// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "test/fuzzer/wasm-fuzzer-common.h" #include <ctime> #include "include/v8-context.h" #include "include/v8-exception.h" #include "include/v8-isolate.h" #include "include/v8-local-handle.h" #include "include/v8-metrics.h" #include "src/execution/isolate.h" #include "src/objects/objects-inl.h" #include "src/utils/ostreams.h" #include "src/wasm/baseline/liftoff-compiler.h" #include "src/wasm/function-body-decoder-impl.h" #include "src/wasm/module-instantiate.h" #include "src/wasm/wasm-engine.h" #include "src/wasm/wasm-feature-flags.h" #include "src/wasm/wasm-module-builder.h" #include "src/wasm/wasm-module.h" #include "src/wasm/wasm-objects-inl.h" #include "src/wasm/wasm-opcodes-inl.h" #include "src/zone/accounting-allocator.h" #include "src/zone/zone.h" #include "test/common/wasm/flag-utils.h" #include "test/common/wasm/wasm-module-runner.h" #include "test/fuzzer/fuzzer-support.h" namespace v8 { namespace internal { namespace wasm { namespace fuzzer { // Compile a baseline module. We pass a pointer to a max step counter and a // nondeterminsm flag that are updated during execution by Liftoff. Handle<WasmModuleObject> CompileReferenceModule(Zone* zone, Isolate* isolate, ModuleWireBytes wire_bytes, ErrorThrower* thrower, int32_t* max_steps, int32_t* nondeterminism) { // Create the native module. std::shared_ptr<NativeModule> native_module; constexpr bool kNoVerifyFunctions = false; auto enabled_features = i::wasm::WasmFeatures::FromIsolate(isolate); ModuleResult module_res = DecodeWasmModule( enabled_features, wire_bytes.start(), wire_bytes.end(), kNoVerifyFunctions, ModuleOrigin::kWasmOrigin, isolate->counters(), isolate->metrics_recorder(), v8::metrics::Recorder::ContextId::Empty(), DecodingMethod::kSync, GetWasmEngine()->allocator()); CHECK(module_res.ok()); std::shared_ptr<WasmModule> module = module_res.value(); CHECK_NOT_NULL(module); native_module = GetWasmEngine()->NewNativeModule(isolate, enabled_features, module, 0); native_module->SetWireBytes( base::OwnedVector<uint8_t>::Of(wire_bytes.module_bytes())); // Compile all functions with Liftoff. WasmCodeRefScope code_ref_scope; auto env = native_module->CreateCompilationEnv(); for (size_t i = module->num_imported_functions; i < module->functions.size(); ++i) { auto& func = module->functions[i]; base::Vector<const uint8_t> func_code = wire_bytes.GetFunctionBytes(&func); FunctionBody func_body(func.sig, func.code.offset(), func_code.begin(), func_code.end()); auto result = ExecuteLiftoffCompilation(&env, func_body, LiftoffOptions{} .set_func_index(func.func_index) .set_for_debugging(kForDebugging) .set_max_steps(max_steps) .set_nondeterminism(nondeterminism)); native_module->PublishCode( native_module->AddCompiledCode(std::move(result))); } // Create the module object. constexpr base::Vector<const char> kNoSourceUrl; Handle<Script> script = GetWasmEngine()->GetOrCreateScript(isolate, native_module, kNoSourceUrl); Handle<FixedArray> export_wrappers = isolate->factory()->NewFixedArray( static_cast<int>(module->functions.size())); return WasmModuleObject::New(isolate, std::move(native_module), script, export_wrappers); } void InterpretAndExecuteModule(i::Isolate* isolate, Handle<WasmModuleObject> module_object, Handle<WasmModuleObject> module_ref, int32_t* max_steps, int32_t* nondeterminism) { // We do not instantiate the module if there is a start function, because a // start function can contain an infinite loop which we cannot handle. if (module_object->module()->start_function_index >= 0) return; HandleScope handle_scope(isolate); // Avoid leaking handles. Handle<WasmInstanceObject> instance_ref; // Try to instantiate the reference instance, return if it fails. Use // {module_ref} if provided (for "Liftoff as reference"), {module_object} // otherwise (for "interpreter as reference"). { ErrorThrower thrower(isolate, "InterpretAndExecuteModule"); if (!GetWasmEngine() ->SyncInstantiate( isolate, &thrower, module_ref.is_null() ? module_object : module_ref, {}, {}) // no imports & memory .ToHandle(&instance_ref)) { isolate->clear_pending_exception(); thrower.Reset(); // Ignore errors. return; } } // Get the "main" exported function. Do nothing if it does not exist. Handle<WasmExportedFunction> main_function; if (!testing::GetExportedFunction(isolate, instance_ref, "main") .ToHandle(&main_function)) { return; } base::OwnedVector<Handle<Object>> compiled_args = testing::MakeDefaultArguments(isolate, main_function->sig()); bool exception_ref = false; int32_t result_ref = 0; if (module_ref.is_null()) { // Use the interpreter as reference. base::OwnedVector<WasmValue> arguments = testing::MakeDefaultInterpreterArguments(isolate, main_function->sig()); testing::WasmInterpretationResult interpreter_result = testing::InterpretWasmModule(isolate, instance_ref, main_function->function_index(), arguments.begin()); if (interpreter_result.failed()) return; // The WebAssembly spec allows the sign bit of NaN to be non-deterministic. // This sign bit can make the difference between an infinite loop and // terminating code. With possible non-determinism we cannot guarantee that // the generated code will not go into an infinite loop and cause a timeout // in Clusterfuzz. Therefore we do not execute the generated code if the // result may be non-deterministic. if (interpreter_result.possible_nondeterminism()) return; if (interpreter_result.finished()) { result_ref = interpreter_result.result(); } else { DCHECK(interpreter_result.trapped()); exception_ref = true; } } else { // Use Liftoff code as reference. result_ref = testing::CallWasmFunctionForTesting( isolate, instance_ref, "main", static_cast<int>(compiled_args.size()), compiled_args.begin(), &exception_ref); // Reached max steps, do not try to execute the test module as it might // never terminate. if (*max_steps == 0) return; // If there is nondeterminism, we cannot guarantee the behavior of the test // module, and in particular it may not terminate. if (*nondeterminism != 0) return; } // Instantiate a fresh instance for the actual (non-ref) execution. Handle<WasmInstanceObject> instance; { ErrorThrower thrower(isolate, "InterpretAndExecuteModule (second)"); // We instantiated before, so the second instantiation must also succeed. if (!GetWasmEngine() ->SyncInstantiate(isolate, &thrower, module_object, {}, {}) // no imports & memory .ToHandle(&instance)) { DCHECK(thrower.error()); FATAL("Second instantiation failed unexpectedly: %s", thrower.error_msg()); } DCHECK(!thrower.error()); } bool exception = false; int32_t result = testing::CallWasmFunctionForTesting( isolate, instance, "main", static_cast<int>(compiled_args.size()), compiled_args.begin(), &exception); if (exception_ref != exception) { const char* exception_text[] = {"no exception", "exception"}; FATAL("expected: %s; got: %s", exception_text[exception_ref], exception_text[exception]); } if (!exception) { CHECK_EQ(result_ref, result); } } namespace { struct PrintSig { const size_t num; const std::function<ValueType(size_t)> getter; }; PrintSig PrintParameters(const FunctionSig* sig) { return {sig->parameter_count(), [=](size_t i) { return sig->GetParam(i); }}; } PrintSig PrintReturns(const FunctionSig* sig) { return {sig->return_count(), [=](size_t i) { return sig->GetReturn(i); }}; } std::string HeapTypeToConstantName(HeapType heap_type) { switch (heap_type.representation()) { case HeapType::kFunc: return "kWasmFuncRef"; case HeapType::kEq: return "kWasmEqRef"; case HeapType::kI31: return "kWasmI31Ref"; case HeapType::kData: return "kWasmDataRef"; case HeapType::kArray: return "kWasmArrayRef"; case HeapType::kAny: return "kWasmAnyRef"; case HeapType::kBottom: UNREACHABLE(); default: return std::to_string(heap_type.ref_index()); } } std::string ValueTypeToConstantName(ValueType type) { switch (type.kind()) { case kI8: return "kWasmI8"; case kI16: return "kWasmI16"; case kI32: return "kWasmI32"; case kI64: return "kWasmI64"; case kF32: return "kWasmF32"; case kF64: return "kWasmF64"; case kS128: return "kWasmS128"; case kOptRef: switch (type.heap_representation()) { case HeapType::kFunc: return "kWasmFuncRef"; case HeapType::kEq: return "kWasmEqRef"; case HeapType::kAny: return "kWasmAnyRef"; case HeapType::kBottom: UNREACHABLE(); case HeapType::kData: case HeapType::kArray: case HeapType::kI31: default: return "wasmOptRefType(" + HeapTypeToConstantName(type.heap_type()) + ")"; } case kRef: return "wasmRefType(" + HeapTypeToConstantName(type.heap_type()) + ")"; case kRtt: case kVoid: case kBottom: UNREACHABLE(); } } std::ostream& operator<<(std::ostream& os, const PrintSig& print) { os << "["; for (size_t i = 0; i < print.num; ++i) { os << (i == 0 ? "" : ", ") << ValueTypeToConstantName(print.getter(i)); } return os << "]"; } struct PrintName { WasmName name; PrintName(ModuleWireBytes wire_bytes, WireBytesRef ref) : name(wire_bytes.GetNameOrNull(ref)) {} }; std::ostream& operator<<(std::ostream& os, const PrintName& name) { return os.put('\'').write(name.name.begin(), name.name.size()).put('\''); } // An interface for WasmFullDecoder used to decode initializer expressions. As // opposed to the one in src/wasm/, this emits {WasmInitExpr} as opposed to a // {WasmValue}. class InitExprInterface { public: static constexpr Decoder::ValidateFlag validate = Decoder::kFullValidation; static constexpr DecodingMode decoding_mode = kConstantExpression; struct Value : public ValueBase<validate> { WasmInitExpr init_expr; template <typename... Args> explicit Value(Args&&... args) V8_NOEXCEPT : ValueBase(std::forward<Args>(args)...) {} }; using Control = ControlBase<Value, validate>; using FullDecoder = WasmFullDecoder<validate, InitExprInterface, decoding_mode>; explicit InitExprInterface(Zone* zone) : zone_(zone) {} #define EMPTY_INTERFACE_FUNCTION(name, ...) \ V8_INLINE void name(FullDecoder* decoder, ##__VA_ARGS__) {} INTERFACE_META_FUNCTIONS(EMPTY_INTERFACE_FUNCTION) #undef EMPTY_INTERFACE_FUNCTION #define UNREACHABLE_INTERFACE_FUNCTION(name, ...) \ V8_INLINE void name(FullDecoder* decoder, ##__VA_ARGS__) { UNREACHABLE(); } INTERFACE_NON_CONSTANT_FUNCTIONS(UNREACHABLE_INTERFACE_FUNCTION) #undef UNREACHABLE_INTERFACE_FUNCTION void I32Const(FullDecoder* decoder, Value* result, int32_t value) { result->init_expr = WasmInitExpr(value); } void I64Const(FullDecoder* decoder, Value* result, int64_t value) { result->init_expr = WasmInitExpr(value); } void F32Const(FullDecoder* decoder, Value* result, float value) { result->init_expr = WasmInitExpr(value); } void F64Const(FullDecoder* decoder, Value* result, double value) { result->init_expr = WasmInitExpr(value); } void S128Const(FullDecoder* decoder, Simd128Immediate<validate>& imm, Value* result) { result->init_expr = WasmInitExpr(imm.value); } void BinOp(FullDecoder* decoder, WasmOpcode opcode, const Value& lhs, const Value& rhs, Value* result) { // TODO(12089): Implement. UNIMPLEMENTED(); } void RefNull(FullDecoder* decoder, ValueType type, Value* result) { result->init_expr = WasmInitExpr::RefNullConst(type.heap_representation()); } void RefFunc(FullDecoder* decoder, uint32_t function_index, Value* result) { result->init_expr = WasmInitExpr::RefFuncConst(function_index); } void GlobalGet(FullDecoder* decoder, Value* result, const GlobalIndexImmediate<validate>& imm) { result->init_expr = WasmInitExpr::GlobalGet(imm.index); } void StructNewWithRtt(FullDecoder* decoder, const StructIndexImmediate<validate>& imm, const Value& rtt, const Value args[], Value* result) { ZoneVector<WasmInitExpr>* elements = zone_->New<ZoneVector<WasmInitExpr>>(zone_); for (size_t i = 0; i < imm.struct_type->field_count(); i++) { elements->push_back(args[i].init_expr); } bool nominal = decoder->module_->has_supertype(imm.index); if (!nominal) elements->push_back(rtt.init_expr); result->init_expr = nominal ? WasmInitExpr::StructNew(imm.index, elements) : WasmInitExpr::StructNewWithRtt(imm.index, elements); } void StructNewDefault(FullDecoder* decoder, const StructIndexImmediate<validate>& imm, const Value& rtt, Value* result) { bool nominal = decoder->module_->has_supertype(imm.index); result->init_expr = nominal ? WasmInitExpr::StructNewDefault(imm.index) : WasmInitExpr::StructNewDefaultWithRtt( zone_, imm.index, rtt.init_expr); } void ArrayInit(FullDecoder* decoder, const ArrayIndexImmediate<validate>& imm, const base::Vector<Value>& elements, const Value& rtt, Value* result) { ZoneVector<WasmInitExpr>* args = zone_->New<ZoneVector<WasmInitExpr>>(zone_); for (Value expr : elements) args->push_back(expr.init_expr); bool nominal = decoder->module_->has_supertype(imm.index); if (!nominal) args->push_back(rtt.init_expr); result->init_expr = nominal ? WasmInitExpr::ArrayInitStatic(imm.index, args) : WasmInitExpr::ArrayInit(imm.index, args); } void ArrayInitFromSegment(FullDecoder* decoder, const ArrayIndexImmediate<validate>& array_imm, const IndexImmediate<validate>& data_segment_imm, const Value& offset_value, const Value& length_value, const Value& rtt, Value* result) { // TODO(7748): Implement. UNIMPLEMENTED(); } void I31New(FullDecoder* decoder, const Value& input, Value* result) { result->init_expr = WasmInitExpr::I31New(zone_, input.init_expr); } void RttCanon(FullDecoder* decoder, uint32_t type_index, Value* result) { result->init_expr = WasmInitExpr::RttCanon(type_index); } void StringConst(FullDecoder* decoder, const StringConstImmediate<validate>& imm, Value* result) { result->init_expr = WasmInitExpr::StringConst(imm.index); } void DoReturn(FullDecoder* decoder, uint32_t /*drop_values*/) { // End decoding on "end". decoder->set_end(decoder->pc() + 1); result_ = decoder->stack_value(1)->init_expr; } WasmInitExpr result() { return result_; } private: WasmInitExpr result_; Zone* zone_; }; // Appends an initializer expression encoded in {wire_bytes}, in the offset // contained in {expr}. void AppendInitExpr(std::ostream& os, const WasmInitExpr& expr) { os << "WasmInitExpr."; bool append_operands = false; switch (expr.kind()) { case WasmInitExpr::kNone: UNREACHABLE(); case WasmInitExpr::kGlobalGet: os << "GlobalGet(" << expr.immediate().index; break; case WasmInitExpr::kI32Const: os << "I32Const(" << expr.immediate().i32_const; break; case WasmInitExpr::kI64Const: os << "I64Const(" << expr.immediate().i64_const; break; case WasmInitExpr::kF32Const: os << "F32Const(" << expr.immediate().f32_const; break; case WasmInitExpr::kF64Const: os << "F64Const(" << expr.immediate().f64_const; break; case WasmInitExpr::kS128Const: os << "S128Const(["; for (int i = 0; i < kSimd128Size; i++) { os << static_cast<int>(expr.immediate().s128_const[i]); if (i < kSimd128Size - 1) os << ", "; } os << "]"; break; case WasmInitExpr::kRefNullConst: os << "RefNull(" << HeapTypeToConstantName(HeapType(expr.immediate().heap_type)); break; case WasmInitExpr::kRefFuncConst: os << "RefFunc(" << expr.immediate().index; break; case WasmInitExpr::kStructNewWithRtt: os << "StructNewWithRtt(" << expr.immediate().index; append_operands = true; break; case WasmInitExpr::kStructNew: os << "StructNew(" << expr.immediate().index; append_operands = true; break; case WasmInitExpr::kStructNewDefaultWithRtt: os << "StructNewDefaultWithRtt(" << expr.immediate().index << ", "; AppendInitExpr(os, (*expr.operands())[0]); break; case WasmInitExpr::kStructNewDefault: os << "StructNewDefault(" << expr.immediate().index; break; case WasmInitExpr::kArrayInit: os << "ArrayInit(" << expr.immediate().index; append_operands = true; break; case WasmInitExpr::kArrayInitStatic: os << "ArrayInitStatic(" << expr.immediate().index; append_operands = true; break; case WasmInitExpr::kI31New: os << "I31New(" << expr.immediate().i32_const; break; case WasmInitExpr::kRttCanon: os << "RttCanon(" << expr.immediate().index; break; case WasmInitExpr::kStringConst: os << "StringConst(" << expr.immediate().index; break; } if (append_operands) { os << ", ["; for (size_t i = 0; i < expr.operands()->size(); i++) { AppendInitExpr(os, (*expr.operands())[i]); if (i < expr.operands()->size() - 1) os << ", "; } os << "]"; } os << ")"; } void DecodeAndAppendInitExpr(StdoutStream& os, Zone* zone, const WasmModule* module, ModuleWireBytes module_bytes, ConstantExpression init, ValueType expected) { switch (init.kind()) { case ConstantExpression::kEmpty: UNREACHABLE(); case ConstantExpression::kI32Const: AppendInitExpr(os, WasmInitExpr(init.i32_value())); break; case ConstantExpression::kRefNull: AppendInitExpr(os, WasmInitExpr::RefNullConst(init.repr())); break; case ConstantExpression::kRefFunc: AppendInitExpr(os, WasmInitExpr::RefFuncConst(init.index())); break; case ConstantExpression::kWireBytesRef: { WireBytesRef ref = init.wire_bytes_ref(); auto sig = FixedSizeSignature<ValueType>::Returns(expected); FunctionBody body(&sig, ref.offset(), module_bytes.start() + ref.offset(), module_bytes.start() + ref.end_offset()); WasmFeatures detected; WasmFullDecoder<Decoder::kFullValidation, InitExprInterface, kConstantExpression> decoder(zone, module, WasmFeatures::All(), &detected, body, zone); decoder.DecodeFunctionBody(); AppendInitExpr(os, decoder.interface().result()); break; } } } } // namespace void GenerateTestCase(Isolate* isolate, ModuleWireBytes wire_bytes, bool compiles) { constexpr bool kVerifyFunctions = false; auto enabled_features = i::wasm::WasmFeatures::FromIsolate(isolate); ModuleResult module_res = DecodeWasmModule( enabled_features, wire_bytes.start(), wire_bytes.end(), kVerifyFunctions, ModuleOrigin::kWasmOrigin, isolate->counters(), isolate->metrics_recorder(), v8::metrics::Recorder::ContextId::Empty(), DecodingMethod::kSync, GetWasmEngine()->allocator()); CHECK_WITH_MSG(module_res.ok(), module_res.error().message().c_str()); WasmModule* module = module_res.value().get(); CHECK_NOT_NULL(module); AccountingAllocator allocator; Zone zone(&allocator, "init. expression zone"); StdoutStream os; tzset(); time_t current_time = time(nullptr); struct tm current_localtime; #ifdef V8_OS_WIN localtime_s(¤t_localtime, ¤t_time); #else localtime_r(¤t_time, ¤t_localtime); #endif int year = 1900 + current_localtime.tm_year; os << "// Copyright " << year << " the V8 project authors. All rights reserved.\n" "// Use of this source code is governed by a BSD-style license that " "can be\n" "// found in the LICENSE file.\n" "\n" "// Flags: --wasm-staging --experimental-wasm-gc\n" "\n" "d8.file.execute('test/mjsunit/wasm/wasm-module-builder.js');\n" "\n" "const builder = new WasmModuleBuilder();\n"; for (int i = 0; i < static_cast<int>(module->types.size()); i++) { if (module->has_struct(i)) { const StructType* struct_type = module->types[i].struct_type; os << "builder.addStruct(["; int field_count = struct_type->field_count(); for (int index = 0; index < field_count; index++) { os << "makeField(" << ValueTypeToConstantName(struct_type->field(index)) << ", " << (struct_type->mutability(index) ? "true" : "false") << ")"; if (index + 1 < field_count) os << ", "; } os << "]);\n"; } else if (module->has_array(i)) { const ArrayType* array_type = module->types[i].array_type; os << "builder.addArray(" << ValueTypeToConstantName(array_type->element_type()) << ", " << (array_type->mutability() ? "true" : "false") << ");\n"; } else { DCHECK(module->has_signature(i)); const FunctionSig* sig = module->types[i].function_sig; os << "builder.addType(makeSig(" << PrintParameters(sig) << ", " << PrintReturns(sig) << "));\n"; } } for (WasmImport imported : module->import_table) { // TODO(wasm): Support other imports when needed. CHECK_EQ(kExternalFunction, imported.kind); auto module_name = PrintName(wire_bytes, imported.module_name); auto field_name = PrintName(wire_bytes, imported.field_name); int sig_index = module->functions[imported.index].sig_index; os << "builder.addImport(" << module_name << ", " << field_name << ", " << sig_index << " /* sig */);\n"; } if (module->has_memory) { os << "builder.addMemory(" << module->initial_pages; if (module->has_maximum_pages) { os << ", " << module->maximum_pages; } else { os << ", undefined"; } os << ", " << (module->mem_export ? "true" : "false"); if (module->has_shared_memory) { os << ", true"; } os << ");\n"; } for (WasmDataSegment segment : module->data_segments) { base::Vector<const uint8_t> data = wire_bytes.module_bytes().SubVector( segment.source.offset(), segment.source.end_offset()); if (segment.active) { // TODO(wasm): Add other expressions when needed. CHECK_EQ(ConstantExpression::kI32Const, segment.dest_addr.kind()); os << "builder.addDataSegment(" << segment.dest_addr.i32_value() << ", "; } else { os << "builder.addPassiveDataSegment("; } os << "["; if (!data.empty()) { os << unsigned{data[0]}; for (unsigned byte : data + 1) os << ", " << byte; } os << "]);\n"; } for (WasmGlobal& global : module->globals) { os << "builder.addGlobal(" << ValueTypeToConstantName(global.type) << ", " << global.mutability << ", "; DecodeAndAppendInitExpr(os, &zone, module, wire_bytes, global.init, global.type); os << ");\n"; } Zone tmp_zone(isolate->allocator(), ZONE_NAME); // TODO(9495): Add support for tables with explicit initializers. for (const WasmTable& table : module->tables) { os << "builder.addTable(" << ValueTypeToConstantName(table.type) << ", " << table.initial_size << ", " << (table.has_maximum_size ? std::to_string(table.maximum_size) : "undefined") << ", undefined)\n"; } for (const WasmElemSegment& elem_segment : module->elem_segments) { const char* status_str = elem_segment.status == WasmElemSegment::kStatusActive ? "Active" : elem_segment.status == WasmElemSegment::kStatusPassive ? "Passive" : "Declarative"; os << "builder.add" << status_str << "ElementSegment("; if (elem_segment.status == WasmElemSegment::kStatusActive) { os << elem_segment.table_index << ", "; DecodeAndAppendInitExpr(os, &zone, module, wire_bytes, elem_segment.offset, kWasmI32); os << ", "; } os << "["; for (uint32_t i = 0; i < elem_segment.entries.size(); i++) { if (elem_segment.element_type == WasmElemSegment::kExpressionElements) { DecodeAndAppendInitExpr(os, &zone, module, wire_bytes, elem_segment.entries[i], elem_segment.type); } else { os << elem_segment.entries[i].index(); } if (i < elem_segment.entries.size() - 1) os << ", "; } os << "], " << (elem_segment.element_type == WasmElemSegment::kExpressionElements ? ValueTypeToConstantName(elem_segment.type) : "undefined") << ");\n"; } for (const WasmTag& tag : module->tags) { os << "builder.addTag(makeSig(" << PrintParameters(tag.ToFunctionSig()) << ", []));\n"; } for (const WasmFunction& func : module->functions) { if (func.imported) continue; base::Vector<const uint8_t> func_code = wire_bytes.GetFunctionBytes(&func); os << "// Generate function " << (func.func_index + 1) << " (out of " << module->functions.size() << ").\n"; // Add function. os << "builder.addFunction(undefined, " << func.sig_index << " /* sig */)\n"; // Add locals. BodyLocalDecls decls(&tmp_zone); DecodeLocalDecls(enabled_features, &decls, module, func_code.begin(), func_code.end()); if (!decls.type_list.empty()) { os << " "; for (size_t pos = 0, count = 1, locals = decls.type_list.size(); pos < locals; pos += count, count = 1) { ValueType type = decls.type_list[pos]; while (pos + count < locals && decls.type_list[pos + count] == type) { ++count; } os << ".addLocals(" << ValueTypeToConstantName(type) << ", " << count << ")"; } os << "\n"; } // Add body. os << " .addBodyWithEnd([\n"; FunctionBody func_body(func.sig, func.code.offset(), func_code.begin(), func_code.end()); PrintRawWasmCode(isolate->allocator(), func_body, module, kOmitLocals); os << "]);\n"; } for (WasmExport& exp : module->export_table) { if (exp.kind != kExternalFunction) continue; os << "builder.addExport(" << PrintName(wire_bytes, exp.name) << ", " << exp.index << ");\n"; } if (compiles) { os << "const instance = builder.instantiate();\n" "print(instance.exports.main(1, 2, 3));\n"; } else { os << "assertThrows(function() { builder.instantiate(); }, " "WebAssembly.CompileError);\n"; } } void OneTimeEnableStagedWasmFeatures(v8::Isolate* isolate) { struct EnableStagedWasmFeatures { explicit EnableStagedWasmFeatures(v8::Isolate* isolate) { #define ENABLE_STAGED_FEATURES(feat, desc, val) \ FLAG_experimental_wasm_##feat = true; FOREACH_WASM_STAGING_FEATURE_FLAG(ENABLE_STAGED_FEATURES) #undef ENABLE_STAGED_FEATURES isolate->InstallConditionalFeatures(isolate->GetCurrentContext()); } }; // The compiler will properly synchronize the constructor call. static EnableStagedWasmFeatures one_time_enable_staged_features(isolate); } void WasmExecutionFuzzer::FuzzWasmModule(base::Vector<const uint8_t> data, bool require_valid) { v8_fuzzer::FuzzerSupport* support = v8_fuzzer::FuzzerSupport::Get(); v8::Isolate* isolate = support->GetIsolate(); // Strictly enforce the input size limit. Note that setting "max_len" on the // fuzzer target is not enough, since different fuzzers are used and not all // respect that limit. if (data.size() > max_input_size()) return; i::Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate); // Clear any pending exceptions from a prior run. i_isolate->clear_pending_exception(); v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::Scope context_scope(support->GetContext()); // We explicitly enable staged WebAssembly features here to increase fuzzer // coverage. For libfuzzer fuzzers it is not possible that the fuzzer enables // the flag by itself. OneTimeEnableStagedWasmFeatures(isolate); v8::TryCatch try_catch(isolate); HandleScope scope(i_isolate); AccountingAllocator allocator; Zone zone(&allocator, ZONE_NAME); ZoneBuffer buffer(&zone); // The first byte specifies some internal configuration, like which function // is compiled with with compiler, and other flags. uint8_t configuration_byte = data.empty() ? 0 : data[0]; if (!data.empty()) data += 1; // Derive the compiler configuration for the first four functions from the // configuration byte, to choose for each function between: // 0: TurboFan // 1: Liftoff // 2: Liftoff for debugging uint8_t tier_mask = 0; uint8_t debug_mask = 0; for (int i = 0; i < 4; ++i, configuration_byte /= 3) { int compiler_config = configuration_byte % 3; tier_mask |= (compiler_config == 0) << i; debug_mask |= (compiler_config == 2) << i; } // Note: After dividing by 3 for 4 times, configuration_byte is within [0, 3]. // Control whether Liftoff or the interpreter will be used as the reference // tier. // TODO(thibaudm): Port nondeterminism detection to arm. #if defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_X86) || \ defined(V8_TARGET_ARCH_ARM64) || defined(V8_TARGET_ARCH_ARM) bool liftoff_as_reference = configuration_byte & 1; #else bool liftoff_as_reference = false; #endif FlagScope<bool> turbo_mid_tier_regalloc(&FLAG_turbo_force_mid_tier_regalloc, configuration_byte == 0); if (!GenerateModule(i_isolate, &zone, data, &buffer, liftoff_as_reference)) { return; } testing::SetupIsolateForWasmModule(i_isolate); ErrorThrower interpreter_thrower(i_isolate, "Interpreter"); ModuleWireBytes wire_bytes(buffer.begin(), buffer.end()); if (require_valid && FLAG_wasm_fuzzer_gen_test) { GenerateTestCase(i_isolate, wire_bytes, true); } auto enabled_features = i::wasm::WasmFeatures::FromIsolate(i_isolate); MaybeHandle<WasmModuleObject> compiled_module; { // Explicitly enable Liftoff, disable tiering and set the tier_mask. This // way, we deterministically test a combination of Liftoff and Turbofan. FlagScope<bool> liftoff(&FLAG_liftoff, true); FlagScope<bool> no_tier_up(&FLAG_wasm_tier_up, false); FlagScope<int> tier_mask_scope(&FLAG_wasm_tier_mask_for_testing, tier_mask); FlagScope<int> debug_mask_scope(&FLAG_wasm_debug_mask_for_testing, debug_mask); compiled_module = GetWasmEngine()->SyncCompile( i_isolate, enabled_features, &interpreter_thrower, wire_bytes); } bool compiles = !compiled_module.is_null(); if (!require_valid && FLAG_wasm_fuzzer_gen_test) { GenerateTestCase(i_isolate, wire_bytes, compiles); } std::string error_message; bool result = GetWasmEngine()->SyncValidate(i_isolate, enabled_features, wire_bytes, &error_message); CHECK_EQ(compiles, result); CHECK_WITH_MSG( !require_valid || result, ("Generated module should validate, but got: " + error_message).c_str()); if (!compiles) return; int32_t max_steps = 16 * 1024; int32_t nondeterminism = false; Handle<WasmModuleObject> module_ref; if (liftoff_as_reference) { module_ref = CompileReferenceModule(&zone, i_isolate, wire_bytes, &interpreter_thrower, &max_steps, &nondeterminism); } InterpretAndExecuteModule(i_isolate, compiled_module.ToHandleChecked(), module_ref, &max_steps, &nondeterminism); } } // namespace fuzzer } // namespace wasm } // namespace internal } // namespace v8