// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <math.h> #include <stdint.h> #include <stdlib.h> #include <limits> #include "include/v8config.h" #include "src/base/bits.h" #include "src/trap-handler/trap-handler.h" #include "src/utils.h" #include "src/wasm/wasm-external-refs.h" namespace v8 { namespace internal { namespace wasm { void f32_trunc_wrapper(Address data) { WriteUnalignedValue<float>(data, truncf(ReadUnalignedValue<float>(data))); } void f32_floor_wrapper(Address data) { WriteUnalignedValue<float>(data, floorf(ReadUnalignedValue<float>(data))); } void f32_ceil_wrapper(Address data) { WriteUnalignedValue<float>(data, ceilf(ReadUnalignedValue<float>(data))); } void f32_nearest_int_wrapper(Address data) { WriteUnalignedValue<float>(data, nearbyintf(ReadUnalignedValue<float>(data))); } void f64_trunc_wrapper(Address data) { WriteUnalignedValue<double>(data, trunc(ReadUnalignedValue<double>(data))); } void f64_floor_wrapper(Address data) { WriteUnalignedValue<double>(data, floor(ReadUnalignedValue<double>(data))); } void f64_ceil_wrapper(Address data) { WriteUnalignedValue<double>(data, ceil(ReadUnalignedValue<double>(data))); } void f64_nearest_int_wrapper(Address data) { WriteUnalignedValue<double>(data, nearbyint(ReadUnalignedValue<double>(data))); } void int64_to_float32_wrapper(Address data) { int64_t input = ReadUnalignedValue<int64_t>(data); WriteUnalignedValue<float>(data, static_cast<float>(input)); } void uint64_to_float32_wrapper(Address data) { uint64_t input = ReadUnalignedValue<uint64_t>(data); float result = static_cast<float>(input); #if V8_CC_MSVC // With MSVC we use static_cast<float>(uint32_t) instead of // static_cast<float>(uint64_t) to achieve round-to-nearest-ties-even // semantics. The idea is to calculate // static_cast<float>(high_word) * 2^32 + static_cast<float>(low_word). To // achieve proper rounding in all cases we have to adjust the high_word // with a "rounding bit" sometimes. The rounding bit is stored in the LSB of // the high_word if the low_word may affect the rounding of the high_word. uint32_t low_word = static_cast<uint32_t>(input & 0xFFFFFFFF); uint32_t high_word = static_cast<uint32_t>(input >> 32); float shift = static_cast<float>(1ull << 32); // If the MSB of the high_word is set, then we make space for a rounding bit. if (high_word < 0x80000000) { high_word <<= 1; shift = static_cast<float>(1ull << 31); } if ((high_word & 0xFE000000) && low_word) { // Set the rounding bit. high_word |= 1; } result = static_cast<float>(high_word); result *= shift; result += static_cast<float>(low_word); #endif WriteUnalignedValue<float>(data, result); } void int64_to_float64_wrapper(Address data) { int64_t input = ReadUnalignedValue<int64_t>(data); WriteUnalignedValue<double>(data, static_cast<double>(input)); } void uint64_to_float64_wrapper(Address data) { uint64_t input = ReadUnalignedValue<uint64_t>(data); double result = static_cast<double>(input); #if V8_CC_MSVC // With MSVC we use static_cast<double>(uint32_t) instead of // static_cast<double>(uint64_t) to achieve round-to-nearest-ties-even // semantics. The idea is to calculate // static_cast<double>(high_word) * 2^32 + static_cast<double>(low_word). uint32_t low_word = static_cast<uint32_t>(input & 0xFFFFFFFF); uint32_t high_word = static_cast<uint32_t>(input >> 32); double shift = static_cast<double>(1ull << 32); result = static_cast<double>(high_word); result *= shift; result += static_cast<double>(low_word); #endif WriteUnalignedValue<double>(data, result); } int32_t float32_to_int64_wrapper(Address data) { // We use "<" here to check the upper bound because of rounding problems: With // "<=" some inputs would be considered within int64 range which are actually // not within int64 range. float input = ReadUnalignedValue<float>(data); if (input >= static_cast<float>(std::numeric_limits<int64_t>::min()) && input < static_cast<float>(std::numeric_limits<int64_t>::max())) { WriteUnalignedValue<int64_t>(data, static_cast<int64_t>(input)); return 1; } return 0; } int32_t float32_to_uint64_wrapper(Address data) { float input = ReadUnalignedValue<float>(data); // We use "<" here to check the upper bound because of rounding problems: With // "<=" some inputs would be considered within uint64 range which are actually // not within uint64 range. if (input > -1.0 && input < static_cast<float>(std::numeric_limits<uint64_t>::max())) { WriteUnalignedValue<uint64_t>(data, static_cast<uint64_t>(input)); return 1; } return 0; } int32_t float64_to_int64_wrapper(Address data) { // We use "<" here to check the upper bound because of rounding problems: With // "<=" some inputs would be considered within int64 range which are actually // not within int64 range. double input = ReadUnalignedValue<double>(data); if (input >= static_cast<double>(std::numeric_limits<int64_t>::min()) && input < static_cast<double>(std::numeric_limits<int64_t>::max())) { WriteUnalignedValue<int64_t>(data, static_cast<int64_t>(input)); return 1; } return 0; } int32_t float64_to_uint64_wrapper(Address data) { // We use "<" here to check the upper bound because of rounding problems: With // "<=" some inputs would be considered within uint64 range which are actually // not within uint64 range. double input = ReadUnalignedValue<double>(data); if (input > -1.0 && input < static_cast<double>(std::numeric_limits<uint64_t>::max())) { WriteUnalignedValue<uint64_t>(data, static_cast<uint64_t>(input)); return 1; } return 0; } int32_t int64_div_wrapper(Address data) { int64_t dividend = ReadUnalignedValue<int64_t>(data); int64_t divisor = ReadUnalignedValue<int64_t>(data + sizeof(dividend)); if (divisor == 0) { return 0; } if (divisor == -1 && dividend == std::numeric_limits<int64_t>::min()) { return -1; } WriteUnalignedValue<int64_t>(data, dividend / divisor); return 1; } int32_t int64_mod_wrapper(Address data) { int64_t dividend = ReadUnalignedValue<int64_t>(data); int64_t divisor = ReadUnalignedValue<int64_t>(data + sizeof(dividend)); if (divisor == 0) { return 0; } WriteUnalignedValue<int64_t>(data, dividend % divisor); return 1; } int32_t uint64_div_wrapper(Address data) { uint64_t dividend = ReadUnalignedValue<uint64_t>(data); uint64_t divisor = ReadUnalignedValue<uint64_t>(data + sizeof(dividend)); if (divisor == 0) { return 0; } WriteUnalignedValue<uint64_t>(data, dividend / divisor); return 1; } int32_t uint64_mod_wrapper(Address data) { uint64_t dividend = ReadUnalignedValue<uint64_t>(data); uint64_t divisor = ReadUnalignedValue<uint64_t>(data + sizeof(dividend)); if (divisor == 0) { return 0; } WriteUnalignedValue<uint64_t>(data, dividend % divisor); return 1; } uint32_t word32_ctz_wrapper(Address data) { return base::bits::CountTrailingZeros(ReadUnalignedValue<uint32_t>(data)); } uint32_t word64_ctz_wrapper(Address data) { return base::bits::CountTrailingZeros(ReadUnalignedValue<uint64_t>(data)); } uint32_t word32_popcnt_wrapper(Address data) { return base::bits::CountPopulation(ReadUnalignedValue<uint32_t>(data)); } uint32_t word64_popcnt_wrapper(Address data) { return base::bits::CountPopulation(ReadUnalignedValue<uint64_t>(data)); } uint32_t word32_rol_wrapper(Address data) { uint32_t input = ReadUnalignedValue<uint32_t>(data); uint32_t shift = ReadUnalignedValue<uint32_t>(data + sizeof(input)) & 31; return (input << shift) | (input >> (32 - shift)); } uint32_t word32_ror_wrapper(Address data) { uint32_t input = ReadUnalignedValue<uint32_t>(data); uint32_t shift = ReadUnalignedValue<uint32_t>(data + sizeof(input)) & 31; return (input >> shift) | (input << (32 - shift)); } void float64_pow_wrapper(Address data) { double x = ReadUnalignedValue<double>(data); double y = ReadUnalignedValue<double>(data + sizeof(x)); WriteUnalignedValue<double>(data, Pow(x, y)); } void set_thread_in_wasm_flag() { trap_handler::SetThreadInWasm(); } void clear_thread_in_wasm_flag() { trap_handler::ClearThreadInWasm(); } static WasmTrapCallbackForTesting wasm_trap_callback_for_testing = nullptr; void set_trap_callback_for_testing(WasmTrapCallbackForTesting callback) { wasm_trap_callback_for_testing = callback; } void call_trap_callback_for_testing() { if (wasm_trap_callback_for_testing) { wasm_trap_callback_for_testing(); } } } // namespace wasm } // namespace internal } // namespace v8