// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_COMPILER_OPERATOR_H_ #define V8_COMPILER_OPERATOR_H_ #include <ostream> // NOLINT(readability/streams) #include "src/base/flags.h" #include "src/base/functional.h" #include "src/handles.h" #include "src/zone.h" namespace v8 { namespace internal { namespace compiler { // An operator represents description of the "computation" of a node in the // compiler IR. A computation takes values (i.e. data) as input and produces // zero or more values as output. The side-effects of a computation must be // captured by additional control and data dependencies which are part of the // IR graph. // Operators are immutable and describe the statically-known parts of a // computation. Thus they can be safely shared by many different nodes in the // IR graph, or even globally between graphs. Operators can have "static // parameters" which are compile-time constant parameters to the operator, such // as the name for a named field access, the ID of a runtime function, etc. // Static parameters are private to the operator and only semantically // meaningful to the operator itself. class Operator : public ZoneObject { public: typedef uint16_t Opcode; // Properties inform the operator-independent optimizer about legal // transformations for nodes that have this operator. enum Property { kNoProperties = 0, kReducible = 1 << 0, // Participates in strength reduction. kCommutative = 1 << 1, // OP(a, b) == OP(b, a) for all inputs. kAssociative = 1 << 2, // OP(a, OP(b,c)) == OP(OP(a,b), c) for all inputs. kIdempotent = 1 << 3, // OP(a); OP(a) == OP(a). kNoRead = 1 << 4, // Has no scheduling dependency on Effects kNoWrite = 1 << 5, // Does not modify any Effects and thereby // create new scheduling dependencies. kNoThrow = 1 << 6, // Can never generate an exception. kFoldable = kNoRead | kNoWrite, kKontrol = kFoldable | kNoThrow, kEliminatable = kNoWrite | kNoThrow, kPure = kNoRead | kNoWrite | kNoThrow | kIdempotent }; typedef base::Flags<Property, uint8_t> Properties; // Constructor. Operator(Opcode opcode, Properties properties, const char* mnemonic, size_t value_in, size_t effect_in, size_t control_in, size_t value_out, size_t effect_out, size_t control_out); virtual ~Operator() {} // A small integer unique to all instances of a particular kind of operator, // useful for quick matching for specific kinds of operators. For fast access // the opcode is stored directly in the operator object. Opcode opcode() const { return opcode_; } // Returns a constant string representing the mnemonic of the operator, // without the static parameters. Useful for debugging. const char* mnemonic() const { return mnemonic_; } // Check if this operator equals another operator. Equivalent operators can // be merged, and nodes with equivalent operators and equivalent inputs // can be merged. virtual bool Equals(const Operator* that) const { return this->opcode() == that->opcode(); } // Compute a hashcode to speed up equivalence-set checking. // Equal operators should always have equal hashcodes, and unequal operators // should have unequal hashcodes with high probability. virtual size_t HashCode() const { return base::hash<Opcode>()(opcode()); } // Check whether this operator has the given property. bool HasProperty(Property property) const { return (properties() & property) == property; } Properties properties() const { return properties_; } // TODO(bmeurer): Use bit fields below? static const size_t kMaxControlOutputCount = (1u << 16) - 1; // TODO(titzer): convert return values here to size_t. int ValueInputCount() const { return value_in_; } int EffectInputCount() const { return effect_in_; } int ControlInputCount() const { return control_in_; } int ValueOutputCount() const { return value_out_; } int EffectOutputCount() const { return effect_out_; } int ControlOutputCount() const { return control_out_; } static size_t ZeroIfEliminatable(Properties properties) { return (properties & kEliminatable) == kEliminatable ? 0 : 1; } static size_t ZeroIfNoThrow(Properties properties) { return (properties & kNoThrow) == kNoThrow ? 0 : 2; } static size_t ZeroIfPure(Properties properties) { return (properties & kPure) == kPure ? 0 : 1; } // TODO(titzer): API for input and output types, for typechecking graph. protected: // Print the full operator into the given stream, including any // static parameters. Useful for debugging and visualizing the IR. virtual void PrintTo(std::ostream& os) const; friend std::ostream& operator<<(std::ostream& os, const Operator& op); private: Opcode opcode_; Properties properties_; const char* mnemonic_; uint32_t value_in_; uint16_t effect_in_; uint16_t control_in_; uint16_t value_out_; uint8_t effect_out_; uint16_t control_out_; DISALLOW_COPY_AND_ASSIGN(Operator); }; DEFINE_OPERATORS_FOR_FLAGS(Operator::Properties) std::ostream& operator<<(std::ostream& os, const Operator& op); // Default equality function for below Operator1<*> class. template <typename T> struct OpEqualTo : public std::equal_to<T> {}; // Default hashing function for below Operator1<*> class. template <typename T> struct OpHash : public base::hash<T> {}; // A templatized implementation of Operator that has one static parameter of // type {T} with the proper default equality and hashing functions. template <typename T, typename Pred = OpEqualTo<T>, typename Hash = OpHash<T>> class Operator1 : public Operator { public: Operator1(Opcode opcode, Properties properties, const char* mnemonic, size_t value_in, size_t effect_in, size_t control_in, size_t value_out, size_t effect_out, size_t control_out, T parameter, Pred const& pred = Pred(), Hash const& hash = Hash()) : Operator(opcode, properties, mnemonic, value_in, effect_in, control_in, value_out, effect_out, control_out), parameter_(parameter), pred_(pred), hash_(hash) {} T const& parameter() const { return parameter_; } bool Equals(const Operator* other) const final { if (opcode() != other->opcode()) return false; const Operator1<T, Pred, Hash>* that = reinterpret_cast<const Operator1<T, Pred, Hash>*>(other); return this->pred_(this->parameter(), that->parameter()); } size_t HashCode() const final { return base::hash_combine(this->opcode(), this->hash_(this->parameter())); } virtual void PrintParameter(std::ostream& os) const { os << "[" << this->parameter() << "]"; } protected: void PrintTo(std::ostream& os) const final { os << mnemonic(); PrintParameter(os); } private: T const parameter_; Pred const pred_; Hash const hash_; }; // Helper to extract parameters from Operator1<*> operator. template <typename T> inline T const& OpParameter(const Operator* op) { return reinterpret_cast<const Operator1<T, OpEqualTo<T>, OpHash<T>>*>(op) ->parameter(); } // NOTE: We have to be careful to use the right equal/hash functions below, for // float/double we always use the ones operating on the bit level, for Handle<> // we always use the ones operating on the location level. template <> struct OpEqualTo<float> : public base::bit_equal_to<float> {}; template <> struct OpHash<float> : public base::bit_hash<float> {}; template <> struct OpEqualTo<double> : public base::bit_equal_to<double> {}; template <> struct OpHash<double> : public base::bit_hash<double> {}; template <> struct OpEqualTo<Handle<HeapObject>> : public Handle<HeapObject>::equal_to {}; template <> struct OpHash<Handle<HeapObject>> : public Handle<HeapObject>::hash {}; template <> struct OpEqualTo<Handle<String>> : public Handle<String>::equal_to {}; template <> struct OpHash<Handle<String>> : public Handle<String>::hash {}; template <> struct OpEqualTo<Handle<ScopeInfo>> : public Handle<ScopeInfo>::equal_to {}; template <> struct OpHash<Handle<ScopeInfo>> : public Handle<ScopeInfo>::hash {}; } // namespace compiler } // namespace internal } // namespace v8 #endif // V8_COMPILER_OPERATOR_H_