// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_IA32 #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/base/utils/random-number-generator.h" #include "src/bootstrapper.h" #include "src/callable.h" #include "src/codegen.h" #include "src/debug/debug.h" #include "src/external-reference-table.h" #include "src/frame-constants.h" #include "src/frames-inl.h" #include "src/runtime/runtime.h" #include "src/ia32/assembler-ia32-inl.h" #include "src/ia32/macro-assembler-ia32.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // MacroAssembler implementation. MacroAssembler::MacroAssembler(Isolate* isolate, void* buffer, int size, CodeObjectRequired create_code_object) : TurboAssembler(isolate, buffer, size, create_code_object) {} TurboAssembler::TurboAssembler(Isolate* isolate, void* buffer, int buffer_size, CodeObjectRequired create_code_object) : Assembler(isolate, buffer, buffer_size), isolate_(isolate) { if (create_code_object == CodeObjectRequired::kYes) { code_object_ = Handle<HeapObject>::New(isolate->heap()->undefined_value(), isolate); } } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) { Handle<Object> object = isolate()->heap()->root_handle(index); if (object->IsHeapObject()) { mov(destination, Handle<HeapObject>::cast(object)); } else { mov(destination, Immediate(Smi::cast(*object))); } return; } ExternalReference roots_array_start = ExternalReference::roots_array_start(isolate()); mov(destination, Immediate(index)); mov(destination, Operand::StaticArray(destination, times_pointer_size, roots_array_start)); } void MacroAssembler::CompareRoot(Register with, Register scratch, Heap::RootListIndex index) { ExternalReference roots_array_start = ExternalReference::roots_array_start(isolate()); mov(scratch, Immediate(index)); cmp(with, Operand::StaticArray(scratch, times_pointer_size, roots_array_start)); } void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) { DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index)); Handle<Object> object = isolate()->heap()->root_handle(index); if (object->IsHeapObject()) { cmp(with, Handle<HeapObject>::cast(object)); } else { cmp(with, Immediate(Smi::cast(*object))); } } void MacroAssembler::CompareRoot(const Operand& with, Heap::RootListIndex index) { DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index)); Handle<Object> object = isolate()->heap()->root_handle(index); if (object->IsHeapObject()) { cmp(with, Handle<HeapObject>::cast(object)); } else { cmp(with, Immediate(Smi::cast(*object))); } } void MacroAssembler::PushRoot(Heap::RootListIndex index) { DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index)); Handle<Object> object = isolate()->heap()->root_handle(index); if (object->IsHeapObject()) { Push(Handle<HeapObject>::cast(object)); } else { Push(Smi::cast(*object)); } } static constexpr Register saved_regs[] = {eax, ecx, edx}; static constexpr int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register); int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) const { int bytes = 0; for (int i = 0; i < kNumberOfSavedRegs; i++) { Register reg = saved_regs[i]; if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { bytes += kPointerSize; } } if (fp_mode == kSaveFPRegs) { // Count all XMM registers except XMM0. bytes += kDoubleSize * (XMMRegister::kNumRegisters - 1); } return bytes; } int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. int bytes = 0; for (int i = 0; i < kNumberOfSavedRegs; i++) { Register reg = saved_regs[i]; if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { push(reg); bytes += kPointerSize; } } if (fp_mode == kSaveFPRegs) { // Save all XMM registers except XMM0. int delta = kDoubleSize * (XMMRegister::kNumRegisters - 1); sub(esp, Immediate(delta)); for (int i = XMMRegister::kNumRegisters - 1; i > 0; i--) { XMMRegister reg = XMMRegister::from_code(i); movsd(Operand(esp, (i - 1) * kDoubleSize), reg); } bytes += delta; } return bytes; } int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { int bytes = 0; if (fp_mode == kSaveFPRegs) { // Restore all XMM registers except XMM0. int delta = kDoubleSize * (XMMRegister::kNumRegisters - 1); for (int i = XMMRegister::kNumRegisters - 1; i > 0; i--) { XMMRegister reg = XMMRegister::from_code(i); movsd(reg, Operand(esp, (i - 1) * kDoubleSize)); } add(esp, Immediate(delta)); bytes += delta; } for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) { Register reg = saved_regs[i]; if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { pop(reg); bytes += kPointerSize; } } return bytes; } void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cc, Label* condition_met, Label::Distance distance) { CheckPageFlag(object, scratch, MemoryChunk::kIsInNewSpaceMask, cc, condition_met, distance); } void MacroAssembler::RememberedSetHelper( Register object, // Only used for debug checks. Register addr, Register scratch, SaveFPRegsMode save_fp, MacroAssembler::RememberedSetFinalAction and_then) { Label done; if (emit_debug_code()) { Label ok; JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear); int3(); bind(&ok); } // Load store buffer top. ExternalReference store_buffer = ExternalReference::store_buffer_top(isolate()); mov(scratch, Operand::StaticVariable(store_buffer)); // Store pointer to buffer. mov(Operand(scratch, 0), addr); // Increment buffer top. add(scratch, Immediate(kPointerSize)); // Write back new top of buffer. mov(Operand::StaticVariable(store_buffer), scratch); // Call stub on end of buffer. // Check for end of buffer. test(scratch, Immediate(StoreBuffer::kStoreBufferMask)); if (and_then == kReturnAtEnd) { Label buffer_overflowed; j(equal, &buffer_overflowed, Label::kNear); ret(0); bind(&buffer_overflowed); } else { DCHECK(and_then == kFallThroughAtEnd); j(not_equal, &done, Label::kNear); } StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp); CallStub(&store_buffer_overflow); if (and_then == kReturnAtEnd) { ret(0); } else { DCHECK(and_then == kFallThroughAtEnd); bind(&done); } } void TurboAssembler::SlowTruncateToIDelayed(Zone* zone, Register result_reg, Register input_reg, int offset) { CallStubDelayed( new (zone) DoubleToIStub(nullptr, input_reg, result_reg, offset, true)); } void MacroAssembler::DoubleToI(Register result_reg, XMMRegister input_reg, XMMRegister scratch, MinusZeroMode minus_zero_mode, Label* lost_precision, Label* is_nan, Label* minus_zero, Label::Distance dst) { DCHECK(input_reg != scratch); cvttsd2si(result_reg, Operand(input_reg)); Cvtsi2sd(scratch, Operand(result_reg)); ucomisd(scratch, input_reg); j(not_equal, lost_precision, dst); j(parity_even, is_nan, dst); if (minus_zero_mode == FAIL_ON_MINUS_ZERO) { Label done; // The integer converted back is equal to the original. We // only have to test if we got -0 as an input. test(result_reg, Operand(result_reg)); j(not_zero, &done, Label::kNear); movmskpd(result_reg, input_reg); // Bit 0 contains the sign of the double in input_reg. // If input was positive, we are ok and return 0, otherwise // jump to minus_zero. and_(result_reg, 1); j(not_zero, minus_zero, dst); bind(&done); } } void TurboAssembler::LoadUint32(XMMRegister dst, const Operand& src) { Label done; cmp(src, Immediate(0)); ExternalReference uint32_bias = ExternalReference::address_of_uint32_bias(); Cvtsi2sd(dst, src); j(not_sign, &done, Label::kNear); addsd(dst, Operand::StaticVariable(uint32_bias)); bind(&done); } void MacroAssembler::RecordWriteField( Register object, int offset, Register value, Register dst, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done, Label::kNear); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kPointerSize. DCHECK(IsAligned(offset, kPointerSize)); lea(dst, FieldOperand(object, offset)); if (emit_debug_code()) { Label ok; test_b(dst, Immediate(kPointerSize - 1)); j(zero, &ok, Label::kNear); int3(); bind(&ok); } RecordWrite(object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK, pointers_to_here_check_for_value); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(value, Immediate(bit_cast<int32_t>(kZapValue))); mov(dst, Immediate(bit_cast<int32_t>(kZapValue))); } } void TurboAssembler::SaveRegisters(RegList registers) { DCHECK(NumRegs(registers) > 0); for (int i = 0; i < Register::kNumRegisters; ++i) { if ((registers >> i) & 1u) { push(Register::from_code(i)); } } } void TurboAssembler::RestoreRegisters(RegList registers) { DCHECK(NumRegs(registers) > 0); for (int i = Register::kNumRegisters - 1; i >= 0; --i) { if ((registers >> i) & 1u) { pop(Register::from_code(i)); } } } void TurboAssembler::CallRecordWriteStub( Register object, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, // i.e. always emit remember set and save FP registers in RecordWriteStub. If // large performance regression is observed, we should use these values to // avoid unnecessary work. Callable const callable = Builtins::CallableFor(isolate(), Builtins::kRecordWrite); RegList registers = callable.descriptor().allocatable_registers(); SaveRegisters(registers); Register object_parameter(callable.descriptor().GetRegisterParameter( RecordWriteDescriptor::kObject)); Register slot_parameter( callable.descriptor().GetRegisterParameter(RecordWriteDescriptor::kSlot)); Register isolate_parameter(callable.descriptor().GetRegisterParameter( RecordWriteDescriptor::kIsolate)); Register remembered_set_parameter(callable.descriptor().GetRegisterParameter( RecordWriteDescriptor::kRememberedSet)); Register fp_mode_parameter(callable.descriptor().GetRegisterParameter( RecordWriteDescriptor::kFPMode)); push(object); push(address); pop(slot_parameter); pop(object_parameter); mov(isolate_parameter, Immediate(ExternalReference::isolate_address(isolate()))); Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); Call(callable.code(), RelocInfo::CODE_TARGET); RestoreRegisters(registers); } void MacroAssembler::RecordWriteForMap( Register object, Handle<Map> map, Register scratch1, Register scratch2, SaveFPRegsMode save_fp) { Label done; Register address = scratch1; Register value = scratch2; if (emit_debug_code()) { Label ok; lea(address, FieldOperand(object, HeapObject::kMapOffset)); test_b(address, Immediate((1 << kPointerSizeLog2) - 1)); j(zero, &ok, Label::kNear); int3(); bind(&ok); } DCHECK(object != value); DCHECK(object != address); DCHECK(value != address); AssertNotSmi(object); if (!FLAG_incremental_marking) { return; } // Compute the address. lea(address, FieldOperand(object, HeapObject::kMapOffset)); // A single check of the map's pages interesting flag suffices, since it is // only set during incremental collection, and then it's also guaranteed that // the from object's page's interesting flag is also set. This optimization // relies on the fact that maps can never be in new space. DCHECK(!isolate()->heap()->InNewSpace(*map)); CheckPageFlagForMap(map, MemoryChunk::kPointersToHereAreInterestingMask, zero, &done, Label::kNear); RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET, save_fp); CallStub(&stub); bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(value, Immediate(bit_cast<int32_t>(kZapValue))); mov(scratch1, Immediate(bit_cast<int32_t>(kZapValue))); mov(scratch2, Immediate(bit_cast<int32_t>(kZapValue))); } } void MacroAssembler::RecordWrite( Register object, Register address, Register value, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) { DCHECK(object != value); DCHECK(object != address); DCHECK(value != address); AssertNotSmi(object); if (remembered_set_action == OMIT_REMEMBERED_SET && !FLAG_incremental_marking) { return; } if (emit_debug_code()) { Label ok; cmp(value, Operand(address, 0)); j(equal, &ok, Label::kNear); int3(); bind(&ok); } // First, check if a write barrier is even needed. The tests below // catch stores of Smis and stores into young gen. Label done; if (smi_check == INLINE_SMI_CHECK) { // Skip barrier if writing a smi. JumpIfSmi(value, &done, Label::kNear); } if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) { CheckPageFlag(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, zero, &done, Label::kNear); } CheckPageFlag(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done, Label::kNear); #ifdef V8_CSA_WRITE_BARRIER CallRecordWriteStub(object, address, remembered_set_action, fp_mode); #else RecordWriteStub stub(isolate(), object, value, address, remembered_set_action, fp_mode); CallStub(&stub); #endif bind(&done); // Count number of write barriers in generated code. isolate()->counters()->write_barriers_static()->Increment(); IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(address, Immediate(bit_cast<int32_t>(kZapValue))); mov(value, Immediate(bit_cast<int32_t>(kZapValue))); } } void MacroAssembler::MaybeDropFrames() { // Check whether we need to drop frames to restart a function on the stack. ExternalReference restart_fp = ExternalReference::debug_restart_fp_address(isolate()); mov(ebx, Operand::StaticVariable(restart_fp)); test(ebx, ebx); j(not_zero, BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET); } void TurboAssembler::Cvtsi2sd(XMMRegister dst, const Operand& src) { xorps(dst, dst); cvtsi2sd(dst, src); } void TurboAssembler::Cvtui2ss(XMMRegister dst, Register src, Register tmp) { Label msb_set_src; Label jmp_return; test(src, src); j(sign, &msb_set_src, Label::kNear); cvtsi2ss(dst, src); jmp(&jmp_return, Label::kNear); bind(&msb_set_src); mov(tmp, src); shr(src, 1); // Recover the least significant bit to avoid rounding errors. and_(tmp, Immediate(1)); or_(src, tmp); cvtsi2ss(dst, src); addss(dst, dst); bind(&jmp_return); } void TurboAssembler::ShlPair(Register high, Register low, uint8_t shift) { if (shift >= 32) { mov(high, low); shl(high, shift - 32); xor_(low, low); } else { shld(high, low, shift); shl(low, shift); } } void TurboAssembler::ShlPair_cl(Register high, Register low) { shld_cl(high, low); shl_cl(low); Label done; test(ecx, Immediate(0x20)); j(equal, &done, Label::kNear); mov(high, low); xor_(low, low); bind(&done); } void TurboAssembler::ShrPair(Register high, Register low, uint8_t shift) { if (shift >= 32) { mov(low, high); shr(low, shift - 32); xor_(high, high); } else { shrd(high, low, shift); shr(high, shift); } } void TurboAssembler::ShrPair_cl(Register high, Register low) { shrd_cl(low, high); shr_cl(high); Label done; test(ecx, Immediate(0x20)); j(equal, &done, Label::kNear); mov(low, high); xor_(high, high); bind(&done); } void TurboAssembler::SarPair(Register high, Register low, uint8_t shift) { if (shift >= 32) { mov(low, high); sar(low, shift - 32); sar(high, 31); } else { shrd(high, low, shift); sar(high, shift); } } void TurboAssembler::SarPair_cl(Register high, Register low) { shrd_cl(low, high); sar_cl(high); Label done; test(ecx, Immediate(0x20)); j(equal, &done, Label::kNear); mov(low, high); sar(high, 31); bind(&done); } void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type, Register map) { mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); CmpInstanceType(map, type); } void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { cmpb(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(type)); } void MacroAssembler::CompareMap(Register obj, Handle<Map> map) { cmp(FieldOperand(obj, HeapObject::kMapOffset), map); } void MacroAssembler::CheckMap(Register obj, Handle<Map> map, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } CompareMap(obj, map); j(not_equal, fail); } void MacroAssembler::AssertSmi(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(equal, kOperandIsNotASmi); } } void MacroAssembler::AssertFixedArray(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsASmiAndNotAFixedArray); Push(object); CmpObjectType(object, FIXED_ARRAY_TYPE, object); Pop(object); Check(equal, kOperandIsNotAFixedArray); } } void MacroAssembler::AssertFunction(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsASmiAndNotAFunction); Push(object); CmpObjectType(object, JS_FUNCTION_TYPE, object); Pop(object); Check(equal, kOperandIsNotAFunction); } } void MacroAssembler::AssertBoundFunction(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsASmiAndNotABoundFunction); Push(object); CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object); Pop(object); Check(equal, kOperandIsNotABoundFunction); } } void MacroAssembler::AssertGeneratorObject(Register object) { if (!emit_debug_code()) return; test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsASmiAndNotAGeneratorObject); { Push(object); Register map = object; // Load map mov(map, FieldOperand(object, HeapObject::kMapOffset)); Label do_check; // Check if JSGeneratorObject CmpInstanceType(map, JS_GENERATOR_OBJECT_TYPE); j(equal, &do_check, Label::kNear); // Check if JSAsyncGeneratorObject CmpInstanceType(map, JS_ASYNC_GENERATOR_OBJECT_TYPE); bind(&do_check); Pop(object); } Check(equal, kOperandIsNotAGeneratorObject); } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) { if (emit_debug_code()) { Label done_checking; AssertNotSmi(object); cmp(object, isolate()->factory()->undefined_value()); j(equal, &done_checking); cmp(FieldOperand(object, 0), Immediate(isolate()->factory()->allocation_site_map())); Assert(equal, kExpectedUndefinedOrCell); bind(&done_checking); } } void MacroAssembler::AssertNotSmi(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, kOperandIsASmi); } } void TurboAssembler::StubPrologue(StackFrame::Type type) { push(ebp); // Caller's frame pointer. mov(ebp, esp); push(Immediate(StackFrame::TypeToMarker(type))); } void TurboAssembler::Prologue() { push(ebp); // Caller's frame pointer. mov(ebp, esp); push(esi); // Callee's context. push(edi); // Callee's JS function. } void TurboAssembler::EnterFrame(StackFrame::Type type) { push(ebp); mov(ebp, esp); push(Immediate(StackFrame::TypeToMarker(type))); if (type == StackFrame::INTERNAL) { push(Immediate(CodeObject())); } if (emit_debug_code()) { cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value())); Check(not_equal, kCodeObjectNotProperlyPatched); } } void TurboAssembler::LeaveFrame(StackFrame::Type type) { if (emit_debug_code()) { cmp(Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset), Immediate(StackFrame::TypeToMarker(type))); Check(equal, kStackFrameTypesMustMatch); } leave(); } void MacroAssembler::EnterBuiltinFrame(Register context, Register target, Register argc) { Push(ebp); Move(ebp, esp); Push(context); Push(target); Push(argc); } void MacroAssembler::LeaveBuiltinFrame(Register context, Register target, Register argc) { Pop(argc); Pop(target); Pop(context); leave(); } void MacroAssembler::EnterExitFramePrologue(StackFrame::Type frame_type) { DCHECK(frame_type == StackFrame::EXIT || frame_type == StackFrame::BUILTIN_EXIT); // Set up the frame structure on the stack. DCHECK_EQ(+2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); DCHECK_EQ(+1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); push(ebp); mov(ebp, esp); // Reserve room for entry stack pointer and push the code object. push(Immediate(StackFrame::TypeToMarker(frame_type))); DCHECK_EQ(-2 * kPointerSize, ExitFrameConstants::kSPOffset); push(Immediate(0)); // Saved entry sp, patched before call. DCHECK_EQ(-3 * kPointerSize, ExitFrameConstants::kCodeOffset); push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot. // Save the frame pointer and the context in top. ExternalReference c_entry_fp_address(IsolateAddressId::kCEntryFPAddress, isolate()); ExternalReference context_address(IsolateAddressId::kContextAddress, isolate()); ExternalReference c_function_address(IsolateAddressId::kCFunctionAddress, isolate()); mov(Operand::StaticVariable(c_entry_fp_address), ebp); mov(Operand::StaticVariable(context_address), esi); mov(Operand::StaticVariable(c_function_address), ebx); } void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) { // Optionally save all XMM registers. if (save_doubles) { int space = XMMRegister::kNumRegisters * kDoubleSize + argc * kPointerSize; sub(esp, Immediate(space)); const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; for (int i = 0; i < XMMRegister::kNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); movsd(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg); } } else { sub(esp, Immediate(argc * kPointerSize)); } // Get the required frame alignment for the OS. const int kFrameAlignment = base::OS::ActivationFrameAlignment(); if (kFrameAlignment > 0) { DCHECK(base::bits::IsPowerOfTwo(kFrameAlignment)); and_(esp, -kFrameAlignment); } // Patch the saved entry sp. mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp); } void MacroAssembler::EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type) { EnterExitFramePrologue(frame_type); // Set up argc and argv in callee-saved registers. int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; mov(edi, eax); lea(esi, Operand(ebp, eax, times_4, offset)); // Reserve space for argc, argv and isolate. EnterExitFrameEpilogue(argc, save_doubles); } void MacroAssembler::EnterApiExitFrame(int argc) { EnterExitFramePrologue(StackFrame::EXIT); EnterExitFrameEpilogue(argc, false); } void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) { // Optionally restore all XMM registers. if (save_doubles) { const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; for (int i = 0; i < XMMRegister::kNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); movsd(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize))); } } if (pop_arguments) { // Get the return address from the stack and restore the frame pointer. mov(ecx, Operand(ebp, 1 * kPointerSize)); mov(ebp, Operand(ebp, 0 * kPointerSize)); // Pop the arguments and the receiver from the caller stack. lea(esp, Operand(esi, 1 * kPointerSize)); // Push the return address to get ready to return. push(ecx); } else { // Otherwise just leave the exit frame. leave(); } LeaveExitFrameEpilogue(true); } void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) { // Restore current context from top and clear it in debug mode. ExternalReference context_address(IsolateAddressId::kContextAddress, isolate()); if (restore_context) { mov(esi, Operand::StaticVariable(context_address)); } #ifdef DEBUG mov(Operand::StaticVariable(context_address), Immediate(0)); #endif // Clear the top frame. ExternalReference c_entry_fp_address(IsolateAddressId::kCEntryFPAddress, isolate()); mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0)); } void MacroAssembler::LeaveApiExitFrame(bool restore_context) { mov(esp, ebp); pop(ebp); LeaveExitFrameEpilogue(restore_context); } void MacroAssembler::PushStackHandler() { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); // Link the current handler as the next handler. ExternalReference handler_address(IsolateAddressId::kHandlerAddress, isolate()); push(Operand::StaticVariable(handler_address)); // Set this new handler as the current one. mov(Operand::StaticVariable(handler_address), esp); } void MacroAssembler::PopStackHandler() { STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); ExternalReference handler_address(IsolateAddressId::kHandlerAddress, isolate()); pop(Operand::StaticVariable(handler_address)); add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize)); } void MacroAssembler::LoadAllocationTopHelper(Register result, Register scratch, AllocationFlags flags) { ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); // Just return if allocation top is already known. if ((flags & RESULT_CONTAINS_TOP) != 0) { // No use of scratch if allocation top is provided. DCHECK(scratch == no_reg); #ifdef DEBUG // Assert that result actually contains top on entry. cmp(result, Operand::StaticVariable(allocation_top)); Check(equal, kUnexpectedAllocationTop); #endif return; } // Move address of new object to result. Use scratch register if available. if (scratch == no_reg) { mov(result, Operand::StaticVariable(allocation_top)); } else { mov(scratch, Immediate(allocation_top)); mov(result, Operand(scratch, 0)); } } void MacroAssembler::UpdateAllocationTopHelper(Register result_end, Register scratch, AllocationFlags flags) { if (emit_debug_code()) { test(result_end, Immediate(kObjectAlignmentMask)); Check(zero, kUnalignedAllocationInNewSpace); } ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); // Update new top. Use scratch if available. if (scratch == no_reg) { mov(Operand::StaticVariable(allocation_top), result_end); } else { mov(Operand(scratch, 0), result_end); } } void MacroAssembler::Allocate(int object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0); DCHECK(object_size <= kMaxRegularHeapObjectSize); if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. mov(result, Immediate(0x7091)); if (result_end.is_valid()) { mov(result_end, Immediate(0x7191)); } if (scratch.is_valid()) { mov(scratch, Immediate(0x7291)); } } jmp(gc_required); return; } DCHECK(result != result_end); // Load address of new object into result. LoadAllocationTopHelper(result, scratch, flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); // Align the next allocation. Storing the filler map without checking top is // safe in new-space because the limit of the heap is aligned there. if ((flags & DOUBLE_ALIGNMENT) != 0) { DCHECK(kPointerAlignment * 2 == kDoubleAlignment); Label aligned; test(result, Immediate(kDoubleAlignmentMask)); j(zero, &aligned, Label::kNear); if ((flags & PRETENURE) != 0) { cmp(result, Operand::StaticVariable(allocation_limit)); j(above_equal, gc_required); } mov(Operand(result, 0), Immediate(isolate()->factory()->one_pointer_filler_map())); add(result, Immediate(kDoubleSize / 2)); bind(&aligned); } // Calculate new top and bail out if space is exhausted. Register top_reg = result_end.is_valid() ? result_end : result; if (top_reg != result) { mov(top_reg, result); } add(top_reg, Immediate(object_size)); cmp(top_reg, Operand::StaticVariable(allocation_limit)); j(above, gc_required); UpdateAllocationTopHelper(top_reg, scratch, flags); if (top_reg == result) { sub(result, Immediate(object_size - kHeapObjectTag)); } else { // Tag the result. DCHECK(kHeapObjectTag == 1); inc(result); } } void MacroAssembler::AllocateJSValue(Register result, Register constructor, Register value, Register scratch, Label* gc_required) { DCHECK(result != constructor); DCHECK(result != scratch); DCHECK(result != value); // Allocate JSValue in new space. Allocate(JSValue::kSize, result, scratch, no_reg, gc_required, NO_ALLOCATION_FLAGS); // Initialize the JSValue. LoadGlobalFunctionInitialMap(constructor, scratch); mov(FieldOperand(result, HeapObject::kMapOffset), scratch); LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex); mov(FieldOperand(result, JSObject::kPropertiesOrHashOffset), scratch); mov(FieldOperand(result, JSObject::kElementsOffset), scratch); mov(FieldOperand(result, JSValue::kValueOffset), value); STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); } void MacroAssembler::GetMapConstructor(Register result, Register map, Register temp) { Label done, loop; mov(result, FieldOperand(map, Map::kConstructorOrBackPointerOffset)); bind(&loop); JumpIfSmi(result, &done, Label::kNear); CmpObjectType(result, MAP_TYPE, temp); j(not_equal, &done, Label::kNear); mov(result, FieldOperand(result, Map::kConstructorOrBackPointerOffset)); jmp(&loop); bind(&done); } void MacroAssembler::CallStub(CodeStub* stub) { DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs. call(stub->GetCode(), RelocInfo::CODE_TARGET); } void TurboAssembler::CallStubDelayed(CodeStub* stub) { DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs. call(stub); } void MacroAssembler::TailCallStub(CodeStub* stub) { jmp(stub->GetCode(), RelocInfo::CODE_TARGET); } bool TurboAssembler::AllowThisStubCall(CodeStub* stub) { return has_frame() || !stub->SometimesSetsUpAFrame(); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. CHECK(f->nargs < 0 || f->nargs == num_arguments); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Move(eax, Immediate(num_arguments)); mov(ebx, Immediate(ExternalReference(f, isolate()))); CEntryStub ces(isolate(), 1, save_doubles); CallStub(&ces); } void TurboAssembler::CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid, SaveFPRegsMode save_doubles) { const Runtime::Function* f = Runtime::FunctionForId(fid); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Move(eax, Immediate(f->nargs)); mov(ebx, Immediate(ExternalReference(f, isolate()))); CallStubDelayed(new (zone) CEntryStub(nullptr, 1, save_doubles)); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[8] : argument num_arguments - 1 // ... // -- esp[8 * num_arguments] : argument 0 (receiver) // // For runtime functions with variable arguments: // -- eax : number of arguments // ----------------------------------- const Runtime::Function* function = Runtime::FunctionForId(fid); DCHECK_EQ(1, function->result_size); if (function->nargs >= 0) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(eax, Immediate(function->nargs)); } JumpToExternalReference(ExternalReference(fid, isolate())); } void MacroAssembler::JumpToExternalReference(const ExternalReference& ext, bool builtin_exit_frame) { // Set the entry point and jump to the C entry runtime stub. mov(ebx, Immediate(ext)); CEntryStub ces(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, builtin_exit_frame); jmp(ces.GetCode(), RelocInfo::CODE_TARGET); } void TurboAssembler::PrepareForTailCall( const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1, ReturnAddressState ra_state, int number_of_temp_values_after_return_address) { #if DEBUG if (callee_args_count.is_reg()) { DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, scratch1)); } else { DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); } DCHECK(ra_state != ReturnAddressState::kNotOnStack || number_of_temp_values_after_return_address == 0); #endif // Calculate the destination address where we will put the return address // after we drop current frame. Register new_sp_reg = scratch0; if (callee_args_count.is_reg()) { sub(caller_args_count_reg, callee_args_count.reg()); lea(new_sp_reg, Operand(ebp, caller_args_count_reg, times_pointer_size, StandardFrameConstants::kCallerPCOffset - number_of_temp_values_after_return_address * kPointerSize)); } else { lea(new_sp_reg, Operand(ebp, caller_args_count_reg, times_pointer_size, StandardFrameConstants::kCallerPCOffset - (callee_args_count.immediate() + number_of_temp_values_after_return_address) * kPointerSize)); } if (FLAG_debug_code) { cmp(esp, new_sp_reg); Check(below, kStackAccessBelowStackPointer); } // Copy return address from caller's frame to current frame's return address // to avoid its trashing and let the following loop copy it to the right // place. Register tmp_reg = scratch1; if (ra_state == ReturnAddressState::kOnStack) { mov(tmp_reg, Operand(ebp, StandardFrameConstants::kCallerPCOffset)); mov(Operand(esp, number_of_temp_values_after_return_address * kPointerSize), tmp_reg); } else { DCHECK(ReturnAddressState::kNotOnStack == ra_state); DCHECK_EQ(0, number_of_temp_values_after_return_address); Push(Operand(ebp, StandardFrameConstants::kCallerPCOffset)); } // Restore caller's frame pointer now as it could be overwritten by // the copying loop. mov(ebp, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); // +2 here is to copy both receiver and return address. Register count_reg = caller_args_count_reg; if (callee_args_count.is_reg()) { lea(count_reg, Operand(callee_args_count.reg(), 2 + number_of_temp_values_after_return_address)); } else { mov(count_reg, Immediate(callee_args_count.immediate() + 2 + number_of_temp_values_after_return_address)); // TODO(ishell): Unroll copying loop for small immediate values. } // Now copy callee arguments to the caller frame going backwards to avoid // callee arguments corruption (source and destination areas could overlap). Label loop, entry; jmp(&entry, Label::kNear); bind(&loop); dec(count_reg); mov(tmp_reg, Operand(esp, count_reg, times_pointer_size, 0)); mov(Operand(new_sp_reg, count_reg, times_pointer_size, 0), tmp_reg); bind(&entry); cmp(count_reg, Immediate(0)); j(not_equal, &loop, Label::kNear); // Leave current frame. mov(esp, new_sp_reg); } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag, Label::Distance done_near) { bool definitely_matches = false; *definitely_mismatches = false; Label invoke; if (expected.is_immediate()) { DCHECK(actual.is_immediate()); mov(eax, actual.immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; mov(ebx, expected.immediate()); } } } else { if (actual.is_immediate()) { // Expected is in register, actual is immediate. This is the // case when we invoke function values without going through the // IC mechanism. mov(eax, actual.immediate()); cmp(expected.reg(), actual.immediate()); j(equal, &invoke); DCHECK(expected.reg() == ebx); } else if (expected.reg() != actual.reg()) { // Both expected and actual are in (different) registers. This // is the case when we invoke functions using call and apply. cmp(expected.reg(), actual.reg()); j(equal, &invoke); DCHECK(actual.reg() == eax); DCHECK(expected.reg() == ebx); } else { definitely_matches = true; Move(eax, actual.reg()); } } if (!definitely_matches) { Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); if (flag == CALL_FUNCTION) { call(adaptor, RelocInfo::CODE_TARGET); if (!*definitely_mismatches) { jmp(done, done_near); } } else { jmp(adaptor, RelocInfo::CODE_TARGET); } bind(&invoke); } } void MacroAssembler::CheckDebugHook(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual) { Label skip_hook; ExternalReference debug_hook_active = ExternalReference::debug_hook_on_function_call_address(isolate()); cmpb(Operand::StaticVariable(debug_hook_active), Immediate(0)); j(equal, &skip_hook); { FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); if (expected.is_reg()) { SmiTag(expected.reg()); Push(expected.reg()); } if (actual.is_reg()) { SmiTag(actual.reg()); Push(actual.reg()); } if (new_target.is_valid()) { Push(new_target); } Push(fun); Push(fun); CallRuntime(Runtime::kDebugOnFunctionCall); Pop(fun); if (new_target.is_valid()) { Pop(new_target); } if (actual.is_reg()) { Pop(actual.reg()); SmiUntag(actual.reg()); } if (expected.is_reg()) { Pop(expected.reg()); SmiUntag(expected.reg()); } } bind(&skip_hook); } void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(function == edi); DCHECK_IMPLIES(new_target.is_valid(), new_target == edx); // On function call, call into the debugger if necessary. CheckDebugHook(function, new_target, expected, actual); // Clear the new.target register if not given. if (!new_target.is_valid()) { mov(edx, isolate()->factory()->undefined_value()); } Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, &done, &definitely_mismatches, flag, Label::kNear); if (!definitely_mismatches) { // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. mov(ecx, FieldOperand(function, JSFunction::kCodeOffset)); add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag)); if (flag == CALL_FUNCTION) { call(ecx); } else { DCHECK(flag == JUMP_FUNCTION); jmp(ecx); } bind(&done); } } void MacroAssembler::InvokeFunction(Register fun, Register new_target, const ParameterCount& actual, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(fun == edi); mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount expected(ebx); InvokeFunctionCode(edi, new_target, expected, actual, flag); } void MacroAssembler::InvokeFunction(Register fun, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(fun == edi); mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); InvokeFunctionCode(edi, no_reg, expected, actual, flag); } void MacroAssembler::InvokeFunction(Handle<JSFunction> function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { Move(edi, function); InvokeFunction(edi, expected, actual, flag); } void MacroAssembler::LoadGlobalProxy(Register dst) { mov(dst, NativeContextOperand()); mov(dst, ContextOperand(dst, Context::GLOBAL_PROXY_INDEX)); } void MacroAssembler::LoadGlobalFunction(int index, Register function) { // Load the native context from the current context. mov(function, NativeContextOperand()); // Load the function from the native context. mov(function, ContextOperand(function, index)); } void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, Register map) { // Load the initial map. The global functions all have initial maps. mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); if (emit_debug_code()) { Label ok, fail; CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK); jmp(&ok); bind(&fail); Abort(kGlobalFunctionsMustHaveInitialMap); bind(&ok); } } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // The registers are pushed starting with the lowest encoding, // which means that lowest encodings are furthest away from // the stack pointer. DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters); return kNumSafepointRegisters - reg_code - 1; } void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) { mov(value, cell); mov(value, FieldOperand(value, WeakCell::kValueOffset)); } void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss) { GetWeakValue(value, cell); JumpIfSmi(value, miss); } void TurboAssembler::Ret() { ret(0); } void TurboAssembler::Ret(int bytes_dropped, Register scratch) { if (is_uint16(bytes_dropped)) { ret(bytes_dropped); } else { pop(scratch); add(esp, Immediate(bytes_dropped)); push(scratch); ret(0); } } void MacroAssembler::Drop(int stack_elements) { if (stack_elements > 0) { add(esp, Immediate(stack_elements * kPointerSize)); } } void TurboAssembler::Move(Register dst, Register src) { if (dst != src) { mov(dst, src); } } void TurboAssembler::Move(Register dst, const Immediate& x) { if (!x.is_heap_object_request() && x.is_zero() && RelocInfo::IsNone(x.rmode())) { xor_(dst, dst); // Shorter than mov of 32-bit immediate 0. } else { mov(dst, x); } } void TurboAssembler::Move(const Operand& dst, const Immediate& x) { mov(dst, x); } void TurboAssembler::Move(Register dst, Handle<HeapObject> object) { mov(dst, object); } void TurboAssembler::Move(XMMRegister dst, uint32_t src) { if (src == 0) { pxor(dst, dst); } else { unsigned cnt = base::bits::CountPopulation32(src); unsigned nlz = base::bits::CountLeadingZeros32(src); unsigned ntz = base::bits::CountTrailingZeros32(src); if (nlz + cnt + ntz == 32) { pcmpeqd(dst, dst); if (ntz == 0) { psrld(dst, 32 - cnt); } else { pslld(dst, 32 - cnt); if (nlz != 0) psrld(dst, nlz); } } else { push(eax); mov(eax, Immediate(src)); movd(dst, Operand(eax)); pop(eax); } } } void TurboAssembler::Move(XMMRegister dst, uint64_t src) { if (src == 0) { pxor(dst, dst); } else { uint32_t lower = static_cast<uint32_t>(src); uint32_t upper = static_cast<uint32_t>(src >> 32); unsigned cnt = base::bits::CountPopulation64(src); unsigned nlz = base::bits::CountLeadingZeros64(src); unsigned ntz = base::bits::CountTrailingZeros64(src); if (nlz + cnt + ntz == 64) { pcmpeqd(dst, dst); if (ntz == 0) { psrlq(dst, 64 - cnt); } else { psllq(dst, 64 - cnt); if (nlz != 0) psrlq(dst, nlz); } } else if (lower == 0) { Move(dst, upper); psllq(dst, 32); } else if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope scope(this, SSE4_1); push(eax); Move(eax, Immediate(lower)); movd(dst, Operand(eax)); Move(eax, Immediate(upper)); pinsrd(dst, Operand(eax), 1); pop(eax); } else { push(Immediate(upper)); push(Immediate(lower)); movsd(dst, Operand(esp, 0)); add(esp, Immediate(kDoubleSize)); } } } void TurboAssembler::Pshuflw(XMMRegister dst, const Operand& src, uint8_t shuffle) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpshuflw(dst, src, shuffle); } else { pshuflw(dst, src, shuffle); } } void TurboAssembler::Pshufd(XMMRegister dst, const Operand& src, uint8_t shuffle) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpshufd(dst, src, shuffle); } else { pshufd(dst, src, shuffle); } } void TurboAssembler::Psignd(XMMRegister dst, const Operand& src) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpsignd(dst, dst, src); return; } if (CpuFeatures::IsSupported(SSSE3)) { CpuFeatureScope sse_scope(this, SSSE3); psignd(dst, src); return; } UNREACHABLE(); } void TurboAssembler::Pshufb(XMMRegister dst, const Operand& src) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpshufb(dst, dst, src); return; } if (CpuFeatures::IsSupported(SSSE3)) { CpuFeatureScope sse_scope(this, SSSE3); pshufb(dst, src); return; } UNREACHABLE(); } void TurboAssembler::Pextrb(Register dst, XMMRegister src, int8_t imm8) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpextrb(dst, src, imm8); return; } if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope sse_scope(this, SSE4_1); pextrb(dst, src, imm8); return; } UNREACHABLE(); } void TurboAssembler::Pextrw(Register dst, XMMRegister src, int8_t imm8) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpextrw(dst, src, imm8); return; } if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope sse_scope(this, SSE4_1); pextrw(dst, src, imm8); return; } UNREACHABLE(); } void TurboAssembler::Pextrd(Register dst, XMMRegister src, int8_t imm8) { if (imm8 == 0) { Movd(dst, src); return; } if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpextrd(dst, src, imm8); return; } if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope sse_scope(this, SSE4_1); pextrd(dst, src, imm8); return; } DCHECK_LT(imm8, 4); pshufd(xmm0, src, imm8); movd(dst, xmm0); } void TurboAssembler::Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8, bool is_64_bits) { if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope sse_scope(this, SSE4_1); pinsrd(dst, src, imm8); return; } if (is_64_bits) { movd(xmm0, src); if (imm8 == 1) { punpckldq(dst, xmm0); } else { DCHECK_EQ(0, imm8); psrlq(dst, 32); punpckldq(xmm0, dst); movaps(dst, xmm0); } } else { DCHECK_LT(imm8, 4); push(eax); mov(eax, src); pinsrw(dst, eax, imm8 * 2); shr(eax, 16); pinsrw(dst, eax, imm8 * 2 + 1); pop(eax); } } void TurboAssembler::Lzcnt(Register dst, const Operand& src) { if (CpuFeatures::IsSupported(LZCNT)) { CpuFeatureScope scope(this, LZCNT); lzcnt(dst, src); return; } Label not_zero_src; bsr(dst, src); j(not_zero, ¬_zero_src, Label::kNear); Move(dst, Immediate(63)); // 63^31 == 32 bind(¬_zero_src); xor_(dst, Immediate(31)); // for x in [0..31], 31^x == 31-x. } void TurboAssembler::Tzcnt(Register dst, const Operand& src) { if (CpuFeatures::IsSupported(BMI1)) { CpuFeatureScope scope(this, BMI1); tzcnt(dst, src); return; } Label not_zero_src; bsf(dst, src); j(not_zero, ¬_zero_src, Label::kNear); Move(dst, Immediate(32)); // The result of tzcnt is 32 if src = 0. bind(¬_zero_src); } void TurboAssembler::Popcnt(Register dst, const Operand& src) { if (CpuFeatures::IsSupported(POPCNT)) { CpuFeatureScope scope(this, POPCNT); popcnt(dst, src); return; } UNREACHABLE(); } void MacroAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Operand operand = Operand::StaticVariable(ExternalReference(counter)); if (value == 1) { inc(operand); } else { add(operand, Immediate(value)); } } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Operand operand = Operand::StaticVariable(ExternalReference(counter)); if (value == 1) { dec(operand); } else { sub(operand, Immediate(value)); } } } void MacroAssembler::IncrementCounter(Condition cc, StatsCounter* counter, int value) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Label skip; j(NegateCondition(cc), &skip); pushfd(); IncrementCounter(counter, value); popfd(); bind(&skip); } } void MacroAssembler::DecrementCounter(Condition cc, StatsCounter* counter, int value) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Label skip; j(NegateCondition(cc), &skip); pushfd(); DecrementCounter(counter, value); popfd(); bind(&skip); } } void TurboAssembler::Assert(Condition cc, BailoutReason reason) { if (emit_debug_code()) Check(cc, reason); } void TurboAssembler::AssertUnreachable(BailoutReason reason) { if (emit_debug_code()) Abort(reason); } void TurboAssembler::Check(Condition cc, BailoutReason reason) { Label L; j(cc, &L); Abort(reason); // will not return here bind(&L); } void TurboAssembler::CheckStackAlignment() { int frame_alignment = base::OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); Label alignment_as_expected; test(esp, Immediate(frame_alignment_mask)); j(zero, &alignment_as_expected); // Abort if stack is not aligned. int3(); bind(&alignment_as_expected); } } void TurboAssembler::Abort(BailoutReason reason) { #ifdef DEBUG const char* msg = GetBailoutReason(reason); if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } if (FLAG_trap_on_abort) { int3(); return; } #endif Move(edx, Smi::FromInt(static_cast<int>(reason))); // Disable stub call restrictions to always allow calls to abort. if (!has_frame()) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } else { Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } // will not return here int3(); } void MacroAssembler::LoadInstanceDescriptors(Register map, Register descriptors) { mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset)); } void MacroAssembler::LoadAccessor(Register dst, Register holder, int accessor_index, AccessorComponent accessor) { mov(dst, FieldOperand(holder, HeapObject::kMapOffset)); LoadInstanceDescriptors(dst, dst); mov(dst, FieldOperand(dst, DescriptorArray::GetValueOffset(accessor_index))); int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset : AccessorPair::kSetterOffset; mov(dst, FieldOperand(dst, offset)); } void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register object1, Register object2, Register scratch1, Register scratch2, Label* failure) { // Check that both objects are not smis. STATIC_ASSERT(kSmiTag == 0); mov(scratch1, object1); and_(scratch1, object2); JumpIfSmi(scratch1, failure); // Load instance type for both strings. mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset)); mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset)); movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); // Check that both are flat one-byte strings. const int kFlatOneByteStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; // Interleave bits from both instance types and compare them in one check. const int kShift = 8; DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << kShift)); and_(scratch1, kFlatOneByteStringMask); and_(scratch2, kFlatOneByteStringMask); shl(scratch2, kShift); or_(scratch1, scratch2); cmp(scratch1, kFlatOneByteStringTag | (kFlatOneByteStringTag << kShift)); j(not_equal, failure); } void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name, Label::Distance distance) { STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); Label succeed; test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); j(zero, &succeed); cmpb(operand, Immediate(SYMBOL_TYPE)); j(not_equal, not_unique_name, distance); bind(&succeed); } void TurboAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { int frame_alignment = base::OS::ActivationFrameAlignment(); if (frame_alignment != 0) { // Make stack end at alignment and make room for num_arguments words // and the original value of esp. mov(scratch, esp); sub(esp, Immediate((num_arguments + 1) * kPointerSize)); DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); and_(esp, -frame_alignment); mov(Operand(esp, num_arguments * kPointerSize), scratch); } else { sub(esp, Immediate(num_arguments * kPointerSize)); } } void TurboAssembler::CallCFunction(ExternalReference function, int num_arguments) { // Trashing eax is ok as it will be the return value. mov(eax, Immediate(function)); CallCFunction(eax, num_arguments); } void TurboAssembler::CallCFunction(Register function, int num_arguments) { DCHECK_LE(num_arguments, kMaxCParameters); DCHECK(has_frame()); // Check stack alignment. if (emit_debug_code()) { CheckStackAlignment(); } call(function); if (base::OS::ActivationFrameAlignment() != 0) { mov(esp, Operand(esp, num_arguments * kPointerSize)); } else { add(esp, Immediate(num_arguments * kPointerSize)); } } #ifdef DEBUG bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6, Register reg7, Register reg8) { int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + reg7.is_valid() + reg8.is_valid(); RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); if (reg7.is_valid()) regs |= reg7.bit(); if (reg8.is_valid()) regs |= reg8.bit(); int n_of_non_aliasing_regs = NumRegs(regs); return n_of_valid_regs != n_of_non_aliasing_regs; } #endif CodePatcher::CodePatcher(Isolate* isolate, byte* address, int size) : address_(address), size_(size), masm_(isolate, address, size + Assembler::kGap, CodeObjectRequired::kNo) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. Assembler::FlushICache(masm_.isolate(), address_, size_); // Check that the code was patched as expected. DCHECK(masm_.pc_ == address_ + size_); DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance) { DCHECK(cc == zero || cc == not_zero); if (scratch == object) { and_(scratch, Immediate(~Page::kPageAlignmentMask)); } else { mov(scratch, Immediate(~Page::kPageAlignmentMask)); and_(scratch, object); } if (mask < (1 << kBitsPerByte)) { test_b(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask)); } else { test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask)); } j(cc, condition_met, condition_met_distance); } void MacroAssembler::CheckPageFlagForMap( Handle<Map> map, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance) { DCHECK(cc == zero || cc == not_zero); Page* page = Page::FromAddress(map->address()); DCHECK(!serializer_enabled()); // Serializer cannot match page_flags. ExternalReference reference(ExternalReference::page_flags(page)); // The inlined static address check of the page's flags relies // on maps never being compacted. DCHECK(!isolate()->heap()->mark_compact_collector()-> IsOnEvacuationCandidate(*map)); if (mask < (1 << kBitsPerByte)) { test_b(Operand::StaticVariable(reference), Immediate(mask)); } else { test(Operand::StaticVariable(reference), Immediate(mask)); } j(cc, condition_met, condition_met_distance); } void MacroAssembler::JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black, Label::Distance on_black_near) { HasColor(object, scratch0, scratch1, on_black, on_black_near, 1, 1); // kBlackBitPattern. DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0); } void MacroAssembler::HasColor(Register object, Register bitmap_scratch, Register mask_scratch, Label* has_color, Label::Distance has_color_distance, int first_bit, int second_bit) { DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, ecx)); GetMarkBits(object, bitmap_scratch, mask_scratch); Label other_color, word_boundary; test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear); add(mask_scratch, mask_scratch); // Shift left 1 by adding. j(zero, &word_boundary, Label::kNear); test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance); jmp(&other_color, Label::kNear); bind(&word_boundary); test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), Immediate(1)); j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance); bind(&other_color); } void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg) { DCHECK(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx)); mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask)); and_(bitmap_reg, addr_reg); mov(ecx, addr_reg); int shift = Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2; shr(ecx, shift); and_(ecx, (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1)); add(bitmap_reg, ecx); mov(ecx, addr_reg); shr(ecx, kPointerSizeLog2); and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1); mov(mask_reg, Immediate(1)); shl_cl(mask_reg); } void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch, Register mask_scratch, Label* value_is_white, Label::Distance distance) { DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ecx)); GetMarkBits(value, bitmap_scratch, mask_scratch); // If the value is black or grey we don't need to do anything. DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0); DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0); DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0); // Since both black and grey have a 1 in the first position and white does // not have a 1 there we only need to check one bit. test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); j(zero, value_is_white, Label::kNear); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_IA32