// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/int64-lowering.h" #include "src/compiler/common-operator.h" #include "src/compiler/diamond.h" #include "src/compiler/graph.h" #include "src/compiler/linkage.h" #include "src/compiler/machine-operator.h" #include "src/compiler/node-matchers.h" #include "src/compiler/node-properties.h" #include "src/compiler/node.h" #include "src/compiler/wasm-compiler.h" // TODO(wasm): Remove this include. #include "src/wasm/wasm-linkage.h" #include "src/zone/zone.h" namespace v8 { namespace internal { namespace compiler { Int64Lowering::Int64Lowering(Graph* graph, MachineOperatorBuilder* machine, CommonOperatorBuilder* common, Zone* zone, Signature<MachineRepresentation>* signature) : zone_(zone), graph_(graph), machine_(machine), common_(common), state_(graph, 3), stack_(zone), replacements_(nullptr), signature_(signature), placeholder_(graph->NewNode(common->Parameter(-2, "placeholder"), graph->start())) { DCHECK_NOT_NULL(graph); DCHECK_NOT_NULL(graph->end()); replacements_ = zone->NewArray<Replacement>(graph->NodeCount()); memset(replacements_, 0, sizeof(Replacement) * graph->NodeCount()); } void Int64Lowering::LowerGraph() { if (!machine()->Is32()) { return; } stack_.push_back({graph()->end(), 0}); state_.Set(graph()->end(), State::kOnStack); while (!stack_.empty()) { NodeState& top = stack_.back(); if (top.input_index == top.node->InputCount()) { // All inputs of top have already been lowered, now lower top. stack_.pop_back(); state_.Set(top.node, State::kVisited); LowerNode(top.node); } else { // Push the next input onto the stack. Node* input = top.node->InputAt(top.input_index++); if (state_.Get(input) == State::kUnvisited) { if (input->opcode() == IrOpcode::kPhi) { // To break cycles with phi nodes we push phis on a separate stack so // that they are processed after all other nodes. PreparePhiReplacement(input); stack_.push_front({input, 0}); } else if (input->opcode() == IrOpcode::kEffectPhi || input->opcode() == IrOpcode::kLoop) { stack_.push_front({input, 0}); } else { stack_.push_back({input, 0}); } state_.Set(input, State::kOnStack); } } } } namespace { int GetReturnIndexAfterLowering(CallDescriptor* call_descriptor, int old_index) { int result = old_index; for (int i = 0; i < old_index; i++) { if (call_descriptor->GetReturnType(i).representation() == MachineRepresentation::kWord64) { result++; } } return result; } int GetReturnCountAfterLowering(CallDescriptor* call_descriptor) { return GetReturnIndexAfterLowering( call_descriptor, static_cast<int>(call_descriptor->ReturnCount())); } int GetParameterIndexAfterLowering( Signature<MachineRepresentation>* signature, int old_index) { int result = old_index; for (int i = 0; i < old_index; i++) { if (signature->GetParam(i) == MachineRepresentation::kWord64) { result++; } } return result; } int GetReturnCountAfterLowering(Signature<MachineRepresentation>* signature) { int result = static_cast<int>(signature->return_count()); for (int i = 0; i < static_cast<int>(signature->return_count()); i++) { if (signature->GetReturn(i) == MachineRepresentation::kWord64) { result++; } } return result; } } // namespace void Int64Lowering::LowerWord64AtomicBinop(Node* node, const Operator* op) { DCHECK_EQ(5, node->InputCount()); Node* value = node->InputAt(2); node->ReplaceInput(2, GetReplacementLow(value)); node->InsertInput(zone(), 3, GetReplacementHigh(value)); NodeProperties::ChangeOp(node, op); ReplaceNodeWithProjections(node); } void Int64Lowering::LowerWord64AtomicNarrowOp(Node* node, const Operator* op) { Node* value = node->InputAt(2); node->ReplaceInput(2, GetReplacementLow(value)); NodeProperties::ChangeOp(node, op); ReplaceNode(node, node, graph()->NewNode(common()->Int32Constant(0))); } // static int Int64Lowering::GetParameterCountAfterLowering( Signature<MachineRepresentation>* signature) { // GetParameterIndexAfterLowering(parameter_count) returns the parameter count // after lowering. return GetParameterIndexAfterLowering( signature, static_cast<int>(signature->parameter_count())); } void Int64Lowering::GetIndexNodes(Node* index, Node*& index_low, Node*& index_high) { if (HasReplacementLow(index)) { index = GetReplacementLow(index); } #if defined(V8_TARGET_LITTLE_ENDIAN) index_low = index; index_high = graph()->NewNode(machine()->Int32Add(), index, graph()->NewNode(common()->Int32Constant(4))); #elif defined(V8_TARGET_BIG_ENDIAN) index_low = graph()->NewNode(machine()->Int32Add(), index, graph()->NewNode(common()->Int32Constant(4))); index_high = index; #endif } void Int64Lowering::LowerNode(Node* node) { switch (node->opcode()) { case IrOpcode::kInt64Constant: { int64_t value = OpParameter<int64_t>(node->op()); Node* low_node = graph()->NewNode( common()->Int32Constant(static_cast<int32_t>(value & 0xFFFFFFFF))); Node* high_node = graph()->NewNode( common()->Int32Constant(static_cast<int32_t>(value >> 32))); ReplaceNode(node, low_node, high_node); break; } case IrOpcode::kLoad: case IrOpcode::kUnalignedLoad: { MachineRepresentation rep; if (node->opcode() == IrOpcode::kLoad) { rep = LoadRepresentationOf(node->op()).representation(); } else { DCHECK_EQ(IrOpcode::kUnalignedLoad, node->opcode()); rep = LoadRepresentationOf(node->op()).representation(); } if (rep == MachineRepresentation::kWord64) { Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* index_low; Node* index_high; GetIndexNodes(index, index_low, index_high); const Operator* load_op; if (node->opcode() == IrOpcode::kLoad) { load_op = machine()->Load(MachineType::Int32()); } else { DCHECK_EQ(IrOpcode::kUnalignedLoad, node->opcode()); load_op = machine()->UnalignedLoad(MachineType::Int32()); } Node* high_node; if (node->InputCount() > 2) { Node* effect_high = node->InputAt(2); Node* control_high = node->InputAt(3); high_node = graph()->NewNode(load_op, base, index_high, effect_high, control_high); // change the effect change from old_node --> old_effect to // old_node --> high_node --> old_effect. node->ReplaceInput(2, high_node); } else { high_node = graph()->NewNode(load_op, base, index_high); } node->ReplaceInput(1, index_low); NodeProperties::ChangeOp(node, load_op); ReplaceNode(node, node, high_node); } else { DefaultLowering(node); } break; } case IrOpcode::kStore: case IrOpcode::kUnalignedStore: { MachineRepresentation rep; if (node->opcode() == IrOpcode::kStore) { rep = StoreRepresentationOf(node->op()).representation(); } else { DCHECK_EQ(IrOpcode::kUnalignedStore, node->opcode()); rep = UnalignedStoreRepresentationOf(node->op()); } if (rep == MachineRepresentation::kWord64) { // We change the original store node to store the low word, and create // a new store node to store the high word. The effect and control edges // are copied from the original store to the new store node, the effect // edge of the original store is redirected to the new store. Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* index_low; Node* index_high; GetIndexNodes(index, index_low, index_high); Node* value = node->InputAt(2); DCHECK(HasReplacementLow(value)); DCHECK(HasReplacementHigh(value)); const Operator* store_op; if (node->opcode() == IrOpcode::kStore) { WriteBarrierKind write_barrier_kind = StoreRepresentationOf(node->op()).write_barrier_kind(); store_op = machine()->Store(StoreRepresentation( MachineRepresentation::kWord32, write_barrier_kind)); } else { DCHECK_EQ(IrOpcode::kUnalignedStore, node->opcode()); store_op = machine()->UnalignedStore(MachineRepresentation::kWord32); } Node* high_node; if (node->InputCount() > 3) { Node* effect_high = node->InputAt(3); Node* control_high = node->InputAt(4); high_node = graph()->NewNode(store_op, base, index_high, GetReplacementHigh(value), effect_high, control_high); node->ReplaceInput(3, high_node); } else { high_node = graph()->NewNode(store_op, base, index_high, GetReplacementHigh(value)); } node->ReplaceInput(1, index_low); node->ReplaceInput(2, GetReplacementLow(value)); NodeProperties::ChangeOp(node, store_op); ReplaceNode(node, node, high_node); } else { DefaultLowering(node, true); } break; } case IrOpcode::kStart: { int parameter_count = GetParameterCountAfterLowering(signature()); // Only exchange the node if the parameter count actually changed. if (parameter_count != static_cast<int>(signature()->parameter_count())) { int delta = parameter_count - static_cast<int>(signature()->parameter_count()); int new_output_count = node->op()->ValueOutputCount() + delta; NodeProperties::ChangeOp(node, common()->Start(new_output_count)); } break; } case IrOpcode::kParameter: { DCHECK_EQ(1, node->InputCount()); // Only exchange the node if the parameter count actually changed. We do // not even have to do the default lowering because the the start node, // the only input of a parameter node, only changes if the parameter count // changes. if (GetParameterCountAfterLowering(signature()) != static_cast<int>(signature()->parameter_count())) { int old_index = ParameterIndexOf(node->op()); // TODO(wasm): Make this part not wasm specific. // Prevent special lowering of the instance parameter. if (old_index == wasm::kWasmInstanceParameterIndex) { DefaultLowering(node); break; } // Adjust old_index to be compliant with the signature. --old_index; int new_index = GetParameterIndexAfterLowering(signature(), old_index); // Adjust new_index to consider the instance parameter. ++new_index; NodeProperties::ChangeOp(node, common()->Parameter(new_index)); if (signature()->GetParam(old_index) == MachineRepresentation::kWord64) { Node* high_node = graph()->NewNode(common()->Parameter(new_index + 1), graph()->start()); ReplaceNode(node, node, high_node); } } break; } case IrOpcode::kReturn: { int input_count = node->InputCount(); DefaultLowering(node); if (input_count != node->InputCount()) { int new_return_count = GetReturnCountAfterLowering(signature()); if (static_cast<int>(signature()->return_count()) != new_return_count) { NodeProperties::ChangeOp(node, common()->Return(new_return_count)); } } break; } case IrOpcode::kTailCall: { auto call_descriptor = const_cast<CallDescriptor*>(CallDescriptorOf(node->op())); bool returns_require_lowering = GetReturnCountAfterLowering(call_descriptor) != static_cast<int>(call_descriptor->ReturnCount()); if (DefaultLowering(node) || returns_require_lowering) { // Tail calls do not have return values, so adjusting the call // descriptor is enough. auto new_descriptor = GetI32WasmCallDescriptor(zone(), call_descriptor); NodeProperties::ChangeOp(node, common()->TailCall(new_descriptor)); } break; } case IrOpcode::kCall: { auto call_descriptor = const_cast<CallDescriptor*>(CallDescriptorOf(node->op())); bool returns_require_lowering = GetReturnCountAfterLowering(call_descriptor) != static_cast<int>(call_descriptor->ReturnCount()); if (DefaultLowering(node) || returns_require_lowering) { // We have to adjust the call descriptor. NodeProperties::ChangeOp(node, common()->Call(GetI32WasmCallDescriptor( zone(), call_descriptor))); } if (returns_require_lowering) { size_t return_arity = call_descriptor->ReturnCount(); if (return_arity == 1) { // We access the additional return values through projections. ReplaceNodeWithProjections(node); } else { ZoneVector<Node*> projections(return_arity, zone()); NodeProperties::CollectValueProjections(node, projections.data(), return_arity); for (size_t old_index = 0, new_index = 0; old_index < return_arity; ++old_index, ++new_index) { Node* use_node = projections[old_index]; DCHECK_EQ(ProjectionIndexOf(use_node->op()), old_index); DCHECK_EQ(GetReturnIndexAfterLowering(call_descriptor, static_cast<int>(old_index)), static_cast<int>(new_index)); if (new_index != old_index) { NodeProperties::ChangeOp( use_node, common()->Projection(new_index)); } if (call_descriptor->GetReturnType(old_index).representation() == MachineRepresentation::kWord64) { Node* high_node = graph()->NewNode( common()->Projection(new_index + 1), node, graph()->start()); ReplaceNode(use_node, use_node, high_node); ++new_index; } } } } break; } case IrOpcode::kWord64And: { DCHECK_EQ(2, node->InputCount()); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Node* low_node = graph()->NewNode(machine()->Word32And(), GetReplacementLow(left), GetReplacementLow(right)); Node* high_node = graph()->NewNode(machine()->Word32And(), GetReplacementHigh(left), GetReplacementHigh(right)); ReplaceNode(node, low_node, high_node); break; } case IrOpcode::kTruncateInt64ToInt32: { DCHECK_EQ(1, node->InputCount()); Node* input = node->InputAt(0); ReplaceNode(node, GetReplacementLow(input), nullptr); node->NullAllInputs(); break; } case IrOpcode::kInt64Add: { DCHECK_EQ(2, node->InputCount()); Node* right = node->InputAt(1); node->ReplaceInput(1, GetReplacementLow(right)); node->AppendInput(zone(), GetReplacementHigh(right)); Node* left = node->InputAt(0); node->ReplaceInput(0, GetReplacementLow(left)); node->InsertInput(zone(), 1, GetReplacementHigh(left)); NodeProperties::ChangeOp(node, machine()->Int32PairAdd()); // We access the additional return values through projections. ReplaceNodeWithProjections(node); break; } case IrOpcode::kInt64Sub: { DCHECK_EQ(2, node->InputCount()); Node* right = node->InputAt(1); node->ReplaceInput(1, GetReplacementLow(right)); node->AppendInput(zone(), GetReplacementHigh(right)); Node* left = node->InputAt(0); node->ReplaceInput(0, GetReplacementLow(left)); node->InsertInput(zone(), 1, GetReplacementHigh(left)); NodeProperties::ChangeOp(node, machine()->Int32PairSub()); // We access the additional return values through projections. ReplaceNodeWithProjections(node); break; } case IrOpcode::kInt64Mul: { DCHECK_EQ(2, node->InputCount()); Node* right = node->InputAt(1); node->ReplaceInput(1, GetReplacementLow(right)); node->AppendInput(zone(), GetReplacementHigh(right)); Node* left = node->InputAt(0); node->ReplaceInput(0, GetReplacementLow(left)); node->InsertInput(zone(), 1, GetReplacementHigh(left)); NodeProperties::ChangeOp(node, machine()->Int32PairMul()); // We access the additional return values through projections. ReplaceNodeWithProjections(node); break; } case IrOpcode::kWord64Or: { DCHECK_EQ(2, node->InputCount()); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Node* low_node = graph()->NewNode(machine()->Word32Or(), GetReplacementLow(left), GetReplacementLow(right)); Node* high_node = graph()->NewNode(machine()->Word32Or(), GetReplacementHigh(left), GetReplacementHigh(right)); ReplaceNode(node, low_node, high_node); break; } case IrOpcode::kWord64Xor: { DCHECK_EQ(2, node->InputCount()); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Node* low_node = graph()->NewNode(machine()->Word32Xor(), GetReplacementLow(left), GetReplacementLow(right)); Node* high_node = graph()->NewNode(machine()->Word32Xor(), GetReplacementHigh(left), GetReplacementHigh(right)); ReplaceNode(node, low_node, high_node); break; } case IrOpcode::kWord64Shl: { // TODO(turbofan): if the shift count >= 32, then we can set the low word // of the output to 0 and just calculate the high word. DCHECK_EQ(2, node->InputCount()); Node* shift = node->InputAt(1); if (HasReplacementLow(shift)) { // We do not have to care about the high word replacement, because // the shift can only be between 0 and 63 anyways. node->ReplaceInput(1, GetReplacementLow(shift)); } Node* value = node->InputAt(0); node->ReplaceInput(0, GetReplacementLow(value)); node->InsertInput(zone(), 1, GetReplacementHigh(value)); NodeProperties::ChangeOp(node, machine()->Word32PairShl()); // We access the additional return values through projections. ReplaceNodeWithProjections(node); break; } case IrOpcode::kWord64Shr: { // TODO(turbofan): if the shift count >= 32, then we can set the low word // of the output to 0 and just calculate the high word. DCHECK_EQ(2, node->InputCount()); Node* shift = node->InputAt(1); if (HasReplacementLow(shift)) { // We do not have to care about the high word replacement, because // the shift can only be between 0 and 63 anyways. node->ReplaceInput(1, GetReplacementLow(shift)); } Node* value = node->InputAt(0); node->ReplaceInput(0, GetReplacementLow(value)); node->InsertInput(zone(), 1, GetReplacementHigh(value)); NodeProperties::ChangeOp(node, machine()->Word32PairShr()); // We access the additional return values through projections. ReplaceNodeWithProjections(node); break; } case IrOpcode::kWord64Sar: { // TODO(turbofan): if the shift count >= 32, then we can set the low word // of the output to 0 and just calculate the high word. DCHECK_EQ(2, node->InputCount()); Node* shift = node->InputAt(1); if (HasReplacementLow(shift)) { // We do not have to care about the high word replacement, because // the shift can only be between 0 and 63 anyways. node->ReplaceInput(1, GetReplacementLow(shift)); } Node* value = node->InputAt(0); node->ReplaceInput(0, GetReplacementLow(value)); node->InsertInput(zone(), 1, GetReplacementHigh(value)); NodeProperties::ChangeOp(node, machine()->Word32PairSar()); // We access the additional return values through projections. ReplaceNodeWithProjections(node); break; } case IrOpcode::kWord64Equal: { DCHECK_EQ(2, node->InputCount()); Node* left = node->InputAt(0); Node* right = node->InputAt(1); // TODO(wasm): Use explicit comparisons and && here? Node* replacement = graph()->NewNode( machine()->Word32Equal(), graph()->NewNode( machine()->Word32Or(), graph()->NewNode(machine()->Word32Xor(), GetReplacementLow(left), GetReplacementLow(right)), graph()->NewNode(machine()->Word32Xor(), GetReplacementHigh(left), GetReplacementHigh(right))), graph()->NewNode(common()->Int32Constant(0))); ReplaceNode(node, replacement, nullptr); break; } case IrOpcode::kInt64LessThan: { LowerComparison(node, machine()->Int32LessThan(), machine()->Uint32LessThan()); break; } case IrOpcode::kInt64LessThanOrEqual: { LowerComparison(node, machine()->Int32LessThan(), machine()->Uint32LessThanOrEqual()); break; } case IrOpcode::kUint64LessThan: { LowerComparison(node, machine()->Uint32LessThan(), machine()->Uint32LessThan()); break; } case IrOpcode::kUint64LessThanOrEqual: { LowerComparison(node, machine()->Uint32LessThan(), machine()->Uint32LessThanOrEqual()); break; } case IrOpcode::kSignExtendWord32ToInt64: case IrOpcode::kChangeInt32ToInt64: { DCHECK_EQ(1, node->InputCount()); Node* input = node->InputAt(0); if (HasReplacementLow(input)) { input = GetReplacementLow(input); } // We use SAR to preserve the sign in the high word. ReplaceNode( node, input, graph()->NewNode(machine()->Word32Sar(), input, graph()->NewNode(common()->Int32Constant(31)))); node->NullAllInputs(); break; } case IrOpcode::kChangeUint32ToUint64: { DCHECK_EQ(1, node->InputCount()); Node* input = node->InputAt(0); if (HasReplacementLow(input)) { input = GetReplacementLow(input); } ReplaceNode(node, input, graph()->NewNode(common()->Int32Constant(0))); node->NullAllInputs(); break; } case IrOpcode::kBitcastInt64ToFloat64: { DCHECK_EQ(1, node->InputCount()); Node* input = node->InputAt(0); Node* stack_slot = graph()->NewNode( machine()->StackSlot(MachineRepresentation::kWord64)); Node* store_high_word = graph()->NewNode( machine()->Store( StoreRepresentation(MachineRepresentation::kWord32, WriteBarrierKind::kNoWriteBarrier)), stack_slot, graph()->NewNode( common()->Int32Constant(kInt64UpperHalfMemoryOffset)), GetReplacementHigh(input), graph()->start(), graph()->start()); Node* store_low_word = graph()->NewNode( machine()->Store( StoreRepresentation(MachineRepresentation::kWord32, WriteBarrierKind::kNoWriteBarrier)), stack_slot, graph()->NewNode( common()->Int32Constant(kInt64LowerHalfMemoryOffset)), GetReplacementLow(input), store_high_word, graph()->start()); Node* load = graph()->NewNode(machine()->Load(MachineType::Float64()), stack_slot, graph()->NewNode(common()->Int32Constant(0)), store_low_word, graph()->start()); ReplaceNode(node, load, nullptr); break; } case IrOpcode::kBitcastFloat64ToInt64: { DCHECK_EQ(1, node->InputCount()); Node* input = node->InputAt(0); if (HasReplacementLow(input)) { input = GetReplacementLow(input); } Node* stack_slot = graph()->NewNode( machine()->StackSlot(MachineRepresentation::kWord64)); Node* store = graph()->NewNode( machine()->Store( StoreRepresentation(MachineRepresentation::kFloat64, WriteBarrierKind::kNoWriteBarrier)), stack_slot, graph()->NewNode(common()->Int32Constant(0)), input, graph()->start(), graph()->start()); Node* high_node = graph()->NewNode( machine()->Load(MachineType::Int32()), stack_slot, graph()->NewNode( common()->Int32Constant(kInt64UpperHalfMemoryOffset)), store, graph()->start()); Node* low_node = graph()->NewNode( machine()->Load(MachineType::Int32()), stack_slot, graph()->NewNode( common()->Int32Constant(kInt64LowerHalfMemoryOffset)), store, graph()->start()); ReplaceNode(node, low_node, high_node); break; } case IrOpcode::kWord64Ror: { DCHECK_EQ(2, node->InputCount()); Node* input = node->InputAt(0); Node* shift = HasReplacementLow(node->InputAt(1)) ? GetReplacementLow(node->InputAt(1)) : node->InputAt(1); Int32Matcher m(shift); if (m.HasValue()) { // Precondition: 0 <= shift < 64. int32_t shift_value = m.Value() & 0x3F; if (shift_value == 0) { ReplaceNode(node, GetReplacementLow(input), GetReplacementHigh(input)); } else if (shift_value == 32) { ReplaceNode(node, GetReplacementHigh(input), GetReplacementLow(input)); } else { Node* low_input; Node* high_input; if (shift_value < 32) { low_input = GetReplacementLow(input); high_input = GetReplacementHigh(input); } else { low_input = GetReplacementHigh(input); high_input = GetReplacementLow(input); } int32_t masked_shift_value = shift_value & 0x1F; Node* masked_shift = graph()->NewNode(common()->Int32Constant(masked_shift_value)); Node* inv_shift = graph()->NewNode( common()->Int32Constant(32 - masked_shift_value)); Node* low_node = graph()->NewNode( machine()->Word32Or(), graph()->NewNode(machine()->Word32Shr(), low_input, masked_shift), graph()->NewNode(machine()->Word32Shl(), high_input, inv_shift)); Node* high_node = graph()->NewNode( machine()->Word32Or(), graph()->NewNode(machine()->Word32Shr(), high_input, masked_shift), graph()->NewNode(machine()->Word32Shl(), low_input, inv_shift)); ReplaceNode(node, low_node, high_node); } } else { Node* safe_shift = shift; if (!machine()->Word32ShiftIsSafe()) { safe_shift = graph()->NewNode(machine()->Word32And(), shift, graph()->NewNode(common()->Int32Constant(0x1F))); } // By creating this bit-mask with SAR and SHL we do not have to deal // with shift == 0 as a special case. Node* inv_mask = graph()->NewNode( machine()->Word32Shl(), graph()->NewNode(machine()->Word32Sar(), graph()->NewNode(common()->Int32Constant( std::numeric_limits<int32_t>::min())), safe_shift), graph()->NewNode(common()->Int32Constant(1))); Node* bit_mask = graph()->NewNode(machine()->Word32Xor(), inv_mask, graph()->NewNode(common()->Int32Constant(-1))); // We have to mask the shift value for this comparison. If // !machine()->Word32ShiftIsSafe() then the masking should already be // part of the graph. Node* masked_shift6 = shift; if (machine()->Word32ShiftIsSafe()) { masked_shift6 = graph()->NewNode(machine()->Word32And(), shift, graph()->NewNode(common()->Int32Constant(0x3F))); } Diamond lt32( graph(), common(), graph()->NewNode(machine()->Int32LessThan(), masked_shift6, graph()->NewNode(common()->Int32Constant(32)))); // The low word and the high word can be swapped either at the input or // at the output. We swap the inputs so that shift does not have to be // kept for so long in a register. Node* input_low = lt32.Phi(MachineRepresentation::kWord32, GetReplacementLow(input), GetReplacementHigh(input)); Node* input_high = lt32.Phi(MachineRepresentation::kWord32, GetReplacementHigh(input), GetReplacementLow(input)); Node* rotate_low = graph()->NewNode(machine()->Word32Ror(), input_low, safe_shift); Node* rotate_high = graph()->NewNode(machine()->Word32Ror(), input_high, safe_shift); Node* low_node = graph()->NewNode( machine()->Word32Or(), graph()->NewNode(machine()->Word32And(), rotate_low, bit_mask), graph()->NewNode(machine()->Word32And(), rotate_high, inv_mask)); Node* high_node = graph()->NewNode( machine()->Word32Or(), graph()->NewNode(machine()->Word32And(), rotate_high, bit_mask), graph()->NewNode(machine()->Word32And(), rotate_low, inv_mask)); ReplaceNode(node, low_node, high_node); } break; } case IrOpcode::kWord64Clz: { DCHECK_EQ(1, node->InputCount()); Node* input = node->InputAt(0); Diamond d( graph(), common(), graph()->NewNode(machine()->Word32Equal(), GetReplacementHigh(input), graph()->NewNode(common()->Int32Constant(0)))); Node* low_node = d.Phi( MachineRepresentation::kWord32, graph()->NewNode(machine()->Int32Add(), graph()->NewNode(machine()->Word32Clz(), GetReplacementLow(input)), graph()->NewNode(common()->Int32Constant(32))), graph()->NewNode(machine()->Word32Clz(), GetReplacementHigh(input))); ReplaceNode(node, low_node, graph()->NewNode(common()->Int32Constant(0))); break; } case IrOpcode::kWord64Ctz: { DCHECK_EQ(1, node->InputCount()); DCHECK(machine()->Word32Ctz().IsSupported()); Node* input = node->InputAt(0); Diamond d( graph(), common(), graph()->NewNode(machine()->Word32Equal(), GetReplacementLow(input), graph()->NewNode(common()->Int32Constant(0)))); Node* low_node = d.Phi(MachineRepresentation::kWord32, graph()->NewNode(machine()->Int32Add(), graph()->NewNode(machine()->Word32Ctz().op(), GetReplacementHigh(input)), graph()->NewNode(common()->Int32Constant(32))), graph()->NewNode(machine()->Word32Ctz().op(), GetReplacementLow(input))); ReplaceNode(node, low_node, graph()->NewNode(common()->Int32Constant(0))); break; } case IrOpcode::kWord64Popcnt: { DCHECK_EQ(1, node->InputCount()); Node* input = node->InputAt(0); // We assume that a Word64Popcnt node only has been created if // Word32Popcnt is actually supported. DCHECK(machine()->Word32Popcnt().IsSupported()); ReplaceNode(node, graph()->NewNode( machine()->Int32Add(), graph()->NewNode(machine()->Word32Popcnt().op(), GetReplacementLow(input)), graph()->NewNode(machine()->Word32Popcnt().op(), GetReplacementHigh(input))), graph()->NewNode(common()->Int32Constant(0))); break; } case IrOpcode::kPhi: { MachineRepresentation rep = PhiRepresentationOf(node->op()); if (rep == MachineRepresentation::kWord64) { // The replacement nodes have already been created, we only have to // replace placeholder nodes. Node* low_node = GetReplacementLow(node); Node* high_node = GetReplacementHigh(node); for (int i = 0; i < node->op()->ValueInputCount(); i++) { low_node->ReplaceInput(i, GetReplacementLow(node->InputAt(i))); high_node->ReplaceInput(i, GetReplacementHigh(node->InputAt(i))); } } else { DefaultLowering(node); } break; } case IrOpcode::kWord64ReverseBytes: { Node* input = node->InputAt(0); ReplaceNode(node, graph()->NewNode(machine()->Word32ReverseBytes(), GetReplacementHigh(input)), graph()->NewNode(machine()->Word32ReverseBytes(), GetReplacementLow(input))); break; } case IrOpcode::kSignExtendWord8ToInt64: { DCHECK_EQ(1, node->InputCount()); Node* input = node->InputAt(0); if (HasReplacementLow(input)) { input = GetReplacementLow(input); } // Sign extend low node to Int32 input = graph()->NewNode(machine()->SignExtendWord8ToInt32(), input); // We use SAR to preserve the sign in the high word. ReplaceNode( node, input, graph()->NewNode(machine()->Word32Sar(), input, graph()->NewNode(common()->Int32Constant(31)))); node->NullAllInputs(); break; } case IrOpcode::kSignExtendWord16ToInt64: { DCHECK_EQ(1, node->InputCount()); Node* input = node->InputAt(0); if (HasReplacementLow(input)) { input = GetReplacementLow(input); } // Sign extend low node to Int32 input = graph()->NewNode(machine()->SignExtendWord16ToInt32(), input); // We use SAR to preserve the sign in the high word. ReplaceNode( node, input, graph()->NewNode(machine()->Word32Sar(), input, graph()->NewNode(common()->Int32Constant(31)))); node->NullAllInputs(); break; } case IrOpcode::kWord64AtomicLoad: { DCHECK_EQ(4, node->InputCount()); MachineType type = AtomicOpType(node->op()); if (type == MachineType::Uint64()) { NodeProperties::ChangeOp(node, machine()->Word32AtomicPairLoad()); ReplaceNodeWithProjections(node); } else { NodeProperties::ChangeOp(node, machine()->Word32AtomicLoad(type)); ReplaceNode(node, node, graph()->NewNode(common()->Int32Constant(0))); } break; } case IrOpcode::kWord64AtomicStore: { DCHECK_EQ(5, node->InputCount()); MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); if (rep == MachineRepresentation::kWord64) { Node* value = node->InputAt(2); node->ReplaceInput(2, GetReplacementLow(value)); node->InsertInput(zone(), 3, GetReplacementHigh(value)); NodeProperties::ChangeOp(node, machine()->Word32AtomicPairStore()); } else { DefaultLowering(node, true); NodeProperties::ChangeOp(node, machine()->Word32AtomicStore(rep)); } break; } #define ATOMIC_CASE(name) \ case IrOpcode::kWord64Atomic##name: { \ MachineType type = AtomicOpType(node->op()); \ if (type == MachineType::Uint64()) { \ LowerWord64AtomicBinop(node, machine()->Word32AtomicPair##name()); \ } else { \ LowerWord64AtomicNarrowOp(node, machine()->Word32Atomic##name(type)); \ } \ break; \ } ATOMIC_CASE(Add) ATOMIC_CASE(Sub) ATOMIC_CASE(And) ATOMIC_CASE(Or) ATOMIC_CASE(Xor) ATOMIC_CASE(Exchange) #undef ATOMIC_CASE case IrOpcode::kWord64AtomicCompareExchange: { MachineType type = AtomicOpType(node->op()); if (type == MachineType::Uint64()) { Node* old_value = node->InputAt(2); Node* new_value = node->InputAt(3); node->ReplaceInput(2, GetReplacementLow(old_value)); node->ReplaceInput(3, GetReplacementHigh(old_value)); node->InsertInput(zone(), 4, GetReplacementLow(new_value)); node->InsertInput(zone(), 5, GetReplacementHigh(new_value)); NodeProperties::ChangeOp(node, machine()->Word32AtomicPairCompareExchange()); ReplaceNodeWithProjections(node); } else { DCHECK(type == MachineType::Uint32() || type == MachineType::Uint16() || type == MachineType::Uint8()); Node* old_value = node->InputAt(2); node->ReplaceInput(2, GetReplacementLow(old_value)); Node* new_value = node->InputAt(3); node->ReplaceInput(3, GetReplacementLow(new_value)); NodeProperties::ChangeOp(node, machine()->Word32AtomicCompareExchange(type)); ReplaceNode(node, node, graph()->NewNode(common()->Int32Constant(0))); } break; } default: { DefaultLowering(node); } } } // NOLINT(readability/fn_size) void Int64Lowering::LowerComparison(Node* node, const Operator* high_word_op, const Operator* low_word_op) { DCHECK_EQ(2, node->InputCount()); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Node* replacement = graph()->NewNode( machine()->Word32Or(), graph()->NewNode(high_word_op, GetReplacementHigh(left), GetReplacementHigh(right)), graph()->NewNode( machine()->Word32And(), graph()->NewNode(machine()->Word32Equal(), GetReplacementHigh(left), GetReplacementHigh(right)), graph()->NewNode(low_word_op, GetReplacementLow(left), GetReplacementLow(right)))); ReplaceNode(node, replacement, nullptr); } bool Int64Lowering::DefaultLowering(Node* node, bool low_word_only) { bool something_changed = false; for (int i = NodeProperties::PastValueIndex(node) - 1; i >= 0; i--) { Node* input = node->InputAt(i); if (HasReplacementLow(input)) { something_changed = true; node->ReplaceInput(i, GetReplacementLow(input)); } if (!low_word_only && HasReplacementHigh(input)) { something_changed = true; node->InsertInput(zone(), i + 1, GetReplacementHigh(input)); } } return something_changed; } void Int64Lowering::ReplaceNode(Node* old, Node* new_low, Node* new_high) { // if new_low == nullptr, then also new_high == nullptr. DCHECK(new_low != nullptr || new_high == nullptr); replacements_[old->id()].low = new_low; replacements_[old->id()].high = new_high; } bool Int64Lowering::HasReplacementLow(Node* node) { return replacements_[node->id()].low != nullptr; } Node* Int64Lowering::GetReplacementLow(Node* node) { Node* result = replacements_[node->id()].low; DCHECK(result); return result; } bool Int64Lowering::HasReplacementHigh(Node* node) { return replacements_[node->id()].high != nullptr; } Node* Int64Lowering::GetReplacementHigh(Node* node) { Node* result = replacements_[node->id()].high; DCHECK(result); return result; } void Int64Lowering::PreparePhiReplacement(Node* phi) { MachineRepresentation rep = PhiRepresentationOf(phi->op()); if (rep == MachineRepresentation::kWord64) { // We have to create the replacements for a phi node before we actually // lower the phi to break potential cycles in the graph. The replacements of // input nodes do not exist yet, so we use a placeholder node to pass the // graph verifier. int value_count = phi->op()->ValueInputCount(); Node** inputs_low = zone()->NewArray<Node*>(value_count + 1); Node** inputs_high = zone()->NewArray<Node*>(value_count + 1); for (int i = 0; i < value_count; i++) { inputs_low[i] = placeholder_; inputs_high[i] = placeholder_; } inputs_low[value_count] = NodeProperties::GetControlInput(phi, 0); inputs_high[value_count] = NodeProperties::GetControlInput(phi, 0); ReplaceNode(phi, graph()->NewNode( common()->Phi(MachineRepresentation::kWord32, value_count), value_count + 1, inputs_low, false), graph()->NewNode( common()->Phi(MachineRepresentation::kWord32, value_count), value_count + 1, inputs_high, false)); } } void Int64Lowering::ReplaceNodeWithProjections(Node* node) { DCHECK(node != nullptr); Node* low_node = graph()->NewNode(common()->Projection(0), node, graph()->start()); Node* high_node = graph()->NewNode(common()->Projection(1), node, graph()->start()); ReplaceNode(node, low_node, high_node); } } // namespace compiler } // namespace internal } // namespace v8