// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/keys.h" #include "src/api-arguments.h" #include "src/elements.h" #include "src/factory.h" #include "src/identity-map.h" #include "src/isolate-inl.h" #include "src/objects-inl.h" #include "src/property-descriptor.h" #include "src/prototype.h" namespace v8 { namespace internal { KeyAccumulator::~KeyAccumulator() { for (size_t i = 0; i < elements_.size(); i++) { delete elements_[i]; } } Handle<FixedArray> KeyAccumulator::GetKeys(GetKeysConversion convert) { if (length_ == 0) { return isolate_->factory()->empty_fixed_array(); } // Make sure we have all the lengths collected. NextPrototype(); if (type_ == OWN_ONLY && !ownProxyKeys_.is_null()) { return ownProxyKeys_; } // Assemble the result array by first adding the element keys and then the // property keys. We use the total number of String + Symbol keys per level in // |level_lengths_| and the available element keys in the corresponding bucket // in |elements_| to deduce the number of keys to take from the // |string_properties_| and |symbol_properties_| set. Handle<FixedArray> result = isolate_->factory()->NewFixedArray(length_); int insertion_index = 0; int string_properties_index = 0; int symbol_properties_index = 0; // String and Symbol lengths always come in pairs: size_t max_level = level_lengths_.size() / 2; for (size_t level = 0; level < max_level; level++) { int num_string_properties = level_lengths_[level * 2]; int num_symbol_properties = level_lengths_[level * 2 + 1]; int num_elements = 0; if (num_string_properties < 0) { // If the |num_string_properties| is negative, the current level contains // properties from a proxy, hence we skip the integer keys in |elements_| // since proxies define the complete ordering. num_string_properties = -num_string_properties; } else if (level < elements_.size()) { // Add the element indices for this prototype level. std::vector<uint32_t>* elements = elements_[level]; num_elements = static_cast<int>(elements->size()); for (int i = 0; i < num_elements; i++) { Handle<Object> key; if (convert == KEEP_NUMBERS) { key = isolate_->factory()->NewNumberFromUint(elements->at(i)); } else { key = isolate_->factory()->Uint32ToString(elements->at(i)); } result->set(insertion_index, *key); insertion_index++; } } // Add the string property keys for this prototype level. for (int i = 0; i < num_string_properties; i++) { Object* key = string_properties_->KeyAt(string_properties_index); result->set(insertion_index, key); insertion_index++; string_properties_index++; } // Add the symbol property keys for this prototype level. for (int i = 0; i < num_symbol_properties; i++) { Object* key = symbol_properties_->KeyAt(symbol_properties_index); result->set(insertion_index, key); insertion_index++; symbol_properties_index++; } if (FLAG_trace_for_in_enumerate) { PrintF("| strings=%d symbols=%d elements=%i ", num_string_properties, num_symbol_properties, num_elements); } } if (FLAG_trace_for_in_enumerate) { PrintF("|| prototypes=%zu ||\n", max_level); } DCHECK_EQ(insertion_index, length_); return result; } namespace { bool AccumulatorHasKey(std::vector<uint32_t>* sub_elements, uint32_t key) { return std::binary_search(sub_elements->begin(), sub_elements->end(), key); } } // namespace bool KeyAccumulator::AddKey(Object* key, AddKeyConversion convert) { return AddKey(handle(key, isolate_), convert); } bool KeyAccumulator::AddKey(Handle<Object> key, AddKeyConversion convert) { if (key->IsSymbol()) { if (filter_ & SKIP_SYMBOLS) return false; if (Handle<Symbol>::cast(key)->is_private()) return false; return AddSymbolKey(key); } if (filter_ & SKIP_STRINGS) return false; // Make sure we do not add keys to a proxy-level (see AddKeysFromProxy). DCHECK_LE(0, level_string_length_); // In some cases (e.g. proxies) we might get in String-converted ints which // should be added to the elements list instead of the properties. For // proxies we have to convert as well but also respect the original order. // Therefore we add a converted key to both sides if (convert == CONVERT_TO_ARRAY_INDEX || convert == PROXY_MAGIC) { uint32_t index = 0; int prev_length = length_; int prev_proto = level_string_length_; if ((key->IsString() && Handle<String>::cast(key)->AsArrayIndex(&index)) || key->ToArrayIndex(&index)) { bool key_was_added = AddIntegerKey(index); if (convert == CONVERT_TO_ARRAY_INDEX) return key_was_added; if (convert == PROXY_MAGIC) { // If we had an array index (number) and it wasn't added, the key // already existed before, hence we cannot add it to the properties // keys as it would lead to duplicate entries. if (!key_was_added) { return false; } length_ = prev_length; level_string_length_ = prev_proto; } } } return AddStringKey(key, convert); } bool KeyAccumulator::AddKey(uint32_t key) { return AddIntegerKey(key); } bool KeyAccumulator::AddIntegerKey(uint32_t key) { // Make sure we do not add keys to a proxy-level (see AddKeysFromProxy). // We mark proxy-levels with a negative length DCHECK_LE(0, level_string_length_); // Binary search over all but the last level. The last one might not be // sorted yet. for (size_t i = 1; i < elements_.size(); i++) { if (AccumulatorHasKey(elements_[i - 1], key)) return false; } elements_.back()->push_back(key); length_++; return true; } bool KeyAccumulator::AddStringKey(Handle<Object> key, AddKeyConversion convert) { if (string_properties_.is_null()) { string_properties_ = OrderedHashSet::Allocate(isolate_, 16); } // TODO(cbruni): remove this conversion once we throw the correct TypeError // for non-string/symbol elements returned by proxies if (convert == PROXY_MAGIC && key->IsNumber()) { key = isolate_->factory()->NumberToString(key); } int prev_size = string_properties_->NumberOfElements(); string_properties_ = OrderedHashSet::Add(string_properties_, key); if (prev_size < string_properties_->NumberOfElements()) { length_++; level_string_length_++; return true; } else { return false; } } bool KeyAccumulator::AddSymbolKey(Handle<Object> key) { if (symbol_properties_.is_null()) { symbol_properties_ = OrderedHashSet::Allocate(isolate_, 16); } int prev_size = symbol_properties_->NumberOfElements(); symbol_properties_ = OrderedHashSet::Add(symbol_properties_, key); if (prev_size < symbol_properties_->NumberOfElements()) { length_++; level_symbol_length_++; return true; } else { return false; } } void KeyAccumulator::AddKeys(Handle<FixedArray> array, AddKeyConversion convert) { int add_length = array->length(); if (add_length == 0) return; for (int i = 0; i < add_length; i++) { Handle<Object> current(array->get(i), isolate_); AddKey(current, convert); } } void KeyAccumulator::AddKeys(Handle<JSObject> array_like, AddKeyConversion convert) { DCHECK(array_like->IsJSArray() || array_like->HasSloppyArgumentsElements()); ElementsAccessor* accessor = array_like->GetElementsAccessor(); accessor->AddElementsToKeyAccumulator(array_like, this, convert); } void KeyAccumulator::AddKeysFromProxy(Handle<JSObject> array_like) { // Proxies define a complete list of keys with no distinction of // elements and properties, which breaks the normal assumption for the // KeyAccumulator. AddKeys(array_like, PROXY_MAGIC); // Invert the current length to indicate a present proxy, so we can ignore // element keys for this level. Otherwise we would not fully respect the order // given by the proxy. level_string_length_ = -level_string_length_; } MaybeHandle<FixedArray> FilterProxyKeys(Isolate* isolate, Handle<JSProxy> owner, Handle<FixedArray> keys, PropertyFilter filter) { if (filter == ALL_PROPERTIES) { // Nothing to do. return keys; } int store_position = 0; for (int i = 0; i < keys->length(); ++i) { Handle<Name> key(Name::cast(keys->get(i)), isolate); if (key->FilterKey(filter)) continue; // Skip this key. if (filter & ONLY_ENUMERABLE) { PropertyDescriptor desc; Maybe<bool> found = JSProxy::GetOwnPropertyDescriptor(isolate, owner, key, &desc); MAYBE_RETURN(found, MaybeHandle<FixedArray>()); if (!found.FromJust() || !desc.enumerable()) continue; // Skip this key. } // Keep this key. if (store_position != i) { keys->set(store_position, *key); } store_position++; } if (store_position == 0) return isolate->factory()->empty_fixed_array(); keys->Shrink(store_position); return keys; } // Returns "nothing" in case of exception, "true" on success. Maybe<bool> KeyAccumulator::AddKeysFromProxy(Handle<JSProxy> proxy, Handle<FixedArray> keys) { if (filter_proxy_keys_) { ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate_, keys, FilterProxyKeys(isolate_, proxy, keys, filter_), Nothing<bool>()); } // Proxies define a complete list of keys with no distinction of // elements and properties, which breaks the normal assumption for the // KeyAccumulator. if (type_ == OWN_ONLY) { ownProxyKeys_ = keys; level_string_length_ = keys->length(); length_ = level_string_length_; } else { AddKeys(keys, PROXY_MAGIC); } // Invert the current length to indicate a present proxy, so we can ignore // element keys for this level. Otherwise we would not fully respect the order // given by the proxy. level_string_length_ = -level_string_length_; return Just(true); } void KeyAccumulator::AddElementKeysFromInterceptor( Handle<JSObject> array_like) { AddKeys(array_like, CONVERT_TO_ARRAY_INDEX); // The interceptor might introduce duplicates for the current level, since // these keys get added after the objects's normal element keys. SortCurrentElementsListRemoveDuplicates(); } void KeyAccumulator::SortCurrentElementsListRemoveDuplicates() { // Sort and remove duplicates from the current elements level and adjust. // the lengths accordingly. auto last_level = elements_.back(); size_t nof_removed_keys = last_level->size(); std::sort(last_level->begin(), last_level->end()); last_level->erase(std::unique(last_level->begin(), last_level->end()), last_level->end()); // Adjust total length by the number of removed duplicates. nof_removed_keys -= last_level->size(); length_ -= static_cast<int>(nof_removed_keys); } void KeyAccumulator::SortCurrentElementsList() { if (elements_.empty()) return; auto element_keys = elements_.back(); std::sort(element_keys->begin(), element_keys->end()); } void KeyAccumulator::NextPrototype() { // Store the protoLength on the first call of this method. if (!elements_.empty()) { level_lengths_.push_back(level_string_length_); level_lengths_.push_back(level_symbol_length_); } elements_.push_back(new std::vector<uint32_t>()); level_string_length_ = 0; level_symbol_length_ = 0; } Maybe<bool> KeyAccumulator::GetKeys_Internal(Handle<JSReceiver> receiver, Handle<JSReceiver> object, KeyCollectionType type) { // Proxies have no hidden prototype and we should not trigger the // [[GetPrototypeOf]] trap on the last iteration when using // AdvanceFollowingProxies. if (type == OWN_ONLY && object->IsJSProxy()) { MAYBE_RETURN( JSProxyOwnPropertyKeys(receiver, Handle<JSProxy>::cast(object)), Nothing<bool>()); return Just(true); } PrototypeIterator::WhereToEnd end = type == OWN_ONLY ? PrototypeIterator::END_AT_NON_HIDDEN : PrototypeIterator::END_AT_NULL; for (PrototypeIterator iter(isolate_, object, PrototypeIterator::START_AT_RECEIVER, end); !iter.IsAtEnd();) { Handle<JSReceiver> current = PrototypeIterator::GetCurrent<JSReceiver>(iter); Maybe<bool> result = Just(false); // Dummy initialization. if (current->IsJSProxy()) { result = JSProxyOwnPropertyKeys(receiver, Handle<JSProxy>::cast(current)); } else { DCHECK(current->IsJSObject()); result = GetKeysFromJSObject(receiver, Handle<JSObject>::cast(current), type); } MAYBE_RETURN(result, Nothing<bool>()); if (!result.FromJust()) break; // |false| means "stop iterating". // Iterate through proxies but ignore access checks for the ALL_CAN_READ // case on API objects for OWN_ONLY keys handled in GetKeysFromJSObject. if (!iter.AdvanceFollowingProxiesIgnoringAccessChecks()) { return Nothing<bool>(); } } return Just(true); } namespace { void TrySettingEmptyEnumCache(JSReceiver* object) { Map* map = object->map(); DCHECK_EQ(kInvalidEnumCacheSentinel, map->EnumLength()); if (!map->OnlyHasSimpleProperties()) return; if (map->IsJSProxyMap()) return; if (map->NumberOfOwnDescriptors() > 0) { int number_of_enumerable_own_properties = map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS); if (number_of_enumerable_own_properties > 0) return; } DCHECK(object->IsJSObject()); map->SetEnumLength(0); } bool CheckAndInitalizeSimpleEnumCache(JSReceiver* object) { if (object->map()->EnumLength() == kInvalidEnumCacheSentinel) { TrySettingEmptyEnumCache(object); } if (object->map()->EnumLength() != 0) return false; DCHECK(object->IsJSObject()); return !JSObject::cast(object)->HasEnumerableElements(); } } // namespace void FastKeyAccumulator::Prepare() { DisallowHeapAllocation no_gc; // Directly go for the fast path for OWN_ONLY keys. if (type_ == OWN_ONLY) return; // Fully walk the prototype chain and find the last prototype with keys. is_receiver_simple_enum_ = false; has_empty_prototype_ = true; JSReceiver* first_non_empty_prototype; for (PrototypeIterator iter(isolate_, *receiver_); !iter.IsAtEnd(); iter.Advance()) { JSReceiver* current = iter.GetCurrent<JSReceiver>(); if (CheckAndInitalizeSimpleEnumCache(current)) continue; has_empty_prototype_ = false; first_non_empty_prototype = current; // TODO(cbruni): use the first non-empty prototype. USE(first_non_empty_prototype); return; } DCHECK(has_empty_prototype_); is_receiver_simple_enum_ = receiver_->map()->EnumLength() != kInvalidEnumCacheSentinel && !JSObject::cast(*receiver_)->HasEnumerableElements(); } namespace { static Handle<FixedArray> ReduceFixedArrayTo(Isolate* isolate, Handle<FixedArray> array, int length) { DCHECK_LE(length, array->length()); if (array->length() == length) return array; return isolate->factory()->CopyFixedArrayUpTo(array, length); } Handle<FixedArray> GetFastEnumPropertyKeys(Isolate* isolate, Handle<JSObject> object) { Handle<Map> map(object->map()); bool cache_enum_length = map->OnlyHasSimpleProperties(); Handle<DescriptorArray> descs = Handle<DescriptorArray>(map->instance_descriptors(), isolate); int own_property_count = map->EnumLength(); // If the enum length of the given map is set to kInvalidEnumCache, this // means that the map itself has never used the present enum cache. The // first step to using the cache is to set the enum length of the map by // counting the number of own descriptors that are ENUMERABLE_STRINGS. if (own_property_count == kInvalidEnumCacheSentinel) { own_property_count = map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS); } else { DCHECK( own_property_count == map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS)); } if (descs->HasEnumCache()) { Handle<FixedArray> keys(descs->GetEnumCache(), isolate); // In case the number of properties required in the enum are actually // present, we can reuse the enum cache. Otherwise, this means that the // enum cache was generated for a previous (smaller) version of the // Descriptor Array. In that case we regenerate the enum cache. if (own_property_count <= keys->length()) { isolate->counters()->enum_cache_hits()->Increment(); if (cache_enum_length) map->SetEnumLength(own_property_count); return ReduceFixedArrayTo(isolate, keys, own_property_count); } } if (descs->IsEmpty()) { isolate->counters()->enum_cache_hits()->Increment(); if (cache_enum_length) map->SetEnumLength(0); return isolate->factory()->empty_fixed_array(); } isolate->counters()->enum_cache_misses()->Increment(); Handle<FixedArray> storage = isolate->factory()->NewFixedArray(own_property_count); Handle<FixedArray> indices = isolate->factory()->NewFixedArray(own_property_count); int size = map->NumberOfOwnDescriptors(); int index = 0; for (int i = 0; i < size; i++) { PropertyDetails details = descs->GetDetails(i); if (details.IsDontEnum()) continue; Object* key = descs->GetKey(i); if (key->IsSymbol()) continue; storage->set(index, key); if (!indices.is_null()) { if (details.type() != DATA) { indices = Handle<FixedArray>(); } else { FieldIndex field_index = FieldIndex::ForDescriptor(*map, i); int load_by_field_index = field_index.GetLoadByFieldIndex(); indices->set(index, Smi::FromInt(load_by_field_index)); } } index++; } DCHECK(index == storage->length()); DescriptorArray::SetEnumCache(descs, isolate, storage, indices); if (cache_enum_length) { map->SetEnumLength(own_property_count); } return storage; } template <bool fast_properties> Handle<FixedArray> GetOwnKeysWithElements(Isolate* isolate, Handle<JSObject> object, GetKeysConversion convert) { Handle<FixedArray> keys; ElementsAccessor* accessor = object->GetElementsAccessor(); if (fast_properties) { keys = GetFastEnumPropertyKeys(isolate, object); } else { // TODO(cbruni): preallocate big enough array to also hold elements. keys = KeyAccumulator::GetEnumPropertyKeys(isolate, object); } Handle<FixedArray> result = accessor->PrependElementIndices(object, keys, convert, ONLY_ENUMERABLE); if (FLAG_trace_for_in_enumerate) { PrintF("| strings=%d symbols=0 elements=%u || prototypes>=1 ||\n", keys->length(), result->length() - keys->length()); } return result; } MaybeHandle<FixedArray> GetOwnKeysWithUninitializedEnumCache( Isolate* isolate, Handle<JSObject> object) { // Uninitalized enum cache Map* map = object->map(); if (object->elements() != isolate->heap()->empty_fixed_array() || object->elements() != isolate->heap()->empty_slow_element_dictionary()) { // Assume that there are elements. return MaybeHandle<FixedArray>(); } int number_of_own_descriptors = map->NumberOfOwnDescriptors(); if (number_of_own_descriptors == 0) { map->SetEnumLength(0); return isolate->factory()->empty_fixed_array(); } // We have no elements but possibly enumerable property keys, hence we can // directly initialize the enum cache. return GetFastEnumPropertyKeys(isolate, object); } bool OnlyHasSimpleProperties(Map* map) { return map->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER; } } // namespace MaybeHandle<FixedArray> FastKeyAccumulator::GetKeys(GetKeysConversion convert) { Handle<FixedArray> keys; if (GetKeysFast(convert).ToHandle(&keys)) { return keys; } return GetKeysSlow(convert); } MaybeHandle<FixedArray> FastKeyAccumulator::GetKeysFast( GetKeysConversion convert) { bool own_only = has_empty_prototype_ || type_ == OWN_ONLY; Map* map = receiver_->map(); if (!own_only || !OnlyHasSimpleProperties(map)) { return MaybeHandle<FixedArray>(); } // From this point on we are certiain to only collect own keys. DCHECK(receiver_->IsJSObject()); Handle<JSObject> object = Handle<JSObject>::cast(receiver_); // Do not try to use the enum-cache for dict-mode objects. if (map->is_dictionary_map()) { return GetOwnKeysWithElements<false>(isolate_, object, convert); } int enum_length = receiver_->map()->EnumLength(); if (enum_length == kInvalidEnumCacheSentinel) { Handle<FixedArray> keys; // Try initializing the enum cache and return own properties. if (GetOwnKeysWithUninitializedEnumCache(isolate_, object) .ToHandle(&keys)) { if (FLAG_trace_for_in_enumerate) { PrintF("| strings=%d symbols=0 elements=0 || prototypes>=1 ||\n", keys->length()); } is_receiver_simple_enum_ = object->map()->EnumLength() != kInvalidEnumCacheSentinel; return keys; } } // The properties-only case failed because there were probably elements on the // receiver. return GetOwnKeysWithElements<true>(isolate_, object, convert); } MaybeHandle<FixedArray> FastKeyAccumulator::GetKeysSlow( GetKeysConversion convert) { return JSReceiver::GetKeys(receiver_, type_, ENUMERABLE_STRINGS, KEEP_NUMBERS, filter_proxy_keys_); } enum IndexedOrNamed { kIndexed, kNamed }; // Returns |true| on success, |nothing| on exception. template <class Callback, IndexedOrNamed type> static Maybe<bool> GetKeysFromInterceptor(Handle<JSReceiver> receiver, Handle<JSObject> object, KeyAccumulator* accumulator) { Isolate* isolate = accumulator->isolate(); if (type == kIndexed) { if (!object->HasIndexedInterceptor()) return Just(true); } else { if (!object->HasNamedInterceptor()) return Just(true); } Handle<InterceptorInfo> interceptor(type == kIndexed ? object->GetIndexedInterceptor() : object->GetNamedInterceptor(), isolate); if ((accumulator->filter() & ONLY_ALL_CAN_READ) && !interceptor->all_can_read()) { return Just(true); } PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *object, Object::DONT_THROW); Handle<JSObject> result; if (!interceptor->enumerator()->IsUndefined()) { Callback enum_fun = v8::ToCData<Callback>(interceptor->enumerator()); const char* log_tag = type == kIndexed ? "interceptor-indexed-enum" : "interceptor-named-enum"; LOG(isolate, ApiObjectAccess(log_tag, *object)); result = args.Call(enum_fun); } RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>()); if (result.is_null()) return Just(true); DCHECK(result->IsJSArray() || result->HasSloppyArgumentsElements()); // The accumulator takes care of string/symbol filtering. if (type == kIndexed) { accumulator->AddElementKeysFromInterceptor(result); } else { accumulator->AddKeys(result, DO_NOT_CONVERT); } return Just(true); } void KeyAccumulator::CollectOwnElementKeys(Handle<JSObject> object) { if (filter_ & SKIP_STRINGS) return; ElementsAccessor* accessor = object->GetElementsAccessor(); accessor->CollectElementIndices(object, this, kMaxUInt32, filter_, 0); } void KeyAccumulator::CollectOwnPropertyNames(Handle<JSObject> object) { if (object->HasFastProperties()) { int real_size = object->map()->NumberOfOwnDescriptors(); Handle<DescriptorArray> descs(object->map()->instance_descriptors(), isolate_); for (int i = 0; i < real_size; i++) { PropertyDetails details = descs->GetDetails(i); if ((details.attributes() & filter_) != 0) continue; if (filter_ & ONLY_ALL_CAN_READ) { if (details.kind() != kAccessor) continue; Object* accessors = descs->GetValue(i); if (!accessors->IsAccessorInfo()) continue; if (!AccessorInfo::cast(accessors)->all_can_read()) continue; } Name* key = descs->GetKey(i); if (key->FilterKey(filter_)) continue; this->AddKey(key, DO_NOT_CONVERT); } } else if (object->IsJSGlobalObject()) { GlobalDictionary::CollectKeysTo( handle(object->global_dictionary(), isolate_), this, filter_); } else { NameDictionary::CollectKeysTo( handle(object->property_dictionary(), isolate_), this, filter_); } } // Returns |true| on success, |false| if prototype walking should be stopped, // |nothing| if an exception was thrown. Maybe<bool> KeyAccumulator::GetKeysFromJSObject(Handle<JSReceiver> receiver, Handle<JSObject> object, KeyCollectionType type) { this->NextPrototype(); // Check access rights if required. if (object->IsAccessCheckNeeded() && !isolate_->MayAccess(handle(isolate_->context()), object)) { // The cross-origin spec says that [[Enumerate]] shall return an empty // iterator when it doesn't have access... if (type == INCLUDE_PROTOS) { return Just(false); } // ...whereas [[OwnPropertyKeys]] shall return whitelisted properties. DCHECK_EQ(OWN_ONLY, type); filter_ = static_cast<PropertyFilter>(filter_ | ONLY_ALL_CAN_READ); } this->CollectOwnElementKeys(object); // Add the element keys from the interceptor. Maybe<bool> success = GetKeysFromInterceptor<v8::IndexedPropertyEnumeratorCallback, kIndexed>( receiver, object, this); MAYBE_RETURN(success, Nothing<bool>()); if (filter_ == ENUMERABLE_STRINGS) { Handle<FixedArray> enum_keys = KeyAccumulator::GetEnumPropertyKeys(isolate_, object); this->AddKeys(enum_keys, DO_NOT_CONVERT); } else { this->CollectOwnPropertyNames(object); } // Add the property keys from the interceptor. success = GetKeysFromInterceptor<v8::GenericNamedPropertyEnumeratorCallback, kNamed>(receiver, object, this); MAYBE_RETURN(success, Nothing<bool>()); return Just(true); } // static Handle<FixedArray> KeyAccumulator::GetEnumPropertyKeys( Isolate* isolate, Handle<JSObject> object) { if (object->HasFastProperties()) { return GetFastEnumPropertyKeys(isolate, object); } else if (object->IsJSGlobalObject()) { Handle<GlobalDictionary> dictionary(object->global_dictionary(), isolate); int length = dictionary->NumberOfEnumElements(); if (length == 0) { return isolate->factory()->empty_fixed_array(); } Handle<FixedArray> storage = isolate->factory()->NewFixedArray(length); dictionary->CopyEnumKeysTo(*storage); return storage; } else { Handle<NameDictionary> dictionary(object->property_dictionary(), isolate); int length = dictionary->NumberOfEnumElements(); if (length == 0) { return isolate->factory()->empty_fixed_array(); } Handle<FixedArray> storage = isolate->factory()->NewFixedArray(length); dictionary->CopyEnumKeysTo(*storage); return storage; } } // ES6 9.5.12 // Returns |true| on success, |nothing| in case of exception. Maybe<bool> KeyAccumulator::JSProxyOwnPropertyKeys(Handle<JSReceiver> receiver, Handle<JSProxy> proxy) { STACK_CHECK(isolate_, Nothing<bool>()); // 1. Let handler be the value of the [[ProxyHandler]] internal slot of O. Handle<Object> handler(proxy->handler(), isolate_); // 2. If handler is null, throw a TypeError exception. // 3. Assert: Type(handler) is Object. if (proxy->IsRevoked()) { isolate_->Throw(*isolate_->factory()->NewTypeError( MessageTemplate::kProxyRevoked, isolate_->factory()->ownKeys_string())); return Nothing<bool>(); } // 4. Let target be the value of the [[ProxyTarget]] internal slot of O. Handle<JSReceiver> target(proxy->target(), isolate_); // 5. Let trap be ? GetMethod(handler, "ownKeys"). Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate_, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler), isolate_->factory()->ownKeys_string()), Nothing<bool>()); // 6. If trap is undefined, then if (trap->IsUndefined()) { // 6a. Return target.[[OwnPropertyKeys]](). return this->GetKeys_Internal(receiver, target, OWN_ONLY); } // 7. Let trapResultArray be Call(trap, handler, «target»). Handle<Object> trap_result_array; Handle<Object> args[] = {target}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate_, trap_result_array, Execution::Call(isolate_, trap, handler, arraysize(args), args), Nothing<bool>()); // 8. Let trapResult be ? CreateListFromArrayLike(trapResultArray, // «String, Symbol»). Handle<FixedArray> trap_result; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate_, trap_result, Object::CreateListFromArrayLike(isolate_, trap_result_array, ElementTypes::kStringAndSymbol), Nothing<bool>()); // 9. Let extensibleTarget be ? IsExtensible(target). Maybe<bool> maybe_extensible = JSReceiver::IsExtensible(target); MAYBE_RETURN(maybe_extensible, Nothing<bool>()); bool extensible_target = maybe_extensible.FromJust(); // 10. Let targetKeys be ? target.[[OwnPropertyKeys]](). Handle<FixedArray> target_keys; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate_, target_keys, JSReceiver::OwnPropertyKeys(target), Nothing<bool>()); // 11. (Assert) // 12. Let targetConfigurableKeys be an empty List. // To save memory, we're re-using target_keys and will modify it in-place. Handle<FixedArray> target_configurable_keys = target_keys; // 13. Let targetNonconfigurableKeys be an empty List. Handle<FixedArray> target_nonconfigurable_keys = isolate_->factory()->NewFixedArray(target_keys->length()); int nonconfigurable_keys_length = 0; // 14. Repeat, for each element key of targetKeys: for (int i = 0; i < target_keys->length(); ++i) { // 14a. Let desc be ? target.[[GetOwnProperty]](key). PropertyDescriptor desc; Maybe<bool> found = JSReceiver::GetOwnPropertyDescriptor( isolate_, target, handle(target_keys->get(i), isolate_), &desc); MAYBE_RETURN(found, Nothing<bool>()); // 14b. If desc is not undefined and desc.[[Configurable]] is false, then if (found.FromJust() && !desc.configurable()) { // 14b i. Append key as an element of targetNonconfigurableKeys. target_nonconfigurable_keys->set(nonconfigurable_keys_length, target_keys->get(i)); nonconfigurable_keys_length++; // The key was moved, null it out in the original list. target_keys->set(i, Smi::FromInt(0)); } else { // 14c. Else, // 14c i. Append key as an element of targetConfigurableKeys. // (No-op, just keep it in |target_keys|.) } } this->NextPrototype(); // Prepare for accumulating keys. // 15. If extensibleTarget is true and targetNonconfigurableKeys is empty, // then: if (extensible_target && nonconfigurable_keys_length == 0) { // 15a. Return trapResult. return this->AddKeysFromProxy(proxy, trap_result); } // 16. Let uncheckedResultKeys be a new List which is a copy of trapResult. Zone set_zone(isolate_->allocator()); const int kPresent = 1; const int kGone = 0; IdentityMap<int> unchecked_result_keys(isolate_->heap(), &set_zone); int unchecked_result_keys_size = 0; for (int i = 0; i < trap_result->length(); ++i) { DCHECK(trap_result->get(i)->IsUniqueName()); Object* key = trap_result->get(i); int* entry = unchecked_result_keys.Get(key); if (*entry != kPresent) { *entry = kPresent; unchecked_result_keys_size++; } } // 17. Repeat, for each key that is an element of targetNonconfigurableKeys: for (int i = 0; i < nonconfigurable_keys_length; ++i) { Object* key = target_nonconfigurable_keys->get(i); // 17a. If key is not an element of uncheckedResultKeys, throw a // TypeError exception. int* found = unchecked_result_keys.Find(key); if (found == nullptr || *found == kGone) { isolate_->Throw(*isolate_->factory()->NewTypeError( MessageTemplate::kProxyOwnKeysMissing, handle(key, isolate_))); return Nothing<bool>(); } // 17b. Remove key from uncheckedResultKeys. *found = kGone; unchecked_result_keys_size--; } // 18. If extensibleTarget is true, return trapResult. if (extensible_target) { return this->AddKeysFromProxy(proxy, trap_result); } // 19. Repeat, for each key that is an element of targetConfigurableKeys: for (int i = 0; i < target_configurable_keys->length(); ++i) { Object* key = target_configurable_keys->get(i); if (key->IsSmi()) continue; // Zapped entry, was nonconfigurable. // 19a. If key is not an element of uncheckedResultKeys, throw a // TypeError exception. int* found = unchecked_result_keys.Find(key); if (found == nullptr || *found == kGone) { isolate_->Throw(*isolate_->factory()->NewTypeError( MessageTemplate::kProxyOwnKeysMissing, handle(key, isolate_))); return Nothing<bool>(); } // 19b. Remove key from uncheckedResultKeys. *found = kGone; unchecked_result_keys_size--; } // 20. If uncheckedResultKeys is not empty, throw a TypeError exception. if (unchecked_result_keys_size != 0) { DCHECK_GT(unchecked_result_keys_size, 0); isolate_->Throw(*isolate_->factory()->NewTypeError( MessageTemplate::kProxyOwnKeysNonExtensible)); return Nothing<bool>(); } // 21. Return trapResult. return this->AddKeysFromProxy(proxy, trap_result); } } // namespace internal } // namespace v8