// Copyright 2018 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. namespace test { macro ElementsKindTestHelper1(kind: constexpr ElementsKind): bool { if constexpr ( (kind == ElementsKind::UINT8_ELEMENTS) || (kind == ElementsKind::UINT16_ELEMENTS)) { return true; } else { return false; } } macro ElementsKindTestHelper2(kind: constexpr ElementsKind): constexpr bool { return ( (kind == ElementsKind::UINT8_ELEMENTS) || (kind == ElementsKind::UINT16_ELEMENTS)); } macro LabelTestHelper1(): never labels Label1 { goto Label1; } macro LabelTestHelper2(): never labels Label2(Smi) { goto Label2(42); } macro LabelTestHelper3(): never labels Label3(Oddball, Smi) { goto Label3(Null, 7); } @export macro TestConstexpr1() { check(FromConstexpr<bool>( IsFastElementsKind(ElementsKind::PACKED_SMI_ELEMENTS))); } @export macro TestConstexprIf() { check(ElementsKindTestHelper1(ElementsKind::UINT8_ELEMENTS)); check(ElementsKindTestHelper1(ElementsKind::UINT16_ELEMENTS)); check(!ElementsKindTestHelper1(ElementsKind::UINT32_ELEMENTS)); } @export macro TestConstexprReturn() { check(FromConstexpr<bool>( ElementsKindTestHelper2(ElementsKind::UINT8_ELEMENTS))); check(FromConstexpr<bool>( ElementsKindTestHelper2(ElementsKind::UINT16_ELEMENTS))); check(!FromConstexpr<bool>( ElementsKindTestHelper2(ElementsKind::UINT32_ELEMENTS))); check(FromConstexpr<bool>( !ElementsKindTestHelper2(ElementsKind::UINT32_ELEMENTS))); } @export macro TestGotoLabel(): Boolean { try { LabelTestHelper1() otherwise Label1; } label Label1 { return True; } } @export macro TestGotoLabelWithOneParameter(): Boolean { try { LabelTestHelper2() otherwise Label2; } label Label2(smi: Smi) { check(smi == 42); return True; } } @export macro TestGotoLabelWithTwoParameters(): Boolean { try { LabelTestHelper3() otherwise Label3; } label Label3(o: Oddball, smi: Smi) { check(o == Null); check(smi == 7); return True; } } builtin GenericBuiltinTest<T: type>(_c: Context, _param: T): JSAny { return Null; } GenericBuiltinTest<JSAny>(_c: Context, param: JSAny): JSAny { return param; } @export macro TestBuiltinSpecialization(c: Context) { check(GenericBuiltinTest<Smi>(c, 0) == Null); check(GenericBuiltinTest<Smi>(c, 1) == Null); check(GenericBuiltinTest<JSAny>(c, Undefined) == Undefined); check(GenericBuiltinTest<JSAny>(c, Undefined) == Undefined); } macro LabelTestHelper4(flag: constexpr bool): never labels Label4, Label5 { if constexpr (flag) { goto Label4; } else { goto Label5; } } macro CallLabelTestHelper4(flag: constexpr bool): bool { try { LabelTestHelper4(flag) otherwise Label4, Label5; } label Label4 { return true; } label Label5 { return false; } } @export macro TestPartiallyUnusedLabel(): Boolean { const r1: bool = CallLabelTestHelper4(true); const r2: bool = CallLabelTestHelper4(false); if (r1 && !r2) { return True; } else { return False; } } macro GenericMacroTest<T: type>(_param: T): Object { return Undefined; } GenericMacroTest<Object>(param2: Object): Object { return param2; } macro GenericMacroTestWithLabels<T: type>(_param: T): Object labels _X { return Undefined; } GenericMacroTestWithLabels<Object>(param2: Object): Object labels Y { return Cast<Smi>(param2) otherwise Y; } @export macro TestMacroSpecialization() { try { const _smi0: Smi = 0; check(GenericMacroTest<Smi>(0) == Undefined); check(GenericMacroTest<Smi>(1) == Undefined); check(GenericMacroTest<Object>(Null) == Null); check(GenericMacroTest<Object>(False) == False); check(GenericMacroTest<Object>(True) == True); check((GenericMacroTestWithLabels<Smi>(0) otherwise Fail) == Undefined); check((GenericMacroTestWithLabels<Smi>(0) otherwise Fail) == Undefined); try { GenericMacroTestWithLabels<Object>(False) otherwise Expected; } label Expected {} } label Fail { unreachable; } } builtin TestHelperPlus1(_context: Context, x: Smi): Smi { return x + 1; } builtin TestHelperPlus2(_context: Context, x: Smi): Smi { return x + 2; } @export macro TestFunctionPointers(implicit context: Context)(): Boolean { let fptr: builtin(Context, Smi) => Smi = TestHelperPlus1; check(fptr(context, 42) == 43); fptr = TestHelperPlus2; check(fptr(context, 42) == 44); return True; } @export macro TestVariableRedeclaration(implicit context: Context)(): Boolean { let _var1: int31 = FromConstexpr<bool>(42 == 0) ? 0 : 1; let _var2: int31 = FromConstexpr<bool>(42 == 0) ? 1 : 0; return True; } @export macro TestTernaryOperator(x: Smi): Smi { const b: bool = x < 0 ? true : false; return b ? x - 10 : x + 100; } @export macro TestFunctionPointerToGeneric(c: Context) { const fptr1: builtin(Context, Smi) => JSAny = GenericBuiltinTest<Smi>; const fptr2: builtin(Context, JSAny) => JSAny = GenericBuiltinTest<JSAny>; check(fptr1(c, 0) == Null); check(fptr1(c, 1) == Null); check(fptr2(c, Undefined) == Undefined); check(fptr2(c, Undefined) == Undefined); } type ObjectToObject = builtin(Context, JSAny) => JSAny; @export macro TestTypeAlias(x: ObjectToObject): BuiltinPtr { return x; } @export macro TestUnsafeCast(implicit context: Context)(n: Number): Boolean { if (TaggedIsSmi(n)) { const m: Smi = UnsafeCast<Smi>(n); check(TestHelperPlus1(context, m) == 11); return True; } return False; } @export macro TestHexLiteral() { check(Convert<intptr>(0xffff) + 1 == 0x10000); check(Convert<intptr>(-0xffff) == -65535); } @export macro TestLargeIntegerLiterals(implicit c: Context)() { let _x: int32 = 0x40000000; let _y: int32 = 0x7fffffff; } @export macro TestMultilineAssert() { const someVeryLongVariableNameThatWillCauseLineBreaks: Smi = 5; check( someVeryLongVariableNameThatWillCauseLineBreaks > 0 && someVeryLongVariableNameThatWillCauseLineBreaks < 10); } @export macro TestNewlineInString() { Print('Hello, World!\n'); } const kConstexprConst: constexpr int31 = 5; const kIntptrConst: intptr = 4; const kSmiConst: Smi = 3; @export macro TestModuleConstBindings() { check(kConstexprConst == Int32Constant(5)); check(kIntptrConst == 4); check(kSmiConst == 3); } @export macro TestLocalConstBindings() { const x: constexpr int31 = 3; const xSmi: Smi = x; { const x: Smi = x + FromConstexpr<Smi>(1); check(x == xSmi + 1); const xSmi: Smi = x; check(x == xSmi); check(x == 4); } check(xSmi == 3); check(x == xSmi); } struct TestStructA { indexes: FixedArray; i: Smi; k: Number; } struct TestStructB { x: TestStructA; y: Smi; } @export macro TestStruct1(i: TestStructA): Smi { return i.i; } @export macro TestStruct2(implicit context: Context)(): TestStructA { return TestStructA{ indexes: UnsafeCast<FixedArray>(kEmptyFixedArray), i: 27, k: 31 }; } @export macro TestStruct3(implicit context: Context)(): TestStructA { let a: TestStructA = TestStructA{indexes: UnsafeCast<FixedArray>(kEmptyFixedArray), i: 13, k: 5}; let _b: TestStructA = a; const c: TestStructA = TestStruct2(); a.i = TestStruct1(c); a.k = a.i; let d: TestStructB; d.x = a; d = TestStructB{x: a, y: 7}; let _e: TestStructA = d.x; let f: Smi = TestStructA{ indexes: UnsafeCast<FixedArray>(kEmptyFixedArray), i: 27, k: 31 }.i; f = TestStruct2().i; return a; } struct TestStructC { x: TestStructA; y: TestStructA; } @export macro TestStruct4(implicit context: Context)(): TestStructC { return TestStructC{x: TestStruct2(), y: TestStruct2()}; } macro TestStructInLabel(implicit context: Context)(): never labels Foo(TestStructA) { goto Foo(TestStruct2()); } @export // Silence unused warning. macro CallTestStructInLabel(implicit context: Context)() { try { TestStructInLabel() otherwise Foo; } label Foo(_s: TestStructA) {} } // This macro tests different versions of the for-loop where some parts // are (not) present. @export macro TestForLoop() { let sum: Smi = 0; for (let i: Smi = 0; i < 5; ++i) sum += i; check(sum == 10); sum = 0; let j: Smi = 0; for (; j < 5; ++j) sum += j; check(sum == 10); sum = 0; j = 0; for (; j < 5;) sum += j++; check(sum == 10); // Check that break works. No test expression. sum = 0; for (let i: Smi = 0;; ++i) { if (i == 5) break; sum += i; } check(sum == 10); sum = 0; j = 0; for (;;) { if (j == 5) break; sum += j; j++; } check(sum == 10); // The following tests are the same as above, but use continue to skip // index 3. sum = 0; for (let i: Smi = 0; i < 5; ++i) { if (i == 3) continue; sum += i; } check(sum == 7); sum = 0; j = 0; for (; j < 5; ++j) { if (j == 3) continue; sum += j; } check(sum == 7); sum = 0; j = 0; for (; j < 5;) { if (j == 3) { j++; continue; } sum += j; j++; } check(sum == 7); sum = 0; for (let i: Smi = 0;; ++i) { if (i == 3) continue; if (i == 5) break; sum += i; } check(sum == 7); sum = 0; j = 0; for (;;) { if (j == 3) { j++; continue; } if (j == 5) break; sum += j; j++; } check(sum == 7); j = 0; try { for (;;) { if (++j == 10) goto Exit; } } label Exit { check(j == 10); } // Test if we can handle uninitialized values on the stack. let _i: Smi; for (let j: Smi = 0; j < 10; ++j) { } } @export macro TestSubtyping(x: Smi) { const _foo: JSAny = x; } macro IncrementIfSmi<A: type>(x: A): A { typeswitch (x) { case (x: Smi): { return x + 1; } case (o: A): { return o; } } } type NumberOrFixedArray = Number|FixedArray; macro TypeswitchExample(implicit context: Context)(x: NumberOrFixedArray): int32 { let result: int32 = 0; typeswitch (IncrementIfSmi(x)) { case (_x: FixedArray): { result = result + 1; } case (Number): { result = result + 2; } } result = result * 10; typeswitch (IncrementIfSmi(x)) { case (x: Smi): { result = result + Convert<int32>(x); } case (a: FixedArray): { result = result + Convert<int32>(a.length); } case (_x: HeapNumber): { result = result + 7; } } return result; } @export macro TestTypeswitch(implicit context: Context)() { check(TypeswitchExample(FromConstexpr<Smi>(5)) == 26); const a: FixedArray = AllocateZeroedFixedArray(3); check(TypeswitchExample(a) == 13); check(TypeswitchExample(FromConstexpr<Number>(0.5)) == 27); } @export macro TestTypeswitchAsanLsanFailure(implicit context: Context)(obj: Object) { typeswitch (obj) { case (_o: Smi): { } case (_o: JSTypedArray): { } case (_o: JSReceiver): { } case (_o: HeapObject): { } } } macro ExampleGenericOverload<A: type>(o: Object): A { return o; } macro ExampleGenericOverload<A: type>(o: Smi): A { return o + 1; } @export macro TestGenericOverload(implicit context: Context)() { const xSmi: Smi = 5; const xObject: Object = xSmi; check(ExampleGenericOverload<Smi>(xSmi) == 6); check(UnsafeCast<Smi>(ExampleGenericOverload<Object>(xObject)) == 5); } @export macro TestEquality(implicit context: Context)() { const notEqual: bool = AllocateHeapNumberWithValue(0.5) != AllocateHeapNumberWithValue(0.5); check(!notEqual); const equal: bool = AllocateHeapNumberWithValue(0.5) == AllocateHeapNumberWithValue(0.5); check(equal); } @export macro TestOrAnd(x: bool, y: bool, z: bool): bool { return x || y && z ? true : false; } @export macro TestAndOr(x: bool, y: bool, z: bool): bool { return x && y || z ? true : false; } @export macro TestLogicalOperators() { check(TestAndOr(true, true, true)); check(TestAndOr(true, true, false)); check(TestAndOr(true, false, true)); check(!TestAndOr(true, false, false)); check(TestAndOr(false, true, true)); check(!TestAndOr(false, true, false)); check(TestAndOr(false, false, true)); check(!TestAndOr(false, false, false)); check(TestOrAnd(true, true, true)); check(TestOrAnd(true, true, false)); check(TestOrAnd(true, false, true)); check(TestOrAnd(true, false, false)); check(TestOrAnd(false, true, true)); check(!TestOrAnd(false, true, false)); check(!TestOrAnd(false, false, true)); check(!TestOrAnd(false, false, false)); } @export macro TestCall(i: Smi): Smi labels A { if (i < 5) return i; goto A; } @export macro TestOtherwiseWithCode1() { let v: Smi = 0; let s: Smi = 1; try { TestCall(10) otherwise goto B(++s); } label B(v1: Smi) { v = v1; } assert(v == 2); } @export macro TestOtherwiseWithCode2() { let s: Smi = 0; for (let i: Smi = 0; i < 10; ++i) { TestCall(i) otherwise break; ++s; } assert(s == 5); } @export macro TestOtherwiseWithCode3() { let s: Smi = 0; for (let i: Smi = 0; i < 10; ++i) { s += TestCall(i) otherwise break; } assert(s == 10); } @export macro TestForwardLabel() { try { goto A; } label A { goto B(5); } label B(b: Smi) { assert(b == 5); } } @export macro TestQualifiedAccess(implicit context: Context)() { const s: Smi = 0; check(!Is<JSArray>(s)); } @export macro TestCatch1(implicit context: Context)(): Smi { let r: Smi = 0; try { ThrowTypeError(MessageTemplate::kInvalidArrayLength); } catch (_e) { r = 1; return r; } } @export macro TestCatch2Wrapper(implicit context: Context)(): never { ThrowTypeError(MessageTemplate::kInvalidArrayLength); } @export macro TestCatch2(implicit context: Context)(): Smi { let r: Smi = 0; try { TestCatch2Wrapper(); } catch (_e) { r = 2; return r; } } @export macro TestCatch3WrapperWithLabel(implicit context: Context)(): never labels _Abort { ThrowTypeError(MessageTemplate::kInvalidArrayLength); } @export macro TestCatch3(implicit context: Context)(): Smi { let r: Smi = 0; try { TestCatch3WrapperWithLabel() otherwise Abort; } label Abort { return -1; } catch (_e) { r = 2; return r; } } // This test doesn't actually test the functionality of iterators, // it's only purpose is to make sure tha the CSA macros in the // IteratorBuiltinsAssembler match the signatures provided in // iterator.tq. @export macro TestIterator(implicit context: Context)(o: JSReceiver, map: Map) { try { const t1: JSAny = iterator::GetIteratorMethod(o); const t2: iterator::IteratorRecord = iterator::GetIterator(o); const _t3: JSAny = iterator::IteratorStep(t2) otherwise Fail; const _t4: JSAny = iterator::IteratorStep(t2, map) otherwise Fail; const t5: JSAny = iterator::IteratorValue(o); const _t6: JSAny = iterator::IteratorValue(o, map); const _t7: JSArray = iterator::IterableToList(t1, t1); iterator::IteratorCloseOnException(t2, t5); } label Fail {} } @export macro TestFrame1(implicit context: Context)() { const f: Frame = LoadFramePointer(); const frameType: FrameType = Cast<FrameType>(f.context_or_frame_type) otherwise unreachable; assert(frameType == STUB_FRAME); assert(f.caller == LoadParentFramePointer()); typeswitch (f) { case (_f: StandardFrame): { unreachable; } case (_f: ArgumentsAdaptorFrame): { unreachable; } case (_f: StubFrame): { } } } @export macro TestNew(implicit context: Context)() { const f: JSArray = NewJSArray(); check(f.IsEmpty()); f.length = 0; } struct TestInner { macro SetX(newValue: int32) { this.x = newValue; } macro GetX(): int32 { return this.x; } x: int32; y: int32; } struct TestOuter { a: int32; b: TestInner; c: int32; } @export macro TestStructConstructor(implicit context: Context)() { // Test default constructor let a: TestOuter = TestOuter{a: 5, b: TestInner{x: 6, y: 7}, c: 8}; check(a.a == 5); check(a.b.x == 6); check(a.b.y == 7); check(a.c == 8); a.b.x = 1; check(a.b.x == 1); a.b.SetX(2); check(a.b.x == 2); check(a.b.GetX() == 2); } class InternalClass extends Struct { macro Flip() labels NotASmi { const tmp = Cast<Smi>(this.b) otherwise NotASmi; this.b = this.a; this.a = tmp; } a: Smi; b: Number; } macro NewInternalClass(x: Smi): InternalClass { return new InternalClass{a: x, b: x + 1}; } @export macro TestInternalClass(implicit context: Context)() { const o = NewInternalClass(5); o.Flip() otherwise unreachable; check(o.a == 6); check(o.b == 5); } struct StructWithConst { macro TestMethod1(): int32 { return this.b; } macro TestMethod2(): Object { return this.a; } a: Object; const b: int32; } @export macro TestConstInStructs() { const x = StructWithConst{a: Null, b: 1}; let y = StructWithConst{a: Null, b: 1}; y.a = Undefined; const _copy = x; check(x.TestMethod1() == 1); check(x.TestMethod2() == Null); } @export macro TestParentFrameArguments(implicit context: Context)() { const parentFrame = LoadParentFramePointer(); const castFrame = Cast<StandardFrame>(parentFrame) otherwise unreachable; const arguments = GetFrameArguments(castFrame, 1); ArgumentsIterator{arguments, current: 0}; } struct TestIterator { macro Next(): Object labels NoMore { if (this.count-- == 0) goto NoMore; return TheHole; } count: Smi; } @export macro TestNewFixedArrayFromSpread(implicit context: Context)(): Object { let i = TestIterator{count: 5}; return new FixedArray{map: kFixedArrayMap, length: 5, objects: ...i}; } class SmiPair extends Struct { macro GetA():&Smi { return & this.a; } a: Smi; b: Smi; } macro Swap<T: type>(a:&T, b:&T) { const tmp = * a; * a = * b; * b = tmp; } @export macro TestReferences() { const array = new SmiPair{a: 7, b: 2}; const ref:&Smi = & array.a; * ref = 3 + * ref; -- * ref; Swap(& array.b, array.GetA()); check(array.a == 2); check(array.b == 9); } @export macro TestSlices() { const it = TestIterator{count: 3}; const a = new FixedArray{map: kFixedArrayMap, length: 3, objects: ...it}; check(a.length == 3); const oneTwoThree = Convert<Smi>(123); a.objects[0] = oneTwoThree; const firstRef:&Object = & a.objects[0]; check(TaggedEqual(* firstRef, oneTwoThree)); const slice: torque_internal::Slice<Object> = & a.objects; const firstRefAgain:&Object = slice.TryAtIndex(0) otherwise unreachable; check(TaggedEqual(* firstRefAgain, oneTwoThree)); const threeTwoOne = Convert<Smi>(321); * firstRefAgain = threeTwoOne; check(TaggedEqual(a.objects[0], threeTwoOne)); // *slice; // error, not allowed // a.objects; // error, not allowed // a.objects = slice; // error, not allowed // TODO(gsps): Currently errors, but should be allowed: // const _sameSlice: torque_internal::Slice<Object> = &(*slice); // (*slice)[0] : Smi } @export macro TestSliceEnumeration(implicit context: Context)(): Undefined { const fixedArray: FixedArray = AllocateZeroedFixedArray(3); for (let i: intptr = 0; i < 3; i++) { check(UnsafeCast<Smi>(fixedArray.objects[i]) == 0); fixedArray.objects[i] = Convert<Smi>(i) + 3; } let slice = & fixedArray.objects; for (let i: intptr = 0; i < slice.length; i++) { let ref = slice.TryAtIndex(i) otherwise unreachable; const value = UnsafeCast<Smi>(* ref); check(value == Convert<Smi>(i) + 3); * ref = value + 4; } let it = slice.Iterator(); let count: Smi = 0; while (true) { const value = UnsafeCast<Smi>(it.Next() otherwise break); check(value == count + 7); count++; } check(count == 3); check(it.Empty()); return Undefined; } @export macro TestStaticAssert() { StaticAssert(1 + 2 == 3); } class SmiBox extends Struct { value: Smi; unrelated: Smi; } builtin NewSmiBox(implicit context: Context)(value: Smi): SmiBox { return new SmiBox{value, unrelated: 0}; } @export macro TestLoadEliminationFixed(implicit context: Context)() { const box = NewSmiBox(123); const v1 = box.value; box.unrelated = 999; const v2 = (box.unrelated == 0) ? box.value : box.value; StaticAssert(TaggedEqual(v1, v2)); box.value = 11; const v3 = box.value; const eleven: Smi = 11; StaticAssert(TaggedEqual(v3, eleven)); } @export macro TestLoadEliminationVariable(implicit context: Context)() { const a = UnsafeCast<FixedArray>(kEmptyFixedArray); const box = NewSmiBox(1); const v1 = a.objects[box.value]; const u1 = a.objects[box.value + 2]; const v2 = a.objects[box.value]; const u2 = a.objects[box.value + 2]; StaticAssert(TaggedEqual(v1, v2)); StaticAssert(TaggedEqual(u1, u2)); } @export macro TestRedundantArrayElementCheck(implicit context: Context)(): Smi { const a = kEmptyFixedArray; for (let i: Smi = 0; i < a.length; i++) { if (a.objects[i] == TheHole) { if (a.objects[i] == TheHole) { return -1; } else { StaticAssert(false); } } } return 1; } @export macro TestRedundantSmiCheck(implicit context: Context)(): Smi { const a = kEmptyFixedArray; const x = a.objects[1]; typeswitch (x) { case (Smi): { Cast<Smi>(x) otherwise VerifiedUnreachable(); return -1; } case (Object): { } } return 1; } struct SBox<T: type> { value: T; } @export macro TestGenericStruct1(): intptr { const i: intptr = 123; let box = SBox{value: i}; let boxbox: SBox<SBox<intptr>> = SBox{value: box}; check(box.value == 123); boxbox.value.value *= 2; check(boxbox.value.value == 246); return boxbox.value.value; } struct TestTuple<T1: type, T2: type> { const fst: T1; const snd: T2; } macro TupleSwap<T1: type, T2: type>(tuple: TestTuple<T1, T2>): TestTuple<T2, T1> { return TestTuple{fst: tuple.snd, snd: tuple.fst}; } @export macro TestGenericStruct2(): TestTuple<TestTuple<intptr, Smi>, TestTuple<Smi, intptr>> { const intptrAndSmi = TestTuple<intptr, Smi>{fst: 1, snd: 2}; const smiAndIntptr = TupleSwap(intptrAndSmi); check(intptrAndSmi.fst == smiAndIntptr.snd); check(intptrAndSmi.snd == smiAndIntptr.fst); const tupleTuple = TestTuple<TestTuple<intptr, Smi>>{fst: intptrAndSmi, snd: smiAndIntptr}; return tupleTuple; } macro BranchAndWriteResult(x: Smi, box: SmiBox): bool { if (x > 5 || x < 0) { box.value = 1; return true; } else { box.value = 2; return false; } } @export macro TestBranchOnBoolOptimization(implicit context: Context)(input: Smi) { const box = NewSmiBox(1); // If the two branches get combined into one, we should be able to determine // the value of {box} statically. if (BranchAndWriteResult(input, box)) { StaticAssert(box.value == 1); } else { StaticAssert(box.value == 2); } } bitfield struct TestBitFieldStruct extends uint8 { a: bool: 1 bit; b: uint16: 3 bit; c: uint32: 3 bit; d: bool: 1 bit; } @export macro TestBitFieldLoad( val: TestBitFieldStruct, expectedA: bool, expectedB: uint16, expectedC: uint32, expectedD: bool) { check(val.a == expectedA); check(val.b == expectedB); check(val.c == expectedC); check(val.d == expectedD); } @export macro TestBitFieldStore(val: TestBitFieldStruct) { let val: TestBitFieldStruct = val; // Get a mutable local copy. const a: bool = val.a; const b: uint16 = val.b; let c: uint32 = val.c; const d: bool = val.d; val.a = !a; TestBitFieldLoad(val, !a, b, c, d); c = Unsigned(7 - Signed(val.c)); val.c = c; TestBitFieldLoad(val, !a, b, c, d); val.d = val.b == val.c; TestBitFieldLoad(val, !a, b, c, b == c); } // Some other bitfield structs, to verify getting uintptr values out of word32 // structs and vice versa. bitfield struct TestBitFieldStruct2 extends uint32 { a: uintptr: 5 bit; b: uintptr: 6 bit; } bitfield struct TestBitFieldStruct3 extends uintptr { c: bool: 1 bit; d: uint32: 9 bit; e: uintptr: 17 bit; } @export macro TestBitFieldUintptrOps( val2: TestBitFieldStruct2, val3: TestBitFieldStruct3) { let val2: TestBitFieldStruct2 = val2; // Get a mutable local copy. let val3: TestBitFieldStruct3 = val3; // Get a mutable local copy. // Caller is expected to provide these exact values, so we can verify // reading values before starting to write anything. check(val2.a == 3); check(val2.b == 61); check(val3.c); check(val3.d == 500); check(val3.e == 0x1cc); val2.b = 16; check(val2.a == 3); check(val2.b == 16); val2.b++; check(val2.a == 3); check(val2.b == 17); val3.d = 99; val3.e = 1234; check(val3.c); check(val3.d == 99); check(val3.e == 1234); } }