// Copyright 2021 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <math.h> #include <iostream> #include "src/base/utils/random-number-generator.h" #include "src/codegen/assembler-inl.h" #include "src/codegen/macro-assembler.h" #include "src/diagnostics/disassembler.h" #include "src/execution/simulator.h" #include "src/heap/factory.h" #include "src/init/v8.h" #include "src/utils/utils.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/value-helper.h" #include "test/cctest/test-helper-riscv64.h" namespace v8 { namespace internal { // Define these function prototypes to match JSEntryFunction in execution.cc using F1 = void*(int x, int p1, int p2, int p3, int p4); using F2 = void*(int x, int y, int p2, int p3, int p4); using F3 = void*(void* p, int p1, int p2, int p3, int p4); using F4 = void*(int64_t x, int64_t y, int64_t p2, int64_t p3, int64_t p4); using F5 = void*(void* p0, void* p1, int p2, int p3, int p4); #define MIN_VAL_IMM12 -(1 << 11) #define LARGE_INT_EXCEED_32_BIT 0x01C9'1075'0321'FB01LL #define LARGE_INT_UNDER_32_BIT 0x1234'5678 #define LARGE_UINT_EXCEED_32_BIT 0xFDCB'1234'A034'5691ULL #define __ assm. #define UTEST_R2_FORM_WITH_RES(instr_name, type, rs1_val, rs2_val, \ expected_res) \ TEST(RISCV_UTEST_##instr_name) { \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { __ instr_name(a0, a0, a1); }; \ auto res = GenAndRunTest<type, type>(rs1_val, rs2_val, fn); \ CHECK_EQ(expected_res, res); \ } #define UTEST_R1_FORM_WITH_RES(instr_name, in_type, out_type, rs1_val, \ expected_res) \ TEST(RISCV_UTEST_##instr_name) { \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { __ instr_name(a0, a0); }; \ auto res = GenAndRunTest<out_type, in_type>(rs1_val, fn); \ CHECK_EQ(expected_res, res); \ } #define UTEST_R1_FORM_WITH_RES_C(instr_name, in_type, out_type, rs1_val, \ expected_res) \ TEST(RISCV_UTEST_##instr_name) { \ i::FLAG_riscv_c_extension = true; \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { __ instr_name(a0, a0); }; \ auto res = GenAndRunTest<out_type, in_type>(rs1_val, fn); \ CHECK_EQ(expected_res, res); \ } #define UTEST_I_FORM_WITH_RES(instr_name, type, rs1_val, imm12, expected_res) \ TEST(RISCV_UTEST_##instr_name) { \ CcTest::InitializeVM(); \ CHECK_EQ(is_intn(imm12, 12), true); \ auto fn = [](MacroAssembler& assm) { __ instr_name(a0, a0, imm12); }; \ auto res = GenAndRunTest<type, type>(rs1_val, fn); \ CHECK_EQ(expected_res, res); \ } #define UTEST_AMO_WITH_RES(instr_name, aq, rl, inout_type, rs1_val, rs2_val, \ expected_res) \ TEST(RISCV_UTEST_##instr_name) { \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { __ instr_name(aq, rl, a1, a0, a2); }; \ auto res = \ GenAndRunTestForAMO<inout_type, inout_type>(rs1_val, rs2_val, fn); \ CHECK_EQ(expected_res, res); \ } #define UTEST_LOAD_STORE(ldname, stname, value_type, value) \ TEST(RISCV_UTEST_##stname##ldname) { \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { \ __ stname(a1, a0, 0); \ __ ldname(a0, a0, 0); \ }; \ GenAndRunTestForLoadStore<value_type>(value, fn); \ } // Since f.Call() is implemented as vararg calls and RISCV calling convention // passes all vararg arguments and returns (including floats) in GPRs, we have // to move from GPR to FPR and back in all floating point tests #define UTEST_LOAD_STORE_F(ldname, stname, value_type, store_value) \ TEST(RISCV_UTEST_##stname##ldname) { \ DCHECK(std::is_floating_point<value_type>::value); \ \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { \ __ stname(fa0, a0, 0); \ __ ldname(fa0, a0, 0); \ }; \ GenAndRunTestForLoadStore<value_type>(store_value, fn); \ } #define UTEST_LR_SC(ldname, stname, aq, rl, value_type, value) \ TEST(RISCV_UTEST_##stname##ldname) { \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { \ __ ldname(aq, rl, a1, a0); \ __ stname(aq, rl, a0, a0, a1); \ }; \ GenAndRunTestForLRSC<value_type>(value, fn); \ } #define UTEST_R1_FORM_WITH_RES_F(instr_name, type, rs1_fval, expected_fres) \ TEST(RISCV_UTEST_##instr_name) { \ DCHECK(std::is_floating_point<type>::value); \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { __ instr_name(fa0, fa0); }; \ auto res = GenAndRunTest<type, type>(rs1_fval, fn); \ CHECK_EQ(expected_fres, res); \ } #define UTEST_R2_FORM_WITH_RES_F(instr_name, type, rs1_fval, rs2_fval, \ expected_fres) \ TEST(RISCV_UTEST_##instr_name) { \ DCHECK(std::is_floating_point<type>::value); \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { __ instr_name(fa0, fa0, fa1); }; \ auto res = GenAndRunTest<type, type>(rs1_fval, rs2_fval, fn); \ CHECK_EQ(expected_fres, res); \ } #define UTEST_R3_FORM_WITH_RES_F(instr_name, type, rs1_fval, rs2_fval, \ rs3_fval, expected_fres) \ TEST(RISCV_UTEST_##instr_name) { \ DCHECK(std::is_floating_point<type>::value); \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { __ instr_name(fa0, fa0, fa1, fa2); }; \ auto res = GenAndRunTest<type, type>(rs1_fval, rs2_fval, rs3_fval, fn); \ CHECK_EQ(expected_fres, res); \ } #define UTEST_COMPARE_WITH_RES_F(instr_name, input_type, rs1_fval, rs2_fval, \ expected_res) \ TEST(RISCV_UTEST_##instr_name) { \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { __ instr_name(a0, fa0, fa1); }; \ auto res = GenAndRunTest<int32_t, input_type>(rs1_fval, rs2_fval, fn); \ CHECK_EQ(expected_res, res); \ } #define UTEST_CONV_F_FROM_I(instr_name, input_type, output_type, rs1_val, \ expected_fres) \ TEST(RISCV_UTEST_##instr_name) { \ DCHECK(std::is_integral<input_type>::value&& \ std::is_floating_point<output_type>::value); \ \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { __ instr_name(fa0, a0); }; \ auto res = GenAndRunTest<output_type, input_type>(rs1_val, fn); \ CHECK_EQ(expected_fres, res); \ } #define UTEST_CONV_I_FROM_F(instr_name, input_type, output_type, \ rounding_mode, rs1_fval, expected_res) \ TEST(RISCV_UTEST_##instr_name) { \ DCHECK(std::is_floating_point<input_type>::value&& \ std::is_integral<output_type>::value); \ \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { \ __ instr_name(a0, fa0, rounding_mode); \ }; \ auto res = GenAndRunTest<output_type, input_type>(rs1_fval, fn); \ CHECK_EQ(expected_res, res); \ } \ \ TEST(RISCV_UTEST_dyn_##instr_name) { \ DCHECK(std::is_floating_point<input_type>::value&& \ std::is_integral<output_type>::value); \ \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { \ __ csrwi(csr_frm, rounding_mode); \ __ instr_name(a0, fa0, DYN); \ }; \ auto res = GenAndRunTest<output_type, input_type>(rs1_fval, fn); \ CHECK_EQ(expected_res, res); \ } #define UTEST_CONV_F_FROM_F(instr_name, input_type, output_type, rs1_val, \ expected_fres) \ TEST(RISCV_UTEST_##instr_name) { \ CcTest::InitializeVM(); \ auto fn = [](MacroAssembler& assm) { __ instr_name(fa0, fa0); }; \ auto res = GenAndRunTest<output_type, input_type>(rs1_val, fn); \ CHECK_EQ(expected_fres, res); \ } #define UTEST_CSRI(csr_reg, csr_write_val, csr_set_clear_val) \ TEST(RISCV_UTEST_CSRI_##csr_reg) { \ CHECK_EQ(is_uint5(csr_write_val) && is_uint5(csr_set_clear_val), true); \ \ CcTest::InitializeVM(); \ int64_t expected_res = 111; \ Label exit, error; \ auto fn = [&exit, &error, expected_res](MacroAssembler& assm) { \ /* test csr-write and csr-read */ \ __ csrwi(csr_reg, csr_write_val); \ __ csrr(a0, csr_reg); \ __ RV_li(a1, csr_write_val); \ __ bne(a0, a1, &error); \ /* test csr_set */ \ __ csrsi(csr_reg, csr_set_clear_val); \ __ csrr(a0, csr_reg); \ __ RV_li(a1, (csr_write_val) | (csr_set_clear_val)); \ __ bne(a0, a1, &error); \ /* test csr_clear */ \ __ csrci(csr_reg, csr_set_clear_val); \ __ csrr(a0, csr_reg); \ __ RV_li(a1, (csr_write_val) & (~(csr_set_clear_val))); \ __ bne(a0, a1, &error); \ /* everyhing runs correctly, return 111 */ \ __ RV_li(a0, expected_res); \ __ j(&exit); \ \ __ bind(&error); \ /* got an error, return 666 */ \ __ RV_li(a0, 666); \ \ __ bind(&exit); \ }; \ auto res = GenAndRunTest(fn); \ CHECK_EQ(expected_res, res); \ } #define UTEST_CSR(csr_reg, csr_write_val, csr_set_clear_val) \ TEST(RISCV_UTEST_CSR_##csr_reg) { \ Label exit, error; \ int64_t expected_res = 111; \ auto fn = [&exit, &error, expected_res](MacroAssembler& assm) { \ /* test csr-write and csr-read */ \ __ RV_li(t0, csr_write_val); \ __ csrw(csr_reg, t0); \ __ csrr(a0, csr_reg); \ __ RV_li(a1, csr_write_val); \ __ bne(a0, a1, &error); \ /* test csr_set */ \ __ RV_li(t0, csr_set_clear_val); \ __ csrs(csr_reg, t0); \ __ csrr(a0, csr_reg); \ __ RV_li(a1, (csr_write_val) | (csr_set_clear_val)); \ __ bne(a0, a1, &error); \ /* test csr_clear */ \ __ RV_li(t0, csr_set_clear_val); \ __ csrc(csr_reg, t0); \ __ csrr(a0, csr_reg); \ __ RV_li(a1, (csr_write_val) & (~(csr_set_clear_val))); \ __ bne(a0, a1, &error); \ /* everyhing runs correctly, return 111 */ \ __ RV_li(a0, expected_res); \ __ j(&exit); \ \ __ bind(&error); \ /* got an error, return 666 */ \ __ RV_li(a0, 666); \ \ __ bind(&exit); \ }; \ \ auto res = GenAndRunTest(fn); \ CHECK_EQ(expected_res, res); \ } #define UTEST_R2_FORM_WITH_OP(instr_name, type, rs1_val, rs2_val, tested_op) \ UTEST_R2_FORM_WITH_RES(instr_name, type, rs1_val, rs2_val, \ ((rs1_val)tested_op(rs2_val))) #define UTEST_I_FORM_WITH_OP(instr_name, type, rs1_val, imm12, tested_op) \ UTEST_I_FORM_WITH_RES(instr_name, type, rs1_val, imm12, \ ((rs1_val)tested_op(imm12))) #define UTEST_R2_FORM_WITH_OP_F(instr_name, type, rs1_fval, rs2_fval, \ tested_op) \ UTEST_R2_FORM_WITH_RES_F(instr_name, type, rs1_fval, rs2_fval, \ ((rs1_fval)tested_op(rs2_fval))) #define UTEST_COMPARE_WITH_OP_F(instr_name, input_type, rs1_fval, rs2_fval, \ tested_op) \ UTEST_COMPARE_WITH_RES_F(instr_name, input_type, rs1_fval, rs2_fval, \ ((rs1_fval)tested_op(rs2_fval))) // -- test load-store -- UTEST_LOAD_STORE(ld, sd, int64_t, 0xFBB10A9C12345678) // due to sign-extension of lw // instruction, value-to-stored must have // its 32th least significant bit be 0 UTEST_LOAD_STORE(lw, sw, int32_t, 0x456AF894) // set the 32th least significant bit of // value-to-store to 1 to test // zero-extension by lwu UTEST_LOAD_STORE(lwu, sw, uint32_t, 0x856AF894) // due to sign-extension of lh // instruction, value-to-stored must have // its 16th least significant bit be 0 UTEST_LOAD_STORE(lh, sh, int32_t, 0x7894) // set the 16th least significant bit of // value-to-store to 1 to test // zero-extension by lhu UTEST_LOAD_STORE(lhu, sh, uint32_t, 0xF894) // due to sign-extension of lb // instruction, value-to-stored must have // its 8th least significant bit be 0 UTEST_LOAD_STORE(lb, sb, int32_t, 0x54) // set the 8th least significant bit of // value-to-store to 1 to test // zero-extension by lbu UTEST_LOAD_STORE(lbu, sb, uint32_t, 0x94) // -- arithmetic w/ immediate -- UTEST_I_FORM_WITH_OP(addi, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, +) UTEST_I_FORM_WITH_OP(slti, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, <) UTEST_I_FORM_WITH_OP(sltiu, uint64_t, LARGE_UINT_EXCEED_32_BIT, 0x4FB, <) UTEST_I_FORM_WITH_OP(xori, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, ^) UTEST_I_FORM_WITH_OP(ori, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, |) UTEST_I_FORM_WITH_OP(andi, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, &) UTEST_I_FORM_WITH_OP(slli, int64_t, 0x1234'5678ULL, 33, <<) UTEST_I_FORM_WITH_OP(srli, int64_t, 0x8234'5678'0000'0000ULL, 33, >>) UTEST_I_FORM_WITH_OP(srai, int64_t, -0x1234'5678'0000'0000LL, 33, >>) // -- arithmetic -- UTEST_R2_FORM_WITH_OP(add, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, +) UTEST_R2_FORM_WITH_OP(sub, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, -) UTEST_R2_FORM_WITH_OP(slt, int64_t, MIN_VAL_IMM12, LARGE_INT_EXCEED_32_BIT, <) UTEST_R2_FORM_WITH_OP(sltu, uint64_t, 0x4FB, LARGE_UINT_EXCEED_32_BIT, <) UTEST_R2_FORM_WITH_OP(xor_, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, ^) UTEST_R2_FORM_WITH_OP(or_, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, |) UTEST_R2_FORM_WITH_OP(and_, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, &) UTEST_R2_FORM_WITH_OP(sll, int64_t, 0x12345678ULL, 33, <<) UTEST_R2_FORM_WITH_OP(srl, int64_t, 0x8234567800000000ULL, 33, >>) UTEST_R2_FORM_WITH_OP(sra, int64_t, -0x1234'5678'0000'0000LL, 33, >>) // -- Memory fences -- // void fence(uint8_t pred, uint8_t succ); // void fence_tso(); // -- Environment call / break -- // void ecall(); // void ebreak(); // void unimp(); // -- CSR -- UTEST_CSRI(csr_frm, DYN, RUP) UTEST_CSRI(csr_fflags, kInexact | kInvalidOperation, kInvalidOperation) UTEST_CSRI(csr_fcsr, kDivideByZero | kOverflow, kUnderflow) UTEST_CSR(csr_frm, DYN, RUP) UTEST_CSR(csr_fflags, kInexact | kInvalidOperation, kInvalidOperation) UTEST_CSR(csr_fcsr, kDivideByZero | kOverflow | (RDN << kFcsrFrmShift), kUnderflow | (RNE << kFcsrFrmShift)) // -- RV64I -- UTEST_I_FORM_WITH_OP(addiw, int32_t, LARGE_INT_UNDER_32_BIT, MIN_VAL_IMM12, +) UTEST_I_FORM_WITH_OP(slliw, int32_t, 0x12345678U, 12, <<) UTEST_I_FORM_WITH_OP(srliw, int32_t, 0x82345678U, 12, >>) UTEST_I_FORM_WITH_OP(sraiw, int32_t, -123, 12, >>) UTEST_R2_FORM_WITH_OP(addw, int32_t, LARGE_INT_UNDER_32_BIT, MIN_VAL_IMM12, +) UTEST_R2_FORM_WITH_OP(subw, int32_t, LARGE_INT_UNDER_32_BIT, MIN_VAL_IMM12, -) UTEST_R2_FORM_WITH_OP(sllw, int32_t, 0x12345678U, 12, <<) UTEST_R2_FORM_WITH_OP(srlw, int32_t, 0x82345678U, 12, >>) UTEST_R2_FORM_WITH_OP(sraw, int32_t, -123, 12, >>) // -- RV32M Standard Extension -- UTEST_R2_FORM_WITH_OP(mul, int64_t, 0x0F945001L, MIN_VAL_IMM12, *) UTEST_R2_FORM_WITH_RES(mulh, int64_t, 0x1234567800000000LL, -0x1234'5617'0000'0000LL, 0x12345678LL * -0x1234'5617LL) UTEST_R2_FORM_WITH_RES(mulhu, int64_t, 0x1234'5678'0000'0000ULL, 0xF896'7021'0000'0000ULL, 0x1234'5678ULL * 0xF896'7021ULL) UTEST_R2_FORM_WITH_RES(mulhsu, int64_t, -0x1234'56780000'0000LL, 0xF234'5678'0000'0000ULL, static_cast<int64_t>(-0x1234'5678LL * 0xF234'5678ULL)) UTEST_R2_FORM_WITH_OP(div, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, /) UTEST_R2_FORM_WITH_OP(divu, uint64_t, LARGE_UINT_EXCEED_32_BIT, 100, /) UTEST_R2_FORM_WITH_OP(rem, int64_t, LARGE_INT_EXCEED_32_BIT, MIN_VAL_IMM12, %) UTEST_R2_FORM_WITH_OP(remu, uint64_t, LARGE_UINT_EXCEED_32_BIT, 100, %) // -- RV64M Standard Extension (in addition to RV32M) -- UTEST_R2_FORM_WITH_OP(mulw, int32_t, -20, 56, *) UTEST_R2_FORM_WITH_OP(divw, int32_t, 200, -10, /) UTEST_R2_FORM_WITH_OP(divuw, uint32_t, 1000, 100, /) UTEST_R2_FORM_WITH_OP(remw, int32_t, 1234, -91, %) UTEST_R2_FORM_WITH_OP(remuw, uint32_t, 1234, 43, %) // -- RV32A Standard Extension -- UTEST_LR_SC(lr_w, sc_w, false, false, int32_t, 0xFBB1A75C) UTEST_AMO_WITH_RES(amoswap_w, false, false, uint32_t, 0xFBB1A75C, 0xA75C0A9C, (uint32_t)0xA75C0A9C) UTEST_AMO_WITH_RES(amoadd_w, false, false, uint32_t, 0xFBB1A75C, 0xA75C0A9C, (uint32_t)0xFBB1A75C + (uint32_t)0xA75C0A9C) UTEST_AMO_WITH_RES(amoxor_w, false, false, uint32_t, 0xFBB1A75C, 0xA75C0A9C, (uint32_t)0xFBB1A75C ^ (uint32_t)0xA75C0A9C) UTEST_AMO_WITH_RES(amoand_w, false, false, uint32_t, 0xFBB1A75C, 0xA75C0A9C, (uint32_t)0xFBB1A75C & (uint32_t)0xA75C0A9C) UTEST_AMO_WITH_RES(amoor_w, false, false, uint32_t, 0xFBB1A75C, 0xA75C0A9C, (uint32_t)0xFBB1A75C | (uint32_t)0xA75C0A9C) UTEST_AMO_WITH_RES(amomin_w, false, false, int32_t, 0xFBB1A75C, 0xA75C0A9C, std::min((int32_t)0xFBB1A75C, (int32_t)0xA75C0A9C)) UTEST_AMO_WITH_RES(amomax_w, false, false, int32_t, 0xFBB1A75C, 0xA75C0A9C, std::max((int32_t)0xFBB1A75C, (int32_t)0xA75C0A9C)) UTEST_AMO_WITH_RES(amominu_w, false, false, uint32_t, 0xFBB1A75C, 0xA75C0A9C, std::min((uint32_t)0xFBB1A75C, (uint32_t)0xA75C0A9C)) UTEST_AMO_WITH_RES(amomaxu_w, false, false, uint32_t, 0xFBB1A75C, 0xA75C0A9C, std::max((uint32_t)0xFBB1A75C, (uint32_t)0xA75C0A9C)) // -- RV64A Standard Extension (in addition to RV32A) -- UTEST_LR_SC(lr_d, sc_d, false, false, int64_t, 0xFBB10A9Cbfb76aa6) UTEST_AMO_WITH_RES(amoswap_d, false, false, int64_t, 0xFBB10A9Cbfb76aa6, 0x284ff922346ad35c, (int64_t)0x284ff922346ad35c) UTEST_AMO_WITH_RES(amoadd_d, false, false, int64_t, 0xFBB10A9Cbfb76aa6, 0x284ff922346ad35c, (int64_t)0xFBB10A9Cbfb76aa6 + (int64_t)0x284ff922346ad35c) UTEST_AMO_WITH_RES(amoxor_d, false, false, int64_t, 0xFBB10A9Cbfb76aa6, 0x284ff922346ad35c, (int64_t)0xFBB10A9Cbfb76aa6 ^ (int64_t)0x284ff922346ad35c) UTEST_AMO_WITH_RES(amoand_d, false, false, int64_t, 0xFBB10A9Cbfb76aa6, 0x284ff922346ad35c, (int64_t)0xFBB10A9Cbfb76aa6 & (int64_t)0x284ff922346ad35c) UTEST_AMO_WITH_RES(amoor_d, false, false, int64_t, 0xFBB10A9Cbfb76aa6, 0x284ff922346ad35c, (int64_t)0xFBB10A9Cbfb76aa6 | (int64_t)0x284ff922346ad35c) UTEST_AMO_WITH_RES(amomin_d, false, false, int64_t, 0xFBB10A9Cbfb76aa6, 0x284ff922346ad35c, std::min((int64_t)0xFBB10A9Cbfb76aa6, (int64_t)0x284ff922346ad35c)) UTEST_AMO_WITH_RES(amomax_d, false, false, int64_t, 0xFBB10A9Cbfb76aa6, 0x284ff922346ad35c, std::max((int64_t)0xFBB10A9Cbfb76aa6, (int64_t)0x284ff922346ad35c)) UTEST_AMO_WITH_RES(amominu_d, false, false, uint64_t, 0xFBB10A9Cbfb76aa6, 0x284ff922346ad35c, std::min((uint64_t)0xFBB10A9Cbfb76aa6, (uint64_t)0x284ff922346ad35c)) UTEST_AMO_WITH_RES(amomaxu_d, false, false, uint64_t, 0xFBB10A9Cbfb76aa6, 0x284ff922346ad35c, std::max((uint64_t)0xFBB10A9Cbfb76aa6, (uint64_t)0x284ff922346ad35c)) // -- RV32F Standard Extension -- UTEST_LOAD_STORE_F(flw, fsw, float, -2345.678f) UTEST_R2_FORM_WITH_OP_F(fadd_s, float, -1012.01f, 3456.13f, +) UTEST_R2_FORM_WITH_OP_F(fsub_s, float, -1012.01f, 3456.13f, -) UTEST_R2_FORM_WITH_OP_F(fmul_s, float, -10.01f, 56.13f, *) UTEST_R2_FORM_WITH_OP_F(fdiv_s, float, -10.01f, 34.13f, /) UTEST_R1_FORM_WITH_RES_F(fsqrt_s, float, 34.13f, sqrtf(34.13f)) UTEST_R2_FORM_WITH_RES_F(fmin_s, float, -1012.0f, 3456.13f, -1012.0f) UTEST_R2_FORM_WITH_RES_F(fmax_s, float, -1012.0f, 3456.13f, 3456.13f) UTEST_R3_FORM_WITH_RES_F(fmadd_s, float, 67.56f, -1012.01f, 3456.13f, std::fma(67.56f, -1012.01f, 3456.13f)) UTEST_R3_FORM_WITH_RES_F(fmsub_s, float, 67.56f, -1012.01f, 3456.13f, std::fma(67.56f, -1012.01f, -3456.13f)) UTEST_R3_FORM_WITH_RES_F(fnmsub_s, float, 67.56f, -1012.01f, 3456.13f, -std::fma(67.56f, -1012.01f, -3456.13f)) UTEST_R3_FORM_WITH_RES_F(fnmadd_s, float, 67.56f, -1012.01f, 3456.13f, -std::fma(67.56f, -1012.01f, 3456.13f)) UTEST_COMPARE_WITH_OP_F(feq_s, float, -3456.56, -3456.56, ==) UTEST_COMPARE_WITH_OP_F(flt_s, float, -3456.56, -3456.56, <) UTEST_COMPARE_WITH_OP_F(fle_s, float, -3456.56, -3456.56, <=) UTEST_CONV_F_FROM_I(fcvt_s_w, int32_t, float, -100, (float)(-100)) UTEST_CONV_F_FROM_I(fcvt_s_wu, uint32_t, float, std::numeric_limits<uint32_t>::max(), (float)(std::numeric_limits<uint32_t>::max())) UTEST_CONV_I_FROM_F(fcvt_w_s, float, int32_t, RMM, -100.5f, -101) UTEST_CONV_I_FROM_F(fcvt_wu_s, float, uint32_t, RUP, 256.1f, 257) UTEST_R2_FORM_WITH_RES_F(fsgnj_s, float, -100.0f, 200.0f, 100.0f) UTEST_R2_FORM_WITH_RES_F(fsgnjn_s, float, 100.0f, 200.0f, -100.0f) UTEST_R2_FORM_WITH_RES_F(fsgnjx_s, float, -100.0f, 200.0f, -100.0f) // -- RV64F Standard Extension (in addition to RV32F) -- UTEST_LOAD_STORE_F(fld, fsd, double, -3456.678) UTEST_R2_FORM_WITH_OP_F(fadd_d, double, -1012.01, 3456.13, +) UTEST_R2_FORM_WITH_OP_F(fsub_d, double, -1012.01, 3456.13, -) UTEST_R2_FORM_WITH_OP_F(fmul_d, double, -10.01, 56.13, *) UTEST_R2_FORM_WITH_OP_F(fdiv_d, double, -10.01, 34.13, /) UTEST_R1_FORM_WITH_RES_F(fsqrt_d, double, 34.13, std::sqrt(34.13)) UTEST_R2_FORM_WITH_RES_F(fmin_d, double, -1012.0, 3456.13, -1012.0) UTEST_R2_FORM_WITH_RES_F(fmax_d, double, -1012.0, 3456.13, 3456.13) UTEST_R3_FORM_WITH_RES_F(fmadd_d, double, 67.56, -1012.01, 3456.13, std::fma(67.56, -1012.01, 3456.13)) UTEST_R3_FORM_WITH_RES_F(fmsub_d, double, 67.56, -1012.01, 3456.13, std::fma(67.56, -1012.01, -3456.13)) UTEST_R3_FORM_WITH_RES_F(fnmsub_d, double, 67.56, -1012.01, 3456.13, -std::fma(67.56, -1012.01, -3456.13)) UTEST_R3_FORM_WITH_RES_F(fnmadd_d, double, 67.56, -1012.01, 3456.13, -std::fma(67.56, -1012.01, 3456.13)) UTEST_COMPARE_WITH_OP_F(feq_d, double, -3456.56, -3456.56, ==) UTEST_COMPARE_WITH_OP_F(flt_d, double, -3456.56, -3456.56, <) UTEST_COMPARE_WITH_OP_F(fle_d, double, -3456.56, -3456.56, <=) UTEST_CONV_F_FROM_I(fcvt_d_w, int32_t, double, -100, -100.0) UTEST_CONV_F_FROM_I(fcvt_d_wu, uint32_t, double, std::numeric_limits<uint32_t>::max(), (double)(std::numeric_limits<uint32_t>::max())) UTEST_CONV_I_FROM_F(fcvt_w_d, double, int32_t, RTZ, -100.0, -100) UTEST_CONV_I_FROM_F(fcvt_wu_d, double, uint32_t, RTZ, (double)(std::numeric_limits<uint32_t>::max()), std::numeric_limits<uint32_t>::max()) // -- RV64F Standard Extension (in addition to RV32F) -- UTEST_CONV_I_FROM_F(fcvt_l_s, float, int64_t, RDN, -100.5f, -101) UTEST_CONV_I_FROM_F(fcvt_lu_s, float, uint64_t, RTZ, 1000001.0f, 1000001) UTEST_CONV_F_FROM_I(fcvt_s_l, int64_t, float, (-0x1234'5678'0000'0001LL), (float)(-0x1234'5678'0000'0001LL)) UTEST_CONV_F_FROM_I(fcvt_s_lu, uint64_t, float, std::numeric_limits<uint64_t>::max(), (float)(std::numeric_limits<uint64_t>::max())) // -- RV32D Standard Extension -- UTEST_CONV_F_FROM_F(fcvt_s_d, double, float, 100.0, 100.0f) UTEST_CONV_F_FROM_F(fcvt_d_s, float, double, 100.0f, 100.0) UTEST_R2_FORM_WITH_RES_F(fsgnj_d, double, -100.0, 200.0, 100.0) UTEST_R2_FORM_WITH_RES_F(fsgnjn_d, double, 100.0, 200.0, -100.0) UTEST_R2_FORM_WITH_RES_F(fsgnjx_d, double, -100.0, 200.0, -100.0) // -- RV64D Standard Extension (in addition to RV32D) -- UTEST_CONV_I_FROM_F(fcvt_l_d, double, int64_t, RNE, -100.5, -100) UTEST_CONV_I_FROM_F(fcvt_lu_d, double, uint64_t, RTZ, 2456.5, 2456) UTEST_CONV_F_FROM_I(fcvt_d_l, int64_t, double, (-0x1234'5678'0000'0001LL), (double)(-0x1234'5678'0000'0001LL)) UTEST_CONV_F_FROM_I(fcvt_d_lu, uint64_t, double, std::numeric_limits<uint64_t>::max(), (double)(std::numeric_limits<uint64_t>::max())) // -- RV64C Standard Extension -- UTEST_R1_FORM_WITH_RES_C(c_mv, int64_t, int64_t, 0x0f5600ab123400, 0x0f5600ab123400) // -- Assembler Pseudo Instructions -- UTEST_R1_FORM_WITH_RES(mv, int64_t, int64_t, 0x0f5600ab123400, 0x0f5600ab123400) UTEST_R1_FORM_WITH_RES(not_, int64_t, int64_t, 0, ~0) UTEST_R1_FORM_WITH_RES(neg, int64_t, int64_t, 0x0f5600ab123400LL, -(0x0f5600ab123400LL)) UTEST_R1_FORM_WITH_RES(negw, int32_t, int32_t, 0xab123400, -(0xab123400)) UTEST_R1_FORM_WITH_RES(sext_w, int32_t, int64_t, 0xFA01'1234, static_cast<int64_t>(0xFFFFFFFFFA011234LL)) UTEST_R1_FORM_WITH_RES(seqz, int64_t, int64_t, 20, 20 == 0) UTEST_R1_FORM_WITH_RES(snez, int64_t, int64_t, 20, 20 != 0) UTEST_R1_FORM_WITH_RES(sltz, int64_t, int64_t, -20, -20 < 0) UTEST_R1_FORM_WITH_RES(sgtz, int64_t, int64_t, -20, -20 > 0) UTEST_R1_FORM_WITH_RES_F(fmv_s, float, -23.5f, -23.5f) UTEST_R1_FORM_WITH_RES_F(fabs_s, float, -23.5f, 23.5f) UTEST_R1_FORM_WITH_RES_F(fneg_s, float, 23.5f, -23.5f) UTEST_R1_FORM_WITH_RES_F(fmv_d, double, -23.5, -23.5) UTEST_R1_FORM_WITH_RES_F(fabs_d, double, -23.5, 23.5) UTEST_R1_FORM_WITH_RES_F(fneg_d, double, 23.5, -23.5) // Test LI TEST(RISCV0) { CcTest::InitializeVM(); FOR_INT64_INPUTS(i) { auto fn = [i](MacroAssembler& assm) { __ RV_li(a0, i); }; auto res = GenAndRunTest(fn); CHECK_EQ(i, res); } } TEST(RISCV1) { CcTest::InitializeVM(); Label L, C; auto fn = [&L, &C](MacroAssembler& assm) { __ mv(a1, a0); __ RV_li(a0, 0l); __ j(&C); __ bind(&L); __ add(a0, a0, a1); __ addi(a1, a1, -1); __ bind(&C); __ xori(a2, a1, 0); __ bnez(a2, &L); }; int64_t input = 50; int64_t expected_res = 1275L; auto res = GenAndRunTest<int64_t>(input, fn); CHECK_EQ(expected_res, res); } TEST(RISCV2) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Label exit, error; int64_t expected_res = 0x31415926L; // ----- Test all instructions. // Test lui, ori, and addiw, used in the // li pseudo-instruction. This way we // can then safely load registers with // chosen values. auto fn = [&exit, &error, expected_res](MacroAssembler& assm) { __ ori(a4, zero_reg, 0); __ lui(a4, 0x12345); __ ori(a4, a4, 0); __ ori(a4, a4, 0xF0F); __ ori(a4, a4, 0x0F0); __ addiw(a5, a4, 1); __ addiw(a6, a5, -0x10); // Load values in temporary registers. __ RV_li(a4, 0x00000004); __ RV_li(a5, 0x00001234); __ RV_li(a6, 0x12345678); __ RV_li(a7, 0x7FFFFFFF); __ RV_li(t0, 0xFFFFFFFC); __ RV_li(t1, 0xFFFFEDCC); __ RV_li(t2, 0xEDCBA988); __ RV_li(t3, 0x80000000); __ srliw(t0, a6, 8); // 0x00123456 __ slliw(t0, t0, 11); // 0x91A2B000 __ sraiw(t0, t0, 3); // 0xFFFFFFFF F2345600 __ sraw(t0, t0, a4); // 0xFFFFFFFF FF234560 __ sllw(t0, t0, a4); // 0xFFFFFFFF F2345600 __ srlw(t0, t0, a4); // 0x0F234560 __ RV_li(t5, 0x0F234560); __ bne(t0, t5, &error); __ addw(t0, a4, a5); // 0x00001238 __ subw(t0, t0, a4); // 0x00001234 __ RV_li(t5, 0x00001234); __ bne(t0, t5, &error); __ addw(a1, a7, a4); // 32bit addu result is sign-extended into 64bit reg. __ RV_li(t5, 0xFFFFFFFF80000003); __ bne(a1, t5, &error); __ subw(a1, t3, a4); // 0x7FFFFFFC __ RV_li(t5, 0x7FFFFFFC); __ bne(a1, t5, &error); __ and_(t0, a5, a6); // 0x0000000000001230 __ or_(t0, t0, a5); // 0x0000000000001234 __ xor_(t0, t0, a6); // 0x000000001234444C __ or_(t0, t0, a6); __ not_(t0, t0); // 0xFFFFFFFFEDCBA983 __ RV_li(t5, 0xFFFFFFFFEDCBA983); __ bne(t0, t5, &error); // Shift both 32bit number to left, to // preserve meaning of next comparison. __ slli(a7, a7, 32); __ slli(t3, t3, 32); __ slt(t0, t3, a7); __ RV_li(t5, 1); __ bne(t0, t5, &error); __ sltu(t0, t3, a7); __ bne(t0, zero_reg, &error); // Restore original values in registers. __ srli(a7, a7, 32); __ srli(t3, t3, 32); __ RV_li(t0, 0x7421); // 0x00007421 __ addi(t0, t0, -0x1); // 0x00007420 __ addi(t0, t0, -0x20); // 0x00007400 __ RV_li(t5, 0x00007400); __ bne(t0, t5, &error); __ addiw(a1, a7, 0x1); // 0x80000000 - result is sign-extended. __ RV_li(t5, 0xFFFFFFFF80000000); __ bne(a1, t5, &error); __ RV_li(t5, 0x00002000); __ slt(t0, a5, t5); // 0x1 __ RV_li(t6, 0xFFFFFFFFFFFF8000); __ slt(t0, t0, t6); // 0x0 __ bne(t0, zero_reg, &error); __ sltu(t0, a5, t5); // 0x1 __ RV_li(t6, 0x00008000); __ sltu(t0, t0, t6); // 0x1 __ RV_li(t5, 1); __ bne(t0, t5, &error); __ andi(t0, a5, 0x0F0); // 0x00000030 __ ori(t0, t0, 0x200); // 0x00000230 __ xori(t0, t0, 0x3CC); // 0x000001FC __ RV_li(t5, 0x000001FC); __ bne(t0, t5, &error); __ lui(a1, -519628); // Result is sign-extended into 64bit register. __ RV_li(t5, 0xFFFFFFFF81234000); __ bne(a1, t5, &error); // Everything was correctly executed. // Load the expected result. __ RV_li(a0, expected_res); __ j(&exit); __ bind(&error); // Got an error. Return a wrong result. __ RV_li(a0, 666); __ bind(&exit); }; auto res = GenAndRunTest(fn); CHECK_EQ(expected_res, res); } TEST(RISCV3) { // Test floating point instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct T { double a; double b; double c; double d; double e; double f; double g; double h; double i; float fa; float fb; float fc; float fd; float fe; float ff; float fg; } t; // Create a function that accepts &t and loads, manipulates, and stores // the doubles t.a ... t.f. // Double precision floating point instructions. auto fn = [](MacroAssembler& assm) { __ fld(ft0, a0, offsetof(T, a)); __ fld(ft1, a0, offsetof(T, b)); __ fadd_d(ft2, ft0, ft1); __ fsd(ft2, a0, offsetof(T, c)); // c = a + b. __ fmv_d(ft3, ft2); // c __ fneg_d(fa0, ft1); // -b __ fsub_d(ft3, ft3, fa0); __ fsd(ft3, a0, offsetof(T, d)); // d = c - (-b). __ fsd(ft0, a0, offsetof(T, b)); // b = a. __ RV_li(a4, 120); __ fcvt_d_w(ft5, a4); __ fmul_d(ft3, ft3, ft5); __ fsd(ft3, a0, offsetof(T, e)); // e = d * 120 = 1.8066e16. __ fdiv_d(ft4, ft3, ft0); __ fsd(ft4, a0, offsetof(T, f)); // f = e / a = 120.44. __ fsqrt_d(ft5, ft4); __ fsd(ft5, a0, offsetof(T, g)); // g = sqrt(f) = 10.97451593465515908537 __ fld(ft0, a0, offsetof(T, h)); __ fld(ft1, a0, offsetof(T, i)); __ fmadd_d(ft5, ft1, ft0, ft1); __ fsd(ft5, a0, offsetof(T, h)); // // Single precision floating point instructions. __ flw(ft0, a0, offsetof(T, fa)); __ flw(ft1, a0, offsetof(T, fb)); __ fadd_s(ft2, ft0, ft1); __ fsw(ft2, a0, offsetof(T, fc)); // fc = fa + fb. __ fneg_s(ft3, ft1); // -fb __ fsub_s(ft3, ft2, ft3); __ fsw(ft3, a0, offsetof(T, fd)); // fd = fc - (-fb). __ fsw(ft0, a0, offsetof(T, fb)); // fb = fa. __ RV_li(t0, 120); __ fcvt_s_w(ft5, t0); // ft5 = 120.0. __ fmul_s(ft3, ft3, ft5); __ fsw(ft3, a0, offsetof(T, fe)); // fe = fd * 120 __ fdiv_s(ft4, ft3, ft0); __ fsw(ft4, a0, offsetof(T, ff)); // ff = fe / fa __ fsqrt_s(ft5, ft4); __ fsw(ft5, a0, offsetof(T, fg)); }; auto f = AssembleCode<F3>(fn); // Double test values. t.a = 1.5e14; t.b = 2.75e11; t.c = 0.0; t.d = 0.0; t.e = 0.0; t.f = 0.0; t.h = 1.5; t.i = 2.75; // Single test values. t.fa = 1.5e6; t.fb = 2.75e4; t.fc = 0.0; t.fd = 0.0; t.fe = 0.0; t.ff = 0.0; f.Call(&t, 0, 0, 0, 0); // Expected double results. CHECK_EQ(1.5e14, t.a); CHECK_EQ(1.5e14, t.b); CHECK_EQ(1.50275e14, t.c); CHECK_EQ(1.50550e14, t.d); CHECK_EQ(1.8066e16, t.e); CHECK_EQ(120.44, t.f); CHECK_EQ(10.97451593465515908537, t.g); CHECK_EQ(6.875, t.h); // Expected single results. CHECK_EQ(1.5e6, t.fa); CHECK_EQ(1.5e6, t.fb); CHECK_EQ(1.5275e06, t.fc); CHECK_EQ(1.5550e06, t.fd); CHECK_EQ(1.866e08, t.fe); CHECK_EQ(124.40000152587890625, t.ff); CHECK_EQ(11.1534748077392578125, t.fg); } TEST(RISCV4) { // Test moves between floating point and // integer registers. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct T { double a; double b; double c; float d; int64_t e; } t; auto fn = [](MacroAssembler& assm) { __ fld(ft0, a0, offsetof(T, a)); __ fld(fa1, a0, offsetof(T, b)); // Swap ft0 and fa1, by using 2 integer registers, a4-a5, __ fmv_x_d(a4, ft0); __ fmv_x_d(a5, fa1); __ fmv_d_x(fa1, a4); __ fmv_d_x(ft0, a5); // Store the swapped ft0 and fa1 back to memory. __ fsd(ft0, a0, offsetof(T, a)); __ fsd(fa1, a0, offsetof(T, c)); // Test sign extension of move operations from coprocessor. __ flw(ft0, a0, offsetof(T, d)); __ fmv_x_w(a4, ft0); __ sd(a4, a0, offsetof(T, e)); }; auto f = AssembleCode<F3>(fn); t.a = 1.5e22; t.b = 2.75e11; t.c = 17.17; t.d = -2.75e11; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(2.75e11, t.a); CHECK_EQ(2.75e11, t.b); CHECK_EQ(1.5e22, t.c); CHECK_EQ(static_cast<int64_t>(0xFFFFFFFFD2800E8EL), t.e); } TEST(RISCV5) { // Test conversions between doubles and // integers. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct T { double a; double b; int i; int j; } t; auto fn = [](MacroAssembler& assm) { // Load all structure elements to registers. __ fld(ft0, a0, offsetof(T, a)); __ fld(ft1, a0, offsetof(T, b)); __ lw(a4, a0, offsetof(T, i)); __ lw(a5, a0, offsetof(T, j)); // Convert double in ft0 to int in element i. __ fcvt_l_d(a6, ft0); __ sw(a6, a0, offsetof(T, i)); // Convert double in ft1 to int in element j. __ fcvt_l_d(a7, ft1); __ sw(a7, a0, offsetof(T, j)); // Convert int in original i (a4) to double in a. __ fcvt_d_l(fa0, a4); __ fsd(fa0, a0, offsetof(T, a)); // Convert int in original j (a5) to double in b. __ fcvt_d_l(fa1, a5); __ fsd(fa1, a0, offsetof(T, b)); }; auto f = AssembleCode<F3>(fn); t.a = 1.5e4; t.b = 2.75e8; t.i = 12345678; t.j = -100000; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(12345678.0, t.a); CHECK_EQ(-100000.0, t.b); CHECK_EQ(15000, t.i); CHECK_EQ(275000000, t.j); } TEST(RISCV6) { // Test simple memory loads and stores. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct T { uint32_t ui; int32_t si; int32_t r1; int32_t r2; int32_t r3; int32_t r4; int32_t r5; int32_t r6; } t; auto fn = [](MacroAssembler& assm) { // Basic word load/store. __ lw(a4, a0, offsetof(T, ui)); __ sw(a4, a0, offsetof(T, r1)); // lh with positive data. __ lh(a5, a0, offsetof(T, ui)); __ sw(a5, a0, offsetof(T, r2)); // lh with negative data. __ lh(a6, a0, offsetof(T, si)); __ sw(a6, a0, offsetof(T, r3)); // lhu with negative data. __ lhu(a7, a0, offsetof(T, si)); __ sw(a7, a0, offsetof(T, r4)); // Lb with negative data. __ lb(t0, a0, offsetof(T, si)); __ sw(t0, a0, offsetof(T, r5)); // sh writes only 1/2 of word. __ RV_li(t1, 0x33333333); __ sw(t1, a0, offsetof(T, r6)); __ lhu(t1, a0, offsetof(T, si)); __ sh(t1, a0, offsetof(T, r6)); }; auto f = AssembleCode<F3>(fn); t.ui = 0x11223344; t.si = 0x99AABBCC; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(static_cast<int32_t>(0x11223344), t.r1); if (kArchEndian == kLittle) { CHECK_EQ(static_cast<int32_t>(0x3344), t.r2); CHECK_EQ(static_cast<int32_t>(0xFFFFBBCC), t.r3); CHECK_EQ(static_cast<int32_t>(0x0000BBCC), t.r4); CHECK_EQ(static_cast<int32_t>(0xFFFFFFCC), t.r5); CHECK_EQ(static_cast<int32_t>(0x3333BBCC), t.r6); } else { CHECK_EQ(static_cast<int32_t>(0x1122), t.r2); CHECK_EQ(static_cast<int32_t>(0xFFFF99AA), t.r3); CHECK_EQ(static_cast<int32_t>(0x000099AA), t.r4); CHECK_EQ(static_cast<int32_t>(0xFFFFFF99), t.r5); CHECK_EQ(static_cast<int32_t>(0x99AA3333), t.r6); } } // pair.first is the F_TYPE input to test, pair.second is I_TYPE expected result template <typename T> static const std::vector<std::pair<T, uint64_t>> fclass_test_values() { static const std::pair<T, uint64_t> kValues[] = { std::make_pair(-std::numeric_limits<T>::infinity(), kNegativeInfinity), std::make_pair(-10240.56, kNegativeNormalNumber), std::make_pair(-(std::numeric_limits<T>::min() / 2), kNegativeSubnormalNumber), std::make_pair(-0.0, kNegativeZero), std::make_pair(+0.0, kPositiveZero), std::make_pair((std::numeric_limits<T>::min() / 2), kPositiveSubnormalNumber), std::make_pair(10240.56, kPositiveNormalNumber), std::make_pair(std::numeric_limits<T>::infinity(), kPositiveInfinity), std::make_pair(std::numeric_limits<T>::signaling_NaN(), kSignalingNaN), std::make_pair(std::numeric_limits<T>::quiet_NaN(), kQuietNaN)}; return std::vector<std::pair<T, uint64_t>>(&kValues[0], &kValues[arraysize(kValues)]); } TEST(FCLASS) { CcTest::InitializeVM(); { auto i_vec = fclass_test_values<float>(); for (auto i = i_vec.begin(); i != i_vec.end(); ++i) { auto input = *i; auto fn = [](MacroAssembler& assm) { __ fclass_s(a0, fa0); }; auto res = GenAndRunTest<uint32_t>(input.first, fn); CHECK_EQ(input.second, res); } } { auto i_vec = fclass_test_values<double>(); for (auto i = i_vec.begin(); i != i_vec.end(); ++i) { auto input = *i; auto fn = [](MacroAssembler& assm) { __ fclass_d(a0, fa0); }; auto res = GenAndRunTest<uint32_t>(input.first, fn); CHECK_EQ(input.second, res); } } } TEST(RISCV7) { // Test floating point compare and // branch instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct T { double a; double b; double c; double d; double e; double f; int32_t result; } t; // Create a function that accepts &t, // and loads, manipulates, and stores // the doubles t.a ... t.f. Label neither_is_nan, less_than, outa_here; auto fn = [&neither_is_nan, &less_than, &outa_here](MacroAssembler& assm) { __ fld(ft0, a0, offsetof(T, a)); __ fld(ft1, a0, offsetof(T, b)); __ fclass_d(t5, ft0); __ fclass_d(t6, ft1); __ or_(t5, t5, t6); __ andi(t5, t5, kSignalingNaN | kQuietNaN); __ beq(t5, zero_reg, &neither_is_nan); __ sw(zero_reg, a0, offsetof(T, result)); __ j(&outa_here); __ bind(&neither_is_nan); __ flt_d(t5, ft1, ft0); __ bne(t5, zero_reg, &less_than); __ sw(zero_reg, a0, offsetof(T, result)); __ j(&outa_here); __ bind(&less_than); __ RV_li(a4, 1); __ sw(a4, a0, offsetof(T, result)); // Set true. // This test-case should have additional // tests. __ bind(&outa_here); }; auto f = AssembleCode<F3>(fn); t.a = 1.5e14; t.b = 2.75e11; t.c = 2.0; t.d = -4.0; t.e = 0.0; t.f = 0.0; t.result = 0; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(1.5e14, t.a); CHECK_EQ(2.75e11, t.b); CHECK_EQ(1, t.result); } TEST(RISCV9) { // Test BRANCH improvements. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); Label exit, exit2, exit3; __ Branch(&exit, ge, a0, Operand(zero_reg)); __ Branch(&exit2, ge, a0, Operand(0x00001FFF)); __ Branch(&exit3, ge, a0, Operand(0x0001FFFF)); __ bind(&exit); __ bind(&exit2); __ bind(&exit3); __ jr(ra); CodeDesc desc; assm.GetCode(isolate, &desc); Handle<Code> code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); USE(code); } TEST(NAN_BOX) { // Test float NaN-boxing. CcTest::InitializeVM(); // Test NaN boxing in FMV.X.D { auto fn = [](MacroAssembler& assm) { __ fmv_x_d(a0, fa0); }; auto res = GenAndRunTest<uint64_t>(1234.56f, fn); CHECK_EQ(0xFFFFFFFF00000000 | bit_cast<uint32_t>(1234.56f), res); } // Test NaN boxing in FMV.X.W { auto fn = [](MacroAssembler& assm) { __ fmv_x_w(a0, fa0); }; auto res = GenAndRunTest<uint64_t>(1234.56f, fn); CHECK_EQ((uint64_t)bit_cast<uint32_t>(1234.56f), res); } // Test FLW and FSW Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct T { float a; uint64_t box; uint64_t res; } t; auto fn = [](MacroAssembler& assm) { // Load all structure elements to registers. __ flw(fa0, a0, offsetof(T, a)); // Check boxing when flw __ fsd(fa0, a0, offsetof(T, box)); // Check only transfer low 32bits when fsw __ fsw(fa0, a0, offsetof(T, res)); }; auto f = AssembleCode<F3>(fn); t.a = -123.45; t.box = 0; t.res = 0; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(0xFFFFFFFF00000000 | bit_cast<int32_t>(t.a), t.box); CHECK_EQ((uint64_t)bit_cast<uint32_t>(t.a), t.res); } TEST(RVC_CI) { // Test RV64C extension CI type instructions. i::FLAG_riscv_c_extension = true; CcTest::InitializeVM(); // Test c.addi { auto fn = [](MacroAssembler& assm) { __ c_addi(a0, -15); }; auto res = GenAndRunTest<int64_t>(LARGE_INT_EXCEED_32_BIT, fn); CHECK_EQ(LARGE_INT_EXCEED_32_BIT - 15, res); } // Test c.addiw { auto fn = [](MacroAssembler& assm) { __ c_addiw(a0, -20); }; auto res = GenAndRunTest<int32_t>(LARGE_INT_UNDER_32_BIT, fn); CHECK_EQ(LARGE_INT_UNDER_32_BIT - 20, res); } // Test c.addi16sp { auto fn = [](MacroAssembler& assm) { __ mv(t1, sp); __ mv(sp, a0); __ c_addi16sp(-432); __ mv(a0, sp); __ mv(sp, t1); }; auto res = GenAndRunTest<int64_t>(66666, fn); CHECK_EQ(66666 - 432, res); } // Test c.li { auto fn = [](MacroAssembler& assm) { __ c_li(a0, -15); }; auto res = GenAndRunTest<int64_t>(1234543, fn); CHECK_EQ(-15, res); } // Test c.lui { auto fn = [](MacroAssembler& assm) { __ c_lui(a0, -20); }; auto res = GenAndRunTest<int64_t>(0x1234567, fn); CHECK_EQ(0xfffffffffffec000, (uint64_t)res); } // Test c.slli { auto fn = [](MacroAssembler& assm) { __ c_slli(a0, 13); }; auto res = GenAndRunTest<int64_t>(0x1234'5678ULL, fn); CHECK_EQ(0x1234'5678ULL << 13, res); } } TEST(RVC_CIW) { i::FLAG_riscv_c_extension = true; CcTest::InitializeVM(); // Test c.addi4spn { auto fn = [](MacroAssembler& assm) { __ mv(t1, sp); __ mv(sp, a0); __ c_addi4spn(a0, 924); __ mv(sp, t1); }; auto res = GenAndRunTest<int64_t>(66666, fn); CHECK_EQ(66666 + 924, res); } } TEST(RVC_CR) { // Test RV64C extension CR type instructions. i::FLAG_riscv_c_extension = true; CcTest::InitializeVM(); // Test c.add { auto fn = [](MacroAssembler& assm) { __ RV_li(a1, MIN_VAL_IMM12); __ c_add(a0, a1); }; auto res = GenAndRunTest<int64_t>(LARGE_INT_EXCEED_32_BIT, fn); CHECK_EQ(LARGE_INT_EXCEED_32_BIT + MIN_VAL_IMM12, res); } } TEST(RVC_CA) { // Test RV64C extension CA type instructions. i::FLAG_riscv_c_extension = true; CcTest::InitializeVM(); // Test c.sub { auto fn = [](MacroAssembler& assm) { __ RV_li(a1, MIN_VAL_IMM12); __ c_sub(a0, a1); }; auto res = GenAndRunTest<int64_t>(LARGE_INT_UNDER_32_BIT, fn); CHECK_EQ(LARGE_INT_UNDER_32_BIT - MIN_VAL_IMM12, res); } // Test c.xor { auto fn = [](MacroAssembler& assm) { __ RV_li(a1, MIN_VAL_IMM12); __ c_xor(a0, a1); }; auto res = GenAndRunTest<int64_t>(LARGE_INT_UNDER_32_BIT, fn); CHECK_EQ(LARGE_INT_UNDER_32_BIT ^ MIN_VAL_IMM12, res); } // Test c.or { auto fn = [](MacroAssembler& assm) { __ RV_li(a1, MIN_VAL_IMM12); __ c_or(a0, a1); }; auto res = GenAndRunTest<int64_t>(LARGE_INT_UNDER_32_BIT, fn); CHECK_EQ(LARGE_INT_UNDER_32_BIT | MIN_VAL_IMM12, res); } // Test c.and { auto fn = [](MacroAssembler& assm) { __ RV_li(a1, MIN_VAL_IMM12); __ c_and(a0, a1); }; auto res = GenAndRunTest<int64_t>(LARGE_INT_UNDER_32_BIT, fn); CHECK_EQ(LARGE_INT_UNDER_32_BIT & MIN_VAL_IMM12, res); } // Test c.subw { auto fn = [](MacroAssembler& assm) { __ RV_li(a1, MIN_VAL_IMM12); __ c_subw(a0, a1); }; auto res = GenAndRunTest<int64_t>(LARGE_INT_UNDER_32_BIT, fn); CHECK_EQ(LARGE_INT_UNDER_32_BIT - MIN_VAL_IMM12, res); } // Test c.addw { auto fn = [](MacroAssembler& assm) { __ RV_li(a1, MIN_VAL_IMM12); __ c_addw(a0, a1); }; auto res = GenAndRunTest<int64_t>(LARGE_INT_UNDER_32_BIT, fn); CHECK_EQ(LARGE_INT_UNDER_32_BIT + MIN_VAL_IMM12, res); } } TEST(RVC_LOAD_STORE_SP) { // Test RV64C extension fldsp/fsdsp, lwsp/swsp, ldsp/sdsp. i::FLAG_riscv_c_extension = true; CcTest::InitializeVM(); { auto fn = [](MacroAssembler& assm) { __ c_fsdsp(fa0, 80); __ c_fldsp(fa0, 80); }; auto res = GenAndRunTest<double>(-3456.678, fn); CHECK_EQ(-3456.678, res); } { auto fn = [](MacroAssembler& assm) { __ c_swsp(a0, 40); __ c_lwsp(a0, 40); }; auto res = GenAndRunTest<int32_t>(0x456AF894, fn); CHECK_EQ(0x456AF894, res); } { auto fn = [](MacroAssembler& assm) { __ c_sdsp(a0, 160); __ c_ldsp(a0, 160); }; auto res = GenAndRunTest<uint64_t>(0xFBB10A9C12345678, fn); CHECK_EQ(0xFBB10A9C12345678, res); } } TEST(RVC_LOAD_STORE_COMPRESSED) { // Test RV64C extension fld, lw, ld. i::FLAG_riscv_c_extension = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct T { double a; double b; double c; } t; // c.fld { auto fn = [](MacroAssembler& assm) { __ c_fld(fa0, a0, offsetof(T, a)); __ c_fld(fa1, a0, offsetof(T, b)); __ fadd_d(fa2, fa1, fa0); __ c_fsd(fa2, a0, offsetof(T, c)); // c = a + b. }; auto f = AssembleCode<F3>(fn); t.a = 1.5e14; t.b = 1.5e14; t.c = 3.0e14; f.Call(&t, 0, 0, 0, 0); // Expected double results. CHECK_EQ(1.5e14, t.a); CHECK_EQ(1.5e14, t.b); CHECK_EQ(3.0e14, t.c); } struct S { int32_t a; int32_t b; int32_t c; } s; // c.lw { auto fn = [](MacroAssembler& assm) { __ c_lw(a1, a0, offsetof(S, a)); __ c_lw(a2, a0, offsetof(S, b)); __ add(a3, a1, a2); __ c_sw(a3, a0, offsetof(S, c)); // c = a + b. }; auto f = AssembleCode<F3>(fn); s.a = 1; s.b = 2; s.c = 3; f.Call(&s, 0, 0, 0, 0); CHECK_EQ(1, s.a); CHECK_EQ(2, s.b); CHECK_EQ(3, s.c); } struct U { int64_t a; int64_t b; int64_t c; } u; // c.ld { auto fn = [](MacroAssembler& assm) { __ c_ld(a1, a0, offsetof(U, a)); __ c_ld(a2, a0, offsetof(U, b)); __ add(a3, a1, a2); __ c_sd(a3, a0, offsetof(U, c)); // c = a + b. }; auto f = AssembleCode<F3>(fn); u.a = 1; u.b = 2; u.c = 3; f.Call(&u, 0, 0, 0, 0); CHECK_EQ(1, u.a); CHECK_EQ(2, u.b); CHECK_EQ(3, u.c); } } TEST(RVC_JUMP) { i::FLAG_riscv_c_extension = true; CcTest::InitializeVM(); Label L, C; auto fn = [&L, &C](MacroAssembler& assm) { __ mv(a1, a0); __ RV_li(a0, 0l); __ c_j(&C); __ bind(&L); __ add(a0, a0, a1); __ addi(a1, a1, -1); __ bind(&C); __ xori(a2, a1, 0); __ bnez(a2, &L); }; int64_t input = 50; int64_t expected_res = 1275L; auto res = GenAndRunTest<int64_t>(input, fn); CHECK_EQ(expected_res, res); } TEST(RVC_CB) { // Test RV64C extension CI type instructions. FLAG_riscv_c_extension = true; CcTest::InitializeVM(); // Test c.srai { auto fn = [](MacroAssembler& assm) { __ c_srai(a0, 13); }; auto res = GenAndRunTest<int64_t>(0x1234'5678ULL, fn); CHECK_EQ(0x1234'5678ULL >> 13, res); } // Test c.srli { auto fn = [](MacroAssembler& assm) { __ c_srli(a0, 13); }; auto res = GenAndRunTest<int64_t>(0x1234'5678ULL, fn); CHECK_EQ(0x1234'5678ULL >> 13, res); } // Test c.andi { auto fn = [](MacroAssembler& assm) { __ c_andi(a0, 13); }; auto res = GenAndRunTest<int64_t>(LARGE_INT_EXCEED_32_BIT, fn); CHECK_EQ(LARGE_INT_EXCEED_32_BIT & 13, res); } } TEST(RVC_CB_BRANCH) { FLAG_riscv_c_extension = true; // Test floating point compare and // branch instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct T { double a; double b; double c; double d; double e; double f; int32_t result; } t; // Create a function that accepts &t, // and loads, manipulates, and stores // the doubles t.a ... t.f. Label neither_is_nan, less_than, outa_here; auto fn = [&neither_is_nan, &less_than, &outa_here](MacroAssembler& assm) { __ fld(ft0, a0, offsetof(T, a)); __ fld(ft1, a0, offsetof(T, b)); __ fclass_d(t5, ft0); __ fclass_d(t6, ft1); __ or_(a1, t5, t6); __ andi(a1, a1, kSignalingNaN | kQuietNaN); __ c_beqz(a1, &neither_is_nan); __ sw(zero_reg, a0, offsetof(T, result)); __ j(&outa_here); __ bind(&neither_is_nan); __ flt_d(a1, ft1, ft0); __ c_bnez(a1, &less_than); __ sw(zero_reg, a0, offsetof(T, result)); __ j(&outa_here); __ bind(&less_than); __ RV_li(a4, 1); __ sw(a4, a0, offsetof(T, result)); // Set true. // This test-case should have additional // tests. __ bind(&outa_here); }; auto f = AssembleCode<F3>(fn); t.a = 1.5e14; t.b = 2.75e11; t.c = 2.0; t.d = -4.0; t.e = 0.0; t.f = 0.0; t.result = 0; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(1.5e14, t.a); CHECK_EQ(2.75e11, t.b); CHECK_EQ(1, t.result); } TEST(TARGET_ADDR) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); // This is the series of instructions to load 48 bit address 0x0123456789ab uint32_t buffer[6] = {0x091ab37, 0x2b330213, 0x00b21213, 0x62626213, 0x00621213, 0x02b26213}; MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); uintptr_t addr = reinterpret_cast<uintptr_t>(&buffer[0]); Address res = __ target_address_at(static_cast<Address>(addr)); CHECK_EQ(0x0123456789abL, res); } TEST(SET_TARGET_ADDR) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); // This is the series of instructions to load 48 bit address 0xba9876543210 uint32_t buffer[6] = {0x091ab37, 0x2b330213, 0x00b21213, 0x62626213, 0x00621213, 0x02b26213}; MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); uintptr_t addr = reinterpret_cast<uintptr_t>(&buffer[0]); __ set_target_value_at(static_cast<Address>(addr), 0xba9876543210L, FLUSH_ICACHE_IF_NEEDED); Address res = __ target_address_at(static_cast<Address>(addr)); CHECK_EQ(0xba9876543210L, res); } // pair.first is the F_TYPE input to test, pair.second is I_TYPE expected // result template <typename F_TYPE, typename I_TYPE> static const std::vector<std::pair<F_TYPE, I_TYPE>> out_of_range_test_values() { static const std::pair<F_TYPE, I_TYPE> kValues[] = { std::make_pair(std::numeric_limits<F_TYPE>::quiet_NaN(), std::numeric_limits<I_TYPE>::max()), std::make_pair(std::numeric_limits<F_TYPE>::signaling_NaN(), std::numeric_limits<I_TYPE>::max()), std::make_pair(std::numeric_limits<F_TYPE>::infinity(), std::numeric_limits<I_TYPE>::max()), std::make_pair(-std::numeric_limits<F_TYPE>::infinity(), std::numeric_limits<I_TYPE>::min()), std::make_pair( static_cast<F_TYPE>(std::numeric_limits<I_TYPE>::max()) + 1024, std::numeric_limits<I_TYPE>::max()), std::make_pair( static_cast<F_TYPE>(std::numeric_limits<I_TYPE>::min()) - 1024, std::numeric_limits<I_TYPE>::min()), }; return std::vector<std::pair<F_TYPE, I_TYPE>>(&kValues[0], &kValues[arraysize(kValues)]); } // Test conversion from wider to narrower types w/ out-of-range values or from // nan, inf, -inf TEST(OUT_OF_RANGE_CVT) { CcTest::InitializeVM(); { // test fvt_w_d auto i_vec = out_of_range_test_values<double, int32_t>(); for (auto i = i_vec.begin(); i != i_vec.end(); ++i) { auto input = *i; auto fn = [](MacroAssembler& assm) { __ fcvt_w_d(a0, fa0); }; auto res = GenAndRunTest<int32_t>(input.first, fn); CHECK_EQ(input.second, res); } } { // test fvt_w_s auto i_vec = out_of_range_test_values<float, int32_t>(); for (auto i = i_vec.begin(); i != i_vec.end(); ++i) { auto input = *i; auto fn = [](MacroAssembler& assm) { __ fcvt_w_s(a0, fa0); }; auto res = GenAndRunTest<int32_t>(input.first, fn); CHECK_EQ(input.second, res); } } { // test fvt_wu_d auto i_vec = out_of_range_test_values<double, uint32_t>(); for (auto i = i_vec.begin(); i != i_vec.end(); ++i) { auto input = *i; auto fn = [](MacroAssembler& assm) { __ fcvt_wu_d(a0, fa0); }; auto res = GenAndRunTest<uint32_t>(input.first, fn); CHECK_EQ(input.second, res); } } { // test fvt_wu_s auto i_vec = out_of_range_test_values<float, uint32_t>(); for (auto i = i_vec.begin(); i != i_vec.end(); ++i) { auto input = *i; auto fn = [](MacroAssembler& assm) { __ fcvt_wu_s(a0, fa0); }; auto res = GenAndRunTest<uint32_t>(input.first, fn); CHECK_EQ(input.second, res); } } { // test fvt_l_d auto i_vec = out_of_range_test_values<double, int64_t>(); for (auto i = i_vec.begin(); i != i_vec.end(); ++i) { auto input = *i; auto fn = [](MacroAssembler& assm) { __ fcvt_l_d(a0, fa0); }; auto res = GenAndRunTest<int64_t>(input.first, fn); CHECK_EQ(input.second, res); } } { // test fvt_l_s auto i_vec = out_of_range_test_values<float, int64_t>(); for (auto i = i_vec.begin(); i != i_vec.end(); ++i) { auto input = *i; auto fn = [](MacroAssembler& assm) { __ fcvt_l_s(a0, fa0); }; auto res = GenAndRunTest<int64_t>(input.first, fn); CHECK_EQ(input.second, res); } } { // test fvt_lu_d auto i_vec = out_of_range_test_values<double, uint64_t>(); for (auto i = i_vec.begin(); i != i_vec.end(); ++i) { auto input = *i; auto fn = [](MacroAssembler& assm) { __ fcvt_lu_d(a0, fa0); }; auto res = GenAndRunTest<uint64_t>(input.first, fn); CHECK_EQ(input.second, res); } } { // test fvt_lu_s auto i_vec = out_of_range_test_values<float, uint64_t>(); for (auto i = i_vec.begin(); i != i_vec.end(); ++i) { auto input = *i; auto fn = [](MacroAssembler& assm) { __ fcvt_lu_s(a0, fa0); }; auto res = GenAndRunTest<uint64_t>(input.first, fn); CHECK_EQ(input.second, res); } } } #define FCMP_TEST_HELPER(F, fn, op) \ { \ auto res1 = GenAndRunTest<int32_t>(std::numeric_limits<F>::quiet_NaN(), \ static_cast<F>(1.0), fn); \ CHECK_EQ(false, res1); \ auto res2 = \ GenAndRunTest<int32_t>(std::numeric_limits<F>::quiet_NaN(), \ std::numeric_limits<F>::quiet_NaN(), fn); \ CHECK_EQ(false, res2); \ auto res3 = \ GenAndRunTest<int32_t>(std::numeric_limits<F>::signaling_NaN(), \ std::numeric_limits<F>::quiet_NaN(), fn); \ CHECK_EQ(false, res3); \ auto res4 = \ GenAndRunTest<int32_t>(std::numeric_limits<F>::quiet_NaN(), \ std::numeric_limits<F>::infinity(), fn); \ CHECK_EQ(false, res4); \ auto res5 = \ GenAndRunTest<int32_t>(std::numeric_limits<F>::infinity(), \ std::numeric_limits<F>::infinity(), fn); \ CHECK_EQ((std::numeric_limits<F>::infinity() \ op std::numeric_limits<F>::infinity()), \ res5); \ auto res6 = \ GenAndRunTest<int32_t>(-std::numeric_limits<F>::infinity(), \ std::numeric_limits<F>::infinity(), fn); \ CHECK_EQ((-std::numeric_limits<F>::infinity() \ op std::numeric_limits<F>::infinity()), \ res6); \ } TEST(F_NAN) { // test floating-point compare w/ NaN, +/-Inf CcTest::InitializeVM(); // floating compare auto fn1 = [](MacroAssembler& assm) { __ feq_s(a0, fa0, fa1); }; FCMP_TEST_HELPER(float, fn1, ==); auto fn2 = [](MacroAssembler& assm) { __ flt_s(a0, fa0, fa1); }; FCMP_TEST_HELPER(float, fn2, <); auto fn3 = [](MacroAssembler& assm) { __ fle_s(a0, fa0, fa1); }; FCMP_TEST_HELPER(float, fn3, <=); // double compare auto fn4 = [](MacroAssembler& assm) { __ feq_d(a0, fa0, fa1); }; FCMP_TEST_HELPER(double, fn4, ==); auto fn5 = [](MacroAssembler& assm) { __ flt_d(a0, fa0, fa1); }; FCMP_TEST_HELPER(double, fn5, <); auto fn6 = [](MacroAssembler& assm) { __ fle_d(a0, fa0, fa1); }; FCMP_TEST_HELPER(double, fn6, <=); } TEST(jump_tables1) { // Test jump tables with forward jumps. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); const int kNumCases = 128; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases], done; auto fn = [&labels, &done, values](MacroAssembler& assm) { __ addi(sp, sp, -8); __ Sd(ra, MemOperand(sp)); __ Align(8); { __ BlockTrampolinePoolFor(kNumCases * 2 + 6); __ auipc(ra, 0); __ slli(t3, a0, 3); __ add(t3, t3, ra); __ Ld(t3, MemOperand(t3, 6 * kInstrSize)); __ jr(t3); __ nop(); // For 16-byte alignment for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ lui(a0, (values[i] + 0x800) >> 12); __ addi(a0, a0, (values[i] << 20 >> 20)); __ j(&done); } __ bind(&done); __ Ld(ra, MemOperand(sp)); __ addi(sp, sp, 8); CHECK_EQ(0, assm.UnboundLabelsCount()); }; auto f = AssembleCode<F1>(fn); for (int i = 0; i < kNumCases; ++i) { int64_t res = reinterpret_cast<int64_t>(f.Call(i, 0, 0, 0, 0)); CHECK_EQ(values[i], static_cast<int>(res)); } } TEST(jump_tables2) { // Test jump tables with backward jumps. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); const int kNumCases = 128; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases], done, dispatch; auto fn = [&labels, &done, &dispatch, values](MacroAssembler& assm) { __ addi(sp, sp, -8); __ Sd(ra, MemOperand(sp)); __ j(&dispatch); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ lui(a0, (values[i] + 0x800) >> 12); __ addi(a0, a0, (values[i] << 20 >> 20)); __ j(&done); } __ Align(8); __ bind(&dispatch); { __ BlockTrampolinePoolFor(kNumCases * 2 + 6); __ auipc(ra, 0); __ slli(t3, a0, 3); __ add(t3, t3, ra); __ Ld(t3, MemOperand(t3, 6 * kInstrSize)); __ jr(t3); __ nop(); // For 16-byte alignment for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } __ bind(&done); __ Ld(ra, MemOperand(sp)); __ addi(sp, sp, 8); }; auto f = AssembleCode<F1>(fn); for (int i = 0; i < kNumCases; ++i) { int64_t res = reinterpret_cast<int64_t>(f.Call(i, 0, 0, 0, 0)); CHECK_EQ(values[i], res); } } TEST(jump_tables3) { // Test jump tables with backward jumps and embedded heap objects. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); const int kNumCases = 128; Handle<Object> values[kNumCases]; for (int i = 0; i < kNumCases; ++i) { double value = isolate->random_number_generator()->NextDouble(); values[i] = isolate->factory()->NewHeapNumber<AllocationType::kOld>(value); } Label labels[kNumCases], done, dispatch; Object obj; int64_t imm64; auto fn = [&labels, &done, &dispatch, values, &obj, &imm64](MacroAssembler& assm) { __ addi(sp, sp, -8); __ Sd(ra, MemOperand(sp)); __ j(&dispatch); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); obj = *values[i]; imm64 = obj.ptr(); __ nop(); // For 8 byte alignment __ RV_li(a0, imm64); __ nop(); // For 8 byte alignment __ j(&done); } __ Align(8); __ bind(&dispatch); { __ BlockTrampolinePoolFor(kNumCases * 2 + 6); __ auipc(ra, 0); __ slli(t3, a0, 3); __ add(t3, t3, ra); __ Ld(t3, MemOperand(t3, 6 * kInstrSize)); __ jr(t3); __ nop(); // For 16-byte alignment for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } __ bind(&done); __ Ld(ra, MemOperand(sp)); __ addi(sp, sp, 8); }; auto f = AssembleCode<F1>(fn); for (int i = 0; i < kNumCases; ++i) { Handle<Object> result( Object(reinterpret_cast<Address>(f.Call(i, 0, 0, 0, 0))), isolate); #ifdef OBJECT_PRINT ::printf("f(%d) = ", i); result->Print(std::cout); ::printf("\n"); #endif CHECK(values[i].is_identical_to(result)); } } TEST(li_estimate) { std::vector<int64_t> immediates = { -256, -255, 0, 255, 8192, 0x7FFFFFFF, INT32_MIN, INT32_MAX / 2, INT32_MAX, UINT32_MAX, INT64_MAX, INT64_MAX / 2, INT64_MIN}; // Test jump tables with backward jumps and embedded heap objects. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); for (auto p : immediates) { Label a; assm.bind(&a); assm.RV_li(t0, p); int expected_count = assm.li_estimate(p, true); int count = assm.InstructionsGeneratedSince(&a); CHECK_EQ(count, expected_count); } } #undef __ } // namespace internal } // namespace v8