// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_OBJECTS_MAP_INL_H_ #define V8_OBJECTS_MAP_INL_H_ #include "src/objects/map.h" #include "src/heap/heap-write-barrier-inl.h" #include "src/objects/api-callbacks-inl.h" #include "src/objects/cell-inl.h" #include "src/objects/descriptor-array-inl.h" #include "src/objects/field-type.h" #include "src/objects/instance-type-inl.h" #include "src/objects/layout-descriptor-inl.h" #include "src/objects/objects-inl.h" #include "src/objects/property.h" #include "src/objects/prototype-info-inl.h" #include "src/objects/shared-function-info.h" #include "src/objects/templates-inl.h" #include "src/objects/transitions-inl.h" // Has to be the last include (doesn't have include guards): #include "src/objects/object-macros.h" namespace v8 { namespace internal { OBJECT_CONSTRUCTORS_IMPL(Map, HeapObject) CAST_ACCESSOR(Map) DEF_GETTER(Map, instance_descriptors, DescriptorArray) { return TaggedField<DescriptorArray, kInstanceDescriptorsOffset>::load(isolate, *this); } SYNCHRONIZED_ACCESSORS(Map, synchronized_instance_descriptors, DescriptorArray, kInstanceDescriptorsOffset) // A freshly allocated layout descriptor can be set on an existing map. // We need to use release-store and acquire-load accessor pairs to ensure // that the concurrent marking thread observes initializing stores of the // layout descriptor. SYNCHRONIZED_ACCESSORS_CHECKED(Map, layout_descriptor, LayoutDescriptor, kLayoutDescriptorOffset, FLAG_unbox_double_fields) WEAK_ACCESSORS(Map, raw_transitions, kTransitionsOrPrototypeInfoOffset) ACCESSORS_CHECKED2(Map, prototype, HeapObject, kPrototypeOffset, true, value.IsNull() || value.IsJSReceiver()) ACCESSORS_CHECKED(Map, prototype_info, Object, kTransitionsOrPrototypeInfoOffset, this->is_prototype_map()) // |bit_field| fields. // Concurrent access to |has_prototype_slot| and |has_non_instance_prototype| // is explicitly whitelisted here. The former is never modified after the map // is setup but it's being read by concurrent marker when pointer compression // is enabled. The latter bit can be modified on a live objects. BIT_FIELD_ACCESSORS(Map, relaxed_bit_field, has_non_instance_prototype, Map::Bits1::HasNonInstancePrototypeBit) BIT_FIELD_ACCESSORS(Map, bit_field, is_callable, Map::Bits1::IsCallableBit) BIT_FIELD_ACCESSORS(Map, bit_field, has_named_interceptor, Map::Bits1::HasNamedInterceptorBit) BIT_FIELD_ACCESSORS(Map, bit_field, has_indexed_interceptor, Map::Bits1::HasIndexedInterceptorBit) BIT_FIELD_ACCESSORS(Map, bit_field, is_undetectable, Map::Bits1::IsUndetectableBit) BIT_FIELD_ACCESSORS(Map, bit_field, is_access_check_needed, Map::Bits1::IsAccessCheckNeededBit) BIT_FIELD_ACCESSORS(Map, bit_field, is_constructor, Map::Bits1::IsConstructorBit) BIT_FIELD_ACCESSORS(Map, relaxed_bit_field, has_prototype_slot, Map::Bits1::HasPrototypeSlotBit) // |bit_field2| fields. BIT_FIELD_ACCESSORS(Map, bit_field2, new_target_is_base, Map::Bits2::NewTargetIsBaseBit) BIT_FIELD_ACCESSORS(Map, bit_field2, is_immutable_proto, Map::Bits2::IsImmutablePrototypeBit) // |bit_field3| fields. BIT_FIELD_ACCESSORS(Map, bit_field3, owns_descriptors, Map::Bits3::OwnsDescriptorsBit) BIT_FIELD_ACCESSORS(Map, bit_field3, is_deprecated, Map::Bits3::IsDeprecatedBit) BIT_FIELD_ACCESSORS(Map, bit_field3, is_in_retained_map_list, Map::Bits3::IsInRetainedMapListBit) BIT_FIELD_ACCESSORS(Map, bit_field3, is_prototype_map, Map::Bits3::IsPrototypeMapBit) BIT_FIELD_ACCESSORS(Map, bit_field3, is_migration_target, Map::Bits3::IsMigrationTargetBit) BIT_FIELD_ACCESSORS(Map, bit_field3, is_extensible, Map::Bits3::IsExtensibleBit) BIT_FIELD_ACCESSORS(Map, bit_field3, may_have_interesting_symbols, Map::Bits3::MayHaveInterestingSymbolsBit) BIT_FIELD_ACCESSORS(Map, bit_field3, construction_counter, Map::Bits3::ConstructionCounterBits) DEF_GETTER(Map, GetNamedInterceptor, InterceptorInfo) { DCHECK(has_named_interceptor()); FunctionTemplateInfo info = GetFunctionTemplateInfo(isolate); return InterceptorInfo::cast(info.GetNamedPropertyHandler(isolate)); } DEF_GETTER(Map, GetIndexedInterceptor, InterceptorInfo) { DCHECK(has_indexed_interceptor()); FunctionTemplateInfo info = GetFunctionTemplateInfo(isolate); return InterceptorInfo::cast(info.GetIndexedPropertyHandler(isolate)); } bool Map::IsMostGeneralFieldType(Representation representation, FieldType field_type) { return !representation.IsHeapObject() || field_type.IsAny(); } bool Map::CanHaveFastTransitionableElementsKind(InstanceType instance_type) { return instance_type == JS_ARRAY_TYPE || instance_type == JS_PRIMITIVE_WRAPPER_TYPE || instance_type == JS_ARGUMENTS_OBJECT_TYPE; } bool Map::CanHaveFastTransitionableElementsKind() const { return CanHaveFastTransitionableElementsKind(instance_type()); } bool Map::IsDetached(Isolate* isolate) const { if (is_prototype_map()) return true; return instance_type() == JS_OBJECT_TYPE && NumberOfOwnDescriptors() > 0 && GetBackPointer().IsUndefined(isolate); } // static void Map::GeneralizeIfCanHaveTransitionableFastElementsKind( Isolate* isolate, InstanceType instance_type, Representation* representation, Handle<FieldType>* field_type) { if (CanHaveFastTransitionableElementsKind(instance_type)) { // We don't support propagation of field generalization through elements // kind transitions because they are inserted into the transition tree // before field transitions. In order to avoid complexity of handling // such a case we ensure that all maps with transitionable elements kinds // have the most general field representation and type. *field_type = FieldType::Any(isolate); *representation = Representation::Tagged(); } } Handle<Map> Map::Normalize(Isolate* isolate, Handle<Map> fast_map, PropertyNormalizationMode mode, const char* reason) { return Normalize(isolate, fast_map, fast_map->elements_kind(), mode, reason); } bool Map::EquivalentToForNormalization(const Map other, PropertyNormalizationMode mode) const { return EquivalentToForNormalization(other, elements_kind(), mode); } bool Map::IsUnboxedDoubleField(FieldIndex index) const { const Isolate* isolate = GetIsolateForPtrCompr(*this); return IsUnboxedDoubleField(isolate, index); } bool Map::IsUnboxedDoubleField(const Isolate* isolate, FieldIndex index) const { if (!FLAG_unbox_double_fields) return false; if (!index.is_inobject()) return false; return !layout_descriptor(isolate).IsTagged(index.property_index()); } bool Map::TooManyFastProperties(StoreOrigin store_origin) const { if (UnusedPropertyFields() != 0) return false; if (is_prototype_map()) return false; if (store_origin == StoreOrigin::kNamed) { int limit = Max(kMaxFastProperties, GetInObjectProperties()); FieldCounts counts = GetFieldCounts(); // Only count mutable fields so that objects with large numbers of // constant functions do not go to dictionary mode. That would be bad // because such objects have often been used as modules. int external = counts.mutable_count() - GetInObjectProperties(); return external > limit || counts.GetTotal() > kMaxNumberOfDescriptors; } else { int limit = Max(kFastPropertiesSoftLimit, GetInObjectProperties()); int external = NumberOfFields() - GetInObjectProperties(); return external > limit; } } PropertyDetails Map::GetLastDescriptorDetails(Isolate* isolate) const { return instance_descriptors(isolate).GetDetails(LastAdded()); } InternalIndex Map::LastAdded() const { int number_of_own_descriptors = NumberOfOwnDescriptors(); DCHECK_GT(number_of_own_descriptors, 0); return InternalIndex(number_of_own_descriptors - 1); } int Map::NumberOfOwnDescriptors() const { return Bits3::NumberOfOwnDescriptorsBits::decode(bit_field3()); } void Map::SetNumberOfOwnDescriptors(int number) { DCHECK_LE(number, instance_descriptors().number_of_descriptors()); CHECK_LE(static_cast<unsigned>(number), static_cast<unsigned>(kMaxNumberOfDescriptors)); set_bit_field3( Bits3::NumberOfOwnDescriptorsBits::update(bit_field3(), number)); } InternalIndex::Range Map::IterateOwnDescriptors() const { return InternalIndex::Range(NumberOfOwnDescriptors()); } int Map::EnumLength() const { return Bits3::EnumLengthBits::decode(bit_field3()); } void Map::SetEnumLength(int length) { if (length != kInvalidEnumCacheSentinel) { DCHECK_LE(length, NumberOfOwnDescriptors()); CHECK_LE(static_cast<unsigned>(length), static_cast<unsigned>(kMaxNumberOfDescriptors)); } set_bit_field3(Bits3::EnumLengthBits::update(bit_field3(), length)); } FixedArrayBase Map::GetInitialElements() const { FixedArrayBase result; if (has_fast_elements() || has_fast_string_wrapper_elements() || has_any_nonextensible_elements()) { result = GetReadOnlyRoots().empty_fixed_array(); } else if (has_typed_array_elements()) { result = GetReadOnlyRoots().empty_byte_array(); } else if (has_dictionary_elements()) { result = GetReadOnlyRoots().empty_slow_element_dictionary(); } else { UNREACHABLE(); } DCHECK(!ObjectInYoungGeneration(result)); return result; } VisitorId Map::visitor_id() const { return static_cast<VisitorId>( RELAXED_READ_BYTE_FIELD(*this, kVisitorIdOffset)); } void Map::set_visitor_id(VisitorId id) { CHECK_LT(static_cast<unsigned>(id), 256); RELAXED_WRITE_BYTE_FIELD(*this, kVisitorIdOffset, static_cast<byte>(id)); } int Map::instance_size_in_words() const { return RELAXED_READ_BYTE_FIELD(*this, kInstanceSizeInWordsOffset); } void Map::set_instance_size_in_words(int value) { RELAXED_WRITE_BYTE_FIELD(*this, kInstanceSizeInWordsOffset, static_cast<byte>(value)); } int Map::instance_size() const { return instance_size_in_words() << kTaggedSizeLog2; } void Map::set_instance_size(int value) { CHECK(IsAligned(value, kTaggedSize)); value >>= kTaggedSizeLog2; CHECK_LT(static_cast<unsigned>(value), 256); set_instance_size_in_words(value); } int Map::inobject_properties_start_or_constructor_function_index() const { return RELAXED_READ_BYTE_FIELD( *this, kInObjectPropertiesStartOrConstructorFunctionIndexOffset); } void Map::set_inobject_properties_start_or_constructor_function_index( int value) { CHECK_LT(static_cast<unsigned>(value), 256); RELAXED_WRITE_BYTE_FIELD( *this, kInObjectPropertiesStartOrConstructorFunctionIndexOffset, static_cast<byte>(value)); } int Map::GetInObjectPropertiesStartInWords() const { DCHECK(IsJSObjectMap()); return inobject_properties_start_or_constructor_function_index(); } void Map::SetInObjectPropertiesStartInWords(int value) { CHECK(IsJSObjectMap()); set_inobject_properties_start_or_constructor_function_index(value); } int Map::GetInObjectProperties() const { DCHECK(IsJSObjectMap()); return instance_size_in_words() - GetInObjectPropertiesStartInWords(); } int Map::GetConstructorFunctionIndex() const { DCHECK(IsPrimitiveMap()); return inobject_properties_start_or_constructor_function_index(); } void Map::SetConstructorFunctionIndex(int value) { CHECK(IsPrimitiveMap()); set_inobject_properties_start_or_constructor_function_index(value); } int Map::GetInObjectPropertyOffset(int index) const { return (GetInObjectPropertiesStartInWords() + index) * kTaggedSize; } Handle<Map> Map::AddMissingTransitionsForTesting( Isolate* isolate, Handle<Map> split_map, Handle<DescriptorArray> descriptors, Handle<LayoutDescriptor> full_layout_descriptor) { return AddMissingTransitions(isolate, split_map, descriptors, full_layout_descriptor); } InstanceType Map::instance_type() const { return static_cast<InstanceType>(ReadField<uint16_t>(kInstanceTypeOffset)); } void Map::set_instance_type(InstanceType value) { WriteField<uint16_t>(kInstanceTypeOffset, value); } int Map::UnusedPropertyFields() const { int value = used_or_unused_instance_size_in_words(); DCHECK_IMPLIES(!IsJSObjectMap(), value == 0); int unused; if (value >= JSObject::kFieldsAdded) { unused = instance_size_in_words() - value; } else { // For out of object properties "used_or_unused_instance_size_in_words" // byte encodes the slack in the property array. unused = value; } return unused; } int Map::UnusedInObjectProperties() const { // Like Map::UnusedPropertyFields(), but returns 0 for out of object // properties. int value = used_or_unused_instance_size_in_words(); DCHECK_IMPLIES(!IsJSObjectMap(), value == 0); if (value >= JSObject::kFieldsAdded) { return instance_size_in_words() - value; } return 0; } int Map::used_or_unused_instance_size_in_words() const { return RELAXED_READ_BYTE_FIELD(*this, kUsedOrUnusedInstanceSizeInWordsOffset); } void Map::set_used_or_unused_instance_size_in_words(int value) { CHECK_LE(static_cast<unsigned>(value), 255); RELAXED_WRITE_BYTE_FIELD(*this, kUsedOrUnusedInstanceSizeInWordsOffset, static_cast<byte>(value)); } int Map::UsedInstanceSize() const { int words = used_or_unused_instance_size_in_words(); if (words < JSObject::kFieldsAdded) { // All in-object properties are used and the words is tracking the slack // in the property array. return instance_size(); } return words * kTaggedSize; } void Map::SetInObjectUnusedPropertyFields(int value) { STATIC_ASSERT(JSObject::kFieldsAdded == JSObject::kHeaderSize / kTaggedSize); if (!IsJSObjectMap()) { CHECK_EQ(0, value); set_used_or_unused_instance_size_in_words(0); DCHECK_EQ(0, UnusedPropertyFields()); return; } CHECK_LE(0, value); DCHECK_LE(value, GetInObjectProperties()); int used_inobject_properties = GetInObjectProperties() - value; set_used_or_unused_instance_size_in_words( GetInObjectPropertyOffset(used_inobject_properties) / kTaggedSize); DCHECK_EQ(value, UnusedPropertyFields()); } void Map::SetOutOfObjectUnusedPropertyFields(int value) { STATIC_ASSERT(JSObject::kFieldsAdded == JSObject::kHeaderSize / kTaggedSize); CHECK_LT(static_cast<unsigned>(value), JSObject::kFieldsAdded); // For out of object properties "used_instance_size_in_words" byte encodes // the slack in the property array. set_used_or_unused_instance_size_in_words(value); DCHECK_EQ(value, UnusedPropertyFields()); } void Map::CopyUnusedPropertyFields(Map map) { set_used_or_unused_instance_size_in_words( map.used_or_unused_instance_size_in_words()); DCHECK_EQ(UnusedPropertyFields(), map.UnusedPropertyFields()); } void Map::CopyUnusedPropertyFieldsAdjustedForInstanceSize(Map map) { int value = map.used_or_unused_instance_size_in_words(); if (value >= JSPrimitiveWrapper::kFieldsAdded) { // Unused in-object fields. Adjust the offset from the object’s start // so it matches the distance to the object’s end. value += instance_size_in_words() - map.instance_size_in_words(); } set_used_or_unused_instance_size_in_words(value); DCHECK_EQ(UnusedPropertyFields(), map.UnusedPropertyFields()); } void Map::AccountAddedPropertyField() { // Update used instance size and unused property fields number. STATIC_ASSERT(JSObject::kFieldsAdded == JSObject::kHeaderSize / kTaggedSize); #ifdef DEBUG int new_unused = UnusedPropertyFields() - 1; if (new_unused < 0) new_unused += JSObject::kFieldsAdded; #endif int value = used_or_unused_instance_size_in_words(); if (value >= JSObject::kFieldsAdded) { if (value == instance_size_in_words()) { AccountAddedOutOfObjectPropertyField(0); } else { // The property is added in-object, so simply increment the counter. set_used_or_unused_instance_size_in_words(value + 1); } } else { AccountAddedOutOfObjectPropertyField(value); } DCHECK_EQ(new_unused, UnusedPropertyFields()); } void Map::AccountAddedOutOfObjectPropertyField(int unused_in_property_array) { unused_in_property_array--; if (unused_in_property_array < 0) { unused_in_property_array += JSObject::kFieldsAdded; } CHECK_LT(static_cast<unsigned>(unused_in_property_array), JSObject::kFieldsAdded); set_used_or_unused_instance_size_in_words(unused_in_property_array); DCHECK_EQ(unused_in_property_array, UnusedPropertyFields()); } byte Map::bit_field() const { return ReadField<byte>(kBitFieldOffset); } void Map::set_bit_field(byte value) { WriteField<byte>(kBitFieldOffset, value); } byte Map::relaxed_bit_field() const { return RELAXED_READ_BYTE_FIELD(*this, kBitFieldOffset); } void Map::set_relaxed_bit_field(byte value) { RELAXED_WRITE_BYTE_FIELD(*this, kBitFieldOffset, value); } byte Map::bit_field2() const { return ReadField<byte>(kBitField2Offset); } void Map::set_bit_field2(byte value) { WriteField<byte>(kBitField2Offset, value); } bool Map::is_abandoned_prototype_map() const { return is_prototype_map() && !owns_descriptors(); } bool Map::should_be_fast_prototype_map() const { if (!prototype_info().IsPrototypeInfo()) return false; return PrototypeInfo::cast(prototype_info()).should_be_fast_map(); } void Map::set_elements_kind(ElementsKind elements_kind) { CHECK_LT(static_cast<int>(elements_kind), kElementsKindCount); set_bit_field2( Map::Bits2::ElementsKindBits::update(bit_field2(), elements_kind)); } ElementsKind Map::elements_kind() const { return Map::Bits2::ElementsKindBits::decode(bit_field2()); } bool Map::has_fast_smi_elements() const { return IsSmiElementsKind(elements_kind()); } bool Map::has_fast_object_elements() const { return IsObjectElementsKind(elements_kind()); } bool Map::has_fast_smi_or_object_elements() const { return IsSmiOrObjectElementsKind(elements_kind()); } bool Map::has_fast_double_elements() const { return IsDoubleElementsKind(elements_kind()); } bool Map::has_fast_elements() const { return IsFastElementsKind(elements_kind()); } bool Map::has_sloppy_arguments_elements() const { return IsSloppyArgumentsElementsKind(elements_kind()); } bool Map::has_fast_sloppy_arguments_elements() const { return elements_kind() == FAST_SLOPPY_ARGUMENTS_ELEMENTS; } bool Map::has_fast_string_wrapper_elements() const { return elements_kind() == FAST_STRING_WRAPPER_ELEMENTS; } bool Map::has_typed_array_elements() const { return IsTypedArrayElementsKind(elements_kind()); } bool Map::has_dictionary_elements() const { return IsDictionaryElementsKind(elements_kind()); } bool Map::has_any_nonextensible_elements() const { return IsAnyNonextensibleElementsKind(elements_kind()); } bool Map::has_nonextensible_elements() const { return IsNonextensibleElementsKind(elements_kind()); } bool Map::has_sealed_elements() const { return IsSealedElementsKind(elements_kind()); } bool Map::has_frozen_elements() const { return IsFrozenElementsKind(elements_kind()); } void Map::set_is_dictionary_map(bool value) { uint32_t new_bit_field3 = Bits3::IsDictionaryMapBit::update(bit_field3(), value); new_bit_field3 = Bits3::IsUnstableBit::update(new_bit_field3, value); set_bit_field3(new_bit_field3); } bool Map::is_dictionary_map() const { return Bits3::IsDictionaryMapBit::decode(bit_field3()); } void Map::mark_unstable() { set_bit_field3(Bits3::IsUnstableBit::update(bit_field3(), true)); } bool Map::is_stable() const { return !Bits3::IsUnstableBit::decode(bit_field3()); } bool Map::CanBeDeprecated() const { for (InternalIndex i : IterateOwnDescriptors()) { PropertyDetails details = instance_descriptors().GetDetails(i); if (details.representation().IsNone()) return true; if (details.representation().IsSmi()) return true; if (details.representation().IsDouble() && FLAG_unbox_double_fields) return true; if (details.representation().IsHeapObject()) return true; if (details.kind() == kData && details.location() == kDescriptor) { return true; } } return false; } void Map::NotifyLeafMapLayoutChange(Isolate* isolate) { if (is_stable()) { mark_unstable(); dependent_code().DeoptimizeDependentCodeGroup( DependentCode::kPrototypeCheckGroup); } } bool Map::CanTransition() const { // Only JSObject and subtypes have map transitions and back pointers. return InstanceTypeChecker::IsJSObject(instance_type()); } #define DEF_TESTER(Type, ...) \ bool Map::Is##Type##Map() const { \ return InstanceTypeChecker::Is##Type(instance_type()); \ } INSTANCE_TYPE_CHECKERS(DEF_TESTER) #undef DEF_TESTER bool Map::IsBooleanMap() const { return *this == GetReadOnlyRoots().boolean_map(); } bool Map::IsNullOrUndefinedMap() const { return *this == GetReadOnlyRoots().null_map() || *this == GetReadOnlyRoots().undefined_map(); } bool Map::IsPrimitiveMap() const { return instance_type() <= LAST_PRIMITIVE_HEAP_OBJECT_TYPE; } LayoutDescriptor Map::layout_descriptor_gc_safe() const { DCHECK(FLAG_unbox_double_fields); // The loaded value can be dereferenced on background thread to load the // bitmap. We need acquire load in order to ensure that the bitmap // initializing stores are also visible to the background thread. Object layout_desc = TaggedField<Object, kLayoutDescriptorOffset>::Acquire_Load(*this); return LayoutDescriptor::cast_gc_safe(layout_desc); } bool Map::HasFastPointerLayout() const { DCHECK(FLAG_unbox_double_fields); // The loaded value is used for SMI check only and is not dereferenced, // so relaxed load is safe. Object layout_desc = TaggedField<Object, kLayoutDescriptorOffset>::Relaxed_Load(*this); return LayoutDescriptor::IsFastPointerLayout(layout_desc); } void Map::UpdateDescriptors(Isolate* isolate, DescriptorArray descriptors, LayoutDescriptor layout_desc, int number_of_own_descriptors) { SetInstanceDescriptors(isolate, descriptors, number_of_own_descriptors); if (FLAG_unbox_double_fields) { if (layout_descriptor().IsSlowLayout()) { set_layout_descriptor(layout_desc); } #ifdef VERIFY_HEAP // TODO(ishell): remove these checks from VERIFY_HEAP mode. if (FLAG_verify_heap) { CHECK(layout_descriptor().IsConsistentWithMap(*this)); CHECK_EQ(Map::GetVisitorId(*this), visitor_id()); } #else SLOW_DCHECK(layout_descriptor().IsConsistentWithMap(*this)); DCHECK(visitor_id() == Map::GetVisitorId(*this)); #endif } } void Map::InitializeDescriptors(Isolate* isolate, DescriptorArray descriptors, LayoutDescriptor layout_desc) { SetInstanceDescriptors(isolate, descriptors, descriptors.number_of_descriptors()); if (FLAG_unbox_double_fields) { set_layout_descriptor(layout_desc); #ifdef VERIFY_HEAP // TODO(ishell): remove these checks from VERIFY_HEAP mode. if (FLAG_verify_heap) { CHECK(layout_descriptor().IsConsistentWithMap(*this)); } #else SLOW_DCHECK(layout_descriptor().IsConsistentWithMap(*this)); #endif set_visitor_id(Map::GetVisitorId(*this)); } } void Map::set_bit_field3(uint32_t bits) { RELAXED_WRITE_UINT32_FIELD(*this, kBitField3Offset, bits); } uint32_t Map::bit_field3() const { return RELAXED_READ_UINT32_FIELD(*this, kBitField3Offset); } void Map::clear_padding() { if (FIELD_SIZE(kOptionalPaddingOffset) == 0) return; DCHECK_EQ(4, FIELD_SIZE(kOptionalPaddingOffset)); memset(reinterpret_cast<void*>(address() + kOptionalPaddingOffset), 0, FIELD_SIZE(kOptionalPaddingOffset)); } LayoutDescriptor Map::GetLayoutDescriptor() const { return FLAG_unbox_double_fields ? layout_descriptor() : LayoutDescriptor::FastPointerLayout(); } void Map::AppendDescriptor(Isolate* isolate, Descriptor* desc) { DescriptorArray descriptors = instance_descriptors(); int number_of_own_descriptors = NumberOfOwnDescriptors(); DCHECK(descriptors.number_of_descriptors() == number_of_own_descriptors); { // The following two operations need to happen before the marking write // barrier. descriptors.Append(desc); SetNumberOfOwnDescriptors(number_of_own_descriptors + 1); #ifndef V8_DISABLE_WRITE_BARRIERS MarkingBarrierForDescriptorArray(isolate->heap(), *this, descriptors, number_of_own_descriptors + 1); #endif } // Properly mark the map if the {desc} is an "interesting symbol". if (desc->GetKey()->IsInterestingSymbol()) { set_may_have_interesting_symbols(true); } PropertyDetails details = desc->GetDetails(); if (details.location() == kField) { DCHECK_GT(UnusedPropertyFields(), 0); AccountAddedPropertyField(); } // This function does not support appending double field descriptors and // it should never try to (otherwise, layout descriptor must be updated too). #ifdef DEBUG DCHECK(details.location() != kField || !details.representation().IsDouble()); #endif } DEF_GETTER(Map, GetBackPointer, HeapObject) { Object object = constructor_or_backpointer(isolate); // This is the equivalent of IsMap() but avoids reading the instance type so // it can be used concurrently without acquire load. if (object.IsHeapObject() && HeapObject::cast(object).map(isolate) == GetReadOnlyRoots(isolate).meta_map()) { return Map::cast(object); } // Can't use ReadOnlyRoots(isolate) as this isolate could be produced by // i::GetIsolateForPtrCompr(HeapObject). return GetReadOnlyRoots(isolate).undefined_value(); } void Map::SetBackPointer(HeapObject value, WriteBarrierMode mode) { CHECK_GE(instance_type(), FIRST_JS_RECEIVER_TYPE); CHECK(value.IsMap()); CHECK(GetBackPointer().IsUndefined()); CHECK_IMPLIES(value.IsMap(), Map::cast(value).GetConstructor() == constructor_or_backpointer()); set_constructor_or_backpointer(value, mode); } // static Map Map::ElementsTransitionMap(Isolate* isolate) { DisallowHeapAllocation no_gc; return TransitionsAccessor(isolate, *this, &no_gc) .SearchSpecial(ReadOnlyRoots(isolate).elements_transition_symbol()); } ACCESSORS(Map, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(Map, prototype_validity_cell, Object, kPrototypeValidityCellOffset) ACCESSORS_CHECKED2(Map, constructor_or_backpointer, Object, kConstructorOrBackPointerOrNativeContextOffset, !IsContextMap(), value.IsNull() || !IsContextMap()) ACCESSORS_CHECKED(Map, native_context, NativeContext, kConstructorOrBackPointerOrNativeContextOffset, IsContextMap()) ACCESSORS_CHECKED(Map, wasm_type_info, Foreign, kConstructorOrBackPointerOrNativeContextOffset, IsWasmStructMap() || IsWasmArrayMap()) bool Map::IsPrototypeValidityCellValid() const { Object validity_cell = prototype_validity_cell(); Object value = validity_cell.IsSmi() ? Smi::cast(validity_cell) : Cell::cast(validity_cell).value(); return value == Smi::FromInt(Map::kPrototypeChainValid); } DEF_GETTER(Map, GetConstructor, Object) { Object maybe_constructor = constructor_or_backpointer(isolate); // Follow any back pointers. while (maybe_constructor.IsMap(isolate)) { maybe_constructor = Map::cast(maybe_constructor).constructor_or_backpointer(isolate); } return maybe_constructor; } Object Map::TryGetConstructor(Isolate* isolate, int max_steps) { Object maybe_constructor = constructor_or_backpointer(isolate); // Follow any back pointers. while (maybe_constructor.IsMap(isolate)) { if (max_steps-- == 0) return Smi::FromInt(0); maybe_constructor = Map::cast(maybe_constructor).constructor_or_backpointer(isolate); } return maybe_constructor; } DEF_GETTER(Map, GetFunctionTemplateInfo, FunctionTemplateInfo) { Object constructor = GetConstructor(isolate); if (constructor.IsJSFunction(isolate)) { // TODO(ishell): IsApiFunction(isolate) and get_api_func_data(isolate) DCHECK(JSFunction::cast(constructor).shared(isolate).IsApiFunction()); return JSFunction::cast(constructor).shared(isolate).get_api_func_data(); } DCHECK(constructor.IsFunctionTemplateInfo(isolate)); return FunctionTemplateInfo::cast(constructor); } void Map::SetConstructor(Object constructor, WriteBarrierMode mode) { // Never overwrite a back pointer with a constructor. CHECK(!constructor_or_backpointer().IsMap()); set_constructor_or_backpointer(constructor, mode); } Handle<Map> Map::CopyInitialMap(Isolate* isolate, Handle<Map> map) { return CopyInitialMap(isolate, map, map->instance_size(), map->GetInObjectProperties(), map->UnusedPropertyFields()); } bool Map::IsInobjectSlackTrackingInProgress() const { return construction_counter() != Map::kNoSlackTracking; } void Map::InobjectSlackTrackingStep(Isolate* isolate) { // Slack tracking should only be performed on an initial map. DCHECK(GetBackPointer().IsUndefined()); if (!IsInobjectSlackTrackingInProgress()) return; int counter = construction_counter(); set_construction_counter(counter - 1); if (counter == kSlackTrackingCounterEnd) { CompleteInobjectSlackTracking(isolate); } } int Map::SlackForArraySize(int old_size, int size_limit) { const int max_slack = size_limit - old_size; CHECK_LE(0, max_slack); if (old_size < 4) { DCHECK_LE(1, max_slack); return 1; } return Min(max_slack, old_size / 4); } int Map::InstanceSizeFromSlack(int slack) const { return instance_size() - slack * kTaggedSize; } OBJECT_CONSTRUCTORS_IMPL(NormalizedMapCache, WeakFixedArray) CAST_ACCESSOR(NormalizedMapCache) NEVER_READ_ONLY_SPACE_IMPL(NormalizedMapCache) int NormalizedMapCache::GetIndex(Handle<Map> map) { return map->Hash() % NormalizedMapCache::kEntries; } DEF_GETTER(HeapObject, IsNormalizedMapCache, bool) { if (!IsWeakFixedArray(isolate)) return false; if (WeakFixedArray::cast(*this).length() != NormalizedMapCache::kEntries) { return false; } return true; } } // namespace internal } // namespace v8 #include "src/objects/object-macros-undef.h" #endif // V8_OBJECTS_MAP_INL_H_