// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_ATOMIC_UTILS_H_ #define V8_ATOMIC_UTILS_H_ #include <limits.h> #include <type_traits> #include "src/base/atomicops.h" #include "src/base/macros.h" namespace v8 { namespace base { template <class T> class AtomicNumber { public: AtomicNumber() : value_(0) {} explicit AtomicNumber(T initial) : value_(initial) {} // Returns the value after incrementing. V8_INLINE T Increment(T increment) { return static_cast<T>(base::Barrier_AtomicIncrement( &value_, static_cast<base::AtomicWord>(increment))); } // Returns the value after decrementing. V8_INLINE T Decrement(T decrement) { return static_cast<T>(base::Barrier_AtomicIncrement( &value_, -static_cast<base::AtomicWord>(decrement))); } V8_INLINE T Value() const { return static_cast<T>(base::Acquire_Load(&value_)); } V8_INLINE void SetValue(T new_value) { base::Release_Store(&value_, static_cast<base::AtomicWord>(new_value)); } V8_INLINE T operator=(T value) { SetValue(value); return value; } V8_INLINE T operator+=(T value) { return Increment(value); } V8_INLINE T operator-=(T value) { return Decrement(value); } private: STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); base::AtomicWord value_; }; // This type uses no barrier accessors to change atomic word. Be careful with // data races. template <typename T> class NoBarrierAtomicValue { public: NoBarrierAtomicValue() : value_(0) {} explicit NoBarrierAtomicValue(T initial) : value_(cast_helper<T>::to_storage_type(initial)) {} static NoBarrierAtomicValue* FromAddress(void* address) { return reinterpret_cast<base::NoBarrierAtomicValue<T>*>(address); } V8_INLINE bool TrySetValue(T old_value, T new_value) { return base::Relaxed_CompareAndSwap( &value_, cast_helper<T>::to_storage_type(old_value), cast_helper<T>::to_storage_type(new_value)) == cast_helper<T>::to_storage_type(old_value); } V8_INLINE T Value() const { return cast_helper<T>::to_return_type(base::Relaxed_Load(&value_)); } V8_INLINE void SetValue(T new_value) { base::Relaxed_Store(&value_, cast_helper<T>::to_storage_type(new_value)); } private: STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); template <typename S> struct cast_helper { static base::AtomicWord to_storage_type(S value) { return static_cast<base::AtomicWord>(value); } static S to_return_type(base::AtomicWord value) { return static_cast<S>(value); } }; template <typename S> struct cast_helper<S*> { static base::AtomicWord to_storage_type(S* value) { return reinterpret_cast<base::AtomicWord>(value); } static S* to_return_type(base::AtomicWord value) { return reinterpret_cast<S*>(value); } }; base::AtomicWord value_; }; // Flag using T atomically. Also accepts void* as T. template <typename T> class AtomicValue { public: AtomicValue() : value_(0) {} explicit AtomicValue(T initial) : value_(cast_helper<T>::to_storage_type(initial)) {} V8_INLINE T Value() const { return cast_helper<T>::to_return_type(base::Acquire_Load(&value_)); } V8_INLINE bool TrySetValue(T old_value, T new_value) { return base::Release_CompareAndSwap( &value_, cast_helper<T>::to_storage_type(old_value), cast_helper<T>::to_storage_type(new_value)) == cast_helper<T>::to_storage_type(old_value); } V8_INLINE void SetBits(T bits, T mask) { DCHECK_EQ(bits & ~mask, static_cast<T>(0)); T old_value; T new_value; do { old_value = Value(); new_value = (old_value & ~mask) | bits; } while (!TrySetValue(old_value, new_value)); } V8_INLINE void SetBit(int bit) { SetBits(static_cast<T>(1) << bit, static_cast<T>(1) << bit); } V8_INLINE void ClearBit(int bit) { SetBits(0, 1 << bit); } V8_INLINE void SetValue(T new_value) { base::Release_Store(&value_, cast_helper<T>::to_storage_type(new_value)); } private: STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); template <typename S> struct cast_helper { static base::AtomicWord to_storage_type(S value) { return static_cast<base::AtomicWord>(value); } static S to_return_type(base::AtomicWord value) { return static_cast<S>(value); } }; template <typename S> struct cast_helper<S*> { static base::AtomicWord to_storage_type(S* value) { return reinterpret_cast<base::AtomicWord>(value); } static S* to_return_type(base::AtomicWord value) { return reinterpret_cast<S*>(value); } }; base::AtomicWord value_; }; // See utils.h for EnumSet. Storage is always base::AtomicWord. // Requirements on E: // - No explicit values. // - E::kLastValue defined to be the last actually used value. // // Example: // enum E { kA, kB, kC, kLastValue = kC }; template <class E> class AtomicEnumSet { public: explicit AtomicEnumSet(base::AtomicWord bits = 0) : bits_(bits) {} bool IsEmpty() const { return ToIntegral() == 0; } bool Contains(E element) const { return (ToIntegral() & Mask(element)) != 0; } bool ContainsAnyOf(const AtomicEnumSet& set) const { return (ToIntegral() & set.ToIntegral()) != 0; } void RemoveAll() { base::Release_Store(&bits_, 0); } bool operator==(const AtomicEnumSet& set) const { return ToIntegral() == set.ToIntegral(); } bool operator!=(const AtomicEnumSet& set) const { return ToIntegral() != set.ToIntegral(); } AtomicEnumSet<E> operator|(const AtomicEnumSet& set) const { return AtomicEnumSet<E>(ToIntegral() | set.ToIntegral()); } // The following operations modify the underlying storage. #define ATOMIC_SET_WRITE(OP, NEW_VAL) \ do { \ base::AtomicWord old; \ do { \ old = base::Acquire_Load(&bits_); \ } while (base::Release_CompareAndSwap(&bits_, old, old OP NEW_VAL) != \ old); \ } while (false) void Add(E element) { ATOMIC_SET_WRITE(|, Mask(element)); } void Add(const AtomicEnumSet& set) { ATOMIC_SET_WRITE(|, set.ToIntegral()); } void Remove(E element) { ATOMIC_SET_WRITE(&, ~Mask(element)); } void Remove(const AtomicEnumSet& set) { ATOMIC_SET_WRITE(&, ~set.ToIntegral()); } void Intersect(const AtomicEnumSet& set) { ATOMIC_SET_WRITE(&, set.ToIntegral()); } #undef ATOMIC_SET_OP private: // Check whether there's enough storage to hold E. STATIC_ASSERT(E::kLastValue < (sizeof(base::AtomicWord) * CHAR_BIT)); V8_INLINE base::AtomicWord ToIntegral() const { return base::Acquire_Load(&bits_); } V8_INLINE base::AtomicWord Mask(E element) const { return static_cast<base::AtomicWord>(1) << element; } base::AtomicWord bits_; }; class AsAtomic32 { public: template <typename T> static T Acquire_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic32)); return to_return_type<T>(base::Acquire_Load(to_storage_addr(addr))); } template <typename T> static T Relaxed_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic32)); return to_return_type<T>(base::Relaxed_Load(to_storage_addr(addr))); } template <typename T> static void Release_Store(T* addr, typename std::remove_reference<T>::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic32)); base::Release_Store(to_storage_addr(addr), to_storage_type(new_value)); } template <typename T> static void Relaxed_Store(T* addr, typename std::remove_reference<T>::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic32)); base::Relaxed_Store(to_storage_addr(addr), to_storage_type(new_value)); } template <typename T> static T Release_CompareAndSwap( T* addr, typename std::remove_reference<T>::type old_value, typename std::remove_reference<T>::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic32)); return to_return_type<T>(base::Release_CompareAndSwap( to_storage_addr(addr), to_storage_type(old_value), to_storage_type(new_value))); } // Atomically sets bits selected by the mask to the given value. // Returns false if the bits are already set as needed. template <typename T> static bool SetBits(T* addr, T bits, T mask) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic32)); DCHECK_EQ(bits & ~mask, static_cast<T>(0)); T old_value; T new_value; do { old_value = Relaxed_Load(addr); if ((old_value & mask) == bits) return false; new_value = (old_value & ~mask) | bits; } while (Release_CompareAndSwap(addr, old_value, new_value) != old_value); return true; } private: template <typename T> static base::Atomic32 to_storage_type(T value) { return static_cast<base::Atomic32>(value); } template <typename T> static T to_return_type(base::Atomic32 value) { return static_cast<T>(value); } template <typename T> static base::Atomic32* to_storage_addr(T* value) { return reinterpret_cast<base::Atomic32*>(value); } template <typename T> static const base::Atomic32* to_storage_addr(const T* value) { return reinterpret_cast<const base::Atomic32*>(value); } }; class AsAtomicWord { public: template <typename T> static T Acquire_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); return to_return_type<T>(base::Acquire_Load(to_storage_addr(addr))); } template <typename T> static T Relaxed_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); return to_return_type<T>(base::Relaxed_Load(to_storage_addr(addr))); } template <typename T> static void Release_Store(T* addr, typename std::remove_reference<T>::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); base::Release_Store(to_storage_addr(addr), to_storage_type(new_value)); } template <typename T> static void Relaxed_Store(T* addr, typename std::remove_reference<T>::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); base::Relaxed_Store(to_storage_addr(addr), to_storage_type(new_value)); } template <typename T> static T Release_CompareAndSwap( T* addr, typename std::remove_reference<T>::type old_value, typename std::remove_reference<T>::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); return to_return_type<T>(base::Release_CompareAndSwap( to_storage_addr(addr), to_storage_type(old_value), to_storage_type(new_value))); } // Atomically sets bits selected by the mask to the given value. // Returns false if the bits are already set as needed. template <typename T> static bool SetBits(T* addr, T bits, T mask) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); DCHECK_EQ(bits & ~mask, static_cast<T>(0)); T old_value; T new_value; do { old_value = Relaxed_Load(addr); if ((old_value & mask) == bits) return false; new_value = (old_value & ~mask) | bits; } while (Release_CompareAndSwap(addr, old_value, new_value) != old_value); return true; } private: template <typename T> static base::AtomicWord to_storage_type(T value) { return static_cast<base::AtomicWord>(value); } template <typename T> static T to_return_type(base::AtomicWord value) { return static_cast<T>(value); } template <typename T> static base::AtomicWord* to_storage_addr(T* value) { return reinterpret_cast<base::AtomicWord*>(value); } template <typename T> static const base::AtomicWord* to_storage_addr(const T* value) { return reinterpret_cast<const base::AtomicWord*>(value); } }; class AsAtomicPointer { public: template <typename T> static T Acquire_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); return to_return_type<T>(base::Acquire_Load(to_storage_addr(addr))); } template <typename T> static T Relaxed_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); return to_return_type<T>(base::Relaxed_Load(to_storage_addr(addr))); } template <typename T> static void Release_Store(T* addr, typename std::remove_reference<T>::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); base::Release_Store(to_storage_addr(addr), to_storage_type(new_value)); } template <typename T> static void Relaxed_Store(T* addr, typename std::remove_reference<T>::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); base::Relaxed_Store(to_storage_addr(addr), to_storage_type(new_value)); } template <typename T> static T Release_CompareAndSwap( T* addr, typename std::remove_reference<T>::type old_value, typename std::remove_reference<T>::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); return to_return_type<T>(base::Release_CompareAndSwap( to_storage_addr(addr), to_storage_type(old_value), to_storage_type(new_value))); } private: template <typename T> static base::AtomicWord to_storage_type(T value) { return reinterpret_cast<base::AtomicWord>(value); } template <typename T> static T to_return_type(base::AtomicWord value) { return reinterpret_cast<T>(value); } template <typename T> static base::AtomicWord* to_storage_addr(T* value) { return reinterpret_cast<base::AtomicWord*>(value); } template <typename T> static const base::AtomicWord* to_storage_addr(const T* value) { return reinterpret_cast<const base::AtomicWord*>(value); } }; // This class is intended to be used as a wrapper for elements of an array // that is passed in to STL functions such as std::sort. It ensures that // elements accesses are atomic. // Usage example: // Object** given_array; // AtomicElement<Object*>* wrapped = // reinterpret_cast<AtomicElement<Object*>(given_array); // std::sort(wrapped, wrapped + given_length, cmp); // where the cmp function uses the value() accessor to compare the elements. template <typename T> class AtomicElement { public: AtomicElement(const AtomicElement<T>& other) { AsAtomicPointer::Relaxed_Store( &value_, AsAtomicPointer::Relaxed_Load(&other.value_)); } void operator=(const AtomicElement<T>& other) { AsAtomicPointer::Relaxed_Store( &value_, AsAtomicPointer::Relaxed_Load(&other.value_)); } T value() const { return AsAtomicPointer::Relaxed_Load(&value_); } bool operator<(const AtomicElement<T>& other) const { return value() < other.value(); } bool operator==(const AtomicElement<T>& other) const { return value() == other.value(); } private: T value_; }; } // namespace base } // namespace v8 #endif // #define V8_ATOMIC_UTILS_H_