// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/scavenger.h" #include "src/heap/array-buffer-collector.h" #include "src/heap/barrier.h" #include "src/heap/gc-tracer.h" #include "src/heap/heap-inl.h" #include "src/heap/item-parallel-job.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/scavenger-inl.h" #include "src/heap/sweeper.h" #include "src/objects/data-handler-inl.h" #include "src/objects/embedder-data-array-inl.h" #include "src/objects/objects-body-descriptors-inl.h" #include "src/objects/transitions-inl.h" #include "src/utils/utils-inl.h" namespace v8 { namespace internal { class PageScavengingItem final : public ItemParallelJob::Item { public: explicit PageScavengingItem(MemoryChunk* chunk) : chunk_(chunk) {} ~PageScavengingItem() override = default; void Process(Scavenger* scavenger) { scavenger->ScavengePage(chunk_); } private: MemoryChunk* const chunk_; }; class ScavengingTask final : public ItemParallelJob::Task { public: ScavengingTask(Heap* heap, Scavenger* scavenger, OneshotBarrier* barrier) : ItemParallelJob::Task(heap->isolate()), heap_(heap), scavenger_(scavenger), barrier_(barrier) {} void RunInParallel(Runner runner) final { if (runner == Runner::kForeground) { TRACE_GC(heap_->tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE_PARALLEL); ProcessItems(); } else { TRACE_BACKGROUND_GC( heap_->tracer(), GCTracer::BackgroundScope::SCAVENGER_BACKGROUND_SCAVENGE_PARALLEL); ProcessItems(); } } private: void ProcessItems() { double scavenging_time = 0.0; { barrier_->Start(); TimedScope scope(&scavenging_time); PageScavengingItem* item = nullptr; while ((item = GetItem<PageScavengingItem>()) != nullptr) { item->Process(scavenger_); item->MarkFinished(); } do { scavenger_->Process(barrier_); } while (!barrier_->Wait()); scavenger_->Process(); } if (FLAG_trace_parallel_scavenge) { PrintIsolate(heap_->isolate(), "scavenge[%p]: time=%.2f copied=%zu promoted=%zu\n", static_cast<void*>(this), scavenging_time, scavenger_->bytes_copied(), scavenger_->bytes_promoted()); } } Heap* const heap_; Scavenger* const scavenger_; OneshotBarrier* const barrier_; }; class IterateAndScavengePromotedObjectsVisitor final : public ObjectVisitor { public: IterateAndScavengePromotedObjectsVisitor(Scavenger* scavenger, bool record_slots) : scavenger_(scavenger), record_slots_(record_slots) {} V8_INLINE void VisitPointers(HeapObject host, ObjectSlot start, ObjectSlot end) final { VisitPointersImpl(host, start, end); } V8_INLINE void VisitPointers(HeapObject host, MaybeObjectSlot start, MaybeObjectSlot end) final { VisitPointersImpl(host, start, end); } V8_INLINE void VisitCodeTarget(Code host, RelocInfo* rinfo) final { Code target = Code::GetCodeFromTargetAddress(rinfo->target_address()); HandleSlot(host, FullHeapObjectSlot(&target), target); } V8_INLINE void VisitEmbeddedPointer(Code host, RelocInfo* rinfo) final { HeapObject heap_object = rinfo->target_object(); HandleSlot(host, FullHeapObjectSlot(&heap_object), heap_object); } inline void VisitEphemeron(HeapObject obj, int entry, ObjectSlot key, ObjectSlot value) override { DCHECK(Heap::IsLargeObject(obj) || obj.IsEphemeronHashTable()); VisitPointer(obj, value); if (ObjectInYoungGeneration(*key)) { // We cannot check the map here, as it might be a large object. scavenger_->RememberPromotedEphemeron( EphemeronHashTable::unchecked_cast(obj), entry); } else { VisitPointer(obj, key); } } private: template <typename TSlot> V8_INLINE void VisitPointersImpl(HeapObject host, TSlot start, TSlot end) { using THeapObjectSlot = typename TSlot::THeapObjectSlot; // Treat weak references as strong. // TODO(marja): Proper weakness handling in the young generation. for (TSlot slot = start; slot < end; ++slot) { typename TSlot::TObject object = *slot; HeapObject heap_object; if (object.GetHeapObject(&heap_object)) { HandleSlot(host, THeapObjectSlot(slot), heap_object); } } } template <typename THeapObjectSlot> V8_INLINE void HandleSlot(HeapObject host, THeapObjectSlot slot, HeapObject target) { static_assert( std::is_same<THeapObjectSlot, FullHeapObjectSlot>::value || std::is_same<THeapObjectSlot, HeapObjectSlot>::value, "Only FullHeapObjectSlot and HeapObjectSlot are expected here"); scavenger_->PageMemoryFence(MaybeObject::FromObject(target)); if (Heap::InFromPage(target)) { SlotCallbackResult result = scavenger_->ScavengeObject(slot, target); bool success = (*slot)->GetHeapObject(&target); USE(success); DCHECK(success); if (result == KEEP_SLOT) { SLOW_DCHECK(target.IsHeapObject()); RememberedSet<OLD_TO_NEW>::Insert(MemoryChunk::FromHeapObject(host), slot.address()); } SLOW_DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate( HeapObject::cast(target))); } else if (record_slots_ && MarkCompactCollector::IsOnEvacuationCandidate( HeapObject::cast(target))) { // We should never try to record off-heap slots. DCHECK((std::is_same<THeapObjectSlot, HeapObjectSlot>::value)); // We cannot call MarkCompactCollector::RecordSlot because that checks // that the host page is not in young generation, which does not hold // for pending large pages. RememberedSet<OLD_TO_OLD>::Insert(MemoryChunk::FromHeapObject(host), slot.address()); } } Scavenger* const scavenger_; const bool record_slots_; }; namespace { V8_INLINE bool IsUnscavengedHeapObject(Heap* heap, Object object) { return Heap::InFromPage(object) && !HeapObject::cast(object).map_word().IsForwardingAddress(); } // Same as IsUnscavengedHeapObject() above but specialized for HeapObjects. V8_INLINE bool IsUnscavengedHeapObject(Heap* heap, HeapObject heap_object) { return Heap::InFromPage(heap_object) && !heap_object.map_word().IsForwardingAddress(); } bool IsUnscavengedHeapObjectSlot(Heap* heap, FullObjectSlot p) { return IsUnscavengedHeapObject(heap, *p); } } // namespace class ScavengeWeakObjectRetainer : public WeakObjectRetainer { public: Object RetainAs(Object object) override { if (!Heap::InFromPage(object)) { return object; } MapWord map_word = HeapObject::cast(object).map_word(); if (map_word.IsForwardingAddress()) { return map_word.ToForwardingAddress(); } return Object(); } }; ScavengerCollector::ScavengerCollector(Heap* heap) : isolate_(heap->isolate()), heap_(heap), parallel_scavenge_semaphore_(0) {} void ScavengerCollector::CollectGarbage() { DCHECK(surviving_new_large_objects_.empty()); ItemParallelJob job(isolate_->cancelable_task_manager(), ¶llel_scavenge_semaphore_); const int kMainThreadId = 0; Scavenger* scavengers[kMaxScavengerTasks]; const bool is_logging = isolate_->LogObjectRelocation(); const int num_scavenge_tasks = NumberOfScavengeTasks(); OneshotBarrier barrier(base::TimeDelta::FromMilliseconds(kMaxWaitTimeMs)); Scavenger::CopiedList copied_list(num_scavenge_tasks); Scavenger::PromotionList promotion_list(num_scavenge_tasks); EphemeronTableList ephemeron_table_list(num_scavenge_tasks); for (int i = 0; i < num_scavenge_tasks; i++) { scavengers[i] = new Scavenger(this, heap_, is_logging, &copied_list, &promotion_list, &ephemeron_table_list, i); job.AddTask(new ScavengingTask(heap_, scavengers[i], &barrier)); } { Sweeper* sweeper = heap_->mark_compact_collector()->sweeper(); // Pause the concurrent sweeper. Sweeper::PauseOrCompleteScope pause_scope(sweeper); // Filter out pages from the sweeper that need to be processed for old to // new slots by the Scavenger. After processing, the Scavenger adds back // pages that are still unsweeped. This way the Scavenger has exclusive // access to the slots of a page and can completely avoid any locks on // the page itself. Sweeper::FilterSweepingPagesScope filter_scope(sweeper, pause_scope); filter_scope.FilterOldSpaceSweepingPages( [](Page* page) { return !page->ContainsSlots<OLD_TO_NEW>(); }); RememberedSet<OLD_TO_NEW>::IterateMemoryChunks( heap_, [&job](MemoryChunk* chunk) { job.AddItem(new PageScavengingItem(chunk)); }); RootScavengeVisitor root_scavenge_visitor(scavengers[kMainThreadId]); { // Identify weak unmodified handles. Requires an unmodified graph. TRACE_GC( heap_->tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE_WEAK_GLOBAL_HANDLES_IDENTIFY); isolate_->global_handles()->IdentifyWeakUnmodifiedObjects( &JSObject::IsUnmodifiedApiObject); } { // Copy roots. TRACE_GC(heap_->tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE_ROOTS); heap_->IterateRoots(&root_scavenge_visitor, VISIT_ALL_IN_SCAVENGE); } { // Parallel phase scavenging all copied and promoted objects. TRACE_GC(heap_->tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE_PARALLEL); job.Run(); DCHECK(copied_list.IsEmpty()); DCHECK(promotion_list.IsEmpty()); } { // Scavenge weak global handles. TRACE_GC(heap_->tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE_WEAK_GLOBAL_HANDLES_PROCESS); isolate_->global_handles()->MarkYoungWeakUnmodifiedObjectsPending( &IsUnscavengedHeapObjectSlot); isolate_->global_handles()->IterateYoungWeakUnmodifiedRootsForFinalizers( &root_scavenge_visitor); scavengers[kMainThreadId]->Process(); DCHECK(copied_list.IsEmpty()); DCHECK(promotion_list.IsEmpty()); isolate_->global_handles() ->IterateYoungWeakUnmodifiedRootsForPhantomHandles( &root_scavenge_visitor, &IsUnscavengedHeapObjectSlot); } { // Finalize parallel scavenging. TRACE_GC(heap_->tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE_FINALIZE); DCHECK(surviving_new_large_objects_.empty()); for (int i = 0; i < num_scavenge_tasks; i++) { scavengers[i]->Finalize(); delete scavengers[i]; } HandleSurvivingNewLargeObjects(); } } { // Update references into new space TRACE_GC(heap_->tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE_UPDATE_REFS); heap_->UpdateYoungReferencesInExternalStringTable( &Heap::UpdateYoungReferenceInExternalStringTableEntry); heap_->incremental_marking()->UpdateMarkingWorklistAfterScavenge(); } if (FLAG_concurrent_marking) { // Ensure that concurrent marker does not track pages that are // going to be unmapped. for (Page* p : PageRange(heap_->new_space()->from_space().first_page(), nullptr)) { heap_->concurrent_marking()->ClearMemoryChunkData(p); } } ProcessWeakReferences(&ephemeron_table_list); // Set age mark. heap_->new_space_->set_age_mark(heap_->new_space()->top()); { TRACE_GC(heap_->tracer(), GCTracer::Scope::SCAVENGER_PROCESS_ARRAY_BUFFERS); ArrayBufferTracker::PrepareToFreeDeadInNewSpace(heap_); } heap_->array_buffer_collector()->FreeAllocations(); // Since we promote all surviving large objects immediatelly, all remaining // large objects must be dead. // TODO(hpayer): Don't free all as soon as we have an intermediate generation. heap_->new_lo_space()->FreeDeadObjects([](HeapObject) { return true; }); RememberedSet<OLD_TO_NEW>::IterateMemoryChunks(heap_, [](MemoryChunk* chunk) { if (chunk->SweepingDone()) { RememberedSet<OLD_TO_NEW>::FreeEmptyBuckets(chunk); } else { RememberedSet<OLD_TO_NEW>::PreFreeEmptyBuckets(chunk); } }); // Update how much has survived scavenge. heap_->IncrementYoungSurvivorsCounter(heap_->SurvivedYoungObjectSize()); } void ScavengerCollector::HandleSurvivingNewLargeObjects() { for (SurvivingNewLargeObjectMapEntry update_info : surviving_new_large_objects_) { HeapObject object = update_info.first; Map map = update_info.second; // Order is important here. We have to re-install the map to have access // to meta-data like size during page promotion. object.set_map_word(MapWord::FromMap(map)); LargePage* page = LargePage::FromHeapObject(object); heap_->lo_space()->PromoteNewLargeObject(page); } surviving_new_large_objects_.clear(); } void ScavengerCollector::MergeSurvivingNewLargeObjects( const SurvivingNewLargeObjectsMap& objects) { for (SurvivingNewLargeObjectMapEntry object : objects) { bool success = surviving_new_large_objects_.insert(object).second; USE(success); DCHECK(success); } } int ScavengerCollector::NumberOfScavengeTasks() { if (!FLAG_parallel_scavenge) return 1; const int num_scavenge_tasks = static_cast<int>(heap_->new_space()->TotalCapacity()) / MB + 1; static int num_cores = V8::GetCurrentPlatform()->NumberOfWorkerThreads() + 1; int tasks = Max(1, Min(Min(num_scavenge_tasks, kMaxScavengerTasks), num_cores)); if (!heap_->CanExpandOldGeneration( static_cast<size_t>(tasks * Page::kPageSize))) { // Optimize for memory usage near the heap limit. tasks = 1; } return tasks; } Scavenger::Scavenger(ScavengerCollector* collector, Heap* heap, bool is_logging, CopiedList* copied_list, PromotionList* promotion_list, EphemeronTableList* ephemeron_table_list, int task_id) : collector_(collector), heap_(heap), promotion_list_(promotion_list, task_id), copied_list_(copied_list, task_id), ephemeron_table_list_(ephemeron_table_list, task_id), local_pretenuring_feedback_(kInitialLocalPretenuringFeedbackCapacity), copied_size_(0), promoted_size_(0), allocator_(heap), is_logging_(is_logging), is_incremental_marking_(heap->incremental_marking()->IsMarking()), is_compacting_(heap->incremental_marking()->IsCompacting()) {} void Scavenger::IterateAndScavengePromotedObject(HeapObject target, Map map, int size) { // We are not collecting slots on new space objects during mutation thus we // have to scan for pointers to evacuation candidates when we promote // objects. But we should not record any slots in non-black objects. Grey // object's slots would be rescanned. White object might not survive until // the end of collection it would be a violation of the invariant to record // its slots. const bool record_slots = is_compacting_ && heap()->incremental_marking()->atomic_marking_state()->IsBlack(target); IterateAndScavengePromotedObjectsVisitor visitor(this, record_slots); target.IterateBodyFast(map, size, &visitor); } void Scavenger::RememberPromotedEphemeron(EphemeronHashTable table, int entry) { auto indices = ephemeron_remembered_set_.insert({table, std::unordered_set<int>()}); indices.first->second.insert(entry); } void Scavenger::AddPageToSweeperIfNecessary(MemoryChunk* page) { AllocationSpace space = page->owner_identity(); if ((space == OLD_SPACE) && !page->SweepingDone()) { heap()->mark_compact_collector()->sweeper()->AddPage( space, reinterpret_cast<Page*>(page), Sweeper::READD_TEMPORARY_REMOVED_PAGE); } } void Scavenger::ScavengePage(MemoryChunk* page) { CodePageMemoryModificationScope memory_modification_scope(page); RememberedSet<OLD_TO_NEW>::Iterate(page, [this](MaybeObjectSlot addr) { return CheckAndScavengeObject(heap_, addr); }, SlotSet::KEEP_EMPTY_BUCKETS); RememberedSet<OLD_TO_NEW>::IterateTyped( page, [=](SlotType type, Address addr) { return UpdateTypedSlotHelper::UpdateTypedSlot( heap_, type, addr, [this](FullMaybeObjectSlot slot) { return CheckAndScavengeObject(heap(), slot); }); }); AddPageToSweeperIfNecessary(page); } void Scavenger::Process(OneshotBarrier* barrier) { ScavengeVisitor scavenge_visitor(this); const bool have_barrier = barrier != nullptr; bool done; size_t objects = 0; do { done = true; ObjectAndSize object_and_size; while (promotion_list_.ShouldEagerlyProcessPromotionList() && copied_list_.Pop(&object_and_size)) { scavenge_visitor.Visit(object_and_size.first); done = false; if (have_barrier && ((++objects % kInterruptThreshold) == 0)) { if (!copied_list_.IsGlobalPoolEmpty()) { barrier->NotifyAll(); } } } struct PromotionListEntry entry; while (promotion_list_.Pop(&entry)) { HeapObject target = entry.heap_object; IterateAndScavengePromotedObject(target, entry.map, entry.size); done = false; if (have_barrier && ((++objects % kInterruptThreshold) == 0)) { if (!promotion_list_.IsGlobalPoolEmpty()) { barrier->NotifyAll(); } } } } while (!done); } void ScavengerCollector::ProcessWeakReferences( EphemeronTableList* ephemeron_table_list) { ScavengeWeakObjectRetainer weak_object_retainer; heap_->ProcessYoungWeakReferences(&weak_object_retainer); ClearYoungEphemerons(ephemeron_table_list); ClearOldEphemerons(); } // Clear ephemeron entries from EphemeronHashTables in new-space whenever the // entry has a dead new-space key. void ScavengerCollector::ClearYoungEphemerons( EphemeronTableList* ephemeron_table_list) { ephemeron_table_list->Iterate([this](EphemeronHashTable table) { for (int i = 0; i < table.Capacity(); i++) { // Keys in EphemeronHashTables must be heap objects. HeapObjectSlot key_slot( table.RawFieldOfElementAt(EphemeronHashTable::EntryToIndex(i))); HeapObject key = key_slot.ToHeapObject(); if (IsUnscavengedHeapObject(heap_, key)) { table.RemoveEntry(i); } else { HeapObject forwarded = ForwardingAddress(key); key_slot.StoreHeapObject(forwarded); } } }); ephemeron_table_list->Clear(); } // Clear ephemeron entries from EphemeronHashTables in old-space whenever the // entry has a dead new-space key. void ScavengerCollector::ClearOldEphemerons() { for (auto it = heap_->ephemeron_remembered_set_.begin(); it != heap_->ephemeron_remembered_set_.end();) { EphemeronHashTable table = it->first; auto& indices = it->second; for (auto iti = indices.begin(); iti != indices.end();) { // Keys in EphemeronHashTables must be heap objects. HeapObjectSlot key_slot( table.RawFieldOfElementAt(EphemeronHashTable::EntryToIndex(*iti))); HeapObject key = key_slot.ToHeapObject(); if (IsUnscavengedHeapObject(heap_, key)) { table.RemoveEntry(*iti); iti = indices.erase(iti); } else { HeapObject forwarded = ForwardingAddress(key); key_slot.StoreHeapObject(forwarded); if (!Heap::InYoungGeneration(forwarded)) { iti = indices.erase(iti); } else { ++iti; } } } if (indices.size() == 0) { it = heap_->ephemeron_remembered_set_.erase(it); } else { ++it; } } } void Scavenger::Finalize() { heap()->MergeAllocationSitePretenuringFeedback(local_pretenuring_feedback_); heap()->IncrementSemiSpaceCopiedObjectSize(copied_size_); heap()->IncrementPromotedObjectsSize(promoted_size_); collector_->MergeSurvivingNewLargeObjects(surviving_new_large_objects_); allocator_.Finalize(); ephemeron_table_list_.FlushToGlobal(); for (auto it = ephemeron_remembered_set_.begin(); it != ephemeron_remembered_set_.end(); ++it) { auto insert_result = heap()->ephemeron_remembered_set_.insert( {it->first, std::unordered_set<int>()}); for (int entry : it->second) { insert_result.first->second.insert(entry); } } } void Scavenger::AddEphemeronHashTable(EphemeronHashTable table) { ephemeron_table_list_.Push(table); } void RootScavengeVisitor::VisitRootPointer(Root root, const char* description, FullObjectSlot p) { DCHECK(!HasWeakHeapObjectTag(*p)); ScavengePointer(p); } void RootScavengeVisitor::VisitRootPointers(Root root, const char* description, FullObjectSlot start, FullObjectSlot end) { // Copy all HeapObject pointers in [start, end) for (FullObjectSlot p = start; p < end; ++p) ScavengePointer(p); } void RootScavengeVisitor::ScavengePointer(FullObjectSlot p) { Object object = *p; DCHECK(!HasWeakHeapObjectTag(object)); if (Heap::InYoungGeneration(object)) { scavenger_->ScavengeObject(FullHeapObjectSlot(p), HeapObject::cast(object)); } } RootScavengeVisitor::RootScavengeVisitor(Scavenger* scavenger) : scavenger_(scavenger) {} ScavengeVisitor::ScavengeVisitor(Scavenger* scavenger) : scavenger_(scavenger) {} } // namespace internal } // namespace v8