeyAccumulator::~KeyAccumulator() {
  for (size_t i = 0; i < elements_.size(); i++) {
    delete elements_[i];
  }
}

Handle<FixedArray> KeyAccumulator::GetKeys(GetKeysConversion convert) {
  if (length_ == 0) {
    return isolate_->factory()->empty_fixed_array();
  }
  // Make sure we have all the lengths collected.
  NextPrototype();

  if (type_ == OWN_ONLY && !ownProxyKeys_.is_null()) {
    return ownProxyKeys_;
  }
  // Assemble the result array by first adding the element keys and then the
  // property keys. We use the total number of String + Symbol keys per level in
  // |level_lengths_| and the available element keys in the corresponding bucket
  // in |elements_| to deduce the number of keys to take from the
  // |string_properties_| and |symbol_properties_| set.
  Handle<FixedArray> result = isolate_->factory()->NewFixedArray(length_);
  int insertion_index = 0;
  int string_properties_index = 0;
  int symbol_properties_index = 0;
  // String and Symbol lengths always come in pairs:
  size_t max_level = level_lengths_.size() / 2;
  for (size_t level = 0; level < max_level; level++) {
    int num_string_properties = level_lengths_[level * 2];
    int num_symbol_properties = level_lengths_[level * 2 + 1];
    int num_elements = 0;
    if (num_string_properties < 0) {
      // If the |num_string_properties| is negative, the current level contains
      // properties from a proxy, hence we skip the integer keys in |elements_|
      // since proxies define the complete ordering.
      num_string_properties = -num_string_properties;
    } else if (level < elements_.size()) {
      // Add the element indices for this prototype level.
      std::vector<uint32_t>* elements = elements_[level];
      num_elements = static_cast<int>(elements->size());
      for (int i = 0; i < num_elements; i++) {
        Handle<Object> key;
        if (convert == KEEP_NUMBERS) {
          key = isolate_->factory()->NewNumberFromUint(elements->at(i));
        } else {
          key = isolate_->factory()->Uint32ToString(elements->at(i));
        }
        result->set(insertion_index, *key);
        insertion_index++;
      }
    }
    // Add the string property keys for this prototype level.
    for (int i = 0; i < num_string_properties; i++) {
      Object* key = string_properties_->KeyAt(string_properties_index);
      result->set(insertion_index, key);
      insertion_index++;
      string_properties_index++;
    }
    // Add the symbol property keys for this prototype level.
    for (int i = 0; i < num_symbol_properties; i++) {
      Object* key = symbol_properties_->KeyAt(symbol_properties_index);
      result->set(insertion_index, key);
      insertion_index++;
      symbol_properties_index++;
    }
    if (FLAG_trace_for_in_enumerate) {
      PrintF("| strings=%d symbols=%d elements=%i ", num_string_properties,
             num_symbol_properties, num_elements);
    }
  }
  if (FLAG_trace_for_in_enumerate) {
    PrintF("|| prototypes=%zu ||\n", max_level);
  }

  DCHECK_EQ(insertion_index, length_);
  return result;
}

namespace {

bool AccumulatorHasKey(std::vector<uint32_t>* sub_elements, uint32_t key) {
  return std::binary_search(sub_elements->begin(), sub_elements->end(), key);
}

}  // namespace

bool KeyAccumulator::AddKey(Object* key, AddKeyConversion convert) {
  return AddKey(handle(key, isolate_), convert);
}

bool KeyAccumulator::AddKey(Handle<Object> key, AddKeyConversion convert) {
  if (key->IsSymbol()) {
    if (filter_ & SKIP_SYMBOLS) return false;
    if (Handle<Symbol>::cast(key)->is_private()) return false;
    return AddSymbolKey(key);
  }
  if (filter_ & SKIP_STRINGS) return false;
  // Make sure we do not add keys to a proxy-level (see AddKeysFromProxy).
  DCHECK_LE(0, level_string_length_);
  // In some cases (e.g. proxies) we might get in String-converted ints which
  // should be added to the elements list instead of the properties. For
  // proxies we have to convert as well but also respect the original order.
  // Therefore we add a converted key to both sides
  if (convert == CONVERT_TO_ARRAY_INDEX || convert == PROXY_MAGIC) {
    uint32_t index = 0;
    int prev_length = length_;
    int prev_proto = level_string_length_;
    if ((key->IsString() && Handle<String>::cast(key)->AsArrayIndex(&index)) ||
        key->ToArrayIndex(&index)) {
      bool key_was_added = AddIntegerKey(index);
      if (convert == CONVERT_TO_ARRAY_INDEX) return key_was_added;
      if (convert == PROXY_MAGIC) {
        // If we had an array index (number) and it wasn't added, the key
        // already existed before, hence we cannot add it to the properties
        // keys as it would lead to duplicate entries.
        if (!key_was_added) {
          return false;
        }
        length_ = prev_length;
        level_string_length_ = prev_proto;
      }
    }
  }
  return AddStringKey(key, convert);
}

bool KeyAccumulator::AddKey(uint32_t key) { return AddIntegerKey(key); }

bool KeyAccumulator::AddIntegerKey(uint32_t key) {
  // Make sure we do not add keys to a proxy-level (see AddKeysFromProxy).
  // We mark proxy-levels with a negative length
  DCHECK_LE(0, level_string_length_);
  // Binary search over all but the last level. The last one might not be
  // sorted yet.
  for (size_t i = 1; i < elements_.size(); i++) {
    if (AccumulatorHasKey(elements_[i - 1], key)) return false;
  }
  elements_.back()->push_back(key);
  length_++;
  return true;
}

bool KeyAccumulator::AddStringKey(Handle<Object> key,
                                  AddKeyConversion convert) {
  if (string_properties_.is_null()) {
    string_properties_ = OrderedHashSet::Allocate(isolate_, 16);
  }
  // TODO(cbruni): remove this conversion once we throw the correct TypeError
  // for non-string/symbol elements returned by proxies
  if (convert == PROXY_MAGIC && key->IsNumber()) {
    key = isolate_->factory()->NumberToString(key);
  }
  int prev_size = string_properties_->NumberOfElements();
  string_properties_ = OrderedHashSet::Add(string_properties_, key);
  if (prev_size < string_properties_->NumberOfElements()) {
    length_++;
    level_string_length_++;
    return true;
  } else {
    return false;
  }
}

bool KeyAccumulator::AddSymbolKey(Handle<Object> key) {
  if (symbol_properties_.is_null()) {
    symbol_properties_ = OrderedHashSet::Allocate(isolate_, 16);
  }
  int prev_size = symbol_properties_->NumberOfElements();
  symbol_properties_ = OrderedHashSet::Add(symbol_properties_, key);
  if (prev_size < symbol_properties_->NumberOfElements()) {
    length_++;
    level_symbol_length_++;
    return true;
  } else {
    return false;
  }
}

void KeyAccumulator::AddKeys(Handle<FixedArray> array,
                             AddKeyConversion convert) {
  int add_length = array->length();
  if (add_length == 0) return;
  for (int i = 0; i < add_length; i++) {
    Handle<Object> current(array->get(i), isolate_);
    AddKey(current, convert);
  }
}

void KeyAccumulator::AddKeys(Handle<JSObject> array_like,
                             AddKeyConversion convert) {
  DCHECK(array_like->IsJSArray() || array_like->HasSloppyArgumentsElements());
  ElementsAccessor* accessor = array_like->GetElementsAccessor();
  accessor->AddElementsToKeyAccumulator(array_like, this, convert);
}

void KeyAccumulator::AddKeysFromProxy(Handle<JSObject> array_like) {
  // Proxies define a complete list of keys with no distinction of
  // elements and properties, which breaks the normal assumption for the
  // KeyAccumulator.
  AddKeys(array_like, PROXY_MAGIC);
  // Invert the current length to indicate a present proxy, so we can ignore
  // element keys for this level. Otherwise we would not fully respect the order
  // given by the proxy.
  level_string_length_ = -level_string_length_;
}

MaybeHandle<FixedArray> FilterProxyKeys(Isolate* isolate, Handle<JSProxy> owner,
                                        Handle<FixedArray> keys,
                                        PropertyFilter filter) {
  if (filter == ALL_PROPERTIES) {
    // Nothing to do.
    return keys;
  }
  int store_position = 0;
  for (int i = 0; i < keys->length(); ++i) {
    Handle<Name> key(Name::cast(keys->get(i)), isolate);
    if (key->FilterKey(filter)) continue;  // Skip this key.
    if (filter & ONLY_ENUMERABLE) {
      PropertyDescriptor desc;
      Maybe<bool> found =
          JSProxy::GetOwnPropertyDescriptor(isolate, owner, key, &desc);
      MAYBE_RETURN(found, MaybeHandle<FixedArray>());
      if (!found.FromJust() || !desc.enumerable()) continue;  // Skip this key.
    }
    // Keep this key.
    if (store_position != i) {
      keys->set(store_position, *key);
    }
    store_position++;
  }
  if (store_position == 0) return isolate->factory()->empty_fixed_array();
  keys->Shrink(store_position);
  return keys;
}

// Returns "nothing" in case of exception, "true" on success.
Maybe<bool> KeyAccumulator::AddKeysFromProxy(Handle<JSProxy> proxy,
                                             Handle<FixedArray> keys) {
  if (filter_proxy_keys_) {
    ASSIGN_RETURN_ON_EXCEPTION_VALUE(
        isolate_, keys, FilterProxyKeys(isolate_, proxy, keys, filter_),
        Nothing<bool>());
  }
  // Proxies define a complete list of keys with no distinction of
  // elements and properties, which breaks the normal assumption for the
  // KeyAccumulator.
  if (type_ == OWN_ONLY) {
    ownProxyKeys_ = keys;
    level_string_length_ = keys->length();
    length_ = level_string_length_;
  } else {
    AddKeys(keys, PROXY_MAGIC);
  }
  // Invert the current length to indicate a present proxy, so we can ignore
  // element keys for this level. Otherwise we would not fully respect the order
  // given by the proxy.
  level_string_length_ = -level_string_length_;
  return Just(true);
}

void KeyAccumulator::AddElementKeysFromInterceptor(
    Handle<JSObject> array_like) {
  AddKeys(array_like, CONVERT_TO_ARRAY_INDEX);
  // The interceptor might introduce duplicates for the current level, since
  // these keys get added after the objects's normal element keys.
  SortCurrentElementsListRemoveDuplicates();
}

void KeyAccumulator::SortCurrentElementsListRemoveDuplicates() {
  // Sort and remove duplicates from the current elements level and adjust.
  // the lengths accordingly.
  auto last_level = elements_.back();
  size_t nof_removed_keys = last_level->size();
  std::sort(last_level->begin(), last_level->end());
  last_level->erase(std::unique(last_level->begin(), last_level->end()),
                    last_level->end());
  // Adjust total length by the number of removed duplicates.
  nof_removed_keys -= last_level->size();
  length_ -= static_cast<int>(nof_removed_keys);
}

void KeyAccumulator::SortCurrentElementsList() {
  if (elements_.empty()) return;
  auto element_keys = elements_.back();
  std::sort(element_keys->begin(), element_keys->end());
}

void KeyAccumulator::NextPrototype() {
  // Store the protoLength on the first call of this method.
  if (!elements_.empty()) {
    level_lengths_.push_back(level_string_length_);
    level_lengths_.push_back(level_symbol_length_);
  }
  elements_.push_back(new std::vector<uint32_t>());
  level_string_length_ = 0;
  level_symbol_length_ = 0;
}

Maybe<bool> KeyAccumulator::GetKeys_Internal(Handle<JSReceiver> receiver,
                                             Handle<JSReceiver> object,
                                             KeyCollectionType type) {
  // Proxies have no hidden prototype and we should not trigger the
  // [[GetPrototypeOf]] trap on the last iteration when using
  // AdvanceFollowingProxies.
  if (type == OWN_ONLY && object->IsJSProxy()) {
    MAYBE_RETURN(
        JSProxyOwnPropertyKeys(receiver, Handle<JSProxy>::cast(object)),
        Nothing<bool>());
    return Just(true);
  }

  PrototypeIterator::WhereToEnd end = type == OWN_ONLY
                                          ? PrototypeIterator::END_AT_NON_HIDDEN
                                          : PrototypeIterator::END_AT_NULL;
  for (PrototypeIterator iter(isolate_, object,
                              PrototypeIterator::START_AT_RECEIVER, end);
       !iter.IsAtEnd();) {
    Handle<JSReceiver> current =
        PrototypeIterator::GetCurrent<JSReceiver>(iter);
    Maybe<bool> result = Just(false);  // Dummy initialization.
    if (current->IsJSProxy()) {
      result = JSProxyOwnPropertyKeys(receiver, Handle<JSProxy>::cast(current));
    } else {
      DCHECK(current->IsJSObject());
      result =
          GetKeysFromJSObject(receiver, Handle<JSObject>::cast(current), type);
    }
    MAYBE_RETURN(result, Nothing<bool>());
    if (!result.FromJust()) break;  // |false| means "stop iterating".
    // Iterate through proxies but ignore access checks for the ALL_CAN_READ
    // case on API objects for OWN_ONLY keys handled in GetKeysFromJSObject.
    if (!iter.AdvanceFollowingProxiesIgnoringAccessChecks()) {
      return Nothing<bool>();
    }
  }
  return Just(true);
}

namespace {

void TrySettingEmptyEnumCache(JSReceiver* object) {
  Map* map = object->map();
  DCHECK_EQ(kInvalidEnumCacheSentinel, map->EnumLength());
  if (!map->OnlyHasSimpleProperties()) return;
  if (map->IsJSProxyMap()) return;
  if (map->NumberOfOwnDescriptors() > 0) {
    int number_of_enumerable_own_properties =
        map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS);
    if (number_of_enumerable_own_properties > 0) return;
  }
  DCHECK(object->IsJSObject());
  map->SetEnumLength(0);
}

bool CheckAndInitalizeSimpleEnumCache(JSReceiver* object) {
  if (object->map()->EnumLength() == kInvalidEnumCacheSentinel) {
    TrySettingEmptyEnumCache(object);
  }
  if (object->map()->EnumLength() != 0) return false;
  DCHECK(object->IsJSObject());
  return !JSObject::cast(object)->HasEnumerableElements();
}
}  // namespace

void FastKeyAccumulator::Prepare() {
  DisallowHeapAllocation no_gc;
  // Directly go for the fast path for OWN_ONLY keys.
  if (type_ == OWN_ONLY) return;
  // Fully walk the prototype chain and find the last prototype with keys.
  is_receiver_simple_enum_ = false;
  has_empty_prototype_ = true;
  JSReceiver* first_non_empty_prototype;
  for (PrototypeIterator iter(isolate_, *receiver_); !iter.IsAtEnd();
       iter.Advance()) {
    JSReceiver* current = iter.GetCurrent<JSReceiver>();
    if (CheckAndInitalizeSimpleEnumCache(current)) continue;
    has_empty_prototype_ = false;
    first_non_empty_prototype = current;
    // TODO(cbruni): use the first non-empty prototype.
    USE(first_non_empty_prototype);
    return;
  }
  DCHECK(has_empty_prototype_);
  is_receiver_simple_enum_ =
      receiver_->map()->EnumLength() != kInvalidEnumCacheSentinel &&
      !JSObject::cast(*receiver_)->HasEnumerableElements();
}

namespace {
static Handle<FixedArray> ReduceFixedArrayTo(Isolate* isolate,
                                             Handle<FixedArray> array,
                                             int length) {
  DCHECK_LE(length, array->length());
  if (array->length() == length) return array;
  return isolate->factory()->CopyFixedArrayUpTo(array, length);
}

Handle<FixedArray> GetFastEnumPropertyKeys(Isolate* isolate,
                                           Handle<JSObject> object) {
  Handle<Map> map(object->map());
  bool cache_enum_length = map->OnlyHasSimpleProperties();

  Handle<DescriptorArray> descs =
      Handle<DescriptorArray>(map->instance_descriptors(), isolate);
  int own_property_count = map->EnumLength();
  // If the enum length of the given map is set to kInvalidEnumCache, this
  // means that the map itself has never used the present enum cache. The
  // first step to using the cache is to set the enum length of the map by
  // counting the number of own descriptors that are ENUMERABLE_STRINGS.
  if (own_property_count == kInvalidEnumCacheSentinel) {
    own_property_count =
        map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS);
  } else {
    DCHECK(
        own_property_count ==
        map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS));
  }

  if (descs->HasEnumCache()) {
    Handle<FixedArray> keys(descs->GetEnumCache(), isolate);
    // In case the number of properties required in the enum are actually
    // present, we can reuse the enum cache. Otherwise, this means that the
    // enum cache was generated for a previous (smaller) version of the
    // Descriptor Array. In that case we regenerate the enum cache.
    if (own_property_count <= keys->length()) {
      isolate->counters()->enum_cache_hits()->Increment();
      if (cache_enum_length) map->SetEnumLength(own_property_count);
      return ReduceFixedArrayTo(isolate, keys, own_property_count);
    }
  }

  if (descs->IsEmpty()) {
    isolate->counters()->enum_cache_hits()->Increment();
    if (cache_enum_length) map->SetEnumLength(0);
    return isolate->factory()->empty_fixed_array();
  }

  isolate->counters()->enum_cache_misses()->Increment();

  Handle<FixedArray> storage =
      isolate->factory()->NewFixedArray(own_property_count);
  Handle<FixedArray> indices =
      isolate->factory()->NewFixedArray(own_property_count);

  int size = map->NumberOfOwnDescriptors();
  int index = 0;

  for (int i = 0; i < size; i++) {
    PropertyDetails details = descs->GetDetails(i);
    if (details.IsDontEnum()) continue;
    Object* key = descs->GetKey(i);
    if (key->IsSymbol()) continue;
    storage->set(index, key);
    if (!indices.is_null()) {
      if (details.type() != DATA) {
        indices = Handle<FixedArray>();
      } else {
        FieldIndex field_index = FieldIndex::ForDescriptor(*map, i);
        int load_by_field_index = field_index.GetLoadByFieldIndex();
        indices->set(index, Smi::FromInt(load_by_field_index));
      }
    }
    index++;
  }
  DCHECK(index == storage->length());

  DescriptorArray::SetEnumCache(descs, isolate, storage, indices);
  if (cache_enum_length) {
    map->SetEnumLength(own_property_count);
  }
  return storage;
}

template <bool fast_properties>
Handle<FixedArray> GetOwnKeysWithElements(Isolate* isolate,
                                          Handle<JSObject> object,
                                          GetKeysConversion convert) {
  Handle<FixedArray> keys;
  ElementsAccessor* accessor = object->GetElementsAccessor();
  if (fast_properties) {
    keys = GetFastEnumPropertyKeys(isolate, object);
  } else {
    // TODO(cbruni): preallocate big enough array to also hold elements.
    keys = KeyAccumulator::GetEnumPropertyKeys(isolate, object);
  }
  Handle<FixedArray> result =
      accessor->PrependElementIndices(object, keys, convert, ONLY_ENUMERABLE);

  if (FLAG_trace_for_in_enumerate) {
    PrintF("| strings=%d symbols=0 elements=%u || prototypes>=1 ||\n",
           keys->length(), result->length() - keys->length());
  }
  return result;
}

MaybeHandle<FixedArray> GetOwnKeysWithUninitializedEnumCache(
    Isolate* isolate, Handle<JSObject> object) {
  // Uninitalized enum cache
  Map* map = object->map();
  if (object->elements() != isolate->heap()->empty_fixed_array() ||
      object->elements() != isolate->heap()->empty_slow_element_dictionary()) {
    // Assume that there are elements.
    return MaybeHandle<FixedArray>();
  }
  int number_of_own_descriptors = map->NumberOfOwnDescriptors();
  if (number_of_own_descriptors == 0) {
    map->SetEnumLength(0);
    return isolate->factory()->empty_fixed_array();
  }
  // We have no elements but possibly enumerable property keys, hence we can
  // directly initialize the enum cache.
  return GetFastEnumPropertyKeys(isolate, object);
}

bool OnlyHasSimpleProperties(Map* map) {
  return map->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER;
}

}  // namespace

MaybeHandle<FixedArray> FastKeyAccumulator::GetKeys(GetKeysConversion convert) {
  Handle<FixedArray> keys;
  if (GetKeysFast(convert).ToHandle(&keys)) {
    return keys;
  }
  return GetKeysSlow(convert);
}

MaybeHandle<FixedArray> FastKeyAccumulator::GetKeysFast(
    GetKeysConversion convert) {
  bool own_only = has_empty_prototype_ || type_ == OWN_ONLY;
  Map* map = receiver_->map();
  if (!own_only || !OnlyHasSimpleProperties(map)) {
    return MaybeHandle<FixedArray>();
  }

  // From this point on we are certiain to only collect own keys.
  DCHECK(receiver_->IsJSObject());
  Handle<JSObject> object = Handle<JSObject>::cast(receiver_);

  // Do not try to use the enum-cache for dict-mode objects.
  if (map->is_dictionary_map()) {
    return GetOwnKeysWithElements<false>(isolate_, object, convert);
  }
  int enum_length = receiver_->map()->EnumLength();
  if (enum_length == kInvalidEnumCacheSentinel) {
    Handle<FixedArray> keys;
    // Try initializing the enum cache and return own properties.
    if (GetOwnKeysWithUninitializedEnumCache(isolate_, object)
            .ToHandle(&keys)) {
      if (FLAG_trace_for_in_enumerate) {
        PrintF("| strings=%d symbols=0 elements=0 || prototypes>=1 ||\n",
               keys->length());
      }
      is_receiver_simple_enum_ =
          object->map()->EnumLength() != kInvalidEnumCacheSentinel;
      return keys;
    }
  }
  // The properties-only case failed because there were probably elements on the
  // receiver.
  return GetOwnKeysWithElements<true>(isolate_, object, convert);
}

MaybeHandle<FixedArray> FastKeyAccumulator::GetKeysSlow(
    GetKeysConversion convert) {
  return JSReceiver::GetKeys(receiver_, type_, ENUMERABLE_STRINGS, KEEP_NUMBERS,
                             filter_proxy_keys_);
}

enum IndexedOrNamed { kIndexed, kNamed };

// Returns |true| on success, |nothing| on exception.
template <class Callback, IndexedOrNamed type>
static Maybe<bool> GetKeysFromInterceptor(Handle<JSReceiver> receiver,
                                          Handle<JSObject> object,
                                          KeyAccumulator* accumulator) {
  Isolate* isolate = accumulator->isolate();
  if (type == kIndexed) {
    if (!object->HasIndexedInterceptor()) return Just(true);
  } else {
    if (!object->HasNamedInterceptor()) return Just(true);
  }
  Handle<InterceptorInfo> interceptor(type == kIndexed
                                          ? object->GetIndexedInterceptor()
                                          : object->GetNamedInterceptor(),
                                      isolate);
  if ((accumulator->filter() & ONLY_ALL_CAN_READ) &&
      !interceptor->all_can_read()) {
    return Just(true);
  }
  PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
                                 *object, Object::DONT_THROW);
  Handle<JSObject> result;
  if (!interceptor->enumerator()->IsUndefined()) {
    Callback enum_fun = v8::ToCData<Callback>(interceptor->enumerator());
    const char* log_tag = type == kIndexed ? "interceptor-indexed-enum"
                                           : "interceptor-named-enum";
    LOG(isolate, ApiObjectAccess(log_tag, *object));
    result = args.Call(enum_fun);
  }
  RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
  if (result.is_null()) return Just(true);
  DCHECK(result->IsJSArray() || result->HasSloppyArgumentsElements());
  // The accumulator takes care of string/symbol filtering.
  if (type == kIndexed) {
    accumulator->AddElementKeysFromInterceptor(result);
  } else {
    accumulator->AddKeys(result, DO_NOT_CONVERT);
  }
  return Just(true);
}

void KeyAccumulator::CollectOwnElementKeys(Handle<JSObject> object) {
  if (filter_ & SKIP_STRINGS) return;
  ElementsAccessor* accessor = object->GetElementsAccessor();
  accessor->CollectElementIndices(object, this, kMaxUInt32, filter_, 0);
}

void KeyAccumulator::CollectOwnPropertyNames(Handle<JSObject> object) {
  if (object->HasFastProperties()) {
    int real_size = object->map()->NumberOfOwnDescriptors();
    Handle<DescriptorArray> descs(object->map()->instance_descriptors(),
                                  isolate_);
    for (int i = 0; i < real_size; i++) {
      PropertyDetails details = descs->GetDetails(i);
      if ((details.attributes() & filter_) != 0) continue;
      if (filter_ & ONLY_ALL_CAN_READ) {
        if (details.kind() != kAccessor) continue;
        Object* accessors = descs->GetValue(i);
        if (!accessors->IsAccessorInfo()) continue;
        if (!AccessorInfo::cast(accessors)->all_can_read()) continue;
      }
      Name* key = descs->GetKey(i);
      if (key->FilterKey(filter_)) continue;
      this->AddKey(key, DO_NOT_CONVERT);
    }
  } else if (object->IsJSGlobalObject()) {
    GlobalDictionary::CollectKeysTo(
        handle(object->global_dictionary(), isolate_), this, filter_);
  } else {
    NameDictionary::CollectKeysTo(
        handle(object->property_dictionary(), isolate_), this, filter_);
  }
}

// Returns |true| on success, |false| if prototype walking should be stopped,
// |nothing| if an exception was thrown.
Maybe<bool> KeyAccumulator::GetKeysFromJSObject(Handle<JSReceiver> receiver,
                                                Handle<JSObject> object,
                                                KeyCollectionType type) {
  this->NextPrototype();
  // Check access rights if required.
  if (object->IsAccessCheckNeeded() &&
      !isolate_->MayAccess(handle(isolate_->context()), object)) {
    // The cross-origin spec says that [[Enumerate]] shall return an empty
    // iterator when it doesn't have access...
    if (type == INCLUDE_PROTOS) {
      return Just(false);
    }
    // ...whereas [[OwnPropertyKeys]] shall return whitelisted properties.
    DCHECK_EQ(OWN_ONLY, type);
    filter_ = static_cast<PropertyFilter>(filter_ | ONLY_ALL_CAN_READ);
  }

  this->CollectOwnElementKeys(object);

  // Add the element keys from the interceptor.
  Maybe<bool> success =
      GetKeysFromInterceptor<v8::IndexedPropertyEnumeratorCallback, kIndexed>(
          receiver, object, this);
  MAYBE_RETURN(success, Nothing<bool>());

  if (filter_ == ENUMERABLE_STRINGS) {
    Handle<FixedArray> enum_keys =
        KeyAccumulator::GetEnumPropertyKeys(isolate_, object);
    this->AddKeys(enum_keys, DO_NOT_CONVERT);
  } else {
    this->CollectOwnPropertyNames(object);
  }

  // Add the property keys from the interceptor.
  success = GetKeysFromInterceptor<v8::GenericNamedPropertyEnumeratorCallback,
                                   kNamed>(receiver, object, this);
  MAYBE_RETURN(success, Nothing<bool>());
  return Just(true);
}

// static
Handle<FixedArray> KeyAccumulator::GetEnumPropertyKeys(
    Isolate* isolate, Handle<JSObject> object) {
  if (object->HasFastProperties()) {
    return GetFastEnumPropertyKeys(isolate, object);
  } else if (object->IsJSGlobalObject()) {
    Handle<GlobalDictionary> dictionary(object->global_dictionary(), isolate);
    int length = dictionary->NumberOfEnumElements();
    if (length == 0) {
      return isolate->factory()->empty_fixed_array();
    }
    Handle<FixedArray> storage = isolate->factory()->NewFixedArray(length);
    dictionary->CopyEnumKeysTo(*storage);
    return storage;
  } else {
    Handle<NameDictionary> dictionary(object->property_dictionary(), isolate);
    int length = dictionary->NumberOfEnumElements();
    if (length == 0) {
      return isolate->factory()->empty_fixed_array();
    }
    Handle<FixedArray> storage = isolate->factory()->NewFixedArray(length);
    dictionary->CopyEnumKeysTo(*storage);
    return storage;
  }
}

// ES6 9.5.12
// Returns |true| on success, |nothing| in case of exception.
Maybe<bool> KeyAccumulator::JSProxyOwnPropertyKeys(Handle<JSReceiver> receiver,
                                                   Handle<JSProxy> proxy) {
  STACK_CHECK(isolate_, Nothing<bool>());
  // 1. Let handler be the value of the [[ProxyHandler]] internal slot of O.
  Handle<Object> handler(proxy->handler(), isolate_);
  // 2. If handler is null, throw a TypeError exception.
  // 3. Assert: Type(handler) is Object.
  if (proxy->IsRevoked()) {
    isolate_->Throw(*isolate_->factory()->NewTypeError(
        MessageTemplate::kProxyRevoked, isolate_->factory()->ownKeys_string()));
    return Nothing<bool>();
  }
  // 4. Let target be the value of the [[ProxyTarget]] internal slot of O.
  Handle<JSReceiver> target(proxy->target(), isolate_);
  // 5. Let trap be ? GetMethod(handler, "ownKeys").
  Handle<Object> trap;
  ASSIGN_RETURN_ON_EXCEPTION_VALUE(
      isolate_, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler),
                                        isolate_->factory()->ownKeys_string()),
      Nothing<bool>());
  // 6. If trap is undefined, then
  if (trap->IsUndefined()) {
    // 6a. Return target.[[OwnPropertyKeys]]().
    return this->GetKeys_Internal(receiver, target, OWN_ONLY);
  }
  // 7. Let trapResultArray be Call(trap, handler, «target»).
  Handle<Object> trap_result_array;
  Handle<Object> args[] = {target};
  ASSIGN_RETURN_ON_EXCEPTION_VALUE(
      isolate_, trap_result_array,
      Execution::Call(isolate_, trap, handler, arraysize(args), args),
      Nothing<bool>());
  // 8. Let trapResult be ? CreateListFromArrayLike(trapResultArray,
  //    «String, Symbol»).
  Handle<FixedArray> trap_result;
  ASSIGN_RETURN_ON_EXCEPTION_VALUE(
      isolate_, trap_result,
      Object::CreateListFromArrayLike(isolate_, trap_result_array,
                                      ElementTypes::kStringAndSymbol),
      Nothing<bool>());
  // 9. Let extensibleTarget be ? IsExtensible(target).
  Maybe<bool> maybe_extensible = JSReceiver::IsExtensible(target);
  MAYBE_RETURN(maybe_extensible, Nothing<bool>());
  bool extensible_target = maybe_extensible.FromJust();
  // 10. Let targetKeys be ? target.[[OwnPropertyKeys]]().
  Handle<FixedArray> target_keys;
  ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate_, target_keys,
                                   JSReceiver::OwnPropertyKeys(target),
                                   Nothing<bool>());
  // 11. (Assert)
  // 12. Let targetConfigurableKeys be an empty List.
  // To save memory, we're re-using target_keys and will modify it in-place.
  Handle<FixedArray> target_configurable_keys = target_keys;
  // 13. Let targetNonconfigurableKeys be an empty List.
  Handle<FixedArray> target_nonconfigurable_keys =
      isolate_->factory()->NewFixedArray(target_keys->length());
  int nonconfigurable_keys_length = 0;
  // 14. Repeat, for each element key of targetKeys:
  for (int i = 0; i < target_keys->length(); ++i) {
    // 14a. Let desc be ? target.[[GetOwnProperty]](key).
    PropertyDescriptor desc;
    Maybe<bool> found = JSReceiver::GetOwnPropertyDescriptor(
        isolate_, target, handle(target_keys->get(i), isolate_), &desc);
    MAYBE_RETURN(found, Nothing<bool>());
    // 14b. If desc is not undefined and desc.[[Configurable]] is false, then
    if (found.FromJust() && !desc.configurable()) {
      // 14b i. Append key as an element of targetNonconfigurableKeys.
      target_nonconfigurable_keys->set(nonconfigurable_keys_length,
                                       target_keys->get(i));
      nonconfigurable_keys_length++;
      // The key was moved, null it out in the original list.
      target_keys->set(i, Smi::FromInt(0));
    } else {
      // 14c. Else,
      // 14c i. Append key as an element of targetConfigurableKeys.
      // (No-op, just keep it in |target_keys|.)
    }
  }
  this->NextPrototype();  // Prepare for accumulating keys.
  // 15. If extensibleTarget is true and targetNonconfigurableKeys is empty,
  //     then:
  if (extensible_target && nonconfigurable_keys_length == 0) {
    // 15a. Return trapResult.
    return this->AddKeysFromProxy(proxy, trap_result);
  }
  // 16. Let uncheckedResultKeys be a new List which is a copy of trapResult.
  Zone set_zone(isolate_->allocator());
  const int kPresent = 1;
  const int kGone = 0;
  IdentityMap<int> unchecked_result_keys(isolate_->heap(), &set_zone);
  int unchecked_result_keys_size = 0;
  for (int i = 0; i < trap_result->length(); ++i) {
    DCHECK(trap_result->get(i)->IsUniqueName());
    Object* key = trap_result->get(i);
    int* entry = unchecked_result_keys.Get(key);
    if (*entry != kPresent) {
      *entry = kPresent;
      unchecked_result_keys_size++;
    }
  }
  // 17. Repeat, for each key that is an element of targetNonconfigurableKeys:
  for (int i = 0; i < nonconfigurable_keys_length; ++i) {
    Object* key = target_nonconfigurable_keys->get(i);
    // 17a. If key is not an element of uncheckedResultKeys, throw a
    //      TypeError exception.
    int* found = unchecked_result_keys.Find(key);
    if (found == nullptr || *found == kGone) {
      isolate_->Throw(*isolate_->factory()->NewTypeError(
          MessageTemplate::kProxyOwnKeysMissing, handle(key, isolate_)));
      return Nothing<bool>();
    }
    // 17b. Remove key from uncheckedResultKeys.
    *found = kGone;
    unchecked_result_keys_size--;
  }
  // 18. If extensibleTarget is true, return trapResult.
  if (extensible_target) {
    return this->AddKeysFromProxy(proxy, trap_result);
  }
  // 19. Repeat, for each key that is an element of targetConfigurableKeys:
  for (int i = 0; i < target_configurable_keys->length(); ++i) {
    Object* key = target_configurable_keys->get(i);
    if (key->IsSmi()) continue;  // Zapped entry, was nonconfigurable.
    // 19a. If key is not an element of uncheckedResultKeys, throw a
    //      TypeError exception.
    int* found = unchecked_result_keys.Find(key);
    if (found == nullptr || *found == kGone) {
      isolate_->Throw(*isolate_->factory()->NewTypeError(
          MessageTemplate::kProxyOwnKeysMissing, handle(key, isolate_)));
      return Nothing<bool>();
    }
    // 19b. Remove key from uncheckedResultKeys.
    *found = kGone;
    unchecked_result_keys_size--;
  }
  // 20. If uncheckedResultKeys is not empty, throw a TypeError exception.
  if (unchecked_result_keys_size != 0) {
    DCHECK_GT(unchecked_result_keys_size, 0);
    isolate_->Throw(*isolate_->factory()->NewTypeError(
        MessageTemplate::kProxyOwnKeysNonExtensible));
    return Nothing<bool>();
  }
  // 21. Return trapResult.
  return this->AddKeysFromProxy(proxy, trap_result);
}

}  // namespace internal
}  // namespace v8