// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/keys.h" #include "src/elements.h" #include "src/factory.h" #include "src/isolate-inl.h" #include "src/objects-inl.h" #include "src/property-descriptor.h" #include "src/prototype.h" namespace v8 { namespace internal { KeyAccumulator::~KeyAccumulator() { for (size_t i = 0; i < elements_.size(); i++) { delete elements_[i]; } } Handle KeyAccumulator::GetKeys(GetKeysConversion convert) { if (length_ == 0) { return isolate_->factory()->empty_fixed_array(); } // Make sure we have all the lengths collected. NextPrototype(); if (type_ == OWN_ONLY && !ownProxyKeys_.is_null()) { return ownProxyKeys_; } // Assemble the result array by first adding the element keys and then the // property keys. We use the total number of String + Symbol keys per level in // |level_lengths_| and the available element keys in the corresponding bucket // in |elements_| to deduce the number of keys to take from the // |string_properties_| and |symbol_properties_| set. Handle result = isolate_->factory()->NewFixedArray(length_); int insertion_index = 0; int string_properties_index = 0; int symbol_properties_index = 0; // String and Symbol lengths always come in pairs: size_t max_level = level_lengths_.size() / 2; for (size_t level = 0; level < max_level; level++) { int num_string_properties = level_lengths_[level * 2]; int num_symbol_properties = level_lengths_[level * 2 + 1]; int num_elements = 0; if (num_string_properties < 0) { // If the |num_string_properties| is negative, the current level contains // properties from a proxy, hence we skip the integer keys in |elements_| // since proxies define the complete ordering. num_string_properties = -num_string_properties; } else if (level < elements_.size()) { // Add the element indices for this prototype level. std::vector* elements = elements_[level]; num_elements = static_cast(elements->size()); for (int i = 0; i < num_elements; i++) { Handle key; if (convert == KEEP_NUMBERS) { key = isolate_->factory()->NewNumberFromUint(elements->at(i)); } else { key = isolate_->factory()->Uint32ToString(elements->at(i)); } result->set(insertion_index, *key); insertion_index++; } } // Add the string property keys for this prototype level. for (int i = 0; i < num_string_properties; i++) { Object* key = string_properties_->KeyAt(string_properties_index); result->set(insertion_index, key); insertion_index++; string_properties_index++; } // Add the symbol property keys for this prototype level. for (int i = 0; i < num_symbol_properties; i++) { Object* key = symbol_properties_->KeyAt(symbol_properties_index); result->set(insertion_index, key); insertion_index++; symbol_properties_index++; } if (FLAG_trace_for_in_enumerate) { PrintF("| strings=%d symbols=%d elements=%i ", num_string_properties, num_symbol_properties, num_elements); } } if (FLAG_trace_for_in_enumerate) { PrintF("|| prototypes=%zu ||\n", max_level); } DCHECK_EQ(insertion_index, length_); return result; } namespace { bool AccumulatorHasKey(std::vector* sub_elements, uint32_t key) { return std::binary_search(sub_elements->begin(), sub_elements->end(), key); } } // namespace bool KeyAccumulator::AddKey(Object* key, AddKeyConversion convert) { return AddKey(handle(key, isolate_), convert); } bool KeyAccumulator::AddKey(Handle key, AddKeyConversion convert) { if (key->IsSymbol()) { if (filter_ & SKIP_SYMBOLS) return false; if (Handle::cast(key)->is_private()) return false; return AddSymbolKey(key); } if (filter_ & SKIP_STRINGS) return false; // Make sure we do not add keys to a proxy-level (see AddKeysFromProxy). DCHECK_LE(0, level_string_length_); // In some cases (e.g. proxies) we might get in String-converted ints which // should be added to the elements list instead of the properties. For // proxies we have to convert as well but also respect the original order. // Therefore we add a converted key to both sides if (convert == CONVERT_TO_ARRAY_INDEX || convert == PROXY_MAGIC) { uint32_t index = 0; int prev_length = length_; int prev_proto = level_string_length_; if ((key->IsString() && Handle::cast(key)->AsArrayIndex(&index)) || key->ToArrayIndex(&index)) { bool key_was_added = AddIntegerKey(index); if (convert == CONVERT_TO_ARRAY_INDEX) return key_was_added; if (convert == PROXY_MAGIC) { // If we had an array index (number) and it wasn't added, the key // already existed before, hence we cannot add it to the properties // keys as it would lead to duplicate entries. if (!key_was_added) { return false; } length_ = prev_length; level_string_length_ = prev_proto; } } } return AddStringKey(key, convert); } bool KeyAccumulator::AddKey(uint32_t key) { return AddIntegerKey(key); } bool KeyAccumulator::AddIntegerKey(uint32_t key) { // Make sure we do not add keys to a proxy-level (see AddKeysFromProxy). // We mark proxy-levels with a negative length DCHECK_LE(0, level_string_length_); // Binary search over all but the last level. The last one might not be // sorted yet. for (size_t i = 1; i < elements_.size(); i++) { if (AccumulatorHasKey(elements_[i - 1], key)) return false; } elements_.back()->push_back(key); length_++; return true; } bool KeyAccumulator::AddStringKey(Handle key, AddKeyConversion convert) { if (string_properties_.is_null()) { string_properties_ = OrderedHashSet::Allocate(isolate_, 16); } // TODO(cbruni): remove this conversion once we throw the correct TypeError // for non-string/symbol elements returned by proxies if (convert == PROXY_MAGIC && key->IsNumber()) { key = isolate_->factory()->NumberToString(key); } int prev_size = string_properties_->NumberOfElements(); string_properties_ = OrderedHashSet::Add(string_properties_, key); if (prev_size < string_properties_->NumberOfElements()) { length_++; level_string_length_++; return true; } else { return false; } } bool KeyAccumulator::AddSymbolKey(Handle key) { if (symbol_properties_.is_null()) { symbol_properties_ = OrderedHashSet::Allocate(isolate_, 16); } int prev_size = symbol_properties_->NumberOfElements(); symbol_properties_ = OrderedHashSet::Add(symbol_properties_, key); if (prev_size < symbol_properties_->NumberOfElements()) { length_++; level_symbol_length_++; return true; } else { return false; } } void KeyAccumulator::AddKeys(Handle array, AddKeyConversion convert) { int add_length = array->length(); if (add_length == 0) return; for (int i = 0; i < add_length; i++) { Handle current(array->get(i), isolate_); AddKey(current, convert); } } void KeyAccumulator::AddKeys(Handle array_like, AddKeyConversion convert) { DCHECK(array_like->IsJSArray() || array_like->HasSloppyArgumentsElements()); ElementsAccessor* accessor = array_like->GetElementsAccessor(); accessor->AddElementsToKeyAccumulator(array_like, this, convert); } void KeyAccumulator::AddKeysFromProxy(Handle array_like) { // Proxies define a complete list of keys with no distinction of // elements and properties, which breaks the normal assumption for the // KeyAccumulator. AddKeys(array_like, PROXY_MAGIC); // Invert the current length to indicate a present proxy, so we can ignore // element keys for this level. Otherwise we would not fully respect the order // given by the proxy. level_string_length_ = -level_string_length_; } MaybeHandle FilterProxyKeys(Isolate* isolate, Handle owner, Handle keys, PropertyFilter filter) { if (filter == ALL_PROPERTIES) { // Nothing to do. return keys; } int store_position = 0; for (int i = 0; i < keys->length(); ++i) { Handle key(Name::cast(keys->get(i)), isolate); if (key->FilterKey(filter)) continue; // Skip this key. if (filter & ONLY_ENUMERABLE) { PropertyDescriptor desc; Maybe found = JSProxy::GetOwnPropertyDescriptor(isolate, owner, key, &desc); MAYBE_RETURN(found, MaybeHandle()); if (!found.FromJust() || !desc.enumerable()) continue; // Skip this key. } // Keep this key. if (store_position != i) { keys->set(store_position, *key); } store_position++; } if (store_position == 0) return isolate->factory()->empty_fixed_array(); keys->Shrink(store_position); return keys; } // Returns "nothing" in case of exception, "true" on success. Maybe KeyAccumulator::AddKeysFromProxy(Handle proxy, Handle keys) { ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate_, keys, FilterProxyKeys(isolate_, proxy, keys, filter_), Nothing()); // Proxies define a complete list of keys with no distinction of // elements and properties, which breaks the normal assumption for the // KeyAccumulator. if (type_ == OWN_ONLY) { ownProxyKeys_ = keys; level_string_length_ = keys->length(); length_ = level_string_length_; } else { AddKeys(keys, PROXY_MAGIC); } // Invert the current length to indicate a present proxy, so we can ignore // element keys for this level. Otherwise we would not fully respect the order // given by the proxy. level_string_length_ = -level_string_length_; return Just(true); } void KeyAccumulator::AddElementKeysFromInterceptor( Handle array_like) { AddKeys(array_like, CONVERT_TO_ARRAY_INDEX); // The interceptor might introduce duplicates for the current level, since // these keys get added after the objects's normal element keys. SortCurrentElementsListRemoveDuplicates(); } void KeyAccumulator::SortCurrentElementsListRemoveDuplicates() { // Sort and remove duplicates from the current elements level and adjust. // the lengths accordingly. auto last_level = elements_.back(); size_t nof_removed_keys = last_level->size(); std::sort(last_level->begin(), last_level->end()); last_level->erase(std::unique(last_level->begin(), last_level->end()), last_level->end()); // Adjust total length by the number of removed duplicates. nof_removed_keys -= last_level->size(); length_ -= static_cast(nof_removed_keys); } void KeyAccumulator::SortCurrentElementsList() { if (elements_.empty()) return; auto element_keys = elements_.back(); std::sort(element_keys->begin(), element_keys->end()); } void KeyAccumulator::NextPrototype() { // Store the protoLength on the first call of this method. if (!elements_.empty()) { level_lengths_.push_back(level_string_length_); level_lengths_.push_back(level_symbol_length_); } elements_.push_back(new std::vector()); level_string_length_ = 0; level_symbol_length_ = 0; } namespace { void TrySettingEmptyEnumCache(JSReceiver* object) { Map* map = object->map(); DCHECK_EQ(kInvalidEnumCacheSentinel, map->EnumLength()); if (!map->OnlyHasSimpleProperties()) return; if (map->IsJSProxyMap()) return; if (map->NumberOfOwnDescriptors() > 0) { int number_of_enumerable_own_properties = map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS); if (number_of_enumerable_own_properties > 0) return; } DCHECK(object->IsJSObject()); map->SetEnumLength(0); } bool CheckAndInitalizeSimpleEnumCache(JSReceiver* object) { if (object->map()->EnumLength() == kInvalidEnumCacheSentinel) { TrySettingEmptyEnumCache(object); } if (object->map()->EnumLength() != 0) return false; DCHECK(object->IsJSObject()); return !JSObject::cast(object)->HasEnumerableElements(); } } // namespace void FastKeyAccumulator::Prepare() { DisallowHeapAllocation no_gc; // Directly go for the fast path for OWN_ONLY keys. if (type_ == OWN_ONLY) return; // Fully walk the prototype chain and find the last prototype with keys. is_receiver_simple_enum_ = false; has_empty_prototype_ = true; JSReceiver* first_non_empty_prototype; for (PrototypeIterator iter(isolate_, *receiver_); !iter.IsAtEnd(); iter.Advance()) { JSReceiver* current = iter.GetCurrent(); if (CheckAndInitalizeSimpleEnumCache(current)) continue; has_empty_prototype_ = false; first_non_empty_prototype = current; // TODO(cbruni): use the first non-empty prototype. USE(first_non_empty_prototype); return; } DCHECK(has_empty_prototype_); is_receiver_simple_enum_ = receiver_->map()->EnumLength() != kInvalidEnumCacheSentinel && !JSObject::cast(*receiver_)->HasEnumerableElements(); } namespace { Handle GetOwnKeysWithElements(Isolate* isolate, Handle object, GetKeysConversion convert) { Handle keys = JSObject::GetFastEnumPropertyKeys(isolate, object); ElementsAccessor* accessor = object->GetElementsAccessor(); Handle result = accessor->PrependElementIndices(object, keys, convert, ONLY_ENUMERABLE); if (FLAG_trace_for_in_enumerate) { PrintF("| strings=%d symbols=0 elements=%u || prototypes>=1 ||\n", keys->length(), result->length() - keys->length()); } return result; } MaybeHandle GetOwnKeysWithUninitializedEnumCache( Isolate* isolate, Handle object) { // Uninitalized enum cache Map* map = object->map(); if (object->elements() != isolate->heap()->empty_fixed_array() || object->elements() != isolate->heap()->empty_slow_element_dictionary()) { // Assume that there are elements. return MaybeHandle(); } int number_of_own_descriptors = map->NumberOfOwnDescriptors(); if (number_of_own_descriptors == 0) { map->SetEnumLength(0); return isolate->factory()->empty_fixed_array(); } // We have no elements but possibly enumerable property keys, hence we can // directly initialize the enum cache. return JSObject::GetFastEnumPropertyKeys(isolate, object); } } // namespace MaybeHandle FastKeyAccumulator::GetKeys(GetKeysConversion convert) { Handle keys; if (GetKeysFast(convert).ToHandle(&keys)) { return keys; } return GetKeysSlow(convert); } MaybeHandle FastKeyAccumulator::GetKeysFast( GetKeysConversion convert) { bool own_only = has_empty_prototype_ || type_ == OWN_ONLY; if (!own_only || !receiver_->map()->OnlyHasSimpleProperties()) { return MaybeHandle(); } Handle keys; DCHECK(receiver_->IsJSObject()); Handle object = Handle::cast(receiver_); int enum_length = receiver_->map()->EnumLength(); if (enum_length == kInvalidEnumCacheSentinel) { // Try initializing the enum cache and return own properties. if (GetOwnKeysWithUninitializedEnumCache(isolate_, object) .ToHandle(&keys)) { if (FLAG_trace_for_in_enumerate) { PrintF("| strings=%d symbols=0 elements=0 || prototypes>=1 ||\n", keys->length()); } is_receiver_simple_enum_ = object->map()->EnumLength() != kInvalidEnumCacheSentinel; return keys; } } // The properties-only case failed because there were probably elements on the // receiver. return GetOwnKeysWithElements(isolate_, object, convert); } MaybeHandle FastKeyAccumulator::GetKeysSlow( GetKeysConversion convert) { return JSReceiver::GetKeys(receiver_, type_, ENUMERABLE_STRINGS); } } // namespace internal } // namespace v8