// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_WASM_WASM_ENGINE_H_ #define V8_WASM_WASM_ENGINE_H_ #include <algorithm> #include <map> #include <memory> #include <unordered_map> #include <unordered_set> #include "src/base/platform/condition-variable.h" #include "src/base/platform/mutex.h" #include "src/tasks/cancelable-task.h" #include "src/wasm/wasm-code-manager.h" #include "src/wasm/wasm-tier.h" #include "src/zone/accounting-allocator.h" namespace v8 { namespace internal { class AsmWasmData; class CodeTracer; class CompilationStatistics; class HeapNumber; class WasmInstanceObject; class WasmModuleObject; class JSArrayBuffer; namespace wasm { class AsyncCompileJob; class ErrorThrower; struct ModuleWireBytes; class WasmFeatures; namespace gdb_server { class GdbServer; } class V8_EXPORT_PRIVATE CompilationResultResolver { public: virtual void OnCompilationSucceeded(Handle<WasmModuleObject> result) = 0; virtual void OnCompilationFailed(Handle<Object> error_reason) = 0; virtual ~CompilationResultResolver() = default; }; class V8_EXPORT_PRIVATE InstantiationResultResolver { public: virtual void OnInstantiationSucceeded(Handle<WasmInstanceObject> result) = 0; virtual void OnInstantiationFailed(Handle<Object> error_reason) = 0; virtual ~InstantiationResultResolver() = default; }; // Native modules cached by their wire bytes. class NativeModuleCache { public: struct Key { // Store the prefix hash as part of the key for faster lookup, and to // quickly check existing prefixes for streaming compilation. size_t prefix_hash; Vector<const uint8_t> bytes; bool operator==(const Key& other) const { bool eq = bytes == other.bytes; DCHECK_IMPLIES(eq, prefix_hash == other.prefix_hash); return eq; } bool operator<(const Key& other) const { if (prefix_hash != other.prefix_hash) { DCHECK_IMPLIES(!bytes.empty() && !other.bytes.empty(), bytes != other.bytes); return prefix_hash < other.prefix_hash; } if (bytes.size() != other.bytes.size()) { return bytes.size() < other.bytes.size(); } // Fast path when the base pointers are the same. // Also handles the {nullptr} case which would be UB for memcmp. if (bytes.begin() == other.bytes.begin()) { DCHECK_EQ(prefix_hash, other.prefix_hash); return false; } DCHECK_NOT_NULL(bytes.begin()); DCHECK_NOT_NULL(other.bytes.begin()); return memcmp(bytes.begin(), other.bytes.begin(), bytes.size()) < 0; } }; std::shared_ptr<NativeModule> MaybeGetNativeModule( ModuleOrigin origin, Vector<const uint8_t> wire_bytes); bool GetStreamingCompilationOwnership(size_t prefix_hash); void StreamingCompilationFailed(size_t prefix_hash); std::shared_ptr<NativeModule> Update( std::shared_ptr<NativeModule> native_module, bool error); void Erase(NativeModule* native_module); bool empty() { return map_.empty(); } static size_t WireBytesHash(Vector<const uint8_t> bytes); // Hash the wire bytes up to the code section header. Used as a heuristic to // avoid streaming compilation of modules that are likely already in the // cache. See {GetStreamingCompilationOwnership}. Assumes that the bytes have // already been validated. static size_t PrefixHash(Vector<const uint8_t> wire_bytes); private: // Each key points to the corresponding native module's wire bytes, so they // should always be valid as long as the native module is alive. When // the native module dies, {FreeNativeModule} deletes the entry from the // map, so that we do not leave any dangling key pointing to an expired // weak_ptr. This also serves as a way to regularly clean up the map, which // would otherwise accumulate expired entries. // A {nullopt} value is inserted to indicate that this native module is // currently being created in some thread, and that other threads should wait // before trying to get it from the cache. // By contrast, an expired {weak_ptr} indicates that the native module died // and will soon be cleaned up from the cache. std::map<Key, base::Optional<std::weak_ptr<NativeModule>>> map_; base::Mutex mutex_; // This condition variable is used to synchronize threads compiling the same // module. Only one thread will create the {NativeModule}. Other threads // will wait on this variable until the first thread wakes them up. base::ConditionVariable cache_cv_; }; // The central data structure that represents an engine instance capable of // loading, instantiating, and executing WASM code. class V8_EXPORT_PRIVATE WasmEngine { public: WasmEngine(); ~WasmEngine(); // Synchronously validates the given bytes that represent an encoded WASM // module. bool SyncValidate(Isolate* isolate, const WasmFeatures& enabled, const ModuleWireBytes& bytes); // Synchronously compiles the given bytes that represent a translated // asm.js module. MaybeHandle<AsmWasmData> SyncCompileTranslatedAsmJs( Isolate* isolate, ErrorThrower* thrower, const ModuleWireBytes& bytes, Vector<const byte> asm_js_offset_table_bytes, Handle<HeapNumber> uses_bitset, LanguageMode language_mode); Handle<WasmModuleObject> FinalizeTranslatedAsmJs( Isolate* isolate, Handle<AsmWasmData> asm_wasm_data, Handle<Script> script); // Synchronously compiles the given bytes that represent an encoded WASM // module. MaybeHandle<WasmModuleObject> SyncCompile(Isolate* isolate, const WasmFeatures& enabled, ErrorThrower* thrower, const ModuleWireBytes& bytes); // Synchronously instantiate the given WASM module with the given imports. // If the module represents an asm.js module, then the supplied {memory} // should be used as the memory of the instance. MaybeHandle<WasmInstanceObject> SyncInstantiate( Isolate* isolate, ErrorThrower* thrower, Handle<WasmModuleObject> module_object, MaybeHandle<JSReceiver> imports, MaybeHandle<JSArrayBuffer> memory); // Begin an asynchronous compilation of the given bytes that represent an // encoded WASM module. // The {is_shared} flag indicates if the bytes backing the module could // be shared across threads, i.e. could be concurrently modified. void AsyncCompile(Isolate* isolate, const WasmFeatures& enabled, std::shared_ptr<CompilationResultResolver> resolver, const ModuleWireBytes& bytes, bool is_shared, const char* api_method_name_for_errors); // Begin an asynchronous instantiation of the given WASM module. void AsyncInstantiate(Isolate* isolate, std::unique_ptr<InstantiationResultResolver> resolver, Handle<WasmModuleObject> module_object, MaybeHandle<JSReceiver> imports); std::shared_ptr<StreamingDecoder> StartStreamingCompilation( Isolate* isolate, const WasmFeatures& enabled, Handle<Context> context, const char* api_method_name, std::shared_ptr<CompilationResultResolver> resolver); // Compiles the function with the given index at a specific compilation tier. // Errors are stored internally in the CompilationState. // This is mostly used for testing to force a function into a specific tier. void CompileFunction(Isolate* isolate, NativeModule* native_module, uint32_t function_index, ExecutionTier tier); // Recompiles all functions at a specific compilation tier. void RecompileAllFunctions(Isolate* isolate, NativeModule* native_module, ExecutionTier tier); void TierDownAllModulesPerIsolate(Isolate* isolate); // Exports the sharable parts of the given module object so that they can be // transferred to a different Context/Isolate using the same engine. std::shared_ptr<NativeModule> ExportNativeModule( Handle<WasmModuleObject> module_object); // Imports the shared part of a module from a different Context/Isolate using // the the same engine, recreating a full module object in the given Isolate. Handle<WasmModuleObject> ImportNativeModule( Isolate* isolate, std::shared_ptr<NativeModule> shared_module); WasmCodeManager* code_manager() { return &code_manager_; } AccountingAllocator* allocator() { return &allocator_; } // Compilation statistics for TurboFan compilations. CompilationStatistics* GetOrCreateTurboStatistics(); // Prints the gathered compilation statistics, then resets them. void DumpAndResetTurboStatistics(); // Used to redirect tracing output from {stdout} to a file. CodeTracer* GetCodeTracer(); // Remove {job} from the list of active compile jobs. std::unique_ptr<AsyncCompileJob> RemoveCompileJob(AsyncCompileJob* job); // Returns true if at least one AsyncCompileJob that belongs to the given // Isolate is currently running. bool HasRunningCompileJob(Isolate* isolate); // Deletes all AsyncCompileJobs that belong to the given context. All // compilation is aborted, no more callbacks will be triggered. This is used // when a context is disposed, e.g. because of browser navigation. void DeleteCompileJobsOnContext(Handle<Context> context); // Deletes all AsyncCompileJobs that belong to the given Isolate. All // compilation is aborted, no more callbacks will be triggered. This is used // for tearing down an isolate, or to clean it up to be reused. void DeleteCompileJobsOnIsolate(Isolate* isolate); // Manage the set of Isolates that use this WasmEngine. void AddIsolate(Isolate* isolate); void RemoveIsolate(Isolate* isolate); template <typename T, typename... Args> std::unique_ptr<T> NewBackgroundCompileTask(Args&&... args) { return std::make_unique<T>(&background_compile_task_manager_, std::forward<Args>(args)...); } // Trigger code logging for the given code objects in all Isolates which have // access to the NativeModule containing this code. This method can be called // from background threads. void LogCode(Vector<WasmCode*>); // Enable code logging for the given Isolate. Initially, code logging is // enabled if {WasmCode::ShouldBeLogged(Isolate*)} returns true during // {AddIsolate}. void EnableCodeLogging(Isolate*); // This is called from the foreground thread of the Isolate to log all // outstanding code objects (added via {LogCode}). void LogOutstandingCodesForIsolate(Isolate*); // Create a new NativeModule. The caller is responsible for its // lifetime. The native module will be given some memory for code, // which will be page size aligned. The size of the initial memory // is determined by {code_size_estimate}. The native module may later request // more memory. // TODO(wasm): isolate is only required here for CompilationState. std::shared_ptr<NativeModule> NewNativeModule( Isolate* isolate, const WasmFeatures& enabled_features, std::shared_ptr<const WasmModule> module, size_t code_size_estimate); // Try getting a cached {NativeModule}, or get ownership for its creation. // Return {nullptr} if no {NativeModule} exists for these bytes. In this case, // a {nullopt} entry is added to let other threads know that a {NativeModule} // for these bytes is currently being created. The caller should eventually // call {UpdateNativeModuleCache} to update the entry and wake up other // threads. The {wire_bytes}' underlying array should be valid at least until // the call to {UpdateNativeModuleCache}. std::shared_ptr<NativeModule> MaybeGetNativeModule( ModuleOrigin origin, Vector<const uint8_t> wire_bytes, Isolate* isolate); // Replace the temporary {nullopt} with the new native module, or // erase it if any error occurred. Wake up blocked threads waiting for this // module. // To avoid a deadlock on the main thread between synchronous and streaming // compilation, two compilation jobs might compile the same native module at // the same time. In this case the first call to {UpdateNativeModuleCache} // will insert the native module in the cache, and the last call will discard // its {native_module} argument and replace it with the existing entry. // Return true in the former case, and false in the latter. bool UpdateNativeModuleCache(bool error, std::shared_ptr<NativeModule>* native_module, Isolate* isolate); // Register this prefix hash for a streaming compilation job. // If the hash is not in the cache yet, the function returns true and the // caller owns the compilation of this module. // Otherwise another compilation job is currently preparing or has already // prepared a module with the same prefix hash. The caller should wait until // the stream is finished and call {MaybeGetNativeModule} to either get the // module from the cache or get ownership for the compilation of these bytes. bool GetStreamingCompilationOwnership(size_t prefix_hash); // Remove the prefix hash from the cache when compilation failed. If // compilation succeeded, {UpdateNativeModuleCache} should be called instead. void StreamingCompilationFailed(size_t prefix_hash); void FreeNativeModule(NativeModule*); // Sample the code size of the given {NativeModule} in all isolates that have // access to it. Call this after top-tier compilation finished. // This will spawn foreground tasks that do *not* keep the NativeModule alive. void SampleTopTierCodeSizeInAllIsolates(const std::shared_ptr<NativeModule>&); // Called by each Isolate to report its live code for a GC cycle. First // version reports an externally determined set of live code (might be empty), // second version gets live code from the execution stack of that isolate. void ReportLiveCodeForGC(Isolate*, Vector<WasmCode*>); void ReportLiveCodeFromStackForGC(Isolate*); // Add potentially dead code. The occurrence in the set of potentially dead // code counts as a reference, and is decremented on the next GC. // Returns {true} if the code was added to the set of potentially dead code, // {false} if an entry already exists. The ref count is *unchanged* in any // case. V8_WARN_UNUSED_RESULT bool AddPotentiallyDeadCode(WasmCode*); // Free dead code. using DeadCodeMap = std::unordered_map<NativeModule*, std::vector<WasmCode*>>; void FreeDeadCode(const DeadCodeMap&); void FreeDeadCodeLocked(const DeadCodeMap&); // Call on process start and exit. static void InitializeOncePerProcess(); static void GlobalTearDown(); // Returns a reference to the WasmEngine shared by the entire process. Try to // use {Isolate::wasm_engine} instead if it is available, which encapsulates // engine lifetime decisions during Isolate bootstrapping. static std::shared_ptr<WasmEngine> GetWasmEngine(); private: struct CurrentGCInfo; struct IsolateInfo; struct NativeModuleInfo; AsyncCompileJob* CreateAsyncCompileJob( Isolate* isolate, const WasmFeatures& enabled, std::unique_ptr<byte[]> bytes_copy, size_t length, Handle<Context> context, const char* api_method_name, std::shared_ptr<CompilationResultResolver> resolver); void TriggerGC(int8_t gc_sequence_index); // Remove an isolate from the outstanding isolates of the current GC. Returns // true if the isolate was still outstanding, false otherwise. Hold {mutex_} // when calling this method. bool RemoveIsolateFromCurrentGC(Isolate*); // Finish a GC if there are no more outstanding isolates. Hold {mutex_} when // calling this method. void PotentiallyFinishCurrentGC(); WasmCodeManager code_manager_; AccountingAllocator allocator_; // Task manager managing all background compile jobs. Before shut down of the // engine, they must all be finished because they access the allocator. CancelableTaskManager background_compile_task_manager_; #ifdef V8_ENABLE_WASM_GDB_REMOTE_DEBUGGING // Implements a GDB-remote stub for WebAssembly debugging. std::unique_ptr<gdb_server::GdbServer> gdb_server_; #endif // V8_ENABLE_WASM_GDB_REMOTE_DEBUGGING // This mutex protects all information which is mutated concurrently or // fields that are initialized lazily on the first access. base::Mutex mutex_; ////////////////////////////////////////////////////////////////////////////// // Protected by {mutex_}: // We use an AsyncCompileJob as the key for itself so that we can delete the // job from the map when it is finished. std::unordered_map<AsyncCompileJob*, std::unique_ptr<AsyncCompileJob>> async_compile_jobs_; std::unique_ptr<CompilationStatistics> compilation_stats_; std::unique_ptr<CodeTracer> code_tracer_; // Set of isolates which use this WasmEngine. std::unordered_map<Isolate*, std::unique_ptr<IsolateInfo>> isolates_; // Set of native modules managed by this engine. std::unordered_map<NativeModule*, std::unique_ptr<NativeModuleInfo>> native_modules_; // Size of code that became dead since the last GC. If this exceeds a certain // threshold, a new GC is triggered. size_t new_potentially_dead_code_size_ = 0; // If an engine-wide GC is currently running, this pointer stores information // about that. std::unique_ptr<CurrentGCInfo> current_gc_info_; NativeModuleCache native_module_cache_; // End of fields protected by {mutex_}. ////////////////////////////////////////////////////////////////////////////// DISALLOW_COPY_AND_ASSIGN(WasmEngine); }; } // namespace wasm } // namespace internal } // namespace v8 #endif // V8_WASM_WASM_ENGINE_H_