// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H #error This header must be included via macro-assembler.h #endif #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_ #define V8_IA32_MACRO_ASSEMBLER_IA32_H_ #include "src/assembler.h" #include "src/bailout-reason.h" #include "src/globals.h" #include "src/ia32/assembler-ia32.h" namespace v8 { namespace internal { // Convenience for platform-independent signatures. We do not normally // distinguish memory operands from other operands on ia32. typedef Operand MemOperand; enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase { public: using TurboAssemblerBase::TurboAssemblerBase; void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance = Label::kFar); // Activation support. void EnterFrame(StackFrame::Type type); void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { // Out-of-line constant pool not implemented on ia32. UNREACHABLE(); } void LeaveFrame(StackFrame::Type type); // Allocate stack space of given size (i.e. decrement {esp} by the value // stored in the given register, or by a constant). If you need to perform a // stack check, do it before calling this function because this function may // write into the newly allocated space. It may also overwrite the given // register's value, in the version that takes a register. #ifdef V8_OS_WIN void AllocateStackSpace(Register bytes_scratch); void AllocateStackSpace(int bytes); #else void AllocateStackSpace(Register bytes) { sub(esp, bytes); } void AllocateStackSpace(int bytes) { sub(esp, Immediate(bytes)); } #endif // Print a message to stdout and abort execution. void Abort(AbortReason reason); // Calls Abort(msg) if the condition cc is not satisfied. // Use --debug_code to enable. void Assert(Condition cc, AbortReason reason); // Like Assert(), but without condition. // Use --debug_code to enable. void AssertUnreachable(AbortReason reason); // Like Assert(), but always enabled. void Check(Condition cc, AbortReason reason); // Check that the stack is aligned. void CheckStackAlignment(); // Move a constant into a destination using the most efficient encoding. void Move(Register dst, const Immediate& src); void Move(Register dst, Smi src) { Move(dst, Immediate(src)); } void Move(Register dst, Handle<HeapObject> src); void Move(Register dst, Register src); void Move(Operand dst, const Immediate& src); // Move an immediate into an XMM register. void Move(XMMRegister dst, uint32_t src); void Move(XMMRegister dst, uint64_t src); void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); } void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); } void Call(Register reg) { call(reg); } void Call(Label* target) { call(target); } void Call(Handle<Code> code_object, RelocInfo::Mode rmode); void CallBuiltinPointer(Register builtin_pointer) override; void LoadCodeObjectEntry(Register destination, Register code_object) override; void CallCodeObject(Register code_object) override; void JumpCodeObject(Register code_object) override; void RetpolineCall(Register reg); void RetpolineCall(Address destination, RelocInfo::Mode rmode); void Jump(Handle<Code> code_object, RelocInfo::Mode rmode); void RetpolineJump(Register reg); void CallForDeoptimization(Address target, int deopt_id); // Call a runtime routine. This expects {centry} to contain a fitting CEntry // builtin for the target runtime function and uses an indirect call. void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry); // Jump the register contains a smi. inline void JumpIfSmi(Register value, Label* smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(zero, smi_label, distance); } // Jump if the operand is a smi. inline void JumpIfSmi(Operand value, Label* smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(zero, smi_label, distance); } void JumpIfEqual(Register a, int32_t b, Label* dest) { cmp(a, Immediate(b)); j(equal, dest); } void JumpIfLessThan(Register a, int32_t b, Label* dest) { cmp(a, Immediate(b)); j(less, dest); } void SmiUntag(Register reg) { sar(reg, kSmiTagSize); } // Removes current frame and its arguments from the stack preserving the // arguments and a return address pushed to the stack for the next call. Both // |callee_args_count| and |caller_args_count_reg| do not include receiver. // |callee_args_count| is not modified, |caller_args_count_reg| is trashed. // |number_of_temp_values_after_return_address| specifies the number of words // pushed to the stack after the return address. This is to allow "allocation" // of scratch registers that this function requires by saving their values on // the stack. void PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1, int number_of_temp_values_after_return_address); // Before calling a C-function from generated code, align arguments on stack. // After aligning the frame, arguments must be stored in esp[0], esp[4], // etc., not pushed. The argument count assumes all arguments are word sized. // Some compilers/platforms require the stack to be aligned when calling // C++ code. // Needs a scratch register to do some arithmetic. This register will be // trashed. void PrepareCallCFunction(int num_arguments, Register scratch); // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); void ShlPair(Register high, Register low, uint8_t imm8); void ShlPair_cl(Register high, Register low); void ShrPair(Register high, Register low, uint8_t imm8); void ShrPair_cl(Register high, Register low); void SarPair(Register high, Register low, uint8_t imm8); void SarPair_cl(Register high, Register low); // Generates function and stub prologue code. void StubPrologue(StackFrame::Type type); void Prologue(); void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); } void Lzcnt(Register dst, Operand src); void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); } void Tzcnt(Register dst, Operand src); void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); } void Popcnt(Register dst, Operand src); void Ret(); // Root register utility functions. void InitializeRootRegister(); void LoadRoot(Register destination, RootIndex index) override; // Indirect root-relative loads. void LoadFromConstantsTable(Register destination, int constant_index) override; void LoadRootRegisterOffset(Register destination, intptr_t offset) override; void LoadRootRelative(Register destination, int32_t offset) override; // Operand pointing to an external reference. // May emit code to set up the scratch register. The operand is // only guaranteed to be correct as long as the scratch register // isn't changed. // If the operand is used more than once, use a scratch register // that is guaranteed not to be clobbered. Operand ExternalReferenceAsOperand(ExternalReference reference, Register scratch); Operand ExternalReferenceAddressAsOperand(ExternalReference reference); Operand HeapObjectAsOperand(Handle<HeapObject> object); void LoadAddress(Register destination, ExternalReference source); void CompareStackLimit(Register with); void CompareRealStackLimit(Register with); void CompareRoot(Register with, RootIndex index); void CompareRoot(Register with, Register scratch, RootIndex index); // Return and drop arguments from stack, where the number of arguments // may be bigger than 2^16 - 1. Requires a scratch register. void Ret(int bytes_dropped, Register scratch); void Pshufhw(XMMRegister dst, XMMRegister src, uint8_t shuffle) { Pshufhw(dst, Operand(src), shuffle); } void Pshufhw(XMMRegister dst, Operand src, uint8_t shuffle); void Pshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle) { Pshuflw(dst, Operand(src), shuffle); } void Pshuflw(XMMRegister dst, Operand src, uint8_t shuffle); void Pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) { Pshufd(dst, Operand(src), shuffle); } void Pshufd(XMMRegister dst, Operand src, uint8_t shuffle); void Psraw(XMMRegister dst, uint8_t shift); void Psrlw(XMMRegister dst, uint8_t shift); // SSE/SSE2 instructions with AVX version. #define AVX_OP2_WITH_TYPE(macro_name, name, dst_type, src_type) \ void macro_name(dst_type dst, src_type src) { \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope scope(this, AVX); \ v##name(dst, src); \ } else { \ name(dst, src); \ } \ } AVX_OP2_WITH_TYPE(Rcpps, rcpps, XMMRegister, const Operand&) AVX_OP2_WITH_TYPE(Rsqrtps, rsqrtps, XMMRegister, const Operand&) AVX_OP2_WITH_TYPE(Movdqu, movdqu, XMMRegister, Operand) AVX_OP2_WITH_TYPE(Movdqu, movdqu, Operand, XMMRegister) AVX_OP2_WITH_TYPE(Movd, movd, XMMRegister, Register) AVX_OP2_WITH_TYPE(Movd, movd, XMMRegister, Operand) AVX_OP2_WITH_TYPE(Movd, movd, Register, XMMRegister) AVX_OP2_WITH_TYPE(Movd, movd, Operand, XMMRegister) AVX_OP2_WITH_TYPE(Cvtdq2ps, cvtdq2ps, XMMRegister, Operand) #undef AVX_OP2_WITH_TYPE // Only use these macros when non-destructive source of AVX version is not // needed. #define AVX_OP3_WITH_TYPE(macro_name, name, dst_type, src_type) \ void macro_name(dst_type dst, src_type src) { \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope scope(this, AVX); \ v##name(dst, dst, src); \ } else { \ name(dst, src); \ } \ } #define AVX_OP3_XO(macro_name, name) \ AVX_OP3_WITH_TYPE(macro_name, name, XMMRegister, XMMRegister) \ AVX_OP3_WITH_TYPE(macro_name, name, XMMRegister, Operand) AVX_OP3_XO(Packsswb, packsswb) AVX_OP3_XO(Packuswb, packuswb) AVX_OP3_XO(Pcmpeqb, pcmpeqb) AVX_OP3_XO(Pcmpeqw, pcmpeqw) AVX_OP3_XO(Pcmpeqd, pcmpeqd) AVX_OP3_XO(Psubb, psubb) AVX_OP3_XO(Psubw, psubw) AVX_OP3_XO(Psubd, psubd) AVX_OP3_XO(Punpcklbw, punpcklbw) AVX_OP3_XO(Punpckhbw, punpckhbw) AVX_OP3_XO(Pxor, pxor) AVX_OP3_XO(Andps, andps) AVX_OP3_XO(Andnps, andnps) AVX_OP3_XO(Andpd, andpd) AVX_OP3_XO(Xorps, xorps) AVX_OP3_XO(Xorpd, xorpd) AVX_OP3_XO(Sqrtss, sqrtss) AVX_OP3_XO(Sqrtsd, sqrtsd) #undef AVX_OP3_XO #undef AVX_OP3_WITH_TYPE // Non-SSE2 instructions. #define AVX_OP2_WITH_TYPE_SCOPE(macro_name, name, dst_type, src_type, \ sse_scope) \ void macro_name(dst_type dst, src_type src) { \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope scope(this, AVX); \ v##name(dst, src); \ return; \ } \ if (CpuFeatures::IsSupported(sse_scope)) { \ CpuFeatureScope scope(this, sse_scope); \ name(dst, src); \ return; \ } \ UNREACHABLE(); \ } #define AVX_OP2_XO_SSE4(macro_name, name) \ AVX_OP2_WITH_TYPE_SCOPE(macro_name, name, XMMRegister, XMMRegister, SSE4_1) \ AVX_OP2_WITH_TYPE_SCOPE(macro_name, name, XMMRegister, Operand, SSE4_1) AVX_OP2_XO_SSE4(Ptest, ptest) AVX_OP2_XO_SSE4(Pmovsxbw, pmovsxbw) AVX_OP2_XO_SSE4(Pmovsxwd, pmovsxwd) AVX_OP2_XO_SSE4(Pmovzxbw, pmovzxbw) AVX_OP2_XO_SSE4(Pmovzxwd, pmovzxwd) #undef AVX_OP2_WITH_TYPE_SCOPE #undef AVX_OP2_XO_SSE4 void Pshufb(XMMRegister dst, XMMRegister src) { Pshufb(dst, Operand(src)); } void Pshufb(XMMRegister dst, Operand src); void Pblendw(XMMRegister dst, XMMRegister src, uint8_t imm8) { Pblendw(dst, Operand(src), imm8); } void Pblendw(XMMRegister dst, Operand src, uint8_t imm8); void Psignb(XMMRegister dst, XMMRegister src) { Psignb(dst, Operand(src)); } void Psignb(XMMRegister dst, Operand src); void Psignw(XMMRegister dst, XMMRegister src) { Psignw(dst, Operand(src)); } void Psignw(XMMRegister dst, Operand src); void Psignd(XMMRegister dst, XMMRegister src) { Psignd(dst, Operand(src)); } void Psignd(XMMRegister dst, Operand src); void Palignr(XMMRegister dst, XMMRegister src, uint8_t imm8) { Palignr(dst, Operand(src), imm8); } void Palignr(XMMRegister dst, Operand src, uint8_t imm8); void Pextrb(Register dst, XMMRegister src, uint8_t imm8); void Pextrw(Register dst, XMMRegister src, uint8_t imm8); void Pextrd(Register dst, XMMRegister src, uint8_t imm8); void Pinsrd(XMMRegister dst, Register src, uint8_t imm8) { Pinsrd(dst, Operand(src), imm8); } void Pinsrd(XMMRegister dst, Operand src, uint8_t imm8); // Expression support // cvtsi2sd instruction only writes to the low 64-bit of dst register, which // hinders register renaming and makes dependence chains longer. So we use // xorps to clear the dst register before cvtsi2sd to solve this issue. void Cvtsi2ss(XMMRegister dst, Register src) { Cvtsi2ss(dst, Operand(src)); } void Cvtsi2ss(XMMRegister dst, Operand src); void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); } void Cvtsi2sd(XMMRegister dst, Operand src); void Cvtui2ss(XMMRegister dst, Register src, Register tmp) { Cvtui2ss(dst, Operand(src), tmp); } void Cvtui2ss(XMMRegister dst, Operand src, Register tmp); void Cvttss2ui(Register dst, XMMRegister src, XMMRegister tmp) { Cvttss2ui(dst, Operand(src), tmp); } void Cvttss2ui(Register dst, Operand src, XMMRegister tmp); void Cvtui2sd(XMMRegister dst, Register src, Register scratch) { Cvtui2sd(dst, Operand(src), scratch); } void Cvtui2sd(XMMRegister dst, Operand src, Register scratch); void Cvttsd2ui(Register dst, XMMRegister src, XMMRegister tmp) { Cvttsd2ui(dst, Operand(src), tmp); } void Cvttsd2ui(Register dst, Operand src, XMMRegister tmp); void Push(Register src) { push(src); } void Push(Operand src) { push(src); } void Push(Immediate value); void Push(Handle<HeapObject> handle) { push(Immediate(handle)); } void Push(Smi smi) { Push(Immediate(smi)); } void SaveRegisters(RegList registers); void RestoreRegisters(RegList registers); void CallRecordWriteStub(Register object, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode); void CallRecordWriteStub(Register object, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, Address wasm_target); void CallEphemeronKeyBarrier(Register object, Register address, SaveFPRegsMode fp_mode); // Calculate how much stack space (in bytes) are required to store caller // registers excluding those specified in the arguments. int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg) const; // PushCallerSaved and PopCallerSaved do not arrange the registers in any // particular order so they are not useful for calls that can cause a GC. // The caller can exclude up to 3 registers that do not need to be saved and // restored. // Push caller saved registers on the stack, and return the number of bytes // stack pointer is adjusted. int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); // Restore caller saved registers from the stack, and return the number of // bytes stack pointer is adjusted. int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); // Compute the start of the generated instruction stream from the current PC. // This is an alternative to embedding the {CodeObject} handle as a reference. void ComputeCodeStartAddress(Register dst); // TODO(860429): Remove remaining poisoning infrastructure on ia32. void ResetSpeculationPoisonRegister() { UNREACHABLE(); } void CallRecordWriteStub(Register object, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, Handle<Code> code_target, Address wasm_target); }; // MacroAssembler implements a collection of frequently used macros. class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler { public: using TurboAssembler::TurboAssembler; // Load a register with a long value as efficiently as possible. void Set(Register dst, int32_t x) { if (x == 0) { xor_(dst, dst); } else { mov(dst, Immediate(x)); } } void Set(Operand dst, int32_t x) { mov(dst, Immediate(x)); } void PushRoot(RootIndex index); // Compare the object in a register to a value and jump if they are equal. void JumpIfRoot(Register with, RootIndex index, Label* if_equal, Label::Distance if_equal_distance = Label::kFar) { CompareRoot(with, index); j(equal, if_equal, if_equal_distance); } // Compare the object in a register to a value and jump if they are not equal. void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal, Label::Distance if_not_equal_distance = Label::kFar) { CompareRoot(with, index); j(not_equal, if_not_equal, if_not_equal_distance); } // Checks if value is in range [lower_limit, higher_limit] using a single // comparison. void JumpIfIsInRange(Register value, unsigned lower_limit, unsigned higher_limit, Register scratch, Label* on_in_range, Label::Distance near_jump = Label::kFar); // --------------------------------------------------------------------------- // GC Support // Notify the garbage collector that we wrote a pointer into an object. // |object| is the object being stored into, |value| is the object being // stored. value and scratch registers are clobbered by the operation. // The offset is the offset from the start of the object, not the offset from // the tagged HeapObject pointer. For use with FieldOperand(reg, off). void RecordWriteField( Register object, int offset, Register value, Register scratch, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK); // For page containing |object| mark region covering |address| // dirty. |object| is the object being stored into, |value| is the // object being stored. The address and value registers are clobbered by the // operation. RecordWrite filters out smis so it does not update the // write barrier if the value is a smi. void RecordWrite( Register object, Register address, Register value, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK); // Frame restart support void MaybeDropFrames(); // Enter specific kind of exit frame. Expects the number of // arguments in register eax and sets up the number of arguments in // register edi and the pointer to the first argument in register // esi. void EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type); void EnterApiExitFrame(int argc, Register scratch); // Leave the current exit frame. Expects the return value in // register eax:edx (untouched) and the pointer to the first // argument in register esi (if pop_arguments == true). void LeaveExitFrame(bool save_doubles, bool pop_arguments = true); // Leave the current exit frame. Expects the return value in // register eax (untouched). void LeaveApiExitFrame(); // Load the global proxy from the current context. void LoadGlobalProxy(Register dst); // Load the global function with the given index. void LoadGlobalFunction(int index, Register function); // Push and pop the registers that can hold pointers. void PushSafepointRegisters() { pushad(); } void PopSafepointRegisters() { popad(); } // --------------------------------------------------------------------------- // JavaScript invokes // Invoke the JavaScript function code by either calling or jumping. void InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag); // On function call, call into the debugger if necessary. // This may clobber ecx. void CheckDebugHook(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunction(Register function, Register new_target, const ParameterCount& actual, InvokeFlag flag); // Compare object type for heap object. // Incoming register is heap_object and outgoing register is map. void CmpObjectType(Register heap_object, InstanceType type, Register map); // Compare instance type for map. void CmpInstanceType(Register map, InstanceType type); void DoubleToI(Register result_reg, XMMRegister input_reg, XMMRegister scratch, Label* lost_precision, Label* is_nan, Label::Distance dst = Label::kFar); // Smi tagging support. void SmiTag(Register reg) { STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); add(reg, reg); } // Modifies the register even if it does not contain a Smi! void UntagSmi(Register reg, Label* is_smi) { STATIC_ASSERT(kSmiTagSize == 1); sar(reg, kSmiTagSize); STATIC_ASSERT(kSmiTag == 0); j(not_carry, is_smi); } // Jump if register contain a non-smi. inline void JumpIfNotSmi(Register value, Label* not_smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(not_zero, not_smi_label, distance); } // Jump if the operand is not a smi. inline void JumpIfNotSmi(Operand value, Label* smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(not_zero, smi_label, distance); } template<typename Field> void DecodeField(Register reg) { static const int shift = Field::kShift; static const int mask = Field::kMask >> Field::kShift; if (shift != 0) { sar(reg, shift); } and_(reg, Immediate(mask)); } // Abort execution if argument is not a smi, enabled via --debug-code. void AssertSmi(Register object); // Abort execution if argument is a smi, enabled via --debug-code. void AssertNotSmi(Register object); // Abort execution if argument is not a JSFunction, enabled via --debug-code. void AssertFunction(Register object); // Abort execution if argument is not a Constructor, enabled via --debug-code. void AssertConstructor(Register object); // Abort execution if argument is not a JSBoundFunction, // enabled via --debug-code. void AssertBoundFunction(Register object); // Abort execution if argument is not a JSGeneratorObject (or subclass), // enabled via --debug-code. void AssertGeneratorObject(Register object); // Abort execution if argument is not undefined or an AllocationSite, enabled // via --debug-code. void AssertUndefinedOrAllocationSite(Register object, Register scratch); // --------------------------------------------------------------------------- // Exception handling // Push a new stack handler and link it into stack handler chain. void PushStackHandler(Register scratch); // Unlink the stack handler on top of the stack from the stack handler chain. void PopStackHandler(Register scratch); // --------------------------------------------------------------------------- // Runtime calls // Call a runtime routine. void CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs); // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, save_doubles); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); } // Convenience function: tail call a runtime routine (jump). void TailCallRuntime(Runtime::FunctionId fid); // Jump to a runtime routine. void JumpToExternalReference(const ExternalReference& ext, bool builtin_exit_frame = false); // Generates a trampoline to jump to the off-heap instruction stream. void JumpToInstructionStream(Address entry); // --------------------------------------------------------------------------- // Utilities // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the esp register. void Drop(int element_count); void Pop(Register dst) { pop(dst); } void Pop(Operand dst) { pop(dst); } void PushReturnAddressFrom(Register src) { push(src); } void PopReturnAddressTo(Register dst) { pop(dst); } // --------------------------------------------------------------------------- // In-place weak references. void LoadWeakValue(Register in_out, Label* target_if_cleared); // --------------------------------------------------------------------------- // StatsCounter support void IncrementCounter(StatsCounter* counter, int value, Register scratch); void DecrementCounter(StatsCounter* counter, int value, Register scratch); static int SafepointRegisterStackIndex(Register reg) { return SafepointRegisterStackIndex(reg.code()); } private: // Helper functions for generating invokes. void InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag, Label::Distance done_distance); void EnterExitFramePrologue(StackFrame::Type frame_type, Register scratch); void EnterExitFrameEpilogue(int argc, bool save_doubles); void LeaveExitFrameEpilogue(); // Compute memory operands for safepoint stack slots. static int SafepointRegisterStackIndex(int reg_code); // Needs access to SafepointRegisterStackIndex for compiled frame // traversal. friend class StandardFrame; DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler); }; // ----------------------------------------------------------------------------- // Static helper functions. // Generate an Operand for loading a field from an object. inline Operand FieldOperand(Register object, int offset) { return Operand(object, offset - kHeapObjectTag); } // Generate an Operand for loading an indexed field from an object. inline Operand FieldOperand(Register object, Register index, ScaleFactor scale, int offset) { return Operand(object, index, scale, offset - kHeapObjectTag); } inline Operand ContextOperand(Register context, int index) { return Operand(context, Context::SlotOffset(index)); } inline Operand ContextOperand(Register context, Register index) { return Operand(context, index, times_tagged_size, Context::SlotOffset(0)); } inline Operand NativeContextOperand() { return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX); } #define ACCESS_MASM(masm) masm-> } // namespace internal } // namespace v8 #endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_