// The following is adapted from fdlibm (http://www.netlib.org/fdlibm). // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunSoft, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2016 the V8 project authors. All rights reserved. #include "src/base/ieee754.h" #include <cmath> #include <limits> #include "src/base/build_config.h" #include "src/base/macros.h" #include "src/base/overflowing-math.h" namespace v8 { namespace base { namespace ieee754 { namespace { /* Disable "potential divide by 0" warning in Visual Studio compiler. */ #if V8_CC_MSVC #pragma warning(disable : 4723) #endif /* * The original fdlibm code used statements like: * n0 = ((*(int*)&one)>>29)^1; * index of high word * * ix0 = *(n0+(int*)&x); * high word of x * * ix1 = *((1-n0)+(int*)&x); * low word of x * * to dig two 32 bit words out of the 64 bit IEEE floating point * value. That is non-ANSI, and, moreover, the gcc instruction * scheduler gets it wrong. We instead use the following macros. * Unlike the original code, we determine the endianness at compile * time, not at run time; I don't see much benefit to selecting * endianness at run time. */ /* * A union which permits us to convert between a double and two 32 bit * ints. * TODO(jkummerow): This is undefined behavior. Use bit_cast instead. */ #if V8_TARGET_LITTLE_ENDIAN typedef union { double value; struct { uint32_t lsw; uint32_t msw; } parts; struct { uint64_t w; } xparts; } ieee_double_shape_type; #else typedef union { double value; struct { uint32_t msw; uint32_t lsw; } parts; struct { uint64_t w; } xparts; } ieee_double_shape_type; #endif /* Get two 32 bit ints from a double. */ #define EXTRACT_WORDS(ix0, ix1, d) \ do { \ ieee_double_shape_type ew_u; \ ew_u.value = (d); \ (ix0) = ew_u.parts.msw; \ (ix1) = ew_u.parts.lsw; \ } while (false) /* Get a 64-bit int from a double. */ #define EXTRACT_WORD64(ix, d) \ do { \ ieee_double_shape_type ew_u; \ ew_u.value = (d); \ (ix) = ew_u.xparts.w; \ } while (false) /* Get the more significant 32 bit int from a double. */ #define GET_HIGH_WORD(i, d) \ do { \ ieee_double_shape_type gh_u; \ gh_u.value = (d); \ (i) = gh_u.parts.msw; \ } while (false) /* Get the less significant 32 bit int from a double. */ #define GET_LOW_WORD(i, d) \ do { \ ieee_double_shape_type gl_u; \ gl_u.value = (d); \ (i) = gl_u.parts.lsw; \ } while (false) /* Set a double from two 32 bit ints. */ #define INSERT_WORDS(d, ix0, ix1) \ do { \ ieee_double_shape_type iw_u; \ iw_u.parts.msw = (ix0); \ iw_u.parts.lsw = (ix1); \ (d) = iw_u.value; \ } while (false) /* Set a double from a 64-bit int. */ #define INSERT_WORD64(d, ix) \ do { \ ieee_double_shape_type iw_u; \ iw_u.xparts.w = (ix); \ (d) = iw_u.value; \ } while (false) /* Set the more significant 32 bits of a double from an int. */ #define SET_HIGH_WORD(d, v) \ do { \ ieee_double_shape_type sh_u; \ sh_u.value = (d); \ sh_u.parts.msw = (v); \ (d) = sh_u.value; \ } while (false) /* Set the less significant 32 bits of a double from an int. */ #define SET_LOW_WORD(d, v) \ do { \ ieee_double_shape_type sl_u; \ sl_u.value = (d); \ sl_u.parts.lsw = (v); \ (d) = sl_u.value; \ } while (false) /* Support macro. */ #define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval)) int32_t __ieee754_rem_pio2(double x, double* y) V8_WARN_UNUSED_RESULT; double __kernel_cos(double x, double y) V8_WARN_UNUSED_RESULT; int __kernel_rem_pio2(double* x, double* y, int e0, int nx, int prec, const int32_t* ipio2) V8_WARN_UNUSED_RESULT; double __kernel_sin(double x, double y, int iy) V8_WARN_UNUSED_RESULT; /* __ieee754_rem_pio2(x,y) * * return the remainder of x rem pi/2 in y[0]+y[1] * use __kernel_rem_pio2() */ int32_t __ieee754_rem_pio2(double x, double *y) { /* * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi */ static const int32_t two_over_pi[] = { 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, }; static const int32_t npio2_hw[] = { 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, 0x404858EB, 0x404921FB, }; /* * invpio2: 53 bits of 2/pi * pio2_1: first 33 bit of pi/2 * pio2_1t: pi/2 - pio2_1 * pio2_2: second 33 bit of pi/2 * pio2_2t: pi/2 - (pio2_1+pio2_2) * pio2_3: third 33 bit of pi/2 * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) */ static const double zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ double z, w, t, r, fn; double tx[3]; int32_t e0, i, j, nx, n, ix, hx; uint32_t low; z = 0; GET_HIGH_WORD(hx, x); /* high word of x */ ix = hx & 0x7FFFFFFF; if (ix <= 0x3FE921FB) { /* |x| ~<= pi/4 , no need for reduction */ y[0] = x; y[1] = 0; return 0; } if (ix < 0x4002D97C) { /* |x| < 3pi/4, special case with n=+-1 */ if (hx > 0) { z = x - pio2_1; if (ix != 0x3FF921FB) { /* 33+53 bit pi is good enough */ y[0] = z - pio2_1t; y[1] = (z - y[0]) - pio2_1t; } else { /* near pi/2, use 33+33+53 bit pi */ z -= pio2_2; y[0] = z - pio2_2t; y[1] = (z - y[0]) - pio2_2t; } return 1; } else { /* negative x */ z = x + pio2_1; if (ix != 0x3FF921FB) { /* 33+53 bit pi is good enough */ y[0] = z + pio2_1t; y[1] = (z - y[0]) + pio2_1t; } else { /* near pi/2, use 33+33+53 bit pi */ z += pio2_2; y[0] = z + pio2_2t; y[1] = (z - y[0]) + pio2_2t; } return -1; } } if (ix <= 0x413921FB) { /* |x| ~<= 2^19*(pi/2), medium size */ t = fabs(x); n = static_cast<int32_t>(t * invpio2 + half); fn = static_cast<double>(n); r = t - fn * pio2_1; w = fn * pio2_1t; /* 1st round good to 85 bit */ if (n < 32 && ix != npio2_hw[n - 1]) { y[0] = r - w; /* quick check no cancellation */ } else { uint32_t high; j = ix >> 20; y[0] = r - w; GET_HIGH_WORD(high, y[0]); i = j - ((high >> 20) & 0x7FF); if (i > 16) { /* 2nd iteration needed, good to 118 */ t = r; w = fn * pio2_2; r = t - w; w = fn * pio2_2t - ((t - r) - w); y[0] = r - w; GET_HIGH_WORD(high, y[0]); i = j - ((high >> 20) & 0x7FF); if (i > 49) { /* 3rd iteration need, 151 bits acc */ t = r; /* will cover all possible cases */ w = fn * pio2_3; r = t - w; w = fn * pio2_3t - ((t - r) - w); y[0] = r - w; } } } y[1] = (r - y[0]) - w; if (hx < 0) { y[0] = -y[0]; y[1] = -y[1]; return -n; } else { return n; } } /* * all other (large) arguments */ if (ix >= 0x7FF00000) { /* x is inf or NaN */ y[0] = y[1] = x - x; return 0; } /* set z = scalbn(|x|,ilogb(x)-23) */ GET_LOW_WORD(low, x); SET_LOW_WORD(z, low); e0 = (ix >> 20) - 1046; /* e0 = ilogb(z)-23; */ SET_HIGH_WORD(z, ix - static_cast<int32_t>(static_cast<uint32_t>(e0) << 20)); for (i = 0; i < 2; i++) { tx[i] = static_cast<double>(static_cast<int32_t>(z)); z = (z - tx[i]) * two24; } tx[2] = z; nx = 3; while (tx[nx - 1] == zero) nx--; /* skip zero term */ n = __kernel_rem_pio2(tx, y, e0, nx, 2, two_over_pi); if (hx < 0) { y[0] = -y[0]; y[1] = -y[1]; return -n; } return n; } /* __kernel_cos( x, y ) * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * * Algorithm * 1. Since cos(-x) = cos(x), we need only to consider positive x. * 2. if x < 2^-27 (hx<0x3E400000 0), return 1 with inexact if x!=0. * 3. cos(x) is approximated by a polynomial of degree 14 on * [0,pi/4] * 4 14 * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x * where the remez error is * * | 2 4 6 8 10 12 14 | -58 * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 * | | * * 4 6 8 10 12 14 * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then * cos(x) = 1 - x*x/2 + r * since cos(x+y) ~ cos(x) - sin(x)*y * ~ cos(x) - x*y, * a correction term is necessary in cos(x) and hence * cos(x+y) = 1 - (x*x/2 - (r - x*y)) * For better accuracy when x > 0.3, let qx = |x|/4 with * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. * Then * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). * Note that 1-qx and (x*x/2-qx) is EXACT here, and the * magnitude of the latter is at least a quarter of x*x/2, * thus, reducing the rounding error in the subtraction. */ V8_INLINE double __kernel_cos(double x, double y) { static const double one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ double a, iz, z, r, qx; int32_t ix; GET_HIGH_WORD(ix, x); ix &= 0x7FFFFFFF; /* ix = |x|'s high word*/ if (ix < 0x3E400000) { /* if x < 2**27 */ if (static_cast<int>(x) == 0) return one; /* generate inexact */ } z = x * x; r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6))))); if (ix < 0x3FD33333) { /* if |x| < 0.3 */ return one - (0.5 * z - (z * r - x * y)); } else { if (ix > 0x3FE90000) { /* x > 0.78125 */ qx = 0.28125; } else { INSERT_WORDS(qx, ix - 0x00200000, 0); /* x/4 */ } iz = 0.5 * z - qx; a = one - qx; return a - (iz - (z * r - x * y)); } } /* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) * double x[],y[]; int e0,nx,prec; int ipio2[]; * * __kernel_rem_pio2 return the last three digits of N with * y = x - N*pi/2 * so that |y| < pi/2. * * The method is to compute the integer (mod 8) and fraction parts of * (2/pi)*x without doing the full multiplication. In general we * skip the part of the product that are known to be a huge integer ( * more accurately, = 0 mod 8 ). Thus the number of operations are * independent of the exponent of the input. * * (2/pi) is represented by an array of 24-bit integers in ipio2[]. * * Input parameters: * x[] The input value (must be positive) is broken into nx * pieces of 24-bit integers in double precision format. * x[i] will be the i-th 24 bit of x. The scaled exponent * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 * match x's up to 24 bits. * * Example of breaking a double positive z into x[0]+x[1]+x[2]: * e0 = ilogb(z)-23 * z = scalbn(z,-e0) * for i = 0,1,2 * x[i] = floor(z) * z = (z-x[i])*2**24 * * * y[] output result in an array of double precision numbers. * The dimension of y[] is: * 24-bit precision 1 * 53-bit precision 2 * 64-bit precision 2 * 113-bit precision 3 * The actual value is the sum of them. Thus for 113-bit * precison, one may have to do something like: * * long double t,w,r_head, r_tail; * t = (long double)y[2] + (long double)y[1]; * w = (long double)y[0]; * r_head = t+w; * r_tail = w - (r_head - t); * * e0 The exponent of x[0] * * nx dimension of x[] * * prec an integer indicating the precision: * 0 24 bits (single) * 1 53 bits (double) * 2 64 bits (extended) * 3 113 bits (quad) * * ipio2[] * integer array, contains the (24*i)-th to (24*i+23)-th * bit of 2/pi after binary point. The corresponding * floating value is * * ipio2[i] * 2^(-24(i+1)). * * External function: * double scalbn(), floor(); * * * Here is the description of some local variables: * * jk jk+1 is the initial number of terms of ipio2[] needed * in the computation. The recommended value is 2,3,4, * 6 for single, double, extended,and quad. * * jz local integer variable indicating the number of * terms of ipio2[] used. * * jx nx - 1 * * jv index for pointing to the suitable ipio2[] for the * computation. In general, we want * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 * is an integer. Thus * e0-3-24*jv >= 0 or (e0-3)/24 >= jv * Hence jv = max(0,(e0-3)/24). * * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. * * q[] double array with integral value, representing the * 24-bits chunk of the product of x and 2/pi. * * q0 the corresponding exponent of q[0]. Note that the * exponent for q[i] would be q0-24*i. * * PIo2[] double precision array, obtained by cutting pi/2 * into 24 bits chunks. * * f[] ipio2[] in floating point * * iq[] integer array by breaking up q[] in 24-bits chunk. * * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] * * ih integer. If >0 it indicates q[] is >= 0.5, hence * it also indicates the *sign* of the result. * */ int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) { /* Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static const int init_jk[] = {2, 3, 4, 6}; /* initial value for jk */ static const double PIo2[] = { 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ }; static const double zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih; double z, fw, f[20], fq[20], q[20]; /* initialize jk*/ jk = init_jk[prec]; jp = jk; /* determine jx,jv,q0, note that 3>q0 */ jx = nx - 1; jv = (e0 - 3) / 24; if (jv < 0) jv = 0; q0 = e0 - 24 * (jv + 1); /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ j = jv - jx; m = jx + jk; for (i = 0; i <= m; i++, j++) { f[i] = (j < 0) ? zero : static_cast<double>(ipio2[j]); } /* compute q[0],q[1],...q[jk] */ for (i = 0; i <= jk; i++) { for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j]; q[i] = fw; } jz = jk; recompute: /* distill q[] into iq[] reversingly */ for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) { fw = static_cast<double>(static_cast<int32_t>(twon24 * z)); iq[i] = static_cast<int32_t>(z - two24 * fw); z = q[j - 1] + fw; } /* compute n */ z = scalbn(z, q0); /* actual value of z */ z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */ n = static_cast<int32_t>(z); z -= static_cast<double>(n); ih = 0; if (q0 > 0) { /* need iq[jz-1] to determine n */ i = (iq[jz - 1] >> (24 - q0)); n += i; iq[jz - 1] -= i << (24 - q0); ih = iq[jz - 1] >> (23 - q0); } else if (q0 == 0) { ih = iq[jz - 1] >> 23; } else if (z >= 0.5) { ih = 2; } if (ih > 0) { /* q > 0.5 */ n += 1; carry = 0; for (i = 0; i < jz; i++) { /* compute 1-q */ j = iq[i]; if (carry == 0) { if (j != 0) { carry = 1; iq[i] = 0x1000000 - j; } } else { iq[i] = 0xFFFFFF - j; } } if (q0 > 0) { /* rare case: chance is 1 in 12 */ switch (q0) { case 1: iq[jz - 1] &= 0x7FFFFF; break; case 2: iq[jz - 1] &= 0x3FFFFF; break; } } if (ih == 2) { z = one - z; if (carry != 0) z -= scalbn(one, q0); } } /* check if recomputation is needed */ if (z == zero) { j = 0; for (i = jz - 1; i >= jk; i--) j |= iq[i]; if (j == 0) { /* need recomputation */ for (k = 1; jk >= k && iq[jk - k] == 0; k++) { /* k = no. of terms needed */ } for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */ f[jx + i] = ipio2[jv + i]; for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j]; q[i] = fw; } jz += k; goto recompute; } } /* chop off zero terms */ if (z == 0.0) { jz -= 1; q0 -= 24; while (iq[jz] == 0) { jz--; q0 -= 24; } } else { /* break z into 24-bit if necessary */ z = scalbn(z, -q0); if (z >= two24) { fw = static_cast<double>(static_cast<int32_t>(twon24 * z)); iq[jz] = z - two24 * fw; jz += 1; q0 += 24; iq[jz] = fw; } else { iq[jz] = z; } } /* convert integer "bit" chunk to floating-point value */ fw = scalbn(one, q0); for (i = jz; i >= 0; i--) { q[i] = fw * iq[i]; fw *= twon24; } /* compute PIo2[0,...,jp]*q[jz,...,0] */ for (i = jz; i >= 0; i--) { for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) fw += PIo2[k] * q[i + k]; fq[jz - i] = fw; } /* compress fq[] into y[] */ switch (prec) { case 0: fw = 0.0; for (i = jz; i >= 0; i--) fw += fq[i]; y[0] = (ih == 0) ? fw : -fw; break; case 1: case 2: fw = 0.0; for (i = jz; i >= 0; i--) fw += fq[i]; y[0] = (ih == 0) ? fw : -fw; fw = fq[0] - fw; for (i = 1; i <= jz; i++) fw += fq[i]; y[1] = (ih == 0) ? fw : -fw; break; case 3: /* painful */ for (i = jz; i > 0; i--) { fw = fq[i - 1] + fq[i]; fq[i] += fq[i - 1] - fw; fq[i - 1] = fw; } for (i = jz; i > 1; i--) { fw = fq[i - 1] + fq[i]; fq[i] += fq[i - 1] - fw; fq[i - 1] = fw; } for (fw = 0.0, i = jz; i >= 2; i--) fw += fq[i]; if (ih == 0) { y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; } else { y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; } } return n & 7; } /* __kernel_sin( x, y, iy) * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). * * Algorithm * 1. Since sin(-x) = -sin(x), we need only to consider positive x. * 2. if x < 2^-27 (hx<0x3E400000 0), return x with inexact if x!=0. * 3. sin(x) is approximated by a polynomial of degree 13 on * [0,pi/4] * 3 13 * sin(x) ~ x + S1*x + ... + S6*x * where * * |sin(x) 2 4 6 8 10 12 | -58 * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 * | x | * * 4. sin(x+y) = sin(x) + sin'(x')*y * ~ sin(x) + (1-x*x/2)*y * For better accuracy, let * 3 2 2 2 2 * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) * then 3 2 * sin(x) = x + (S1*x + (x *(r-y/2)+y)) */ V8_INLINE double __kernel_sin(double x, double y, int iy) { static const double half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ double z, r, v; int32_t ix; GET_HIGH_WORD(ix, x); ix &= 0x7FFFFFFF; /* high word of x */ if (ix < 0x3E400000) { /* |x| < 2**-27 */ if (static_cast<int>(x) == 0) return x; } /* generate inexact */ z = x * x; v = z * x; r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6))); if (iy == 0) { return x + v * (S1 + z * r); } else { return x - ((z * (half * y - v * r) - y) - v * S1); } } /* __kernel_tan( x, y, k ) * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input k indicates whether tan (if k=1) or * -1/tan (if k= -1) is returned. * * Algorithm * 1. Since tan(-x) = -tan(x), we need only to consider positive x. * 2. if x < 2^-28 (hx<0x3E300000 0), return x with inexact if x!=0. * 3. tan(x) is approximated by a odd polynomial of degree 27 on * [0,0.67434] * 3 27 * tan(x) ~ x + T1*x + ... + T13*x * where * * |tan(x) 2 4 26 | -59.2 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 * | x | * * Note: tan(x+y) = tan(x) + tan'(x)*y * ~ tan(x) + (1+x*x)*y * Therefore, for better accuracy in computing tan(x+y), let * 3 2 2 2 2 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) * then * 3 2 * tan(x+y) = x + (T1*x + (x *(r+y)+y)) * * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) */ double __kernel_tan(double x, double y, int iy) { static const double xxx[] = { 3.33333333333334091986e-01, /* 3FD55555, 55555563 */ 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */ 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */ 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */ 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */ 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */ 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */ 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */ 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */ 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */ 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */ -1.85586374855275456654e-05, /* BEF375CB, DB605373 */ 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */ /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */ /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */ }; #define one xxx[13] #define pio4 xxx[14] #define pio4lo xxx[15] #define T xxx double z, r, v, w, s; int32_t ix, hx; GET_HIGH_WORD(hx, x); /* high word of x */ ix = hx & 0x7FFFFFFF; /* high word of |x| */ if (ix < 0x3E300000) { /* x < 2**-28 */ if (static_cast<int>(x) == 0) { /* generate inexact */ uint32_t low; GET_LOW_WORD(low, x); if (((ix | low) | (iy + 1)) == 0) { return one / fabs(x); } else { if (iy == 1) { return x; } else { /* compute -1 / (x+y) carefully */ double a, t; z = w = x + y; SET_LOW_WORD(z, 0); v = y - (z - x); t = a = -one / w; SET_LOW_WORD(t, 0); s = one + t * z; return t + a * (s + t * v); } } } } if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */ if (hx < 0) { x = -x; y = -y; } z = pio4 - x; w = pio4lo - y; x = z + w; y = 0.0; } z = x * x; w = z * z; /* * Break x^5*(T[1]+x^2*T[2]+...) into * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) */ r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11])))); v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12]))))); s = z * x; r = y + z * (s * (r + v) + y); r += T[0] * s; w = x + r; if (ix >= 0x3FE59428) { v = iy; return (1 - ((hx >> 30) & 2)) * (v - 2.0 * (x - (w * w / (w + v) - r))); } if (iy == 1) { return w; } else { /* * if allow error up to 2 ulp, simply return * -1.0 / (x+r) here */ /* compute -1.0 / (x+r) accurately */ double a, t; z = w; SET_LOW_WORD(z, 0); v = r - (z - x); /* z+v = r+x */ t = a = -1.0 / w; /* a = -1.0/w */ SET_LOW_WORD(t, 0); s = 1.0 + t * z; return t + a * (s + t * v); } #undef one #undef pio4 #undef pio4lo #undef T } } // namespace /* acos(x) * Method : * acos(x) = pi/2 - asin(x) * acos(-x) = pi/2 + asin(x) * For |x|<=0.5 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) * For x>0.5 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) * = 2asin(sqrt((1-x)/2)) * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) * = 2f + (2c + 2s*z*R(z)) * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term * for f so that f+c ~ sqrt(z). * For x<-0.5 * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * * Function needed: sqrt */ double acos(double x) { static const double one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ double z, p, q, r, w, s, c, df; int32_t hx, ix; GET_HIGH_WORD(hx, x); ix = hx & 0x7FFFFFFF; if (ix >= 0x3FF00000) { /* |x| >= 1 */ uint32_t lx; GET_LOW_WORD(lx, x); if (((ix - 0x3FF00000) | lx) == 0) { /* |x|==1 */ if (hx > 0) return 0.0; /* acos(1) = 0 */ else return pi + 2.0 * pio2_lo; /* acos(-1)= pi */ } return std::numeric_limits<double>::signaling_NaN(); // acos(|x|>1) is NaN } if (ix < 0x3FE00000) { /* |x| < 0.5 */ if (ix <= 0x3C600000) return pio2_hi + pio2_lo; /*if|x|<2**-57*/ z = x * x; p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); r = p / q; return pio2_hi - (x - (pio2_lo - x * r)); } else if (hx < 0) { /* x < -0.5 */ z = (one + x) * 0.5; p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); s = sqrt(z); r = p / q; w = r * s - pio2_lo; return pi - 2.0 * (s + w); } else { /* x > 0.5 */ z = (one - x) * 0.5; s = sqrt(z); df = s; SET_LOW_WORD(df, 0); c = (z - df * df) / (s + df); p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); r = p / q; w = r * s + c; return 2.0 * (df + w); } } /* acosh(x) * Method : * Based on * acosh(x) = log [ x + sqrt(x*x-1) ] * we have * acosh(x) := log(x)+ln2, if x is large; else * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. * * Special cases: * acosh(x) is NaN with signal if x<1. * acosh(NaN) is NaN without signal. */ double acosh(double x) { static const double one = 1.0, ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */ double t; int32_t hx; uint32_t lx; EXTRACT_WORDS(hx, lx, x); if (hx < 0x3FF00000) { /* x < 1 */ return std::numeric_limits<double>::signaling_NaN(); } else if (hx >= 0x41B00000) { /* x > 2**28 */ if (hx >= 0x7FF00000) { /* x is inf of NaN */ return x + x; } else { return log(x) + ln2; /* acosh(huge)=log(2x) */ } } else if (((hx - 0x3FF00000) | lx) == 0) { return 0.0; /* acosh(1) = 0 */ } else if (hx > 0x40000000) { /* 2**28 > x > 2 */ t = x * x; return log(2.0 * x - one / (x + sqrt(t - one))); } else { /* 1<x<2 */ t = x - one; return log1p(t + sqrt(2.0 * t + t * t)); } } /* asin(x) * Method : * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... * we approximate asin(x) on [0,0.5] by * asin(x) = x + x*x^2*R(x^2) * where * R(x^2) is a rational approximation of (asin(x)-x)/x^3 * and its remez error is bounded by * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) * * For x in [0.5,1] * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; * then for x>0.98 * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) * For x<=0.98, let pio4_hi = pio2_hi/2, then * f = hi part of s; * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) * and * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. */ double asin(double x) { static const double one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ huge = 1.000e+300, pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ /* coefficient for R(x^2) */ pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ double t, w, p, q, c, r, s; int32_t hx, ix; t = 0; GET_HIGH_WORD(hx, x); ix = hx & 0x7FFFFFFF; if (ix >= 0x3FF00000) { /* |x|>= 1 */ uint32_t lx; GET_LOW_WORD(lx, x); if (((ix - 0x3FF00000) | lx) == 0) { /* asin(1)=+-pi/2 with inexact */ return x * pio2_hi + x * pio2_lo; } return std::numeric_limits<double>::signaling_NaN(); // asin(|x|>1) is NaN } else if (ix < 0x3FE00000) { /* |x|<0.5 */ if (ix < 0x3E400000) { /* if |x| < 2**-27 */ if (huge + x > one) return x; /* return x with inexact if x!=0*/ } else { t = x * x; } p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); w = p / q; return x + x * w; } /* 1> |x|>= 0.5 */ w = one - fabs(x); t = w * 0.5; p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); s = sqrt(t); if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */ w = p / q; t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); } else { w = s; SET_LOW_WORD(w, 0); c = (t - w * w) / (s + w); r = p / q; p = 2.0 * s * r - (pio2_lo - 2.0 * c); q = pio4_hi - 2.0 * w; t = pio4_hi - (p - q); } if (hx > 0) return t; else return -t; } /* asinh(x) * Method : * Based on * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] * we have * asinh(x) := x if 1+x*x=1, * := sign(x)*(log(x)+ln2)) for large |x|, else * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) */ double asinh(double x) { static const double one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ huge = 1.00000000000000000000e+300; double t, w; int32_t hx, ix; GET_HIGH_WORD(hx, x); ix = hx & 0x7FFFFFFF; if (ix >= 0x7FF00000) return x + x; /* x is inf or NaN */ if (ix < 0x3E300000) { /* |x|<2**-28 */ if (huge + x > one) return x; /* return x inexact except 0 */ } if (ix > 0x41B00000) { /* |x| > 2**28 */ w = log(fabs(x)) + ln2; } else if (ix > 0x40000000) { /* 2**28 > |x| > 2.0 */ t = fabs(x); w = log(2.0 * t + one / (sqrt(x * x + one) + t)); } else { /* 2.0 > |x| > 2**-28 */ t = x * x; w = log1p(fabs(x) + t / (one + sqrt(one + t))); } if (hx > 0) { return w; } else { return -w; } } /* atan(x) * Method * 1. Reduce x to positive by atan(x) = -atan(-x). * 2. According to the integer k=4t+0.25 chopped, t=x, the argument * is further reduced to one of the following intervals and the * arctangent of t is evaluated by the corresponding formula: * * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ double atan(double x) { static const double atanhi[] = { 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ }; static const double atanlo[] = { 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ }; static const double aT[] = { 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ }; static const double one = 1.0, huge = 1.0e300; double w, s1, s2, z; int32_t ix, hx, id; GET_HIGH_WORD(hx, x); ix = hx & 0x7FFFFFFF; if (ix >= 0x44100000) { /* if |x| >= 2^66 */ uint32_t low; GET_LOW_WORD(low, x); if (ix > 0x7FF00000 || (ix == 0x7FF00000 && (low != 0))) return x + x; /* NaN */ if (hx > 0) return atanhi[3] + *const_cast<volatile double*>(&atanlo[3]); else return -atanhi[3] - *const_cast<volatile double*>(&atanlo[3]); } if (ix < 0x3FDC0000) { /* |x| < 0.4375 */ if (ix < 0x3E400000) { /* |x| < 2^-27 */ if (huge + x > one) return x; /* raise inexact */ } id = -1; } else { x = fabs(x); if (ix < 0x3FF30000) { /* |x| < 1.1875 */ if (ix < 0x3FE60000) { /* 7/16 <=|x|<11/16 */ id = 0; x = (2.0 * x - one) / (2.0 + x); } else { /* 11/16<=|x|< 19/16 */ id = 1; x = (x - one) / (x + one); } } else { if (ix < 0x40038000) { /* |x| < 2.4375 */ id = 2; x = (x - 1.5) / (one + 1.5 * x); } else { /* 2.4375 <= |x| < 2^66 */ id = 3; x = -1.0 / x; } } } /* end of argument reduction */ z = x * x; w = z * z; /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ s1 = z * (aT[0] + w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10]))))); s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9])))); if (id < 0) { return x - x * (s1 + s2); } else { z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x); return (hx < 0) ? -z : z; } } /* atan2(y,x) * Method : * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). * 2. Reduce x to positive by (if x and y are unexceptional): * ARG (x+iy) = arctan(y/x) ... if x > 0, * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, * * Special cases: * * ATAN2((anything), NaN ) is NaN; * ATAN2(NAN , (anything) ) is NaN; * ATAN2(+-0, +(anything but NaN)) is +-0 ; * ATAN2(+-0, -(anything but NaN)) is +-pi ; * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; * ATAN2(+-INF,+INF ) is +-pi/4 ; * ATAN2(+-INF,-INF ) is +-3pi/4; * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ double atan2(double y, double x) { static volatile double tiny = 1.0e-300; static const double zero = 0.0, pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ pi = 3.1415926535897931160E+00; /* 0x400921FB, 0x54442D18 */ static volatile double pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ double z; int32_t k, m, hx, hy, ix, iy; uint32_t lx, ly; EXTRACT_WORDS(hx, lx, x); ix = hx & 0x7FFFFFFF; EXTRACT_WORDS(hy, ly, y); iy = hy & 0x7FFFFFFF; if (((ix | ((lx | NegateWithWraparound<int32_t>(lx)) >> 31)) > 0x7FF00000) || ((iy | ((ly | NegateWithWraparound<int32_t>(ly)) >> 31)) > 0x7FF00000)) { return x + y; /* x or y is NaN */ } if ((SubWithWraparound(hx, 0x3FF00000) | lx) == 0) { return atan(y); /* x=1.0 */ } m = ((hy >> 31) & 1) | ((hx >> 30) & 2); /* 2*sign(x)+sign(y) */ /* when y = 0 */ if ((iy | ly) == 0) { switch (m) { case 0: case 1: return y; /* atan(+-0,+anything)=+-0 */ case 2: return pi + tiny; /* atan(+0,-anything) = pi */ case 3: return -pi - tiny; /* atan(-0,-anything) =-pi */ } } /* when x = 0 */ if ((ix | lx) == 0) return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny; /* when x is INF */ if (ix == 0x7FF00000) { if (iy == 0x7FF00000) { switch (m) { case 0: return pi_o_4 + tiny; /* atan(+INF,+INF) */ case 1: return -pi_o_4 - tiny; /* atan(-INF,+INF) */ case 2: return 3.0 * pi_o_4 + tiny; /*atan(+INF,-INF)*/ case 3: return -3.0 * pi_o_4 - tiny; /*atan(-INF,-INF)*/ } } else { switch (m) { case 0: return zero; /* atan(+...,+INF) */ case 1: return -zero; /* atan(-...,+INF) */ case 2: return pi + tiny; /* atan(+...,-INF) */ case 3: return -pi - tiny; /* atan(-...,-INF) */ } } } /* when y is INF */ if (iy == 0x7FF00000) return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny; /* compute y/x */ k = (iy - ix) >> 20; if (k > 60) { /* |y/x| > 2**60 */ z = pi_o_2 + 0.5 * pi_lo; m &= 1; } else if (hx < 0 && k < -60) { z = 0.0; /* 0 > |y|/x > -2**-60 */ } else { z = atan(fabs(y / x)); /* safe to do y/x */ } switch (m) { case 0: return z; /* atan(+,+) */ case 1: return -z; /* atan(-,+) */ case 2: return pi - (z - pi_lo); /* atan(+,-) */ default: /* case 3 */ return (z - pi_lo) - pi; /* atan(-,-) */ } } /* cos(x) * Return cosine function of x. * * kernel function: * __kernel_sin ... sine function on [-pi/4,pi/4] * __kernel_cos ... cosine function on [-pi/4,pi/4] * __ieee754_rem_pio2 ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */ double cos(double x) { double y[2], z = 0.0; int32_t n, ix; /* High word of x. */ GET_HIGH_WORD(ix, x); /* |x| ~< pi/4 */ ix &= 0x7FFFFFFF; if (ix <= 0x3FE921FB) { return __kernel_cos(x, z); } else if (ix >= 0x7FF00000) { /* cos(Inf or NaN) is NaN */ return x - x; } else { /* argument reduction needed */ n = __ieee754_rem_pio2(x, y); switch (n & 3) { case 0: return __kernel_cos(y[0], y[1]); case 1: return -__kernel_sin(y[0], y[1], 1); case 2: return -__kernel_cos(y[0], y[1]); default: return __kernel_sin(y[0], y[1], 1); } } } /* exp(x) * Returns the exponential of x. * * Method * 1. Argument reduction: * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2. * * Here r will be represented as r = hi-lo for better * accuracy. * * 2. Approximation of exp(r) by a special rational function on * the interval [0,0.34658]: * Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... * We use a special Remes algorithm on [0,0.34658] to generate * a polynomial of degree 5 to approximate R. The maximum error * of this polynomial approximation is bounded by 2**-59. In * other words, * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 * (where z=r*r, and the values of P1 to P5 are listed below) * and * | 5 | -59 * | 2.0+P1*z+...+P5*z - R(z) | <= 2 * | | * The computation of exp(r) thus becomes * 2*r * exp(r) = 1 + ------- * R - r * r*R1(r) * = 1 + r + ----------- (for better accuracy) * 2 - R1(r) * where * 2 4 10 * R1(r) = r - (P1*r + P2*r + ... + P5*r ). * * 3. Scale back to obtain exp(x): * From step 1, we have * exp(x) = 2^k * exp(r) * * Special cases: * exp(INF) is INF, exp(NaN) is NaN; * exp(-INF) is 0, and * for finite argument, only exp(0)=1 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 7.09782712893383973096e+02 then exp(x) overflow * if x < -7.45133219101941108420e+02 then exp(x) underflow * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ double exp(double x) { static const double one = 1.0, halF[2] = {0.5, -0.5}, o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ u_threshold = -7.45133219101941108420e+02, /* 0xC0874910, 0xD52D3051 */ ln2HI[2] = {6.93147180369123816490e-01, /* 0x3FE62E42, 0xFEE00000 */ -6.93147180369123816490e-01}, /* 0xBFE62E42, 0xFEE00000 */ ln2LO[2] = {1.90821492927058770002e-10, /* 0x3DEA39EF, 0x35793C76 */ -1.90821492927058770002e-10}, /* 0xBDEA39EF, 0x35793C76 */ invln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE */ P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ E = 2.718281828459045; /* 0x4005BF0A, 0x8B145769 */ static volatile double huge = 1.0e+300, twom1000 = 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ two1023 = 8.988465674311579539e307; /* 0x1p1023 */ double y, hi = 0.0, lo = 0.0, c, t, twopk; int32_t k = 0, xsb; uint32_t hx; GET_HIGH_WORD(hx, x); xsb = (hx >> 31) & 1; /* sign bit of x */ hx &= 0x7FFFFFFF; /* high word of |x| */ /* filter out non-finite argument */ if (hx >= 0x40862E42) { /* if |x|>=709.78... */ if (hx >= 0x7FF00000) { uint32_t lx; GET_LOW_WORD(lx, x); if (((hx & 0xFFFFF) | lx) != 0) return x + x; /* NaN */ else return (xsb == 0) ? x : 0.0; /* exp(+-inf)={inf,0} */ } if (x > o_threshold) return huge * huge; /* overflow */ if (x < u_threshold) return twom1000 * twom1000; /* underflow */ } /* argument reduction */ if (hx > 0x3FD62E42) { /* if |x| > 0.5 ln2 */ if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ /* TODO(rtoy): We special case exp(1) here to return the correct * value of E, as the computation below would get the last bit * wrong. We should probably fix the algorithm instead. */ if (x == 1.0) return E; hi = x - ln2HI[xsb]; lo = ln2LO[xsb]; k = 1 - xsb - xsb; } else { k = static_cast<int>(invln2 * x + halF[xsb]); t = k; hi = x - t * ln2HI[0]; /* t*ln2HI is exact here */ lo = t * ln2LO[0]; } STRICT_ASSIGN(double, x, hi - lo); } else if (hx < 0x3E300000) { /* when |x|<2**-28 */ if (huge + x > one) return one + x; /* trigger inexact */ } else { k = 0; } /* x is now in primary range */ t = x * x; if (k >= -1021) { INSERT_WORDS( twopk, 0x3FF00000 + static_cast<int32_t>(static_cast<uint32_t>(k) << 20), 0); } else { INSERT_WORDS(twopk, 0x3FF00000 + (static_cast<uint32_t>(k + 1000) << 20), 0); } c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); if (k == 0) { return one - ((x * c) / (c - 2.0) - x); } else { y = one - ((lo - (x * c) / (2.0 - c)) - hi); } if (k >= -1021) { if (k == 1024) return y * 2.0 * two1023; return y * twopk; } else { return y * twopk * twom1000; } } /* * Method : * 1.Reduced x to positive by atanh(-x) = -atanh(x) * 2.For x>=0.5 * 1 2x x * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) * 2 1 - x 1 - x * * For x<0.5 * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) * * Special cases: * atanh(x) is NaN if |x| > 1 with signal; * atanh(NaN) is that NaN with no signal; * atanh(+-1) is +-INF with signal. * */ double atanh(double x) { static const double one = 1.0, huge = 1e300; static const double zero = 0.0; double t; int32_t hx, ix; uint32_t lx; EXTRACT_WORDS(hx, lx, x); ix = hx & 0x7FFFFFFF; if ((ix | ((lx | NegateWithWraparound<int32_t>(lx)) >> 31)) > 0x3FF00000) { /* |x|>1 */ return std::numeric_limits<double>::signaling_NaN(); } if (ix == 0x3FF00000) { return x > 0 ? std::numeric_limits<double>::infinity() : -std::numeric_limits<double>::infinity(); } if (ix < 0x3E300000 && (huge + x) > zero) return x; /* x<2**-28 */ SET_HIGH_WORD(x, ix); if (ix < 0x3FE00000) { /* x < 0.5 */ t = x + x; t = 0.5 * log1p(t + t * x / (one - x)); } else { t = 0.5 * log1p((x + x) / (one - x)); } if (hx >= 0) return t; else return -t; } /* log(x) * Return the logrithm of x * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Approximation of log(1+f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s * (the values of Lg1 to Lg7 are listed in the program) * and * | 2 14 | -58.45 * | Lg1*s +...+Lg7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log(1+f) = f - s*(f - R) (if f is not too large) * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) * * 3. Finally, log(x) = k*ln2 + log(1+f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ double log(double x) { static const double /* -- */ ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ static const double zero = 0.0; double hfsq, f, s, z, R, w, t1, t2, dk; int32_t k, hx, i, j; uint32_t lx; EXTRACT_WORDS(hx, lx, x); k = 0; if (hx < 0x00100000) { /* x < 2**-1022 */ if (((hx & 0x7FFFFFFF) | lx) == 0) { return -std::numeric_limits<double>::infinity(); /* log(+-0)=-inf */ } if (hx < 0) { return std::numeric_limits<double>::signaling_NaN(); /* log(-#) = NaN */ } k -= 54; x *= two54; /* subnormal number, scale up x */ GET_HIGH_WORD(hx, x); } if (hx >= 0x7FF00000) return x + x; k += (hx >> 20) - 1023; hx &= 0x000FFFFF; i = (hx + 0x95F64) & 0x100000; SET_HIGH_WORD(x, hx | (i ^ 0x3FF00000)); /* normalize x or x/2 */ k += (i >> 20); f = x - 1.0; if ((0x000FFFFF & (2 + hx)) < 3) { /* -2**-20 <= f < 2**-20 */ if (f == zero) { if (k == 0) { return zero; } else { dk = static_cast<double>(k); return dk * ln2_hi + dk * ln2_lo; } } R = f * f * (0.5 - 0.33333333333333333 * f); if (k == 0) { return f - R; } else { dk = static_cast<double>(k); return dk * ln2_hi - ((R - dk * ln2_lo) - f); } } s = f / (2.0 + f); dk = static_cast<double>(k); z = s * s; i = hx - 0x6147A; w = z * z; j = 0x6B851 - hx; t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); i |= j; R = t2 + t1; if (i > 0) { hfsq = 0.5 * f * f; if (k == 0) return f - (hfsq - s * (hfsq + R)); else return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f); } else { if (k == 0) return f - s * (f - R); else return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f); } } /* double log1p(double x) * * Method : * 1. Argument Reduction: find k and f such that * 1+x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * Note. If k=0, then f=x is exact. However, if k!=0, then f * may not be representable exactly. In that case, a correction * term is need. Let u=1+x rounded. Let c = (1+x)-u, then * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), * and add back the correction term c/u. * (Note: when x > 2**53, one can simply return log(x)) * * 2. Approximation of log1p(f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s * (the values of Lp1 to Lp7 are listed in the program) * and * | 2 14 | -58.45 * | Lp1*s +...+Lp7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log1p(f) = f - (hfsq - s*(hfsq+R)). * * 3. Finally, log1p(x) = k*ln2 + log1p(f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log1p(x) is NaN with signal if x < -1 (including -INF) ; * log1p(+INF) is +INF; log1p(-1) is -INF with signal; * log1p(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. * * Note: Assuming log() return accurate answer, the following * algorithm can be used to compute log1p(x) to within a few ULP: * * u = 1+x; * if(u==1.0) return x ; else * return log(u)*(x/(u-1.0)); * * See HP-15C Advanced Functions Handbook, p.193. */ double log1p(double x) { static const double /* -- */ ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ static const double zero = 0.0; double hfsq, f, c, s, z, R, u; int32_t k, hx, hu, ax; GET_HIGH_WORD(hx, x); ax = hx & 0x7FFFFFFF; k = 1; if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */ if (ax >= 0x3FF00000) { /* x <= -1.0 */ if (x == -1.0) return -std::numeric_limits<double>::infinity(); /* log1p(-1)=+inf */ else return std::numeric_limits<double>::signaling_NaN(); // log1p(x<-1)=NaN } if (ax < 0x3E200000) { /* |x| < 2**-29 */ if (two54 + x > zero /* raise inexact */ && ax < 0x3C900000) /* |x| < 2**-54 */ return x; else return x - x * x * 0.5; } if (hx > 0 || hx <= static_cast<int32_t>(0xBFD2BEC4)) { k = 0; f = x; hu = 1; } /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ } if (hx >= 0x7FF00000) return x + x; if (k != 0) { if (hx < 0x43400000) { STRICT_ASSIGN(double, u, 1.0 + x); GET_HIGH_WORD(hu, u); k = (hu >> 20) - 1023; c = (k > 0) ? 1.0 - (u - x) : x - (u - 1.0); /* correction term */ c /= u; } else { u = x; GET_HIGH_WORD(hu, u); k = (hu >> 20) - 1023; c = 0; } hu &= 0x000FFFFF; /* * The approximation to sqrt(2) used in thresholds is not * critical. However, the ones used above must give less * strict bounds than the one here so that the k==0 case is * never reached from here, since here we have committed to * using the correction term but don't use it if k==0. */ if (hu < 0x6A09E) { /* u ~< sqrt(2) */ SET_HIGH_WORD(u, hu | 0x3FF00000); /* normalize u */ } else { k += 1; SET_HIGH_WORD(u, hu | 0x3FE00000); /* normalize u/2 */ hu = (0x00100000 - hu) >> 2; } f = u - 1.0; } hfsq = 0.5 * f * f; if (hu == 0) { /* |f| < 2**-20 */ if (f == zero) { if (k == 0) { return zero; } else { c += k * ln2_lo; return k * ln2_hi + c; } } R = hfsq * (1.0 - 0.66666666666666666 * f); if (k == 0) return f - R; else return k * ln2_hi - ((R - (k * ln2_lo + c)) - f); } s = f / (2.0 + f); z = s * s; R = z * (Lp1 + z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7)))))); if (k == 0) return f - (hfsq - s * (hfsq + R)); else return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f); } /* * k_log1p(f): * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)]. * * The following describes the overall strategy for computing * logarithms in base e. The argument reduction and adding the final * term of the polynomial are done by the caller for increased accuracy * when different bases are used. * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Approximation of log(1+f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s * (the values of Lg1 to Lg7 are listed in the program) * and * | 2 14 | -58.45 * | Lg1*s +...+Lg7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log(1+f) = f - s*(f - R) (if f is not too large) * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) * * 3. Finally, log(x) = k*ln2 + log(1+f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static const double Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ /* * We always inline k_log1p(), since doing so produces a * substantial performance improvement (~40% on amd64). */ static inline double k_log1p(double f) { double hfsq, s, z, R, w, t1, t2; s = f / (2.0 + f); z = s * s; w = z * z; t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); R = t2 + t1; hfsq = 0.5 * f * f; return s * (hfsq + R); } /* * Return the base 2 logarithm of x. See e_log.c and k_log.h for most * comments. * * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel, * then does the combining and scaling steps * log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k * in not-quite-routine extra precision. */ double log2(double x) { static const double two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ ivln2hi = 1.44269504072144627571e+00, /* 0x3FF71547, 0x65200000 */ ivln2lo = 1.67517131648865118353e-10; /* 0x3DE705FC, 0x2EEFA200 */ double f, hfsq, hi, lo, r, val_hi, val_lo, w, y; int32_t i, k, hx; uint32_t lx; EXTRACT_WORDS(hx, lx, x); k = 0; if (hx < 0x00100000) { /* x < 2**-1022 */ if (((hx & 0x7FFFFFFF) | lx) == 0) { return -std::numeric_limits<double>::infinity(); /* log(+-0)=-inf */ } if (hx < 0) { return std::numeric_limits<double>::signaling_NaN(); /* log(-#) = NaN */ } k -= 54; x *= two54; /* subnormal number, scale up x */ GET_HIGH_WORD(hx, x); } if (hx >= 0x7FF00000) return x + x; if (hx == 0x3FF00000 && lx == 0) return 0.0; /* log(1) = +0 */ k += (hx >> 20) - 1023; hx &= 0x000FFFFF; i = (hx + 0x95F64) & 0x100000; SET_HIGH_WORD(x, hx | (i ^ 0x3FF00000)); /* normalize x or x/2 */ k += (i >> 20); y = static_cast<double>(k); f = x - 1.0; hfsq = 0.5 * f * f; r = k_log1p(f); /* * f-hfsq must (for args near 1) be evaluated in extra precision * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2). * This is fairly efficient since f-hfsq only depends on f, so can * be evaluated in parallel with R. Not combining hfsq with R also * keeps R small (though not as small as a true `lo' term would be), * so that extra precision is not needed for terms involving R. * * Compiler bugs involving extra precision used to break Dekker's * theorem for spitting f-hfsq as hi+lo, unless double_t was used * or the multi-precision calculations were avoided when double_t * has extra precision. These problems are now automatically * avoided as a side effect of the optimization of combining the * Dekker splitting step with the clear-low-bits step. * * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra * precision to avoid a very large cancellation when x is very near * these values. Unlike the above cancellations, this problem is * specific to base 2. It is strange that adding +-1 is so much * harder than adding +-ln2 or +-log10_2. * * This uses Dekker's theorem to normalize y+val_hi, so the * compiler bugs are back in some configurations, sigh. And I * don't want to used double_t to avoid them, since that gives a * pessimization and the support for avoiding the pessimization * is not yet available. * * The multi-precision calculations for the multiplications are * routine. */ hi = f - hfsq; SET_LOW_WORD(hi, 0); lo = (f - hi) - hfsq + r; val_hi = hi * ivln2hi; val_lo = (lo + hi) * ivln2lo + lo * ivln2hi; /* spadd(val_hi, val_lo, y), except for not using double_t: */ w = y + val_hi; val_lo += (y - w) + val_hi; val_hi = w; return val_lo + val_hi; } /* * Return the base 10 logarithm of x * * Method : * Let log10_2hi = leading 40 bits of log10(2) and * log10_2lo = log10(2) - log10_2hi, * ivln10 = 1/log(10) rounded. * Then * n = ilogb(x), * if(n<0) n = n+1; * x = scalbn(x,-n); * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) * * Note 1: * To guarantee log10(10**n)=n, where 10**n is normal, the rounding * mode must set to Round-to-Nearest. * Note 2: * [1/log(10)] rounded to 53 bits has error .198 ulps; * log10 is monotonic at all binary break points. * * Special cases: * log10(x) is NaN if x < 0; * log10(+INF) is +INF; log10(0) is -INF; * log10(NaN) is that NaN; * log10(10**N) = N for N=0,1,...,22. */ double log10(double x) { static const double two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ ivln10 = 4.34294481903251816668e-01, log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ double y; int32_t i, k, hx; uint32_t lx; EXTRACT_WORDS(hx, lx, x); k = 0; if (hx < 0x00100000) { /* x < 2**-1022 */ if (((hx & 0x7FFFFFFF) | lx) == 0) { return -std::numeric_limits<double>::infinity(); /* log(+-0)=-inf */ } if (hx < 0) { return std::numeric_limits<double>::quiet_NaN(); /* log(-#) = NaN */ } k -= 54; x *= two54; /* subnormal number, scale up x */ GET_HIGH_WORD(hx, x); GET_LOW_WORD(lx, x); } if (hx >= 0x7FF00000) return x + x; if (hx == 0x3FF00000 && lx == 0) return 0.0; /* log(1) = +0 */ k += (hx >> 20) - 1023; i = (k & 0x80000000) >> 31; hx = (hx & 0x000FFFFF) | ((0x3FF - i) << 20); y = k + i; SET_HIGH_WORD(x, hx); SET_LOW_WORD(x, lx); double z = y * log10_2lo + ivln10 * log(x); return z + y * log10_2hi; } /* expm1(x) * Returns exp(x)-1, the exponential of x minus 1. * * Method * 1. Argument reduction: * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 * * Here a correction term c will be computed to compensate * the error in r when rounded to a floating-point number. * * 2. Approximating expm1(r) by a special rational function on * the interval [0,0.34658]: * Since * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... * we define R1(r*r) by * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) * That is, * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... * We use a special Reme algorithm on [0,0.347] to generate * a polynomial of degree 5 in r*r to approximate R1. The * maximum error of this polynomial approximation is bounded * by 2**-61. In other words, * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 * where Q1 = -1.6666666666666567384E-2, * Q2 = 3.9682539681370365873E-4, * Q3 = -9.9206344733435987357E-6, * Q4 = 2.5051361420808517002E-7, * Q5 = -6.2843505682382617102E-9; * z = r*r, * with error bounded by * | 5 | -61 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 * | | * * expm1(r) = exp(r)-1 is then computed by the following * specific way which minimize the accumulation rounding error: * 2 3 * r r [ 3 - (R1 + R1*r/2) ] * expm1(r) = r + --- + --- * [--------------------] * 2 2 [ 6 - r*(3 - R1*r/2) ] * * To compensate the error in the argument reduction, we use * expm1(r+c) = expm1(r) + c + expm1(r)*c * ~ expm1(r) + c + r*c * Thus c+r*c will be added in as the correction terms for * expm1(r+c). Now rearrange the term to avoid optimization * screw up: * ( 2 2 ) * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) * ( ) * * = r - E * 3. Scale back to obtain expm1(x): * From step 1, we have * expm1(x) = either 2^k*[expm1(r)+1] - 1 * = or 2^k*[expm1(r) + (1-2^-k)] * 4. Implementation notes: * (A). To save one multiplication, we scale the coefficient Qi * to Qi*2^i, and replace z by (x^2)/2. * (B). To achieve maximum accuracy, we compute expm1(x) by * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) * (ii) if k=0, return r-E * (iii) if k=-1, return 0.5*(r-E)-0.5 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) * else return 1.0+2.0*(r-E); * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else * (vii) return 2^k(1-((E+2^-k)-r)) * * Special cases: * expm1(INF) is INF, expm1(NaN) is NaN; * expm1(-INF) is -1, and * for finite argument, only expm1(0)=0 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 7.09782712893383973096e+02 then expm1(x) overflow * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ double expm1(double x) { static const double one = 1.0, tiny = 1.0e-300, o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ ln2_hi = 6.93147180369123816490e-01, /* 0x3FE62E42, 0xFEE00000 */ ln2_lo = 1.90821492927058770002e-10, /* 0x3DEA39EF, 0x35793C76 */ invln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE */ /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */ Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ static volatile double huge = 1.0e+300; double y, hi, lo, c, t, e, hxs, hfx, r1, twopk; int32_t k, xsb; uint32_t hx; GET_HIGH_WORD(hx, x); xsb = hx & 0x80000000; /* sign bit of x */ hx &= 0x7FFFFFFF; /* high word of |x| */ /* filter out huge and non-finite argument */ if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */ if (hx >= 0x40862E42) { /* if |x|>=709.78... */ if (hx >= 0x7FF00000) { uint32_t low; GET_LOW_WORD(low, x); if (((hx & 0xFFFFF) | low) != 0) return x + x; /* NaN */ else return (xsb == 0) ? x : -1.0; /* exp(+-inf)={inf,-1} */ } if (x > o_threshold) return huge * huge; /* overflow */ } if (xsb != 0) { /* x < -56*ln2, return -1.0 with inexact */ if (x + tiny < 0.0) /* raise inexact */ return tiny - one; /* return -1 */ } } /* argument reduction */ if (hx > 0x3FD62E42) { /* if |x| > 0.5 ln2 */ if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ if (xsb == 0) { hi = x - ln2_hi; lo = ln2_lo; k = 1; } else { hi = x + ln2_hi; lo = -ln2_lo; k = -1; } } else { k = invln2 * x + ((xsb == 0) ? 0.5 : -0.5); t = k; hi = x - t * ln2_hi; /* t*ln2_hi is exact here */ lo = t * ln2_lo; } STRICT_ASSIGN(double, x, hi - lo); c = (hi - x) - lo; } else if (hx < 0x3C900000) { /* when |x|<2**-54, return x */ t = huge + x; /* return x with inexact flags when x!=0 */ return x - (t - (huge + x)); } else { k = 0; } /* x is now in primary range */ hfx = 0.5 * x; hxs = x * hfx; r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); t = 3.0 - r1 * hfx; e = hxs * ((r1 - t) / (6.0 - x * t)); if (k == 0) { return x - (x * e - hxs); /* c is 0 */ } else { INSERT_WORDS( twopk, 0x3FF00000 + static_cast<int32_t>(static_cast<uint32_t>(k) << 20), 0); /* 2^k */ e = (x * (e - c) - c); e -= hxs; if (k == -1) return 0.5 * (x - e) - 0.5; if (k == 1) { if (x < -0.25) return -2.0 * (e - (x + 0.5)); else return one + 2.0 * (x - e); } if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */ y = one - (e - x); // TODO(mvstanton): is this replacement for the hex float // sufficient? // if (k == 1024) y = y*2.0*0x1p1023; if (k == 1024) y = y * 2.0 * 8.98846567431158e+307; else y = y * twopk; return y - one; } t = one; if (k < 20) { SET_HIGH_WORD(t, 0x3FF00000 - (0x200000 >> k)); /* t=1-2^-k */ y = t - (e - x); y = y * twopk; } else { SET_HIGH_WORD(t, ((0x3FF - k) << 20)); /* 2^-k */ y = x - (e + t); y += one; y = y * twopk; } } return y; } double cbrt(double x) { static const uint32_t B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */ B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */ /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */ static const double P0 = 1.87595182427177009643, /* 0x3FFE03E6, 0x0F61E692 */ P1 = -1.88497979543377169875, /* 0xBFFE28E0, 0x92F02420 */ P2 = 1.621429720105354466140, /* 0x3FF9F160, 0x4A49D6C2 */ P3 = -0.758397934778766047437, /* 0xBFE844CB, 0xBEE751D9 */ P4 = 0.145996192886612446982; /* 0x3FC2B000, 0xD4E4EDD7 */ int32_t hx; union { double value; uint64_t bits; } u; double r, s, t = 0.0, w; uint32_t sign; uint32_t high, low; EXTRACT_WORDS(hx, low, x); sign = hx & 0x80000000; /* sign= sign(x) */ hx ^= sign; if (hx >= 0x7FF00000) return (x + x); /* cbrt(NaN,INF) is itself */ /* * Rough cbrt to 5 bits: * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3) * where e is integral and >= 0, m is real and in [0, 1), and "/" and * "%" are integer division and modulus with rounding towards minus * infinity. The RHS is always >= the LHS and has a maximum relative * error of about 1 in 16. Adding a bias of -0.03306235651 to the * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE * floating point representation, for finite positive normal values, * ordinary integer division of the value in bits magically gives * almost exactly the RHS of the above provided we first subtract the * exponent bias (1023 for doubles) and later add it back. We do the * subtraction virtually to keep e >= 0 so that ordinary integer * division rounds towards minus infinity; this is also efficient. */ if (hx < 0x00100000) { /* zero or subnormal? */ if ((hx | low) == 0) return (x); /* cbrt(0) is itself */ SET_HIGH_WORD(t, 0x43500000); /* set t= 2**54 */ t *= x; GET_HIGH_WORD(high, t); INSERT_WORDS(t, sign | ((high & 0x7FFFFFFF) / 3 + B2), 0); } else { INSERT_WORDS(t, sign | (hx / 3 + B1), 0); } /* * New cbrt to 23 bits: * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x) * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r) * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this * gives us bounds for r = t**3/x. * * Try to optimize for parallel evaluation as in k_tanf.c. */ r = (t * t) * (t / x); t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4)); /* * Round t away from zero to 23 bits (sloppily except for ensuring that * the result is larger in magnitude than cbrt(x) but not much more than * 2 23-bit ulps larger). With rounding towards zero, the error bound * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps * in the rounded t, the infinite-precision error in the Newton * approximation barely affects third digit in the final error * 0.667; the error in the rounded t can be up to about 3 23-bit ulps * before the final error is larger than 0.667 ulps. */ u.value = t; u.bits = (u.bits + 0x80000000) & 0xFFFFFFFFC0000000ULL; t = u.value; /* one step Newton iteration to 53 bits with error < 0.667 ulps */ s = t * t; /* t*t is exact */ r = x / s; /* error <= 0.5 ulps; |r| < |t| */ w = t + t; /* t+t is exact */ r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */ t = t + t * r; /* error <= 0.5 + 0.5/3 + epsilon */ return (t); } /* sin(x) * Return sine function of x. * * kernel function: * __kernel_sin ... sine function on [-pi/4,pi/4] * __kernel_cos ... cose function on [-pi/4,pi/4] * __ieee754_rem_pio2 ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */ double sin(double x) { double y[2], z = 0.0; int32_t n, ix; /* High word of x. */ GET_HIGH_WORD(ix, x); /* |x| ~< pi/4 */ ix &= 0x7FFFFFFF; if (ix <= 0x3FE921FB) { return __kernel_sin(x, z, 0); } else if (ix >= 0x7FF00000) { /* sin(Inf or NaN) is NaN */ return x - x; } else { /* argument reduction needed */ n = __ieee754_rem_pio2(x, y); switch (n & 3) { case 0: return __kernel_sin(y[0], y[1], 1); case 1: return __kernel_cos(y[0], y[1]); case 2: return -__kernel_sin(y[0], y[1], 1); default: return -__kernel_cos(y[0], y[1]); } } } /* tan(x) * Return tangent function of x. * * kernel function: * __kernel_tan ... tangent function on [-pi/4,pi/4] * __ieee754_rem_pio2 ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */ double tan(double x) { double y[2], z = 0.0; int32_t n, ix; /* High word of x. */ GET_HIGH_WORD(ix, x); /* |x| ~< pi/4 */ ix &= 0x7FFFFFFF; if (ix <= 0x3FE921FB) { return __kernel_tan(x, z, 1); } else if (ix >= 0x7FF00000) { /* tan(Inf or NaN) is NaN */ return x - x; /* NaN */ } else { /* argument reduction needed */ n = __ieee754_rem_pio2(x, y); /* 1 -> n even, -1 -> n odd */ return __kernel_tan(y[0], y[1], 1 - ((n & 1) << 1)); } } /* * ES6 draft 09-27-13, section 20.2.2.12. * Math.cosh * Method : * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2 * 1. Replace x by |x| (cosh(x) = cosh(-x)). * 2. * [ exp(x) - 1 ]^2 * 0 <= x <= ln2/2 : cosh(x) := 1 + ------------------- * 2*exp(x) * * exp(x) + 1/exp(x) * ln2/2 <= x <= 22 : cosh(x) := ------------------- * 2 * 22 <= x <= lnovft : cosh(x) := exp(x)/2 * lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2) * ln2ovft < x : cosh(x) := huge*huge (overflow) * * Special cases: * cosh(x) is |x| if x is +INF, -INF, or NaN. * only cosh(0)=1 is exact for finite x. */ double cosh(double x) { static const double KCOSH_OVERFLOW = 710.4758600739439; static const double one = 1.0, half = 0.5; static volatile double huge = 1.0e+300; int32_t ix; /* High word of |x|. */ GET_HIGH_WORD(ix, x); ix &= 0x7FFFFFFF; // |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|)) if (ix < 0x3FD62E43) { double t = expm1(fabs(x)); double w = one + t; // For |x| < 2^-55, cosh(x) = 1 if (ix < 0x3C800000) return w; return one + (t * t) / (w + w); } // |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2 if (ix < 0x40360000) { double t = exp(fabs(x)); return half * t + half / t; } // |x| in [22, log(maxdouble)], return half*exp(|x|) if (ix < 0x40862E42) return half * exp(fabs(x)); // |x| in [log(maxdouble), overflowthreshold] if (fabs(x) <= KCOSH_OVERFLOW) { double w = exp(half * fabs(x)); double t = half * w; return t * w; } /* x is INF or NaN */ if (ix >= 0x7FF00000) return x * x; // |x| > overflowthreshold. return huge * huge; } /* * ES6 draft 09-27-13, section 20.2.2.30. * Math.sinh * Method : * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 * 1. Replace x by |x| (sinh(-x) = -sinh(x)). * 2. * E + E/(E+1) * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x) * 2 * * 22 <= x <= lnovft : sinh(x) := exp(x)/2 * lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2) * ln2ovft < x : sinh(x) := x*shuge (overflow) * * Special cases: * sinh(x) is |x| if x is +Infinity, -Infinity, or NaN. * only sinh(0)=0 is exact for finite x. */ double sinh(double x) { static const double KSINH_OVERFLOW = 710.4758600739439, TWO_M28 = 3.725290298461914e-9, // 2^-28, empty lower half LOG_MAXD = 709.7822265625; // 0x40862E42 00000000, empty lower half static const double shuge = 1.0e307; double h = (x < 0) ? -0.5 : 0.5; // |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1)) double ax = fabs(x); if (ax < 22) { // For |x| < 2^-28, sinh(x) = x if (ax < TWO_M28) return x; double t = expm1(ax); if (ax < 1) { return h * (2 * t - t * t / (t + 1)); } return h * (t + t / (t + 1)); } // |x| in [22, log(maxdouble)], return 0.5 * exp(|x|) if (ax < LOG_MAXD) return h * exp(ax); // |x| in [log(maxdouble), overflowthreshold] // overflowthreshold = 710.4758600739426 if (ax <= KSINH_OVERFLOW) { double w = exp(0.5 * ax); double t = h * w; return t * w; } // |x| > overflowthreshold or is NaN. // Return Infinity of the appropriate sign or NaN. return x * shuge; } /* Tanh(x) * Return the Hyperbolic Tangent of x * * Method : * x -x * e - e * 0. tanh(x) is defined to be ----------- * x -x * e + e * 1. reduce x to non-negative by tanh(-x) = -tanh(x). * 2. 0 <= x < 2**-28 : tanh(x) := x with inexact if x != 0 * -t * 2**-28 <= x < 1 : tanh(x) := -----; t = expm1(-2x) * t + 2 * 2 * 1 <= x < 22 : tanh(x) := 1 - -----; t = expm1(2x) * t + 2 * 22 <= x <= INF : tanh(x) := 1. * * Special cases: * tanh(NaN) is NaN; * only tanh(0)=0 is exact for finite argument. */ double tanh(double x) { static const volatile double tiny = 1.0e-300; static const double one = 1.0, two = 2.0, huge = 1.0e300; double t, z; int32_t jx, ix; GET_HIGH_WORD(jx, x); ix = jx & 0x7FFFFFFF; /* x is INF or NaN */ if (ix >= 0x7FF00000) { if (jx >= 0) return one / x + one; /* tanh(+-inf)=+-1 */ else return one / x - one; /* tanh(NaN) = NaN */ } /* |x| < 22 */ if (ix < 0x40360000) { /* |x|<22 */ if (ix < 0x3E300000) { /* |x|<2**-28 */ if (huge + x > one) return x; /* tanh(tiny) = tiny with inexact */ } if (ix >= 0x3FF00000) { /* |x|>=1 */ t = expm1(two * fabs(x)); z = one - two / (t + two); } else { t = expm1(-two * fabs(x)); z = -t / (t + two); } /* |x| >= 22, return +-1 */ } else { z = one - tiny; /* raise inexact flag */ } return (jx >= 0) ? z : -z; } } // namespace ieee754 } // namespace base } // namespace v8