// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/diagnostics/basic-block-profiler.h" #include "src/objects/objects-inl.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/codegen-tester.h" namespace v8 { namespace internal { namespace compiler { class BasicBlockProfilerTest : public RawMachineAssemblerTester<int32_t> { public: BasicBlockProfilerTest() : RawMachineAssemblerTester<int32_t>(MachineType::Int32()) { FLAG_turbo_profiling = true; } void ResetCounts() { BasicBlockProfiler::Get()->ResetCounts(CcTest::i_isolate()); } void Expect(size_t size, uint32_t* expected) { const BasicBlockProfiler::DataList* l = BasicBlockProfiler::Get()->data_list(); CHECK_NE(0, static_cast<int>(l->size())); const BasicBlockProfilerData* data = l->back().get(); CHECK_EQ(static_cast<int>(size), static_cast<int>(data->n_blocks())); const uint32_t* counts = data->counts(); for (size_t i = 0; i < size; ++i) { CHECK_EQ(expected[i], counts[i]); } } void SetCounts(size_t size, uint32_t* new_counts) { const BasicBlockProfiler::DataList* l = BasicBlockProfiler::Get()->data_list(); CHECK_NE(0, static_cast<int>(l->size())); BasicBlockProfilerData* data = l->back().get(); CHECK_EQ(static_cast<int>(size), static_cast<int>(data->n_blocks())); uint32_t* counts = const_cast<uint32_t*>(data->counts()); for (size_t i = 0; i < size; ++i) { counts[i] = new_counts[i]; } } }; TEST(ProfileDiamond) { BasicBlockProfilerTest m; RawMachineLabel blocka, blockb, end; m.Branch(m.Parameter(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); m.Return(m.Int32Constant(0)); m.GenerateCode(); { uint32_t expected[] = {0, 0, 0, 0, 0, 0}; m.Expect(arraysize(expected), expected); } m.Call(0); { uint32_t expected[] = {1, 1, 1, 0, 0, 1}; m.Expect(arraysize(expected), expected); } m.ResetCounts(); m.Call(1); { uint32_t expected[] = {1, 0, 0, 1, 1, 1}; m.Expect(arraysize(expected), expected); } m.Call(0); { uint32_t expected[] = {2, 1, 1, 1, 1, 2}; m.Expect(arraysize(expected), expected); } // Set the counters very high, to verify that they saturate rather than // overflowing. uint32_t near_overflow[] = {UINT32_MAX - 1, UINT32_MAX - 1, UINT32_MAX - 1, UINT32_MAX - 1, UINT32_MAX - 1, UINT32_MAX - 1}; m.SetCounts(arraysize(near_overflow), near_overflow); m.Expect(arraysize(near_overflow), near_overflow); m.Call(0); m.Call(0); { uint32_t expected[] = {UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX - 1, UINT32_MAX - 1, UINT32_MAX}; m.Expect(arraysize(expected), expected); } } TEST(ProfileLoop) { BasicBlockProfilerTest m; RawMachineLabel header, body, end; Node* one = m.Int32Constant(1); m.Goto(&header); m.Bind(&header); Node* count = m.Phi(MachineRepresentation::kWord32, m.Parameter(0), one); m.Branch(count, &body, &end); m.Bind(&body); count->ReplaceInput(1, m.Int32Sub(count, one)); m.Goto(&header); m.Bind(&end); m.Return(one); m.GenerateCode(); { uint32_t expected[] = {0, 0, 0, 0, 0, 0}; m.Expect(arraysize(expected), expected); } uint32_t runs[] = {0, 1, 500, 10000}; for (size_t i = 0; i < arraysize(runs); i++) { m.ResetCounts(); CHECK_EQ(1, m.Call(static_cast<int>(runs[i]))); uint32_t expected[] = {1, runs[i] + 1, runs[i], runs[i], 1, 1}; m.Expect(arraysize(expected), expected); } } } // namespace compiler } // namespace internal } // namespace v8