// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_MIPS_CODEGEN_MIPS_H_ #define V8_MIPS_CODEGEN_MIPS_H_ namespace v8 { namespace internal { // Forward declarations class CompilationInfo; class DeferredCode; class RegisterAllocator; class RegisterFile; enum InitState { CONST_INIT, NOT_CONST_INIT }; enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; // ----------------------------------------------------------------------------- // Reference support // A reference is a C++ stack-allocated object that keeps an ECMA // reference on the execution stack while in scope. For variables // the reference is empty, indicating that it isn't necessary to // store state on the stack for keeping track of references to those. // For properties, we keep either one (named) or two (indexed) values // on the execution stack to represent the reference. class Reference BASE_EMBEDDED { public: // The values of the types is important, see size(). enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 }; Reference(CodeGenerator* cgen, Expression* expression, bool persist_after_get = false); ~Reference(); Expression* expression() const { return expression_; } Type type() const { return type_; } void set_type(Type value) { ASSERT_EQ(ILLEGAL, type_); type_ = value; } void set_unloaded() { ASSERT_NE(ILLEGAL, type_); ASSERT_NE(UNLOADED, type_); type_ = UNLOADED; } // The size the reference takes up on the stack. int size() const { return (type_ < SLOT) ? 0 : type_; } bool is_illegal() const { return type_ == ILLEGAL; } bool is_slot() const { return type_ == SLOT; } bool is_property() const { return type_ == NAMED || type_ == KEYED; } bool is_unloaded() const { return type_ == UNLOADED; } // Return the name. Only valid for named property references. Handle<String> GetName(); // Generate code to push the value of the reference on top of the // expression stack. The reference is expected to be already on top of // the expression stack, and it is consumed by the call unless the // reference is for a compound assignment. // If the reference is not consumed, it is left in place under its value. void GetValue(); // Generate code to pop a reference, push the value of the reference, // and then spill the stack frame. inline void GetValueAndSpill(); // Generate code to store the value on top of the expression stack in the // reference. The reference is expected to be immediately below the value // on the expression stack. The value is stored in the location specified // by the reference, and is left on top of the stack, after the reference // is popped from beneath it (unloaded). void SetValue(InitState init_state); private: CodeGenerator* cgen_; Expression* expression_; Type type_; // Keep the reference on the stack after get, so it can be used by set later. bool persist_after_get_; }; // ----------------------------------------------------------------------------- // Code generation state // The state is passed down the AST by the code generator (and back up, in // the form of the state of the label pair). It is threaded through the // call stack. Constructing a state implicitly pushes it on the owning code // generator's stack of states, and destroying one implicitly pops it. class CodeGenState BASE_EMBEDDED { public: // Create an initial code generator state. Destroying the initial state // leaves the code generator with a NULL state. explicit CodeGenState(CodeGenerator* owner); // Create a code generator state based on a code generator's current // state. The new state has its own typeof state and pair of branch // labels. CodeGenState(CodeGenerator* owner, JumpTarget* true_target, JumpTarget* false_target); // Destroy a code generator state and restore the owning code generator's // previous state. ~CodeGenState(); TypeofState typeof_state() const { return typeof_state_; } JumpTarget* true_target() const { return true_target_; } JumpTarget* false_target() const { return false_target_; } private: // The owning code generator. CodeGenerator* owner_; // A flag indicating whether we are compiling the immediate subexpression // of a typeof expression. TypeofState typeof_state_; JumpTarget* true_target_; JumpTarget* false_target_; // The previous state of the owning code generator, restored when // this state is destroyed. CodeGenState* previous_; }; // ----------------------------------------------------------------------------- // CodeGenerator class CodeGenerator: public AstVisitor { public: // Compilation mode. Either the compiler is used as the primary // compiler and needs to setup everything or the compiler is used as // the secondary compiler for split compilation and has to handle // bailouts. enum Mode { PRIMARY, SECONDARY }; // Takes a function literal, generates code for it. This function should only // be called by compiler.cc. static Handle<Code> MakeCode(CompilationInfo* info); // Printing of AST, etc. as requested by flags. static void MakeCodePrologue(CompilationInfo* info); // Allocate and install the code. static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm, Code::Flags flags, CompilationInfo* info); #ifdef ENABLE_LOGGING_AND_PROFILING static bool ShouldGenerateLog(Expression* type); #endif static void SetFunctionInfo(Handle<JSFunction> fun, FunctionLiteral* lit, bool is_toplevel, Handle<Script> script); static void RecordPositions(MacroAssembler* masm, int pos); // Accessors MacroAssembler* masm() { return masm_; } VirtualFrame* frame() const { return frame_; } inline Handle<Script> script(); bool has_valid_frame() const { return frame_ != NULL; } // Set the virtual frame to be new_frame, with non-frame register // reference counts given by non_frame_registers. The non-frame // register reference counts of the old frame are returned in // non_frame_registers. void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers); void DeleteFrame(); RegisterAllocator* allocator() const { return allocator_; } CodeGenState* state() { return state_; } void set_state(CodeGenState* state) { state_ = state; } void AddDeferred(DeferredCode* code) { deferred_.Add(code); } static const int kUnknownIntValue = -1; // Number of instructions used for the JS return sequence. The constant is // used by the debugger to patch the JS return sequence. static const int kJSReturnSequenceLength = 7; // If the name is an inline runtime function call return the number of // expected arguments. Otherwise return -1. static int InlineRuntimeCallArgumentsCount(Handle<String> name); private: // Construction/Destruction. explicit CodeGenerator(MacroAssembler* masm); // Accessors. inline bool is_eval(); inline Scope* scope(); // Generating deferred code. void ProcessDeferred(); // State bool has_cc() const { return cc_reg_ != cc_always; } TypeofState typeof_state() const { return state_->typeof_state(); } JumpTarget* true_target() const { return state_->true_target(); } JumpTarget* false_target() const { return state_->false_target(); } // We don't track loop nesting level on mips yet. int loop_nesting() const { return 0; } // Node visitors. void VisitStatements(ZoneList<Statement*>* statements); #define DEF_VISIT(type) \ void Visit##type(type* node); AST_NODE_LIST(DEF_VISIT) #undef DEF_VISIT // Visit a statement and then spill the virtual frame if control flow can // reach the end of the statement (ie, it does not exit via break, // continue, return, or throw). This function is used temporarily while // the code generator is being transformed. inline void VisitAndSpill(Statement* statement); // Visit a list of statements and then spill the virtual frame if control // flow can reach the end of the list. inline void VisitStatementsAndSpill(ZoneList<Statement*>* statements); // Main code generation function void Generate(CompilationInfo* info); // The following are used by class Reference. void LoadReference(Reference* ref); void UnloadReference(Reference* ref); MemOperand ContextOperand(Register context, int index) const { return MemOperand(context, Context::SlotOffset(index)); } MemOperand SlotOperand(Slot* slot, Register tmp); // Expressions MemOperand GlobalObject() const { return ContextOperand(cp, Context::GLOBAL_INDEX); } void LoadCondition(Expression* x, JumpTarget* true_target, JumpTarget* false_target, bool force_cc); void Load(Expression* x); void LoadGlobal(); // Generate code to push the value of an expression on top of the frame // and then spill the frame fully to memory. This function is used // temporarily while the code generator is being transformed. inline void LoadAndSpill(Expression* expression); // Read a value from a slot and leave it on top of the expression stack. void LoadFromSlot(Slot* slot, TypeofState typeof_state); // Store the value on top of the stack to a slot. void StoreToSlot(Slot* slot, InitState init_state); struct InlineRuntimeLUT { void (CodeGenerator::*method)(ZoneList<Expression*>*); const char* name; int nargs; }; static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name); bool CheckForInlineRuntimeCall(CallRuntime* node); static bool PatchInlineRuntimeEntry(Handle<String> name, const InlineRuntimeLUT& new_entry, InlineRuntimeLUT* old_entry); static Handle<Code> ComputeLazyCompile(int argc); void ProcessDeclarations(ZoneList<Declaration*>* declarations); Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop); // Declare global variables and functions in the given array of // name/value pairs. void DeclareGlobals(Handle<FixedArray> pairs); // Support for type checks. void GenerateIsSmi(ZoneList<Expression*>* args); void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args); void GenerateIsArray(ZoneList<Expression*>* args); void GenerateIsRegExp(ZoneList<Expression*>* args); // Support for construct call checks. void GenerateIsConstructCall(ZoneList<Expression*>* args); // Support for arguments.length and arguments[?]. void GenerateArgumentsLength(ZoneList<Expression*>* args); void GenerateArguments(ZoneList<Expression*>* args); // Support for accessing the class and value fields of an object. void GenerateClassOf(ZoneList<Expression*>* args); void GenerateValueOf(ZoneList<Expression*>* args); void GenerateSetValueOf(ZoneList<Expression*>* args); // Fast support for charCodeAt(n). void GenerateFastCharCodeAt(ZoneList<Expression*>* args); // Fast support for string.charAt(n) and string[n]. void GenerateCharFromCode(ZoneList<Expression*>* args); // Fast support for object equality testing. void GenerateObjectEquals(ZoneList<Expression*>* args); void GenerateLog(ZoneList<Expression*>* args); // Fast support for Math.random(). void GenerateRandomHeapNumber(ZoneList<Expression*>* args); void GenerateIsObject(ZoneList<Expression*>* args); void GenerateIsSpecObject(ZoneList<Expression*>* args); void GenerateIsFunction(ZoneList<Expression*>* args); void GenerateIsUndetectableObject(ZoneList<Expression*>* args); void GenerateStringAdd(ZoneList<Expression*>* args); void GenerateSubString(ZoneList<Expression*>* args); void GenerateStringCompare(ZoneList<Expression*>* args); void GenerateRegExpExec(ZoneList<Expression*>* args); void GenerateNumberToString(ZoneList<Expression*>* args); // Fast call to math functions. void GenerateMathPow(ZoneList<Expression*>* args); void GenerateMathSin(ZoneList<Expression*>* args); void GenerateMathCos(ZoneList<Expression*>* args); void GenerateMathSqrt(ZoneList<Expression*>* args); // Simple condition analysis. enum ConditionAnalysis { ALWAYS_TRUE, ALWAYS_FALSE, DONT_KNOW }; ConditionAnalysis AnalyzeCondition(Expression* cond); // Methods used to indicate which source code is generated for. Source // positions are collected by the assembler and emitted with the relocation // information. void CodeForFunctionPosition(FunctionLiteral* fun); void CodeForReturnPosition(FunctionLiteral* fun); void CodeForStatementPosition(Statement* node); void CodeForDoWhileConditionPosition(DoWhileStatement* stmt); void CodeForSourcePosition(int pos); #ifdef DEBUG // True if the registers are valid for entry to a block. bool HasValidEntryRegisters(); #endif bool is_eval_; // Tells whether code is generated for eval. Handle<Script> script_; List<DeferredCode*> deferred_; // Assembler MacroAssembler* masm_; // to generate code CompilationInfo* info_; // Code generation state VirtualFrame* frame_; RegisterAllocator* allocator_; Condition cc_reg_; CodeGenState* state_; // Jump targets BreakTarget function_return_; // True if the function return is shadowed (ie, jumping to the target // function_return_ does not jump to the true function return, but rather // to some unlinking code). bool function_return_is_shadowed_; static InlineRuntimeLUT kInlineRuntimeLUT[]; friend class VirtualFrame; friend class JumpTarget; friend class Reference; friend class FastCodeGenerator; friend class FullCodeGenerator; friend class FullCodeGenSyntaxChecker; DISALLOW_COPY_AND_ASSIGN(CodeGenerator); }; } } // namespace v8::internal #endif // V8_MIPS_CODEGEN_MIPS_H_