// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_RUNTIME_RUNTIME_UTILS_H_ #define V8_RUNTIME_RUNTIME_UTILS_H_ #include "src/base/logging.h" #include "src/globals.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { // Cast the given object to a value of the specified type and store // it in a variable with the given name. If the object is not of the // expected type we crash safely. #define CONVERT_ARG_CHECKED(Type, name, index) \ CHECK(args[index]->Is##Type()); \ Type* name = Type::cast(args[index]); #define CONVERT_ARG_HANDLE_CHECKED(Type, name, index) \ CHECK(args[index]->Is##Type()); \ Handle<Type> name = args.at<Type>(index); #define CONVERT_NUMBER_ARG_HANDLE_CHECKED(name, index) \ CHECK(args[index]->IsNumber()); \ Handle<Object> name = args.at(index); // Cast the given object to a boolean and store it in a variable with // the given name. If the object is not a boolean we crash safely. #define CONVERT_BOOLEAN_ARG_CHECKED(name, index) \ CHECK(args[index]->IsBoolean()); \ bool name = args[index]->IsTrue(isolate); // Cast the given argument to a Smi and store its value in an int variable // with the given name. If the argument is not a Smi we crash safely. #define CONVERT_SMI_ARG_CHECKED(name, index) \ CHECK(args[index]->IsSmi()); \ int name = args.smi_at(index); // Cast the given argument to a double and store it in a variable with // the given name. If the argument is not a number (as opposed to // the number not-a-number) we crash safely. #define CONVERT_DOUBLE_ARG_CHECKED(name, index) \ CHECK(args[index]->IsNumber()); \ double name = args.number_at(index); // Cast the given argument to a size_t and store its value in a variable with // the given name. If the argument is not a size_t we crash safely. #define CONVERT_SIZE_ARG_CHECKED(name, index) \ CHECK(args[index]->IsNumber()); \ Handle<Object> name##_object = args.at(index); \ size_t name = 0; \ CHECK(TryNumberToSize(*name##_object, &name)); // Call the specified converter on the object *comand store the result in // a variable of the specified type with the given name. If the // object is not a Number we crash safely. #define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \ CHECK(obj->IsNumber()); \ type name = NumberTo##Type(obj); // Cast the given argument to PropertyDetails and store its value in a // variable with the given name. If the argument is not a Smi we crash safely. #define CONVERT_PROPERTY_DETAILS_CHECKED(name, index) \ CHECK(args[index]->IsSmi()); \ PropertyDetails name = PropertyDetails(Smi::cast(args[index])); // Assert that the given argument has a valid value for a LanguageMode // and store it in a LanguageMode variable with the given name. #define CONVERT_LANGUAGE_MODE_ARG_CHECKED(name, index) \ CHECK(args[index]->IsNumber()); \ int32_t __tmp_##name = 0; \ CHECK(args[index]->ToInt32(&__tmp_##name)); \ CHECK(is_valid_language_mode(__tmp_##name)); \ LanguageMode name = static_cast<LanguageMode>(__tmp_##name); // Assert that the given argument is a number within the Int32 range // and convert it to int32_t. If the argument is not an Int32 we crash safely. #define CONVERT_INT32_ARG_CHECKED(name, index) \ CHECK(args[index]->IsNumber()); \ int32_t name = 0; \ CHECK(args[index]->ToInt32(&name)); // Assert that the given argument is a number within the Uint32 range // and convert it to uint32_t. If the argument is not an Uint32 call // IllegalOperation and return. #define CONVERT_UINT32_ARG_CHECKED(name, index) \ CHECK(args[index]->IsNumber()); \ uint32_t name = 0; \ CHECK(args[index]->ToUint32(&name)); // Cast the given argument to PropertyAttributes and store its value in a // variable with the given name. If the argument is not a Smi or the // enum value is out of range, we crash safely. #define CONVERT_PROPERTY_ATTRIBUTES_CHECKED(name, index) \ CHECK(args[index]->IsSmi()); \ CHECK_EQ(args.smi_at(index) & ~(READ_ONLY | DONT_ENUM | DONT_DELETE), 0); \ PropertyAttributes name = static_cast<PropertyAttributes>(args.smi_at(index)); // A mechanism to return a pair of Object pointers in registers (if possible). // How this is achieved is calling convention-dependent. // All currently supported x86 compiles uses calling conventions that are cdecl // variants where a 64-bit value is returned in two 32-bit registers // (edx:eax on ia32, r1:r0 on ARM). // In AMD-64 calling convention a struct of two pointers is returned in rdx:rax. // In Win64 calling convention, a struct of two pointers is returned in memory, // allocated by the caller, and passed as a pointer in a hidden first parameter. #ifdef V8_HOST_ARCH_64_BIT struct ObjectPair { Object* x; Object* y; }; static inline ObjectPair MakePair(Object* x, Object* y) { ObjectPair result = {x, y}; // Pointers x and y returned in rax and rdx, in AMD-x64-abi. // In Win64 they are assigned to a hidden first argument. return result; } #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT // For x32 a 128-bit struct return is done as rax and rdx from the ObjectPair // are used in the full codegen and Crankshaft compiler. An alternative is // using uint64_t and modifying full codegen and Crankshaft compiler. struct ObjectPair { Object* x; uint32_t x_upper; Object* y; uint32_t y_upper; }; static inline ObjectPair MakePair(Object* x, Object* y) { ObjectPair result = {x, 0, y, 0}; // Pointers x and y returned in rax and rdx, in x32-abi. return result; } #else typedef uint64_t ObjectPair; static inline ObjectPair MakePair(Object* x, Object* y) { #if defined(V8_TARGET_LITTLE_ENDIAN) return reinterpret_cast<uint32_t>(x) | (reinterpret_cast<ObjectPair>(y) << 32); #elif defined(V8_TARGET_BIG_ENDIAN) return reinterpret_cast<uint32_t>(y) | (reinterpret_cast<ObjectPair>(x) << 32); #else #error Unknown endianness #endif } #endif } // namespace internal } // namespace v8 #endif // V8_RUNTIME_RUNTIME_UTILS_H_