// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <algorithm> #include "src/v8.h" #include "src/counters.h" #include "src/heap/store-buffer-inl.h" namespace v8 { namespace internal { StoreBuffer::StoreBuffer(Heap* heap) : heap_(heap), start_(NULL), limit_(NULL), old_start_(NULL), old_limit_(NULL), old_top_(NULL), old_reserved_limit_(NULL), old_buffer_is_sorted_(false), old_buffer_is_filtered_(false), during_gc_(false), store_buffer_rebuilding_enabled_(false), callback_(NULL), may_move_store_buffer_entries_(true), virtual_memory_(NULL), hash_set_1_(NULL), hash_set_2_(NULL), hash_sets_are_empty_(true) {} void StoreBuffer::SetUp() { // Allocate 3x the buffer size, so that we can start the new store buffer // aligned to 2x the size. This lets us use a bit test to detect the end of // the area. virtual_memory_ = new base::VirtualMemory(kStoreBufferSize * 3); uintptr_t start_as_int = reinterpret_cast<uintptr_t>(virtual_memory_->address()); start_ = reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2)); limit_ = start_ + (kStoreBufferSize / kPointerSize); // Reserve space for the larger old buffer. old_virtual_memory_ = new base::VirtualMemory(kOldStoreBufferLength * kPointerSize); old_top_ = old_start_ = reinterpret_cast<Address*>(old_virtual_memory_->address()); // Don't know the alignment requirements of the OS, but it is certainly not // less than 0xfff. CHECK((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0); CHECK(kStoreBufferSize >= base::OS::CommitPageSize()); // Initial size of the old buffer is as big as the buffer for new pointers. // This means even if we later fail to enlarge the old buffer due to OOM from // the OS, we will still be able to empty the new pointer buffer into the old // buffer. int initial_length = static_cast<int>(kStoreBufferSize / kPointerSize); CHECK(initial_length > 0); CHECK(initial_length <= kOldStoreBufferLength); old_limit_ = old_start_ + initial_length; old_reserved_limit_ = old_start_ + kOldStoreBufferLength; if (!old_virtual_memory_->Commit(reinterpret_cast<void*>(old_start_), (old_limit_ - old_start_) * kPointerSize, false)) { V8::FatalProcessOutOfMemory("StoreBuffer::SetUp"); } DCHECK(reinterpret_cast<Address>(start_) >= virtual_memory_->address()); DCHECK(reinterpret_cast<Address>(limit_) >= virtual_memory_->address()); Address* vm_limit = reinterpret_cast<Address*>( reinterpret_cast<char*>(virtual_memory_->address()) + virtual_memory_->size()); DCHECK(start_ <= vm_limit); DCHECK(limit_ <= vm_limit); USE(vm_limit); DCHECK((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0); DCHECK((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) == 0); if (!virtual_memory_->Commit(reinterpret_cast<Address>(start_), kStoreBufferSize, false)) { // Not executable. V8::FatalProcessOutOfMemory("StoreBuffer::SetUp"); } heap_->public_set_store_buffer_top(start_); hash_set_1_ = new uintptr_t[kHashSetLength]; hash_set_2_ = new uintptr_t[kHashSetLength]; hash_sets_are_empty_ = false; ClearFilteringHashSets(); heap_->isolate()->set_store_buffer_hash_set_1_address(hash_set_1_); heap_->isolate()->set_store_buffer_hash_set_2_address(hash_set_2_); } void StoreBuffer::TearDown() { delete virtual_memory_; delete old_virtual_memory_; delete[] hash_set_1_; delete[] hash_set_2_; old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL; start_ = limit_ = NULL; heap_->public_set_store_buffer_top(start_); } void StoreBuffer::StoreBufferOverflow(Isolate* isolate) { isolate->heap()->store_buffer()->Compact(); isolate->counters()->store_buffer_overflows()->Increment(); } bool StoreBuffer::SpaceAvailable(intptr_t space_needed) { return old_limit_ - old_top_ >= space_needed; } void StoreBuffer::EnsureSpace(intptr_t space_needed) { while (old_limit_ - old_top_ < space_needed && old_limit_ < old_reserved_limit_) { size_t grow = old_limit_ - old_start_; // Double size. if (old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_), grow * kPointerSize, false)) { old_limit_ += grow; } else { break; } } if (SpaceAvailable(space_needed)) return; if (old_buffer_is_filtered_) return; DCHECK(may_move_store_buffer_entries_); Compact(); old_buffer_is_filtered_ = true; bool page_has_scan_on_scavenge_flag = false; PointerChunkIterator it(heap_); MemoryChunk* chunk; while ((chunk = it.next()) != NULL) { if (chunk->scan_on_scavenge()) { page_has_scan_on_scavenge_flag = true; break; } } if (page_has_scan_on_scavenge_flag) { Filter(MemoryChunk::SCAN_ON_SCAVENGE); } if (SpaceAvailable(space_needed)) return; // Sample 1 entry in 97 and filter out the pages where we estimate that more // than 1 in 8 pointers are to new space. static const int kSampleFinenesses = 5; static const struct Samples { int prime_sample_step; int threshold; } samples[kSampleFinenesses] = { {97, ((Page::kPageSize / kPointerSize) / 97) / 8}, {23, ((Page::kPageSize / kPointerSize) / 23) / 16}, {7, ((Page::kPageSize / kPointerSize) / 7) / 32}, {3, ((Page::kPageSize / kPointerSize) / 3) / 256}, {1, 0}}; for (int i = 0; i < kSampleFinenesses; i++) { ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold); // As a last resort we mark all pages as being exempt from the store buffer. DCHECK(i != (kSampleFinenesses - 1) || old_top_ == old_start_); if (SpaceAvailable(space_needed)) return; } UNREACHABLE(); } // Sample the store buffer to see if some pages are taking up a lot of space // in the store buffer. void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) { PointerChunkIterator it(heap_); MemoryChunk* chunk; while ((chunk = it.next()) != NULL) { chunk->set_store_buffer_counter(0); } bool created_new_scan_on_scavenge_pages = false; MemoryChunk* previous_chunk = NULL; for (Address* p = old_start_; p < old_top_; p += prime_sample_step) { Address addr = *p; MemoryChunk* containing_chunk = NULL; if (previous_chunk != NULL && previous_chunk->Contains(addr)) { containing_chunk = previous_chunk; } else { containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr); } int old_counter = containing_chunk->store_buffer_counter(); if (old_counter >= threshold) { containing_chunk->set_scan_on_scavenge(true); created_new_scan_on_scavenge_pages = true; } containing_chunk->set_store_buffer_counter(old_counter + 1); previous_chunk = containing_chunk; } if (created_new_scan_on_scavenge_pages) { Filter(MemoryChunk::SCAN_ON_SCAVENGE); heap_->isolate()->CountUsage( v8::Isolate::UseCounterFeature::kStoreBufferOverflow); } old_buffer_is_filtered_ = true; } void StoreBuffer::Filter(int flag) { Address* new_top = old_start_; MemoryChunk* previous_chunk = NULL; for (Address* p = old_start_; p < old_top_; p++) { Address addr = *p; MemoryChunk* containing_chunk = NULL; if (previous_chunk != NULL && previous_chunk->Contains(addr)) { containing_chunk = previous_chunk; } else { containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr); previous_chunk = containing_chunk; } if (!containing_chunk->IsFlagSet(flag)) { *new_top++ = addr; } } old_top_ = new_top; // Filtering hash sets are inconsistent with the store buffer after this // operation. ClearFilteringHashSets(); } bool StoreBuffer::PrepareForIteration() { Compact(); PointerChunkIterator it(heap_); MemoryChunk* chunk; bool page_has_scan_on_scavenge_flag = false; while ((chunk = it.next()) != NULL) { if (chunk->scan_on_scavenge()) { page_has_scan_on_scavenge_flag = true; break; } } if (page_has_scan_on_scavenge_flag) { Filter(MemoryChunk::SCAN_ON_SCAVENGE); } // Filtering hash sets are inconsistent with the store buffer after // iteration. ClearFilteringHashSets(); return page_has_scan_on_scavenge_flag; } void StoreBuffer::ClearFilteringHashSets() { if (!hash_sets_are_empty_) { memset(reinterpret_cast<void*>(hash_set_1_), 0, sizeof(uintptr_t) * kHashSetLength); memset(reinterpret_cast<void*>(hash_set_2_), 0, sizeof(uintptr_t) * kHashSetLength); hash_sets_are_empty_ = true; } } void StoreBuffer::GCPrologue() { ClearFilteringHashSets(); during_gc_ = true; } #ifdef VERIFY_HEAP void StoreBuffer::VerifyPointers(LargeObjectSpace* space) { LargeObjectIterator it(space); for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { if (object->IsFixedArray()) { Address slot_address = object->address(); Address end = object->address() + object->Size(); while (slot_address < end) { HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address); // When we are not in GC the Heap::InNewSpace() predicate // checks that pointers which satisfy predicate point into // the active semispace. Object* object = *slot; heap_->InNewSpace(object); slot_address += kPointerSize; } } } } #endif void StoreBuffer::Verify() { #ifdef VERIFY_HEAP VerifyPointers(heap_->lo_space()); #endif } void StoreBuffer::GCEpilogue() { during_gc_ = false; #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } void StoreBuffer::ProcessOldToNewSlot(Address slot_address, ObjectSlotCallback slot_callback) { Object** slot = reinterpret_cast<Object**>(slot_address); Object* object = *slot; // If the object is not in from space, it must be a duplicate store buffer // entry and the slot was already updated. if (heap_->InFromSpace(object)) { HeapObject* heap_object = reinterpret_cast<HeapObject*>(object); DCHECK(heap_object->IsHeapObject()); slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object); object = *slot; // If the object was in from space before and is after executing the // callback in to space, the object is still live. // Unfortunately, we do not know about the slot. It could be in a // just freed free space object. if (heap_->InToSpace(object)) { EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot)); } } } void StoreBuffer::FindPointersToNewSpaceInRegion( Address start, Address end, ObjectSlotCallback slot_callback) { for (Address slot_address = start; slot_address < end; slot_address += kPointerSize) { ProcessOldToNewSlot(slot_address, slot_callback); } } void StoreBuffer::IteratePointersInStoreBuffer( ObjectSlotCallback slot_callback) { Address* limit = old_top_; old_top_ = old_start_; { DontMoveStoreBufferEntriesScope scope(this); for (Address* current = old_start_; current < limit; current++) { #ifdef DEBUG Address* saved_top = old_top_; #endif ProcessOldToNewSlot(*current, slot_callback); DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top); } } } void StoreBuffer::ClearInvalidStoreBufferEntries() { Compact(); Address* new_top = old_start_; for (Address* current = old_start_; current < old_top_; current++) { Address addr = *current; Object** slot = reinterpret_cast<Object**>(addr); Object* object = *slot; if (heap_->InNewSpace(object) && object->IsHeapObject()) { // If the target object is not black, the source slot must be part // of a non-black (dead) object. HeapObject* heap_object = HeapObject::cast(object); if (Marking::IsBlack(Marking::MarkBitFrom(heap_object)) && heap_->mark_compact_collector()->IsSlotInLiveObject(addr)) { *new_top++ = addr; } } } old_top_ = new_top; ClearFilteringHashSets(); // Don't scan on scavenge dead large objects. LargeObjectIterator it(heap_->lo_space()); for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { MemoryChunk* chunk = MemoryChunk::FromAddress(object->address()); if (chunk->scan_on_scavenge() && Marking::IsWhite(Marking::MarkBitFrom(object))) { chunk->set_scan_on_scavenge(false); } } } void StoreBuffer::VerifyValidStoreBufferEntries() { for (Address* current = old_start_; current < old_top_; current++) { Object** slot = reinterpret_cast<Object**>(*current); Object* object = *slot; CHECK(object->IsHeapObject()); CHECK(heap_->InNewSpace(object)); heap_->mark_compact_collector()->VerifyIsSlotInLiveObject( reinterpret_cast<Address>(slot), HeapObject::cast(object)); } } void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) { // We do not sort or remove duplicated entries from the store buffer because // we expect that callback will rebuild the store buffer thus removing // all duplicates and pointers to old space. bool some_pages_to_scan = PrepareForIteration(); // TODO(gc): we want to skip slots on evacuation candidates // but we can't simply figure that out from slot address // because slot can belong to a large object. IteratePointersInStoreBuffer(slot_callback); // We are done scanning all the pointers that were in the store buffer, but // there may be some pages marked scan_on_scavenge that have pointers to new // space that are not in the store buffer. We must scan them now. As we // scan, the surviving pointers to new space will be added to the store // buffer. If there are still a lot of pointers to new space then we will // keep the scan_on_scavenge flag on the page and discard the pointers that // were added to the store buffer. If there are not many pointers to new // space left on the page we will keep the pointers in the store buffer and // remove the flag from the page. if (some_pages_to_scan) { if (callback_ != NULL) { (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent); } PointerChunkIterator it(heap_); MemoryChunk* chunk; while ((chunk = it.next()) != NULL) { if (chunk->scan_on_scavenge()) { chunk->set_scan_on_scavenge(false); if (callback_ != NULL) { (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent); } if (chunk->owner() == heap_->lo_space()) { LargePage* large_page = reinterpret_cast<LargePage*>(chunk); HeapObject* array = large_page->GetObject(); DCHECK(array->IsFixedArray()); Address start = array->address(); Address end = start + array->Size(); FindPointersToNewSpaceInRegion(start, end, slot_callback); } else { Page* page = reinterpret_cast<Page*>(chunk); PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner()); if (owner == heap_->map_space()) { DCHECK(page->WasSwept()); HeapObjectIterator iterator(page); for (HeapObject* heap_object = iterator.Next(); heap_object != NULL; heap_object = iterator.Next()) { // We skip free space objects. if (!heap_object->IsFiller()) { DCHECK(heap_object->IsMap()); FindPointersToNewSpaceInRegion( heap_object->address() + Map::kPointerFieldsBeginOffset, heap_object->address() + Map::kPointerFieldsEndOffset, slot_callback); } } } else { heap_->mark_compact_collector()->SweepOrWaitUntilSweepingCompleted( page); HeapObjectIterator iterator(page); for (HeapObject* heap_object = iterator.Next(); heap_object != NULL; heap_object = iterator.Next()) { // We iterate over objects that contain new space pointers only. Address obj_address = heap_object->address(); const int start_offset = HeapObject::kHeaderSize; const int end_offset = heap_object->Size(); switch (heap_object->ContentType()) { case HeapObjectContents::kTaggedValues: { Address start_address = obj_address + start_offset; Address end_address = obj_address + end_offset; // Object has only tagged fields. FindPointersToNewSpaceInRegion(start_address, end_address, slot_callback); break; } case HeapObjectContents::kMixedValues: { if (heap_object->IsFixedTypedArrayBase()) { FindPointersToNewSpaceInRegion( obj_address + FixedTypedArrayBase::kBasePointerOffset, obj_address + FixedTypedArrayBase::kHeaderSize, slot_callback); } else if (FLAG_unbox_double_fields) { LayoutDescriptorHelper helper(heap_object->map()); DCHECK(!helper.all_fields_tagged()); for (int offset = start_offset; offset < end_offset;) { int end_of_region_offset; if (helper.IsTagged(offset, end_offset, &end_of_region_offset)) { FindPointersToNewSpaceInRegion( obj_address + offset, obj_address + end_of_region_offset, slot_callback); } offset = end_of_region_offset; } } else { UNREACHABLE(); } break; } case HeapObjectContents::kRawValues: break; } } } } } } if (callback_ != NULL) { (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent); } } } void StoreBuffer::Compact() { CHECK(hash_set_1_ == heap_->isolate()->store_buffer_hash_set_1_address()); CHECK(hash_set_2_ == heap_->isolate()->store_buffer_hash_set_2_address()); Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top()); if (top == start_) return; // There's no check of the limit in the loop below so we check here for // the worst case (compaction doesn't eliminate any pointers). DCHECK(top <= limit_); heap_->public_set_store_buffer_top(start_); EnsureSpace(top - start_); DCHECK(may_move_store_buffer_entries_); // Goes through the addresses in the store buffer attempting to remove // duplicates. In the interest of speed this is a lossy operation. Some // duplicates will remain. We have two hash sets with different hash // functions to reduce the number of unnecessary clashes. hash_sets_are_empty_ = false; // Hash sets are in use. for (Address* current = start_; current < top; current++) { DCHECK(!heap_->code_space()->Contains(*current)); uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current); // Shift out the last bits including any tags. int_addr >>= kPointerSizeLog2; // The upper part of an address is basically random because of ASLR and OS // non-determinism, so we use only the bits within a page for hashing to // make v8's behavior (more) deterministic. uintptr_t hash_addr = int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2); int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) & (kHashSetLength - 1)); if (hash_set_1_[hash1] == int_addr) continue; uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2)); hash2 ^= hash2 >> (kHashSetLengthLog2 * 2); hash2 &= (kHashSetLength - 1); if (hash_set_2_[hash2] == int_addr) continue; if (hash_set_1_[hash1] == 0) { hash_set_1_[hash1] = int_addr; } else if (hash_set_2_[hash2] == 0) { hash_set_2_[hash2] = int_addr; } else { // Rather than slowing down we just throw away some entries. This will // cause some duplicates to remain undetected. hash_set_1_[hash1] = int_addr; hash_set_2_[hash2] = 0; } old_buffer_is_sorted_ = false; old_buffer_is_filtered_ = false; *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2); DCHECK(old_top_ <= old_limit_); } heap_->isolate()->counters()->store_buffer_compactions()->Increment(); } } // namespace internal } // namespace v8