// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H #error This header must be included via macro-assembler.h #endif #ifndef V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_ #define V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_ #include "src/codegen/assembler.h" #include "src/codegen/mips64/assembler-mips64.h" #include "src/common/globals.h" #include "src/objects/tagged-index.h" namespace v8 { namespace internal { // Forward declarations. enum class AbortReason : uint8_t; // Reserved Register Usage Summary. // // Registers t8, t9, and at are reserved for use by the MacroAssembler. // // The programmer should know that the MacroAssembler may clobber these three, // but won't touch other registers except in special cases. // // Per the MIPS ABI, register t9 must be used for indirect function call // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when // trying to update gp register for position-independent-code. Whenever // MIPS generated code calls C code, it must be via t9 register. // Flags used for LeaveExitFrame function. enum LeaveExitFrameMode { EMIT_RETURN = true, NO_EMIT_RETURN = false }; // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls. enum BranchDelaySlot { USE_DELAY_SLOT, PROTECT }; // Flags used for the li macro-assembler function. enum LiFlags { // If the constant value can be represented in just 16 bits, then // optimize the li to use a single instruction, rather than lui/ori/dsll // sequence. A number of other optimizations that emits less than // maximum number of instructions exists. OPTIMIZE_SIZE = 0, // Always use 6 instructions (lui/ori/dsll sequence) for release 2 or 4 // instructions for release 6 (lui/ori/dahi/dati), even if the constant // could be loaded with just one, so that this value is patchable later. CONSTANT_SIZE = 1, // For address loads only 4 instruction are required. Used to mark // constant load that will be used as address without relocation // information. It ensures predictable code size, so specific sites // in code are patchable. ADDRESS_LOAD = 2 }; enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved }; Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg, Register reg3 = no_reg, Register reg4 = no_reg, Register reg5 = no_reg, Register reg6 = no_reg); // ----------------------------------------------------------------------------- // Static helper functions. #if defined(V8_TARGET_LITTLE_ENDIAN) #define SmiWordOffset(offset) (offset + kPointerSize / 2) #else #define SmiWordOffset(offset) offset #endif // Generate a MemOperand for loading a field from an object. inline MemOperand FieldMemOperand(Register object, int offset) { return MemOperand(object, offset - kHeapObjectTag); } // Generate a MemOperand for storing arguments 5..N on the stack // when calling CallCFunction(). // TODO(plind): Currently ONLY used for O32. Should be fixed for // n64, and used in RegExp code, and other places // with more than 8 arguments. inline MemOperand CFunctionArgumentOperand(int index) { DCHECK_GT(index, kCArgSlotCount); // Argument 5 takes the slot just past the four Arg-slots. int offset = (index - 5) * kPointerSize + kCArgsSlotsSize; return MemOperand(sp, offset); } class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase { public: using TurboAssemblerBase::TurboAssemblerBase; // Activation support. void EnterFrame(StackFrame::Type type); void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { // Out-of-line constant pool not implemented on mips. UNREACHABLE(); } void LeaveFrame(StackFrame::Type type); void AllocateStackSpace(Register bytes) { Dsubu(sp, sp, bytes); } void AllocateStackSpace(int bytes) { DCHECK_GE(bytes, 0); if (bytes == 0) return; Dsubu(sp, sp, Operand(bytes)); } // Generates function and stub prologue code. void StubPrologue(StackFrame::Type type); void Prologue(); void InitializeRootRegister() { ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); li(kRootRegister, Operand(isolate_root)); } // Jump unconditionally to given label. // We NEED a nop in the branch delay slot, as it used by v8, for example in // CodeGenerator::ProcessDeferred(). // Currently the branch delay slot is filled by the MacroAssembler. // Use rather b(Label) for code generation. void jmp(Label* L) { Branch(L); } // ------------------------------------------------------------------------- // Debugging. void Trap(); void DebugBreak(); // Calls Abort(msg) if the condition cc is not satisfied. // Use --debug_code to enable. void Assert(Condition cc, AbortReason reason, Register rs, Operand rt); // Like Assert(), but always enabled. void Check(Condition cc, AbortReason reason, Register rs, Operand rt); // Print a message to stdout and abort execution. void Abort(AbortReason msg); // Arguments macros. #define COND_TYPED_ARGS Condition cond, Register r1, const Operand &r2 #define COND_ARGS cond, r1, r2 // Cases when relocation is not needed. #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \ void Name(target_type target, BranchDelaySlot bd = PROTECT); \ inline void Name(BranchDelaySlot bd, target_type target) { \ Name(target, bd); \ } \ void Name(target_type target, COND_TYPED_ARGS, \ BranchDelaySlot bd = PROTECT); \ inline void Name(BranchDelaySlot bd, target_type target, COND_TYPED_ARGS) { \ Name(target, COND_ARGS, bd); \ } #define DECLARE_BRANCH_PROTOTYPES(Name) \ DECLARE_NORELOC_PROTOTYPE(Name, Label*) \ DECLARE_NORELOC_PROTOTYPE(Name, int32_t) DECLARE_BRANCH_PROTOTYPES(Branch) DECLARE_BRANCH_PROTOTYPES(BranchAndLink) DECLARE_BRANCH_PROTOTYPES(BranchShort) #undef DECLARE_BRANCH_PROTOTYPES #undef COND_TYPED_ARGS #undef COND_ARGS // Floating point branches void CompareF32(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) { CompareF(S, cc, cmp1, cmp2); } void CompareIsNanF32(FPURegister cmp1, FPURegister cmp2) { CompareIsNanF(S, cmp1, cmp2); } void CompareF64(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) { CompareF(D, cc, cmp1, cmp2); } void CompareIsNanF64(FPURegister cmp1, FPURegister cmp2) { CompareIsNanF(D, cmp1, cmp2); } void BranchTrueShortF(Label* target, BranchDelaySlot bd = PROTECT); void BranchFalseShortF(Label* target, BranchDelaySlot bd = PROTECT); void BranchTrueF(Label* target, BranchDelaySlot bd = PROTECT); void BranchFalseF(Label* target, BranchDelaySlot bd = PROTECT); // MSA branches void BranchMSA(Label* target, MSABranchDF df, MSABranchCondition cond, MSARegister wt, BranchDelaySlot bd = PROTECT); void BranchLong(int32_t offset, BranchDelaySlot bdslot = PROTECT); void Branch(Label* L, Condition cond, Register rs, RootIndex index, BranchDelaySlot bdslot = PROTECT); static int InstrCountForLi64Bit(int64_t value); inline void LiLower32BitHelper(Register rd, Operand j); void li_optimized(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); // Load int32 in the rd register. void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) { li(rd, Operand(j), mode); } // inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) { // li(rd, Operand(static_cast<int64_t>(j)), mode); // } void li(Register dst, Handle<HeapObject> value, LiFlags mode = OPTIMIZE_SIZE); void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE); void li(Register dst, const StringConstantBase* string, LiFlags mode = OPTIMIZE_SIZE); void LoadFromConstantsTable(Register destination, int constant_index) final; void LoadRootRegisterOffset(Register destination, intptr_t offset) final; void LoadRootRelative(Register destination, int32_t offset) final; inline void Move(Register output, MemOperand operand) { Ld(output, operand); } // Jump, Call, and Ret pseudo instructions implementing inter-working. #define COND_ARGS \ Condition cond = al, Register rs = zero_reg, \ const Operand &rt = Operand(zero_reg), \ BranchDelaySlot bd = PROTECT void Jump(Register target, COND_ARGS); void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS); void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS); // Deffer from li, this method save target to the memory, and then load // it to register use ld, it can be used in wasm jump table for concurrent // patching. void PatchAndJump(Address target); void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS); void Jump(const ExternalReference& reference); void Call(Register target, COND_ARGS); void Call(Address target, RelocInfo::Mode rmode, COND_ARGS); void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, COND_ARGS); void Call(Label* target); void LoadAddress(Register dst, Label* target); // Load the builtin given by the Smi in |builtin_index| into the same // register. void LoadEntryFromBuiltinIndex(Register builtin); void LoadEntryFromBuiltin(Builtin builtin, Register destination); MemOperand EntryFromBuiltinAsOperand(Builtin builtin); void CallBuiltinByIndex(Register builtin); void CallBuiltin(Builtin builtin); void LoadCodeObjectEntry(Register destination, Register code_object); void CallCodeObject(Register code_object); void JumpCodeObject(Register code_object, JumpMode jump_mode = JumpMode::kJump); // Generates an instruction sequence s.t. the return address points to the // instruction following the call. // The return address on the stack is used by frame iteration. void StoreReturnAddressAndCall(Register target); void CallForDeoptimization(Builtin target, int deopt_id, Label* exit, DeoptimizeKind kind, Label* ret, Label* jump_deoptimization_entry_label); void Ret(COND_ARGS); inline void Ret(BranchDelaySlot bd, Condition cond = al, Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) { Ret(cond, rs, rt, bd); } // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the sp register. void Drop(int count, Condition cond = cc_always, Register reg = no_reg, const Operand& op = Operand(no_reg)); enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver }; enum ArgumentsCountType { kCountIsInteger, kCountIsSmi, kCountIsBytes }; void DropArguments(Register count, ArgumentsCountType type, ArgumentsCountMode mode, Register scratch = no_reg); void DropArgumentsAndPushNewReceiver(Register argc, Register receiver, ArgumentsCountType type, ArgumentsCountMode mode, Register scratch = no_reg); // Trivial case of DropAndRet that utilizes the delay slot. void DropAndRet(int drop); void DropAndRet(int drop, Condition cond, Register reg, const Operand& op); void Ld(Register rd, const MemOperand& rs); void Sd(Register rd, const MemOperand& rs); void push(Register src) { Daddu(sp, sp, Operand(-kPointerSize)); Sd(src, MemOperand(sp, 0)); } void Push(Register src) { push(src); } void Push(Handle<HeapObject> handle); void Push(Smi smi); // Push two registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2) { Dsubu(sp, sp, Operand(2 * kPointerSize)); Sd(src1, MemOperand(sp, 1 * kPointerSize)); Sd(src2, MemOperand(sp, 0 * kPointerSize)); } // Push three registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3) { Dsubu(sp, sp, Operand(3 * kPointerSize)); Sd(src1, MemOperand(sp, 2 * kPointerSize)); Sd(src2, MemOperand(sp, 1 * kPointerSize)); Sd(src3, MemOperand(sp, 0 * kPointerSize)); } // Push four registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3, Register src4) { Dsubu(sp, sp, Operand(4 * kPointerSize)); Sd(src1, MemOperand(sp, 3 * kPointerSize)); Sd(src2, MemOperand(sp, 2 * kPointerSize)); Sd(src3, MemOperand(sp, 1 * kPointerSize)); Sd(src4, MemOperand(sp, 0 * kPointerSize)); } // Push five registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3, Register src4, Register src5) { Dsubu(sp, sp, Operand(5 * kPointerSize)); Sd(src1, MemOperand(sp, 4 * kPointerSize)); Sd(src2, MemOperand(sp, 3 * kPointerSize)); Sd(src3, MemOperand(sp, 2 * kPointerSize)); Sd(src4, MemOperand(sp, 1 * kPointerSize)); Sd(src5, MemOperand(sp, 0 * kPointerSize)); } void Push(Register src, Condition cond, Register tst1, Register tst2) { // Since we don't have conditional execution we use a Branch. Branch(3, cond, tst1, Operand(tst2)); Dsubu(sp, sp, Operand(kPointerSize)); Sd(src, MemOperand(sp, 0)); } enum PushArrayOrder { kNormal, kReverse }; void PushArray(Register array, Register size, Register scratch, Register scratch2, PushArrayOrder order = kNormal); void MaybeSaveRegisters(RegList registers); void MaybeRestoreRegisters(RegList registers); void CallEphemeronKeyBarrier(Register object, Register slot_address, SaveFPRegsMode fp_mode); void CallRecordWriteStubSaveRegisters( Register object, Register slot_address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, StubCallMode mode = StubCallMode::kCallBuiltinPointer); void CallRecordWriteStub( Register object, Register slot_address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, StubCallMode mode = StubCallMode::kCallBuiltinPointer); // Push multiple registers on the stack. // Registers are saved in numerical order, with higher numbered registers // saved in higher memory addresses. void MultiPush(RegList regs); void MultiPushFPU(DoubleRegList regs); void MultiPushMSA(DoubleRegList regs); // Calculate how much stack space (in bytes) are required to store caller // registers excluding those specified in the arguments. int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg) const; // Push caller saved registers on the stack, and return the number of bytes // stack pointer is adjusted. int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); // Restore caller saved registers from the stack, and return the number of // bytes stack pointer is adjusted. int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); void pop(Register dst) { Ld(dst, MemOperand(sp, 0)); Daddu(sp, sp, Operand(kPointerSize)); } void Pop(Register dst) { pop(dst); } // Pop two registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2) { DCHECK(src1 != src2); Ld(src2, MemOperand(sp, 0 * kPointerSize)); Ld(src1, MemOperand(sp, 1 * kPointerSize)); Daddu(sp, sp, 2 * kPointerSize); } // Pop three registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2, Register src3) { Ld(src3, MemOperand(sp, 0 * kPointerSize)); Ld(src2, MemOperand(sp, 1 * kPointerSize)); Ld(src1, MemOperand(sp, 2 * kPointerSize)); Daddu(sp, sp, 3 * kPointerSize); } void Pop(uint32_t count = 1) { Daddu(sp, sp, Operand(count * kPointerSize)); } // Pops multiple values from the stack and load them in the // registers specified in regs. Pop order is the opposite as in MultiPush. void MultiPop(RegList regs); void MultiPopFPU(DoubleRegList regs); void MultiPopMSA(DoubleRegList regs); #define DEFINE_INSTRUCTION(instr) \ void instr(Register rd, Register rs, const Operand& rt); \ void instr(Register rd, Register rs, Register rt) { \ instr(rd, rs, Operand(rt)); \ } \ void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); } #define DEFINE_INSTRUCTION2(instr) \ void instr(Register rs, const Operand& rt); \ void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \ void instr(Register rs, int32_t j) { instr(rs, Operand(j)); } DEFINE_INSTRUCTION(Addu) DEFINE_INSTRUCTION(Daddu) DEFINE_INSTRUCTION(Div) DEFINE_INSTRUCTION(Divu) DEFINE_INSTRUCTION(Ddivu) DEFINE_INSTRUCTION(Mod) DEFINE_INSTRUCTION(Modu) DEFINE_INSTRUCTION(Ddiv) DEFINE_INSTRUCTION(Subu) DEFINE_INSTRUCTION(Dsubu) DEFINE_INSTRUCTION(Dmod) DEFINE_INSTRUCTION(Dmodu) DEFINE_INSTRUCTION(Mul) DEFINE_INSTRUCTION(Mulh) DEFINE_INSTRUCTION(Mulhu) DEFINE_INSTRUCTION(Dmul) DEFINE_INSTRUCTION(Dmulh) DEFINE_INSTRUCTION2(Mult) DEFINE_INSTRUCTION2(Dmult) DEFINE_INSTRUCTION2(Multu) DEFINE_INSTRUCTION2(Dmultu) DEFINE_INSTRUCTION2(Div) DEFINE_INSTRUCTION2(Ddiv) DEFINE_INSTRUCTION2(Divu) DEFINE_INSTRUCTION2(Ddivu) DEFINE_INSTRUCTION(And) DEFINE_INSTRUCTION(Or) DEFINE_INSTRUCTION(Xor) DEFINE_INSTRUCTION(Nor) DEFINE_INSTRUCTION2(Neg) DEFINE_INSTRUCTION(Slt) DEFINE_INSTRUCTION(Sltu) DEFINE_INSTRUCTION(Sle) DEFINE_INSTRUCTION(Sleu) DEFINE_INSTRUCTION(Sgt) DEFINE_INSTRUCTION(Sgtu) DEFINE_INSTRUCTION(Sge) DEFINE_INSTRUCTION(Sgeu) // MIPS32 R2 instruction macro. DEFINE_INSTRUCTION(Ror) DEFINE_INSTRUCTION(Dror) #undef DEFINE_INSTRUCTION #undef DEFINE_INSTRUCTION2 #undef DEFINE_INSTRUCTION3 void SmiUntag(Register dst, const MemOperand& src); void SmiUntag(Register dst, Register src) { if (SmiValuesAre32Bits()) { dsra32(dst, src, kSmiShift - 32); } else { DCHECK(SmiValuesAre31Bits()); sra(dst, src, kSmiShift); } } void SmiUntag(Register reg) { SmiUntag(reg, reg); } // Left-shifted from int32 equivalent of Smi. void SmiScale(Register dst, Register src, int scale) { if (SmiValuesAre32Bits()) { // The int portion is upper 32-bits of 64-bit word. dsra(dst, src, kSmiShift - scale); } else { DCHECK(SmiValuesAre31Bits()); DCHECK_GE(scale, kSmiTagSize); sll(dst, src, scale - kSmiTagSize); } } // On MIPS64, we should sign-extend 32-bit values. void SmiToInt32(Register smi) { if (FLAG_enable_slow_asserts) { AssertSmi(smi); } DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits()); SmiUntag(smi); } // Abort execution if argument is a smi, enabled via --debug-code. void AssertNotSmi(Register object); void AssertSmi(Register object); int CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments); // Before calling a C-function from generated code, align arguments on stack // and add space for the four mips argument slots. // After aligning the frame, non-register arguments must be stored on the // stack, after the argument-slots using helper: CFunctionArgumentOperand(). // The argument count assumes all arguments are word sized. // Some compilers/platforms require the stack to be aligned when calling // C++ code. // Needs a scratch register to do some arithmetic. This register will be // trashed. void PrepareCallCFunction(int num_reg_arguments, int num_double_registers, Register scratch); void PrepareCallCFunction(int num_reg_arguments, Register scratch); // Arguments 1-4 are placed in registers a0 through a3 respectively. // Arguments 5..n are stored to stack using following: // Sw(a4, CFunctionArgumentOperand(5)); // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); void CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments); void CallCFunction(Register function, int num_reg_arguments, int num_double_arguments); void MovFromFloatResult(DoubleRegister dst); void MovFromFloatParameter(DoubleRegister dst); // There are two ways of passing double arguments on MIPS, depending on // whether soft or hard floating point ABI is used. These functions // abstract parameter passing for the three different ways we call // C functions from generated code. void MovToFloatParameter(DoubleRegister src); void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2); void MovToFloatResult(DoubleRegister src); // See comments at the beginning of Builtins::Generate_CEntry. inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); } inline void PrepareCEntryFunction(const ExternalReference& ref) { li(a1, ref); } void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met); #undef COND_ARGS // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. See ECMA-262 9.5: ToInt32. // Exits with 'result' holding the answer. void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result, DoubleRegister double_input, StubCallMode stub_mode); // Conditional move. void Movz(Register rd, Register rs, Register rt); void Movn(Register rd, Register rs, Register rt); void Movt(Register rd, Register rs, uint16_t cc = 0); void Movf(Register rd, Register rs, uint16_t cc = 0); void LoadZeroIfFPUCondition(Register dest); void LoadZeroIfNotFPUCondition(Register dest); void LoadZeroIfConditionNotZero(Register dest, Register condition); void LoadZeroIfConditionZero(Register dest, Register condition); void LoadZeroOnCondition(Register rd, Register rs, const Operand& rt, Condition cond); void Clz(Register rd, Register rs); void Dclz(Register rd, Register rs); void Ctz(Register rd, Register rs); void Dctz(Register rd, Register rs); void Popcnt(Register rd, Register rs); void Dpopcnt(Register rd, Register rs); // MIPS64 R2 instruction macro. void Ext(Register rt, Register rs, uint16_t pos, uint16_t size); void Dext(Register rt, Register rs, uint16_t pos, uint16_t size); void Ins(Register rt, Register rs, uint16_t pos, uint16_t size); void Dins(Register rt, Register rs, uint16_t pos, uint16_t size); void ExtractBits(Register dest, Register source, Register pos, int size, bool sign_extend = false); void InsertBits(Register dest, Register source, Register pos, int size); void Neg_s(FPURegister fd, FPURegister fs); void Neg_d(FPURegister fd, FPURegister fs); // MIPS64 R6 instruction macros. void Bovc(Register rt, Register rs, Label* L); void Bnvc(Register rt, Register rs, Label* L); // Convert single to unsigned word. void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch); void Trunc_uw_s(Register rd, FPURegister fs, FPURegister scratch); // Change endianness void ByteSwapSigned(Register dest, Register src, int operand_size); void ByteSwapUnsigned(Register dest, Register src, int operand_size); void Ulh(Register rd, const MemOperand& rs); void Ulhu(Register rd, const MemOperand& rs); void Ush(Register rd, const MemOperand& rs, Register scratch); void Ulw(Register rd, const MemOperand& rs); void Ulwu(Register rd, const MemOperand& rs); void Usw(Register rd, const MemOperand& rs); void Uld(Register rd, const MemOperand& rs); void Usd(Register rd, const MemOperand& rs); void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch); void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch); void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch); void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch); void Lb(Register rd, const MemOperand& rs); void Lbu(Register rd, const MemOperand& rs); void Sb(Register rd, const MemOperand& rs); void Lh(Register rd, const MemOperand& rs); void Lhu(Register rd, const MemOperand& rs); void Sh(Register rd, const MemOperand& rs); void Lw(Register rd, const MemOperand& rs); void Lwu(Register rd, const MemOperand& rs); void Sw(Register rd, const MemOperand& rs); void Lwc1(FPURegister fd, const MemOperand& src); void Swc1(FPURegister fs, const MemOperand& dst); void Ldc1(FPURegister fd, const MemOperand& src); void Sdc1(FPURegister fs, const MemOperand& dst); void Ll(Register rd, const MemOperand& rs); void Sc(Register rd, const MemOperand& rs); void Lld(Register rd, const MemOperand& rs); void Scd(Register rd, const MemOperand& rs); // Perform a floating-point min or max operation with the // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt. // Some cases, typically NaNs or +/-0.0, are expected to be rare and are // handled in out-of-line code. The specific behaviour depends on supported // instructions. // // These functions assume (and assert) that src1!=src2. It is permitted // for the result to alias either input register. void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2, Label* out_of_line); void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2, Label* out_of_line); void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2, Label* out_of_line); void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2, Label* out_of_line); // Generate out-of-line cases for the macros above. void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); void Float64MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); void Float64MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; } void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); } inline void Move(Register dst, Handle<HeapObject> handle) { li(dst, handle); } inline void Move(Register dst, Smi smi) { li(dst, Operand(smi)); } inline void Move(Register dst, Register src) { if (dst != src) { mov(dst, src); } } inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); } inline void Move(Register dst_low, Register dst_high, FPURegister src) { mfc1(dst_low, src); mfhc1(dst_high, src); } inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); } inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); } inline void FmoveHigh(Register dst_high, FPURegister src) { mfhc1(dst_high, src); } inline void FmoveHigh(FPURegister dst, Register src_high) { mthc1(src_high, dst); } inline void FmoveLow(Register dst_low, FPURegister src) { mfc1(dst_low, src); } void FmoveLow(FPURegister dst, Register src_low); inline void Move(FPURegister dst, Register src_low, Register src_high) { mtc1(src_low, dst); mthc1(src_high, dst); } inline void Move_d(FPURegister dst, FPURegister src) { if (dst != src) { mov_d(dst, src); } } inline void Move_s(FPURegister dst, FPURegister src) { if (dst != src) { mov_s(dst, src); } } void Move(FPURegister dst, float imm) { Move(dst, bit_cast<uint32_t>(imm)); } void Move(FPURegister dst, double imm) { Move(dst, bit_cast<uint64_t>(imm)); } void Move(FPURegister dst, uint32_t src); void Move(FPURegister dst, uint64_t src); // DaddOverflow sets overflow register to a negative value if // overflow occured, otherwise it is zero or positive void DaddOverflow(Register dst, Register left, const Operand& right, Register overflow); // DsubOverflow sets overflow register to a negative value if // overflow occured, otherwise it is zero or positive void DsubOverflow(Register dst, Register left, const Operand& right, Register overflow); // MulOverflow sets overflow register to zero if no overflow occured void MulOverflow(Register dst, Register left, const Operand& right, Register overflow); // Number of instructions needed for calculation of switch table entry address #ifdef _MIPS_ARCH_MIPS64R6 static const int kSwitchTablePrologueSize = 6; #else static const int kSwitchTablePrologueSize = 11; #endif // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a // functor/function with 'Label *func(size_t index)' declaration. template <typename Func> void GenerateSwitchTable(Register index, size_t case_count, Func GetLabelFunction); // Load an object from the root table. void LoadRoot(Register destination, RootIndex index) final; void LoadRoot(Register destination, RootIndex index, Condition cond, Register src1, const Operand& src2); void LoadMap(Register destination, Register object); // If the value is a NaN, canonicalize the value else, do nothing. void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src); // --------------------------------------------------------------------------- // FPU macros. These do not handle special cases like NaN or +- inf. // Convert unsigned word to double. void Cvt_d_uw(FPURegister fd, FPURegister fs); void Cvt_d_uw(FPURegister fd, Register rs); // Convert unsigned long to double. void Cvt_d_ul(FPURegister fd, FPURegister fs); void Cvt_d_ul(FPURegister fd, Register rs); // Convert unsigned word to float. void Cvt_s_uw(FPURegister fd, FPURegister fs); void Cvt_s_uw(FPURegister fd, Register rs); // Convert unsigned long to float. void Cvt_s_ul(FPURegister fd, FPURegister fs); void Cvt_s_ul(FPURegister fd, Register rs); // Convert double to unsigned word. void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch); void Trunc_uw_d(Register rd, FPURegister fs, FPURegister scratch); // Convert double to unsigned long. void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch, Register result = no_reg); void Trunc_ul_d(Register rd, FPURegister fs, FPURegister scratch, Register result = no_reg); // Convert single to unsigned long. void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch, Register result = no_reg); void Trunc_ul_s(Register rd, FPURegister fs, FPURegister scratch, Register result = no_reg); // Round double functions void Trunc_d_d(FPURegister fd, FPURegister fs); void Round_d_d(FPURegister fd, FPURegister fs); void Floor_d_d(FPURegister fd, FPURegister fs); void Ceil_d_d(FPURegister fd, FPURegister fs); // Round float functions void Trunc_s_s(FPURegister fd, FPURegister fs); void Round_s_s(FPURegister fd, FPURegister fs); void Floor_s_s(FPURegister fd, FPURegister fs); void Ceil_s_s(FPURegister fd, FPURegister fs); void LoadLane(MSASize sz, MSARegister dst, uint8_t laneidx, MemOperand src); void StoreLane(MSASize sz, MSARegister src, uint8_t laneidx, MemOperand dst); void ExtMulLow(MSADataType type, MSARegister dst, MSARegister src1, MSARegister src2); void ExtMulHigh(MSADataType type, MSARegister dst, MSARegister src1, MSARegister src2); void LoadSplat(MSASize sz, MSARegister dst, MemOperand src); void ExtAddPairwise(MSADataType type, MSARegister dst, MSARegister src); void MSARoundW(MSARegister dst, MSARegister src, FPURoundingMode mode); void MSARoundD(MSARegister dst, MSARegister src, FPURoundingMode mode); // Jump the register contains a smi. void JumpIfSmi(Register value, Label* smi_label, BranchDelaySlot bd = PROTECT); void JumpIfEqual(Register a, int32_t b, Label* dest) { li(kScratchReg, Operand(b)); Branch(dest, eq, a, Operand(kScratchReg)); } void JumpIfLessThan(Register a, int32_t b, Label* dest) { li(kScratchReg, Operand(b)); Branch(dest, lt, a, Operand(kScratchReg)); } // Push a standard frame, consisting of ra, fp, context and JS function. void PushStandardFrame(Register function_reg); // Get the actual activation frame alignment for target environment. static int ActivationFrameAlignment(); // Load Scaled Address instructions. Parameter sa (shift argument) must be // between [1, 31] (inclusive). On pre-r6 architectures the scratch register // may be clobbered. void Lsa(Register rd, Register rs, Register rt, uint8_t sa, Register scratch = at); void Dlsa(Register rd, Register rs, Register rt, uint8_t sa, Register scratch = at); // Compute the start of the generated instruction stream from the current PC. // This is an alternative to embedding the {CodeObject} handle as a reference. void ComputeCodeStartAddress(Register dst); // Control-flow integrity: // Define a function entrypoint. This doesn't emit any code for this // architecture, as control-flow integrity is not supported for it. void CodeEntry() {} // Define an exception handler. void ExceptionHandler() {} // Define an exception handler and bind a label. void BindExceptionHandler(Label* label) { bind(label); } protected: inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch); inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits); private: bool has_double_zero_reg_set_ = false; // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it // succeeds, otherwise falls through if result is saturated. On return // 'result' either holds answer, or is clobbered on fall through. void TryInlineTruncateDoubleToI(Register result, DoubleRegister input, Label* done); void CompareF(SecondaryField sizeField, FPUCondition cc, FPURegister cmp1, FPURegister cmp2); void CompareIsNanF(SecondaryField sizeField, FPURegister cmp1, FPURegister cmp2); void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond, MSARegister wt, BranchDelaySlot bd = PROTECT); void CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments); // TODO(mips) Reorder parameters so out parameters come last. bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits); bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits, Register* scratch, const Operand& rt); void BranchShortHelperR6(int32_t offset, Label* L); void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot); bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt); bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot); bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot); void BranchAndLinkShortHelperR6(int32_t offset, Label* L); void BranchAndLinkShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot); void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT); void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT); bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt); bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot); bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot); void BranchLong(Label* L, BranchDelaySlot bdslot); void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot); template <typename RoundFunc> void RoundDouble(FPURegister dst, FPURegister src, FPURoundingMode mode, RoundFunc round); template <typename RoundFunc> void RoundFloat(FPURegister dst, FPURegister src, FPURoundingMode mode, RoundFunc round); // Push a fixed frame, consisting of ra, fp. void PushCommonFrame(Register marker_reg = no_reg); }; // MacroAssembler implements a collection of frequently used macros. class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler { public: using TurboAssembler::TurboAssembler; // It assumes that the arguments are located below the stack pointer. // argc is the number of arguments not including the receiver. // TODO(victorgomes): Remove this function once we stick with the reversed // arguments order. void LoadReceiver(Register dest, Register argc) { Ld(dest, MemOperand(sp, 0)); } void StoreReceiver(Register rec, Register argc, Register scratch) { Sd(rec, MemOperand(sp, 0)); } bool IsNear(Label* L, Condition cond, int rs_reg); // Swap two registers. If the scratch register is omitted then a slightly // less efficient form using xor instead of mov is emitted. void Swap(Register reg1, Register reg2, Register scratch = no_reg); void PushRoot(RootIndex index) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); LoadRoot(scratch, index); Push(scratch); } // Compare the object in a register to a value and jump if they are equal. void JumpIfRoot(Register with, RootIndex index, Label* if_equal) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); LoadRoot(scratch, index); Branch(if_equal, eq, with, Operand(scratch)); } // Compare the object in a register to a value and jump if they are not equal. void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); LoadRoot(scratch, index); Branch(if_not_equal, ne, with, Operand(scratch)); } // Checks if value is in range [lower_limit, higher_limit] using a single // comparison. void JumpIfIsInRange(Register value, unsigned lower_limit, unsigned higher_limit, Label* on_in_range); // --------------------------------------------------------------------------- // GC Support // Notify the garbage collector that we wrote a pointer into an object. // |object| is the object being stored into, |value| is the object being // stored. value and scratch registers are clobbered by the operation. // The offset is the offset from the start of the object, not the offset from // the tagged HeapObject pointer. For use with FieldOperand(reg, off). void RecordWriteField( Register object, int offset, Register value, Register scratch, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = RememberedSetAction::kEmit, SmiCheck smi_check = SmiCheck::kInline); // For a given |object| notify the garbage collector that the slot |address| // has been written. |value| is the object being stored. The value and // address registers are clobbered by the operation. void RecordWrite( Register object, Register address, Register value, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = RememberedSetAction::kEmit, SmiCheck smi_check = SmiCheck::kInline); void Pref(int32_t hint, const MemOperand& rs); // --------------------------------------------------------------------------- // Pseudo-instructions. void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at); void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at); // Convert double to unsigned long. void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch); void Trunc_l_d(FPURegister fd, FPURegister fs); void Round_l_d(FPURegister fd, FPURegister fs); void Floor_l_d(FPURegister fd, FPURegister fs); void Ceil_l_d(FPURegister fd, FPURegister fs); void Trunc_w_d(FPURegister fd, FPURegister fs); void Round_w_d(FPURegister fd, FPURegister fs); void Floor_w_d(FPURegister fd, FPURegister fs); void Ceil_w_d(FPURegister fd, FPURegister fs); void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, FPURegister scratch); void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, FPURegister scratch); void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, FPURegister scratch); void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, FPURegister scratch); void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond, MSARegister wt, BranchDelaySlot bd = PROTECT); // Enter exit frame. // argc - argument count to be dropped by LeaveExitFrame. // save_doubles - saves FPU registers on stack, currently disabled. // stack_space - extra stack space. void EnterExitFrame(bool save_doubles, int stack_space = 0, StackFrame::Type frame_type = StackFrame::EXIT); // Leave the current exit frame. void LeaveExitFrame(bool save_doubles, Register arg_count, bool do_return = NO_EMIT_RETURN, bool argument_count_is_length = false); // Make sure the stack is aligned. Only emits code in debug mode. void AssertStackIsAligned(); // Load the global proxy from the current context. void LoadGlobalProxy(Register dst) { LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX); } void LoadNativeContextSlot(Register dst, int index); // Load the initial map from the global function. The registers // function and map can be the same, function is then overwritten. void LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch); // ------------------------------------------------------------------------- // JavaScript invokes. // Invoke the JavaScript function code by either calling or jumping. void InvokeFunctionCode(Register function, Register new_target, Register expected_parameter_count, Register actual_parameter_count, InvokeType type); // On function call, call into the debugger if necessary. void CheckDebugHook(Register fun, Register new_target, Register expected_parameter_count, Register actual_parameter_count); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunctionWithNewTarget(Register function, Register new_target, Register actual_parameter_count, InvokeType type); void InvokeFunction(Register function, Register expected_parameter_count, Register actual_parameter_count, InvokeType type); // Exception handling. // Push a new stack handler and link into stack handler chain. void PushStackHandler(); // Unlink the stack handler on top of the stack from the stack handler chain. // Must preserve the result register. void PopStackHandler(); // ------------------------------------------------------------------------- // Support functions. void GetObjectType(Register function, Register map, Register type_reg); void GetInstanceTypeRange(Register map, Register type_reg, InstanceType lower_limit, Register range); // ------------------------------------------------------------------------- // Runtime calls. // Call a runtime routine. void CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore); // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, save_doubles); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, int num_arguments, SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) { CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); } // Convenience function: tail call a runtime routine (jump). void TailCallRuntime(Runtime::FunctionId fid); // Jump to the builtin routine. void JumpToExternalReference(const ExternalReference& builtin, BranchDelaySlot bd = PROTECT, bool builtin_exit_frame = false); // Generates a trampoline to jump to the off-heap instruction stream. void JumpToOffHeapInstructionStream(Address entry); // --------------------------------------------------------------------------- // In-place weak references. void LoadWeakValue(Register out, Register in, Label* target_if_cleared); // ------------------------------------------------------------------------- // StatsCounter support. void IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (!FLAG_native_code_counters) return; EmitIncrementCounter(counter, value, scratch1, scratch2); } void EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); void DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (!FLAG_native_code_counters) return; EmitDecrementCounter(counter, value, scratch1, scratch2); } void EmitDecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); // ------------------------------------------------------------------------- // Stack limit utilities enum StackLimitKind { kInterruptStackLimit, kRealStackLimit }; void LoadStackLimit(Register destination, StackLimitKind kind); void StackOverflowCheck(Register num_args, Register scratch1, Register scratch2, Label* stack_overflow); // --------------------------------------------------------------------------- // Smi utilities. void SmiTag(Register dst, Register src) { STATIC_ASSERT(kSmiTag == 0); if (SmiValuesAre32Bits()) { dsll32(dst, src, 0); } else { DCHECK(SmiValuesAre31Bits()); Addu(dst, src, src); } } void SmiTag(Register reg) { SmiTag(reg, reg); } // Test if the register contains a smi. inline void SmiTst(Register value, Register scratch) { And(scratch, value, Operand(kSmiTagMask)); } // Jump if the register contains a non-smi. void JumpIfNotSmi(Register value, Label* not_smi_label, BranchDelaySlot bd = PROTECT); // Abort execution if argument is not a Constructor, enabled via --debug-code. void AssertConstructor(Register object); // Abort execution if argument is not a JSFunction, enabled via --debug-code. void AssertFunction(Register object); // Abort execution if argument is not a callable JSFunction, enabled via // --debug-code. void AssertCallableFunction(Register object); // Abort execution if argument is not a JSBoundFunction, // enabled via --debug-code. void AssertBoundFunction(Register object); // Abort execution if argument is not a JSGeneratorObject (or subclass), // enabled via --debug-code. void AssertGeneratorObject(Register object); // Abort execution if argument is not undefined or an AllocationSite, enabled // via --debug-code. void AssertUndefinedOrAllocationSite(Register object, Register scratch); template <typename Field> void DecodeField(Register dst, Register src) { Ext(dst, src, Field::kShift, Field::kSize); } template <typename Field> void DecodeField(Register reg) { DecodeField<Field>(reg, reg); } private: // Helper functions for generating invokes. void InvokePrologue(Register expected_parameter_count, Register actual_parameter_count, Label* done, InvokeType type); DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler); }; template <typename Func> void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count, Func GetLabelFunction) { // Ensure that dd-ed labels following this instruction use 8 bytes aligned // addresses. BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + kSwitchTablePrologueSize); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); if (kArchVariant >= kMips64r6) { // Opposite of Align(8) as we have odd number of instructions in this case. if ((pc_offset() & 7) == 0) { nop(); } addiupc(scratch, 5); Dlsa(scratch, scratch, index, kPointerSizeLog2); Ld(scratch, MemOperand(scratch)); } else { Label here; Align(8); push(ra); bal(&here); dsll(scratch, index, kPointerSizeLog2); // Branch delay slot. bind(&here); daddu(scratch, scratch, ra); pop(ra); Ld(scratch, MemOperand(scratch, 6 * v8::internal::kInstrSize)); } jr(scratch); nop(); // Branch delay slot nop. for (size_t index = 0; index < case_count; ++index) { dd(GetLabelFunction(index)); } } #define ACCESS_MASM(masm) masm-> } // namespace internal } // namespace v8 #endif // V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_