// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_CODEGEN_ARM_H_ #define V8_CODEGEN_ARM_H_ #include "scopes.h" namespace v8 { namespace internal { // Forward declarations class DeferredCode; // Mode to overwrite BinaryExpression values. enum OverwriteMode { NO_OVERWRITE, OVERWRITE_LEFT, OVERWRITE_RIGHT }; enum InitState { CONST_INIT, NOT_CONST_INIT }; enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; // ------------------------------------------------------------------------- // Reference support // A reference is a C++ stack-allocated object that keeps an ECMA // reference on the execution stack while in scope. For variables // the reference is empty, indicating that it isn't necessary to // store state on the stack for keeping track of references to those. // For properties, we keep either one (named) or two (indexed) values // on the execution stack to represent the reference. class Reference BASE_EMBEDDED { public: // The values of the types is important, see size(). enum Type { ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 }; Reference(CodeGenerator* cgen, Expression* expression); ~Reference(); Expression* expression() const { return expression_; } Type type() const { return type_; } void set_type(Type value) { ASSERT(type_ == ILLEGAL); type_ = value; } // The size the reference takes up on the stack. int size() const { return (type_ == ILLEGAL) ? 0 : type_; } bool is_illegal() const { return type_ == ILLEGAL; } bool is_slot() const { return type_ == SLOT; } bool is_property() const { return type_ == NAMED || type_ == KEYED; } // Return the name. Only valid for named property references. Handle<String> GetName(); // Generate code to push the value of the reference on top of the // expression stack. The reference is expected to be already on top of // the expression stack, and it is left in place with its value above it. void GetValue(TypeofState typeof_state); // Generate code to push the value of a reference on top of the expression // stack and then spill the stack frame. This function is used temporarily // while the code generator is being transformed. inline void GetValueAndSpill(TypeofState typeof_state); // Generate code to store the value on top of the expression stack in the // reference. The reference is expected to be immediately below the value // on the expression stack. The stored value is left in place (with the // reference intact below it) to support chained assignments. void SetValue(InitState init_state); private: CodeGenerator* cgen_; Expression* expression_; Type type_; }; // ------------------------------------------------------------------------- // Code generation state // The state is passed down the AST by the code generator (and back up, in // the form of the state of the label pair). It is threaded through the // call stack. Constructing a state implicitly pushes it on the owning code // generator's stack of states, and destroying one implicitly pops it. class CodeGenState BASE_EMBEDDED { public: // Create an initial code generator state. Destroying the initial state // leaves the code generator with a NULL state. explicit CodeGenState(CodeGenerator* owner); // Create a code generator state based on a code generator's current // state. The new state has its own typeof state and pair of branch // labels. CodeGenState(CodeGenerator* owner, TypeofState typeof_state, JumpTarget* true_target, JumpTarget* false_target); // Destroy a code generator state and restore the owning code generator's // previous state. ~CodeGenState(); TypeofState typeof_state() const { return typeof_state_; } JumpTarget* true_target() const { return true_target_; } JumpTarget* false_target() const { return false_target_; } private: CodeGenerator* owner_; TypeofState typeof_state_; JumpTarget* true_target_; JumpTarget* false_target_; CodeGenState* previous_; }; // ------------------------------------------------------------------------- // CodeGenerator class CodeGenerator: public AstVisitor { public: // Takes a function literal, generates code for it. This function should only // be called by compiler.cc. static Handle<Code> MakeCode(FunctionLiteral* fun, Handle<Script> script, bool is_eval); #ifdef ENABLE_LOGGING_AND_PROFILING static bool ShouldGenerateLog(Expression* type); #endif static void SetFunctionInfo(Handle<JSFunction> fun, int length, int function_token_position, int start_position, int end_position, bool is_expression, bool is_toplevel, Handle<Script> script); // Accessors MacroAssembler* masm() { return masm_; } VirtualFrame* frame() const { return frame_; } bool has_valid_frame() const { return frame_ != NULL; } // Set the virtual frame to be new_frame, with non-frame register // reference counts given by non_frame_registers. The non-frame // register reference counts of the old frame are returned in // non_frame_registers. void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers); void DeleteFrame(); RegisterAllocator* allocator() const { return allocator_; } CodeGenState* state() { return state_; } void set_state(CodeGenState* state) { state_ = state; } void AddDeferred(DeferredCode* code) { deferred_.Add(code); } bool in_spilled_code() const { return in_spilled_code_; } void set_in_spilled_code(bool flag) { in_spilled_code_ = flag; } private: // Construction/Destruction CodeGenerator(int buffer_size, Handle<Script> script, bool is_eval); virtual ~CodeGenerator() { delete masm_; } // Accessors Scope* scope() const { return scope_; } void ProcessDeferred(); bool is_eval() { return is_eval_; } // State bool has_cc() const { return cc_reg_ != al; } TypeofState typeof_state() const { return state_->typeof_state(); } JumpTarget* true_target() const { return state_->true_target(); } JumpTarget* false_target() const { return state_->false_target(); } // Node visitors. void VisitStatements(ZoneList<Statement*>* statements); #define DEF_VISIT(type) \ void Visit##type(type* node); NODE_LIST(DEF_VISIT) #undef DEF_VISIT // Visit a statement and then spill the virtual frame if control flow can // reach the end of the statement (ie, it does not exit via break, // continue, return, or throw). This function is used temporarily while // the code generator is being transformed. void VisitAndSpill(Statement* statement) { ASSERT(in_spilled_code()); set_in_spilled_code(false); Visit(statement); if (frame_ != NULL) { frame_->SpillAll(); } set_in_spilled_code(true); } // Visit a list of statements and then spill the virtual frame if control // flow can reach the end of the list. void VisitStatementsAndSpill(ZoneList<Statement*>* statements) { ASSERT(in_spilled_code()); set_in_spilled_code(false); VisitStatements(statements); if (frame_ != NULL) { frame_->SpillAll(); } set_in_spilled_code(true); } // Main code generation function void GenCode(FunctionLiteral* fun); // The following are used by class Reference. void LoadReference(Reference* ref); void UnloadReference(Reference* ref); MemOperand ContextOperand(Register context, int index) const { return MemOperand(context, Context::SlotOffset(index)); } MemOperand SlotOperand(Slot* slot, Register tmp); MemOperand ContextSlotOperandCheckExtensions(Slot* slot, Register tmp, Register tmp2, JumpTarget* slow); // Expressions MemOperand GlobalObject() const { return ContextOperand(cp, Context::GLOBAL_INDEX); } void LoadCondition(Expression* x, TypeofState typeof_state, JumpTarget* true_target, JumpTarget* false_target, bool force_cc); void Load(Expression* x, TypeofState typeof_state = NOT_INSIDE_TYPEOF); void LoadGlobal(); void LoadGlobalReceiver(Register scratch); // Generate code to push the value of an expression on top of the frame // and then spill the frame fully to memory. This function is used // temporarily while the code generator is being transformed. void LoadAndSpill(Expression* expression, TypeofState typeof_state = NOT_INSIDE_TYPEOF) { ASSERT(in_spilled_code()); set_in_spilled_code(false); Load(expression, typeof_state); frame_->SpillAll(); set_in_spilled_code(true); } // Call LoadCondition and then spill the virtual frame unless control flow // cannot reach the end of the expression (ie, by emitting only // unconditional jumps to the control targets). void LoadConditionAndSpill(Expression* expression, TypeofState typeof_state, JumpTarget* true_target, JumpTarget* false_target, bool force_control) { ASSERT(in_spilled_code()); set_in_spilled_code(false); LoadCondition(expression, typeof_state, true_target, false_target, force_control); if (frame_ != NULL) { frame_->SpillAll(); } set_in_spilled_code(true); } // Read a value from a slot and leave it on top of the expression stack. void LoadFromSlot(Slot* slot, TypeofState typeof_state); void LoadFromGlobalSlotCheckExtensions(Slot* slot, TypeofState typeof_state, Register tmp, Register tmp2, JumpTarget* slow); // Special code for typeof expressions: Unfortunately, we must // be careful when loading the expression in 'typeof' // expressions. We are not allowed to throw reference errors for // non-existing properties of the global object, so we must make it // look like an explicit property access, instead of an access // through the context chain. void LoadTypeofExpression(Expression* x); void ToBoolean(JumpTarget* true_target, JumpTarget* false_target); void GenericBinaryOperation(Token::Value op); void Comparison(Condition cc, bool strict = false); void SmiOperation(Token::Value op, Handle<Object> value, bool reversed); void CallWithArguments(ZoneList<Expression*>* arguments, int position); // Control flow void Branch(bool if_true, JumpTarget* target); void CheckStack(); void CleanStack(int num_bytes); bool CheckForInlineRuntimeCall(CallRuntime* node); Handle<JSFunction> BuildBoilerplate(FunctionLiteral* node); void ProcessDeclarations(ZoneList<Declaration*>* declarations); Handle<Code> ComputeCallInitialize(int argc); Handle<Code> ComputeCallInitializeInLoop(int argc); // Declare global variables and functions in the given array of // name/value pairs. void DeclareGlobals(Handle<FixedArray> pairs); // Instantiate the function boilerplate. void InstantiateBoilerplate(Handle<JSFunction> boilerplate); // Support for type checks. void GenerateIsSmi(ZoneList<Expression*>* args); void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args); void GenerateIsArray(ZoneList<Expression*>* args); // Support for arguments.length and arguments[?]. void GenerateArgumentsLength(ZoneList<Expression*>* args); void GenerateArgumentsAccess(ZoneList<Expression*>* args); // Support for accessing the value field of an object (used by Date). void GenerateValueOf(ZoneList<Expression*>* args); void GenerateSetValueOf(ZoneList<Expression*>* args); // Fast support for charCodeAt(n). void GenerateFastCharCodeAt(ZoneList<Expression*>* args); // Fast support for object equality testing. void GenerateObjectEquals(ZoneList<Expression*>* args); void GenerateLog(ZoneList<Expression*>* args); // Methods and constants for fast case switch statement support. // // Only allow fast-case switch if the range of labels is at most // this factor times the number of case labels. // Value is derived from comparing the size of code generated by the normal // switch code for Smi-labels to the size of a single pointer. If code // quality increases this number should be decreased to match. static const int kFastSwitchMaxOverheadFactor = 10; // Minimal number of switch cases required before we allow jump-table // optimization. static const int kFastSwitchMinCaseCount = 5; // The limit of the range of a fast-case switch, as a factor of the number // of cases of the switch. Each platform should return a value that // is optimal compared to the default code generated for a switch statement // on that platform. int FastCaseSwitchMaxOverheadFactor(); // The minimal number of cases in a switch before the fast-case switch // optimization is enabled. Each platform should return a value that // is optimal compared to the default code generated for a switch statement // on that platform. int FastCaseSwitchMinCaseCount(); // Allocate a jump table and create code to jump through it. // Should call GenerateFastCaseSwitchCases to generate the code for // all the cases at the appropriate point. void GenerateFastCaseSwitchJumpTable(SwitchStatement* node, int min_index, int range, Label* default_label, Vector<Label*> case_targets, Vector<Label> case_labels); // Generate the code for cases for the fast case switch. // Called by GenerateFastCaseSwitchJumpTable. void GenerateFastCaseSwitchCases(SwitchStatement* node, Vector<Label> case_labels, VirtualFrame* start_frame); // Fast support for constant-Smi switches. void GenerateFastCaseSwitchStatement(SwitchStatement* node, int min_index, int range, int default_index); // Fast support for constant-Smi switches. Tests whether switch statement // permits optimization and calls GenerateFastCaseSwitch if it does. // Returns true if the fast-case switch was generated, and false if not. bool TryGenerateFastCaseSwitchStatement(SwitchStatement* node); // Methods used to indicate which source code is generated for. Source // positions are collected by the assembler and emitted with the relocation // information. void CodeForFunctionPosition(FunctionLiteral* fun); void CodeForStatementPosition(Node* node); void CodeForSourcePosition(int pos); // Is the given jump target the actual (ie, non-shadowed) function return // target? bool IsActualFunctionReturn(JumpTarget* target); #ifdef DEBUG // True if the registers are valid for entry to a block. bool HasValidEntryRegisters(); #endif bool is_eval_; // Tells whether code is generated for eval. Handle<Script> script_; List<DeferredCode*> deferred_; // Assembler MacroAssembler* masm_; // to generate code // Code generation state Scope* scope_; VirtualFrame* frame_; RegisterAllocator* allocator_; Condition cc_reg_; CodeGenState* state_; int break_stack_height_; // Jump targets JumpTarget function_return_; // True if the function return is shadowed (ie, jumping to the target // function_return_ does not jump to the true function return, but rather // to some unlinking code). bool function_return_is_shadowed_; // True when we are in code that expects the virtual frame to be fully // spilled. Some virtual frame function are disabled in DEBUG builds when // called from spilled code, because they do not leave the virtual frame // in a spilled state. bool in_spilled_code_; friend class VirtualFrame; friend class JumpTarget; friend class Reference; DISALLOW_COPY_AND_ASSIGN(CodeGenerator); }; void Reference::GetValueAndSpill(TypeofState typeof_state) { ASSERT(cgen_->in_spilled_code()); cgen_->set_in_spilled_code(false); GetValue(typeof_state); cgen_->frame()->SpillAll(); cgen_->set_in_spilled_code(true); } } } // namespace v8::internal #endif // V8_CODEGEN_ARM_H_