// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/numbers/conversions.h" #include <limits.h> #include <stdarg.h> #include <cmath> #include "src/base/platform/wrappers.h" #include "src/common/assert-scope.h" #include "src/handles/handles.h" #include "src/heap/factory.h" #include "src/numbers/dtoa.h" #include "src/numbers/strtod.h" #include "src/objects/bigint.h" #include "src/objects/objects-inl.h" #include "src/objects/string-inl.h" #include "src/strings/char-predicates-inl.h" #include "src/utils/allocation.h" #include "src/utils/utils.h" #if defined(_STLP_VENDOR_CSTD) // STLPort doesn't import fpclassify into the std namespace. #define FPCLASSIFY_NAMESPACE #else #define FPCLASSIFY_NAMESPACE std #endif namespace v8 { namespace internal { inline double JunkStringValue() { return bit_cast<double, uint64_t>(kQuietNaNMask); } inline double SignedZero(bool negative) { return negative ? uint64_to_double(Double::kSignMask) : 0.0; } inline bool isDigit(int x, int radix) { return (x >= '0' && x <= '9' && x < '0' + radix) || (radix > 10 && x >= 'a' && x < 'a' + radix - 10) || (radix > 10 && x >= 'A' && x < 'A' + radix - 10); } inline bool isBinaryDigit(int x) { return x == '0' || x == '1'; } template <class Iterator, class EndMark> bool SubStringEquals(Iterator* current, EndMark end, const char* substring) { DCHECK(**current == *substring); for (substring++; *substring != '\0'; substring++) { ++*current; if (*current == end || **current != *substring) return false; } ++*current; return true; } // Returns true if a nonspace character has been found and false if the // end was been reached before finding a nonspace character. template <class Iterator, class EndMark> inline bool AdvanceToNonspace(Iterator* current, EndMark end) { while (*current != end) { if (!IsWhiteSpaceOrLineTerminator(**current)) return true; ++*current; } return false; } // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. template <int radix_log_2, class Iterator, class EndMark> double InternalStringToIntDouble(Iterator current, EndMark end, bool negative, bool allow_trailing_junk) { DCHECK(current != end); // Skip leading 0s. while (*current == '0') { ++current; if (current == end) return SignedZero(negative); } int64_t number = 0; int exponent = 0; const int radix = (1 << radix_log_2); int lim_0 = '0' + (radix < 10 ? radix : 10); int lim_a = 'a' + (radix - 10); int lim_A = 'A' + (radix - 10); do { int digit; if (*current >= '0' && *current < lim_0) { digit = static_cast<char>(*current) - '0'; } else if (*current >= 'a' && *current < lim_a) { digit = static_cast<char>(*current) - 'a' + 10; } else if (*current >= 'A' && *current < lim_A) { digit = static_cast<char>(*current) - 'A' + 10; } else { if (allow_trailing_junk || !AdvanceToNonspace(¤t, end)) { break; } else { return JunkStringValue(); } } number = number * radix + digit; int overflow = static_cast<int>(number >> 53); if (overflow != 0) { // Overflow occurred. Need to determine which direction to round the // result. int overflow_bits_count = 1; while (overflow > 1) { overflow_bits_count++; overflow >>= 1; } int dropped_bits_mask = ((1 << overflow_bits_count) - 1); int dropped_bits = static_cast<int>(number) & dropped_bits_mask; number >>= overflow_bits_count; exponent = overflow_bits_count; bool zero_tail = true; while (true) { ++current; if (current == end || !isDigit(*current, radix)) break; zero_tail = zero_tail && *current == '0'; exponent += radix_log_2; } if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { return JunkStringValue(); } int middle_value = (1 << (overflow_bits_count - 1)); if (dropped_bits > middle_value) { number++; // Rounding up. } else if (dropped_bits == middle_value) { // Rounding to even to consistency with decimals: half-way case rounds // up if significant part is odd and down otherwise. if ((number & 1) != 0 || !zero_tail) { number++; // Rounding up. } } // Rounding up may cause overflow. if ((number & (static_cast<int64_t>(1) << 53)) != 0) { exponent++; number >>= 1; } break; } ++current; } while (current != end); DCHECK(number < ((int64_t)1 << 53)); DCHECK(static_cast<int64_t>(static_cast<double>(number)) == number); if (exponent == 0) { if (negative) { if (number == 0) return -0.0; number = -number; } return static_cast<double>(number); } DCHECK_NE(number, 0); return std::ldexp(static_cast<double>(negative ? -number : number), exponent); } namespace { // Subclasses of StringToIntHelper get access to internal state: enum class State { kRunning, kError, kJunk, kEmpty, kZero, kDone }; enum class Sign { kNegative, kPositive, kNone }; } // namespace // ES6 18.2.5 parseInt(string, radix) (with NumberParseIntHelper subclass); // and BigInt parsing cases from https://tc39.github.io/proposal-bigint/ // (with StringToBigIntHelper subclass). template <typename LocalIsolate> class StringToIntHelper { public: StringToIntHelper(LocalIsolate* isolate, Handle<String> subject, int radix) : isolate_(isolate), subject_(subject), radix_(radix) { DCHECK(subject->IsFlat()); } // Used for the StringToBigInt operation. StringToIntHelper(LocalIsolate* isolate, Handle<String> subject) : isolate_(isolate), subject_(subject) { DCHECK(subject->IsFlat()); } // Used for parsing BigInt literals, where the input is a Zone-allocated // buffer of one-byte digits, along with an optional radix prefix. StringToIntHelper(LocalIsolate* isolate, const uint8_t* subject, int length) : isolate_(isolate), raw_one_byte_subject_(subject), length_(length) {} virtual ~StringToIntHelper() = default; protected: // Subclasses must implement these: virtual void AllocateResult() = 0; virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) = 0; // Subclasses must call this to do all the work. void ParseInt(); // Subclasses may override this. virtual bool CheckTermination() { return false; } virtual void HandleSpecialCases() {} // Subclass constructors should call these for configuration before calling // ParseInt(). void set_allow_binary_and_octal_prefixes() { allow_binary_and_octal_prefixes_ = true; } void set_disallow_trailing_junk() { allow_trailing_junk_ = false; } bool IsOneByte() const { return raw_one_byte_subject_ != nullptr || String::IsOneByteRepresentationUnderneath(*subject_); } Vector<const uint8_t> GetOneByteVector() { if (raw_one_byte_subject_ != nullptr) { return Vector<const uint8_t>(raw_one_byte_subject_, length_); } DisallowGarbageCollection no_gc; return subject_->GetFlatContent(no_gc).ToOneByteVector(); } Vector<const uc16> GetTwoByteVector() { DisallowGarbageCollection no_gc; return subject_->GetFlatContent(no_gc).ToUC16Vector(); } LocalIsolate* isolate() { return isolate_; } int radix() { return radix_; } int cursor() { return cursor_; } int length() { return length_; } bool negative() { return sign_ == Sign::kNegative; } Sign sign() { return sign_; } State state() { return state_; } void set_state(State state) { state_ = state; } private: template <class Char> void DetectRadixInternal(Char current, int length); template <class Char> bool ParseChunkInternal(Char start); LocalIsolate* isolate_; Handle<String> subject_; const uint8_t* raw_one_byte_subject_ = nullptr; int radix_ = 0; int cursor_ = 0; int length_ = 0; Sign sign_ = Sign::kNone; bool leading_zero_ = false; bool allow_binary_and_octal_prefixes_ = false; bool allow_trailing_junk_ = true; State state_ = State::kRunning; }; template <typename LocalIsolate> void StringToIntHelper<LocalIsolate>::ParseInt() { { DisallowGarbageCollection no_gc; if (IsOneByte()) { Vector<const uint8_t> vector = GetOneByteVector(); DetectRadixInternal(vector.begin(), vector.length()); } else { Vector<const uc16> vector = GetTwoByteVector(); DetectRadixInternal(vector.begin(), vector.length()); } } if (state_ != State::kRunning) return; AllocateResult(); HandleSpecialCases(); if (state_ != State::kRunning) return; do { { DisallowGarbageCollection no_gc; if (IsOneByte()) { Vector<const uint8_t> vector = GetOneByteVector(); DCHECK_EQ(length_, vector.length()); if (ParseChunkInternal(vector.begin())) { break; } } else { Vector<const uc16> vector = GetTwoByteVector(); DCHECK_EQ(length_, vector.length()); if (ParseChunkInternal(vector.begin())) { break; } } } // The flat vector handle is temporarily released after parsing 10kb // in order to invoke interrupts which may in turn invoke GC. if (CheckTermination()) { set_state(State::kError); break; } } while (true); DCHECK_NE(state_, State::kRunning); } template <typename LocalIsolate> template <class Char> void StringToIntHelper<LocalIsolate>::DetectRadixInternal(Char current, int length) { Char start = current; length_ = length; Char end = start + length; if (!AdvanceToNonspace(¤t, end)) { return set_state(State::kEmpty); } if (*current == '+') { // Ignore leading sign; skip following spaces. ++current; if (current == end) { return set_state(State::kJunk); } sign_ = Sign::kPositive; } else if (*current == '-') { ++current; if (current == end) { return set_state(State::kJunk); } sign_ = Sign::kNegative; } if (radix_ == 0) { // Radix detection. radix_ = 10; if (*current == '0') { ++current; if (current == end) return set_state(State::kZero); if (*current == 'x' || *current == 'X') { radix_ = 16; ++current; if (current == end) return set_state(State::kJunk); } else if (allow_binary_and_octal_prefixes_ && (*current == 'o' || *current == 'O')) { radix_ = 8; ++current; if (current == end) return set_state(State::kJunk); } else if (allow_binary_and_octal_prefixes_ && (*current == 'b' || *current == 'B')) { radix_ = 2; ++current; if (current == end) return set_state(State::kJunk); } else { leading_zero_ = true; } } } else if (radix_ == 16) { if (*current == '0') { // Allow "0x" prefix. ++current; if (current == end) return set_state(State::kZero); if (*current == 'x' || *current == 'X') { ++current; if (current == end) return set_state(State::kJunk); } else { leading_zero_ = true; } } } // Skip leading zeros. while (*current == '0') { leading_zero_ = true; ++current; if (current == end) return set_state(State::kZero); } if (!leading_zero_ && !isDigit(*current, radix_)) { return set_state(State::kJunk); } DCHECK(radix_ >= 2 && radix_ <= 36); STATIC_ASSERT(String::kMaxLength <= INT_MAX); cursor_ = static_cast<int>(current - start); } template <typename LocalIsolate> template <class Char> bool StringToIntHelper<LocalIsolate>::ParseChunkInternal(Char start) { const int kChunkSize = 10240; Char current = start + cursor_; Char end = start + length_; Char break_pos = current + kChunkSize; // The following code causes accumulating rounding error for numbers greater // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10, // 16, or 32, then mathInt may be an implementation-dependent approximation to // the mathematical integer value" (15.1.2.2). int lim_0 = '0' + (radix_ < 10 ? radix_ : 10); int lim_a = 'a' + (radix_ - 10); int lim_A = 'A' + (radix_ - 10); // NOTE: The code for computing the value may seem a bit complex at // first glance. It is structured to use 32-bit multiply-and-add // loops as long as possible to avoid losing precision. bool done = false; do { // Parse the longest part of the string starting at {current} // possible while keeping the multiplier, and thus the part // itself, within 32 bits. uint32_t part = 0, multiplier = 1; while (true) { uint32_t d; if (*current >= '0' && *current < lim_0) { d = *current - '0'; } else if (*current >= 'a' && *current < lim_a) { d = *current - 'a' + 10; } else if (*current >= 'A' && *current < lim_A) { d = *current - 'A' + 10; } else { done = true; break; } // Update the value of the part as long as the multiplier fits // in 32 bits. When we can't guarantee that the next iteration // will not overflow the multiplier, we stop parsing the part // by leaving the loop. const uint32_t kMaximumMultiplier = 0xFFFFFFFFU / 36; uint32_t m = multiplier * static_cast<uint32_t>(radix_); if (m > kMaximumMultiplier) break; part = part * radix_ + d; multiplier = m; DCHECK(multiplier > part); ++current; if (current == end) { done = true; break; } } // Update the value and skip the part in the string. ResultMultiplyAdd(multiplier, part); // Set final state if (done) { if (!allow_trailing_junk_ && AdvanceToNonspace(¤t, end)) { set_state(State::kJunk); } else { set_state(State::kDone); } return true; } } while (current < break_pos); cursor_ = static_cast<int>(current - start); return false; } class NumberParseIntHelper : public StringToIntHelper<Isolate> { public: NumberParseIntHelper(Isolate* isolate, Handle<String> string, int radix) : StringToIntHelper(isolate, string, radix) {} double GetResult() { ParseInt(); switch (state()) { case State::kJunk: case State::kEmpty: return JunkStringValue(); case State::kZero: return SignedZero(negative()); case State::kDone: return negative() ? -result_ : result_; case State::kError: case State::kRunning: break; } UNREACHABLE(); } protected: void AllocateResult() override {} void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) override { result_ = result_ * multiplier + part; } private: void HandleSpecialCases() override { bool is_power_of_two = base::bits::IsPowerOfTwo(radix()); if (!is_power_of_two && radix() != 10) return; DisallowGarbageCollection no_gc; if (IsOneByte()) { Vector<const uint8_t> vector = GetOneByteVector(); DCHECK_EQ(length(), vector.length()); result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.begin()) : HandleBaseTenCase(vector.begin()); } else { Vector<const uc16> vector = GetTwoByteVector(); DCHECK_EQ(length(), vector.length()); result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.begin()) : HandleBaseTenCase(vector.begin()); } set_state(State::kDone); } template <class Char> double HandlePowerOfTwoCase(Char start) { Char current = start + cursor(); Char end = start + length(); const bool allow_trailing_junk = true; // GetResult() will take care of the sign bit, so ignore it for now. const bool negative = false; switch (radix()) { case 2: return InternalStringToIntDouble<1>(current, end, negative, allow_trailing_junk); case 4: return InternalStringToIntDouble<2>(current, end, negative, allow_trailing_junk); case 8: return InternalStringToIntDouble<3>(current, end, negative, allow_trailing_junk); case 16: return InternalStringToIntDouble<4>(current, end, negative, allow_trailing_junk); case 32: return InternalStringToIntDouble<5>(current, end, negative, allow_trailing_junk); default: UNREACHABLE(); } } template <class Char> double HandleBaseTenCase(Char start) { // Parsing with strtod. Char current = start + cursor(); Char end = start + length(); const int kMaxSignificantDigits = 309; // Doubles are less than 1.8e308. // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero // end. const int kBufferSize = kMaxSignificantDigits + 2; char buffer[kBufferSize]; int buffer_pos = 0; while (*current >= '0' && *current <= '9') { if (buffer_pos <= kMaxSignificantDigits) { // If the number has more than kMaxSignificantDigits it will be parsed // as infinity. DCHECK_LT(buffer_pos, kBufferSize); buffer[buffer_pos++] = static_cast<char>(*current); } ++current; if (current == end) break; } SLOW_DCHECK(buffer_pos < kBufferSize); buffer[buffer_pos] = '\0'; Vector<const char> buffer_vector(buffer, buffer_pos); return Strtod(buffer_vector, 0); } double result_ = 0; }; // Converts a string to a double value. Assumes the Iterator supports // the following operations: // 1. current == end (other ops are not allowed), current != end. // 2. *current - gets the current character in the sequence. // 3. ++current (advances the position). template <class Iterator, class EndMark> double InternalStringToDouble(Iterator current, EndMark end, int flags, double empty_string_val) { // To make sure that iterator dereferencing is valid the following // convention is used: // 1. Each '++current' statement is followed by check for equality to 'end'. // 2. If AdvanceToNonspace returned false then current == end. // 3. If 'current' becomes be equal to 'end' the function returns or goes to // 'parsing_done'. // 4. 'current' is not dereferenced after the 'parsing_done' label. // 5. Code before 'parsing_done' may rely on 'current != end'. if (!AdvanceToNonspace(¤t, end)) { return empty_string_val; } const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0; // Maximum number of significant digits in decimal representation. // The longest possible double in decimal representation is // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 // (768 digits). If we parse a number whose first digits are equal to a // mean of 2 adjacent doubles (that could have up to 769 digits) the result // must be rounded to the bigger one unless the tail consists of zeros, so // we don't need to preserve all the digits. const int kMaxSignificantDigits = 772; // The longest form of simplified number is: "-<significant digits>'.1eXXX\0". const int kBufferSize = kMaxSignificantDigits + 10; char buffer[kBufferSize]; int buffer_pos = 0; // Exponent will be adjusted if insignificant digits of the integer part // or insignificant leading zeros of the fractional part are dropped. int exponent = 0; int significant_digits = 0; int insignificant_digits = 0; bool nonzero_digit_dropped = false; enum Sign { NONE, NEGATIVE, POSITIVE }; Sign sign = NONE; if (*current == '+') { // Ignore leading sign. ++current; if (current == end) return JunkStringValue(); sign = POSITIVE; } else if (*current == '-') { ++current; if (current == end) return JunkStringValue(); sign = NEGATIVE; } static const char kInfinityString[] = "Infinity"; if (*current == kInfinityString[0]) { if (!SubStringEquals(¤t, end, kInfinityString)) { return JunkStringValue(); } if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { return JunkStringValue(); } DCHECK_EQ(buffer_pos, 0); return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY; } bool leading_zero = false; if (*current == '0') { ++current; if (current == end) return SignedZero(sign == NEGATIVE); leading_zero = true; // It could be hexadecimal value. if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) { ++current; if (current == end || !isDigit(*current, 16) || sign != NONE) { return JunkStringValue(); // "0x". } return InternalStringToIntDouble<4>(current, end, false, allow_trailing_junk); // It could be an explicit octal value. } else if ((flags & ALLOW_OCTAL) && (*current == 'o' || *current == 'O')) { ++current; if (current == end || !isDigit(*current, 8) || sign != NONE) { return JunkStringValue(); // "0o". } return InternalStringToIntDouble<3>(current, end, false, allow_trailing_junk); // It could be a binary value. } else if ((flags & ALLOW_BINARY) && (*current == 'b' || *current == 'B')) { ++current; if (current == end || !isBinaryDigit(*current) || sign != NONE) { return JunkStringValue(); // "0b". } return InternalStringToIntDouble<1>(current, end, false, allow_trailing_junk); } // Ignore leading zeros in the integer part. while (*current == '0') { ++current; if (current == end) return SignedZero(sign == NEGATIVE); } } bool octal = leading_zero && (flags & ALLOW_IMPLICIT_OCTAL) != 0; // Copy significant digits of the integer part (if any) to the buffer. while (*current >= '0' && *current <= '9') { if (significant_digits < kMaxSignificantDigits) { DCHECK_LT(buffer_pos, kBufferSize); buffer[buffer_pos++] = static_cast<char>(*current); significant_digits++; // Will later check if it's an octal in the buffer. } else { insignificant_digits++; // Move the digit into the exponential part. nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; } octal = octal && *current < '8'; ++current; if (current == end) goto parsing_done; } if (significant_digits == 0) { octal = false; } if (*current == '.') { if (octal && !allow_trailing_junk) return JunkStringValue(); if (octal) goto parsing_done; ++current; if (current == end) { if (significant_digits == 0 && !leading_zero) { return JunkStringValue(); } else { goto parsing_done; } } if (significant_digits == 0) { // octal = false; // Integer part consists of 0 or is absent. Significant digits start after // leading zeros (if any). while (*current == '0') { ++current; if (current == end) return SignedZero(sign == NEGATIVE); exponent--; // Move this 0 into the exponent. } } // There is a fractional part. We don't emit a '.', but adjust the exponent // instead. while (*current >= '0' && *current <= '9') { if (significant_digits < kMaxSignificantDigits) { DCHECK_LT(buffer_pos, kBufferSize); buffer[buffer_pos++] = static_cast<char>(*current); significant_digits++; exponent--; } else { // Ignore insignificant digits in the fractional part. nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; } ++current; if (current == end) goto parsing_done; } } if (!leading_zero && exponent == 0 && significant_digits == 0) { // If leading_zeros is true then the string contains zeros. // If exponent < 0 then string was [+-]\.0*... // If significant_digits != 0 the string is not equal to 0. // Otherwise there are no digits in the string. return JunkStringValue(); } // Parse exponential part. if (*current == 'e' || *current == 'E') { if (octal) return JunkStringValue(); ++current; if (current == end) { if (allow_trailing_junk) { goto parsing_done; } else { return JunkStringValue(); } } char sign = '+'; if (*current == '+' || *current == '-') { sign = static_cast<char>(*current); ++current; if (current == end) { if (allow_trailing_junk) { goto parsing_done; } else { return JunkStringValue(); } } } if (current == end || *current < '0' || *current > '9') { if (allow_trailing_junk) { goto parsing_done; } else { return JunkStringValue(); } } const int max_exponent = INT_MAX / 2; DCHECK(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); int num = 0; do { // Check overflow. int digit = *current - '0'; if (num >= max_exponent / 10 && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { num = max_exponent; } else { num = num * 10 + digit; } ++current; } while (current != end && *current >= '0' && *current <= '9'); exponent += (sign == '-' ? -num : num); } if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { return JunkStringValue(); } parsing_done: exponent += insignificant_digits; if (octal) { return InternalStringToIntDouble<3>(buffer, buffer + buffer_pos, sign == NEGATIVE, allow_trailing_junk); } if (nonzero_digit_dropped) { buffer[buffer_pos++] = '1'; exponent--; } SLOW_DCHECK(buffer_pos < kBufferSize); buffer[buffer_pos] = '\0'; double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); return (sign == NEGATIVE) ? -converted : converted; } double StringToDouble(const char* str, int flags, double empty_string_val) { // We use {OneByteVector} instead of {CStrVector} to avoid instantiating the // InternalStringToDouble() template for {const char*} as well. return StringToDouble(OneByteVector(str), flags, empty_string_val); } double StringToDouble(Vector<const uint8_t> str, int flags, double empty_string_val) { return InternalStringToDouble(str.begin(), str.end(), flags, empty_string_val); } double StringToDouble(Vector<const uc16> str, int flags, double empty_string_val) { const uc16* end = str.begin() + str.length(); return InternalStringToDouble(str.begin(), end, flags, empty_string_val); } double StringToInt(Isolate* isolate, Handle<String> string, int radix) { NumberParseIntHelper helper(isolate, string, radix); return helper.GetResult(); } template <typename LocalIsolate> class StringToBigIntHelper : public StringToIntHelper<LocalIsolate> { public: enum class Behavior { kStringToBigInt, kLiteral }; // Used for StringToBigInt operation (BigInt constructor and == operator). StringToBigIntHelper(LocalIsolate* isolate, Handle<String> string) : StringToIntHelper<LocalIsolate>(isolate, string), behavior_(Behavior::kStringToBigInt) { this->set_allow_binary_and_octal_prefixes(); this->set_disallow_trailing_junk(); } // Used for parsing BigInt literals, where the input is a buffer of // one-byte ASCII digits, along with an optional radix prefix. StringToBigIntHelper(LocalIsolate* isolate, const uint8_t* string, int length) : StringToIntHelper<LocalIsolate>(isolate, string, length), behavior_(Behavior::kLiteral) { this->set_allow_binary_and_octal_prefixes(); } MaybeHandle<BigInt> GetResult() { this->ParseInt(); if (behavior_ == Behavior::kStringToBigInt && this->sign() != Sign::kNone && this->radix() != 10) { return MaybeHandle<BigInt>(); } if (this->state() == State::kEmpty) { if (behavior_ == Behavior::kStringToBigInt) { this->set_state(State::kZero); } else { UNREACHABLE(); } } switch (this->state()) { case State::kJunk: case State::kError: return MaybeHandle<BigInt>(); case State::kZero: return BigInt::Zero(this->isolate(), allocation_type()); case State::kDone: return BigInt::Finalize<Isolate>(result_, this->negative()); case State::kEmpty: case State::kRunning: break; } UNREACHABLE(); } protected: void AllocateResult() override { // We have to allocate a BigInt that's big enough to fit the result. // Conseratively assume that all remaining digits are significant. // Optimization opportunity: Would it makes sense to scan for trailing // junk before allocating the result? int charcount = this->length() - this->cursor(); MaybeHandle<FreshlyAllocatedBigInt> maybe = BigInt::AllocateFor(this->isolate(), this->radix(), charcount, kDontThrow, allocation_type()); if (!maybe.ToHandle(&result_)) { this->set_state(State::kError); } } void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) override { BigInt::InplaceMultiplyAdd(*result_, static_cast<uintptr_t>(multiplier), static_cast<uintptr_t>(part)); } bool CheckTermination() override; AllocationType allocation_type() { // For literals, we pretenure the allocated BigInt, since it's about // to be stored in the interpreter's constants array. return behavior_ == Behavior::kLiteral ? AllocationType::kOld : AllocationType::kYoung; } private: Handle<FreshlyAllocatedBigInt> result_; Behavior behavior_; }; template <typename LocalIsolate> bool StringToBigIntHelper<LocalIsolate>::CheckTermination() { return false; } template <> bool StringToBigIntHelper<Isolate>::CheckTermination() { StackLimitCheck interrupt_check(isolate()); return interrupt_check.InterruptRequested() && isolate()->stack_guard()->HandleInterrupts().IsException(isolate()); } MaybeHandle<BigInt> StringToBigInt(Isolate* isolate, Handle<String> string) { string = String::Flatten(isolate, string); StringToBigIntHelper<Isolate> helper(isolate, string); return helper.GetResult(); } template <typename LocalIsolate> MaybeHandle<BigInt> BigIntLiteral(LocalIsolate* isolate, const char* string) { StringToBigIntHelper<LocalIsolate> helper( isolate, reinterpret_cast<const uint8_t*>(string), static_cast<int>(strlen(string))); return helper.GetResult(); } template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) MaybeHandle<BigInt> BigIntLiteral(Isolate* isolate, const char* string); template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) MaybeHandle<BigInt> BigIntLiteral(LocalIsolate* isolate, const char* string); const char* DoubleToCString(double v, Vector<char> buffer) { switch (FPCLASSIFY_NAMESPACE::fpclassify(v)) { case FP_NAN: return "NaN"; case FP_INFINITE: return (v < 0.0 ? "-Infinity" : "Infinity"); case FP_ZERO: return "0"; default: { if (IsInt32Double(v)) { // This will trigger if v is -0 and -0.0 is stringified to "0". // (see ES section 7.1.12.1 #sec-tostring-applied-to-the-number-type) return IntToCString(FastD2I(v), buffer); } SimpleStringBuilder builder(buffer.begin(), buffer.length()); int decimal_point; int sign; const int kV8DtoaBufferCapacity = kBase10MaximalLength + 1; char decimal_rep[kV8DtoaBufferCapacity]; int length; DoubleToAscii(v, DTOA_SHORTEST, 0, Vector<char>(decimal_rep, kV8DtoaBufferCapacity), &sign, &length, &decimal_point); if (sign) builder.AddCharacter('-'); if (length <= decimal_point && decimal_point <= 21) { // ECMA-262 section 9.8.1 step 6. builder.AddString(decimal_rep); builder.AddPadding('0', decimal_point - length); } else if (0 < decimal_point && decimal_point <= 21) { // ECMA-262 section 9.8.1 step 7. builder.AddSubstring(decimal_rep, decimal_point); builder.AddCharacter('.'); builder.AddString(decimal_rep + decimal_point); } else if (decimal_point <= 0 && decimal_point > -6) { // ECMA-262 section 9.8.1 step 8. builder.AddString("0."); builder.AddPadding('0', -decimal_point); builder.AddString(decimal_rep); } else { // ECMA-262 section 9.8.1 step 9 and 10 combined. builder.AddCharacter(decimal_rep[0]); if (length != 1) { builder.AddCharacter('.'); builder.AddString(decimal_rep + 1); } builder.AddCharacter('e'); builder.AddCharacter((decimal_point >= 0) ? '+' : '-'); int exponent = decimal_point - 1; if (exponent < 0) exponent = -exponent; builder.AddDecimalInteger(exponent); } return builder.Finalize(); } } } const char* IntToCString(int n, Vector<char> buffer) { bool negative = true; if (n >= 0) { n = -n; negative = false; } // Build the string backwards from the least significant digit. int i = buffer.length(); buffer[--i] = '\0'; do { // We ensured n <= 0, so the subtraction does the right addition. buffer[--i] = '0' - (n % 10); n /= 10; } while (n); if (negative) buffer[--i] = '-'; return buffer.begin() + i; } char* DoubleToFixedCString(double value, int f) { const int kMaxDigitsBeforePoint = 21; const double kFirstNonFixed = 1e21; DCHECK_GE(f, 0); DCHECK_LE(f, kMaxFractionDigits); bool negative = false; double abs_value = value; if (value < 0) { abs_value = -value; negative = true; } // If abs_value has more than kMaxDigitsBeforePoint digits before the point // use the non-fixed conversion routine. if (abs_value >= kFirstNonFixed) { char arr[kMaxFractionDigits]; Vector<char> buffer(arr, arraysize(arr)); return StrDup(DoubleToCString(value, buffer)); } // Find a sufficiently precise decimal representation of n. int decimal_point; int sign; // Add space for the '\0' byte. const int kDecimalRepCapacity = kMaxDigitsBeforePoint + kMaxFractionDigits + 1; char decimal_rep[kDecimalRepCapacity]; int decimal_rep_length; DoubleToAscii(value, DTOA_FIXED, f, Vector<char>(decimal_rep, kDecimalRepCapacity), &sign, &decimal_rep_length, &decimal_point); // Create a representation that is padded with zeros if needed. int zero_prefix_length = 0; int zero_postfix_length = 0; if (decimal_point <= 0) { zero_prefix_length = -decimal_point + 1; decimal_point = 1; } if (zero_prefix_length + decimal_rep_length < decimal_point + f) { zero_postfix_length = decimal_point + f - decimal_rep_length - zero_prefix_length; } unsigned rep_length = zero_prefix_length + decimal_rep_length + zero_postfix_length; SimpleStringBuilder rep_builder(rep_length + 1); rep_builder.AddPadding('0', zero_prefix_length); rep_builder.AddString(decimal_rep); rep_builder.AddPadding('0', zero_postfix_length); char* rep = rep_builder.Finalize(); // Create the result string by appending a minus and putting in a // decimal point if needed. unsigned result_size = decimal_point + f + 2; SimpleStringBuilder builder(result_size + 1); if (negative) builder.AddCharacter('-'); builder.AddSubstring(rep, decimal_point); if (f > 0) { builder.AddCharacter('.'); builder.AddSubstring(rep + decimal_point, f); } DeleteArray(rep); return builder.Finalize(); } static char* CreateExponentialRepresentation(char* decimal_rep, int exponent, bool negative, int significant_digits) { bool negative_exponent = false; if (exponent < 0) { negative_exponent = true; exponent = -exponent; } // Leave room in the result for appending a minus, for a period, the // letter 'e', a minus or a plus depending on the exponent, and a // three digit exponent. unsigned result_size = significant_digits + 7; SimpleStringBuilder builder(result_size + 1); if (negative) builder.AddCharacter('-'); builder.AddCharacter(decimal_rep[0]); if (significant_digits != 1) { builder.AddCharacter('.'); builder.AddString(decimal_rep + 1); size_t rep_length = strlen(decimal_rep); DCHECK_GE(significant_digits, rep_length); builder.AddPadding('0', significant_digits - static_cast<int>(rep_length)); } builder.AddCharacter('e'); builder.AddCharacter(negative_exponent ? '-' : '+'); builder.AddDecimalInteger(exponent); return builder.Finalize(); } char* DoubleToExponentialCString(double value, int f) { // f might be -1 to signal that f was undefined in JavaScript. DCHECK(f >= -1 && f <= kMaxFractionDigits); bool negative = false; if (value < 0) { value = -value; negative = true; } // Find a sufficiently precise decimal representation of n. int decimal_point; int sign; // f corresponds to the digits after the point. There is always one digit // before the point. The number of requested_digits equals hence f + 1. // And we have to add one character for the null-terminator. const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1 + 1; // Make sure that the buffer is big enough, even if we fall back to the // shortest representation (which happens when f equals -1). DCHECK_LE(kBase10MaximalLength, kMaxFractionDigits + 1); char decimal_rep[kV8DtoaBufferCapacity]; int decimal_rep_length; if (f == -1) { DoubleToAscii(value, DTOA_SHORTEST, 0, Vector<char>(decimal_rep, kV8DtoaBufferCapacity), &sign, &decimal_rep_length, &decimal_point); f = decimal_rep_length - 1; } else { DoubleToAscii(value, DTOA_PRECISION, f + 1, Vector<char>(decimal_rep, kV8DtoaBufferCapacity), &sign, &decimal_rep_length, &decimal_point); } DCHECK_GT(decimal_rep_length, 0); DCHECK(decimal_rep_length <= f + 1); int exponent = decimal_point - 1; char* result = CreateExponentialRepresentation(decimal_rep, exponent, negative, f + 1); return result; } char* DoubleToPrecisionCString(double value, int p) { const int kMinimalDigits = 1; DCHECK(p >= kMinimalDigits && p <= kMaxFractionDigits); USE(kMinimalDigits); bool negative = false; if (value < 0) { value = -value; negative = true; } // Find a sufficiently precise decimal representation of n. int decimal_point; int sign; // Add one for the terminating null character. const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1; char decimal_rep[kV8DtoaBufferCapacity]; int decimal_rep_length; DoubleToAscii(value, DTOA_PRECISION, p, Vector<char>(decimal_rep, kV8DtoaBufferCapacity), &sign, &decimal_rep_length, &decimal_point); DCHECK(decimal_rep_length <= p); int exponent = decimal_point - 1; char* result = nullptr; if (exponent < -6 || exponent >= p) { result = CreateExponentialRepresentation(decimal_rep, exponent, negative, p); } else { // Use fixed notation. // // Leave room in the result for appending a minus, a period and in // the case where decimal_point is not positive for a zero in // front of the period. unsigned result_size = (decimal_point <= 0) ? -decimal_point + p + 3 : p + 2; SimpleStringBuilder builder(result_size + 1); if (negative) builder.AddCharacter('-'); if (decimal_point <= 0) { builder.AddString("0."); builder.AddPadding('0', -decimal_point); builder.AddString(decimal_rep); builder.AddPadding('0', p - decimal_rep_length); } else { const int m = std::min(decimal_rep_length, decimal_point); builder.AddSubstring(decimal_rep, m); builder.AddPadding('0', decimal_point - decimal_rep_length); if (decimal_point < p) { builder.AddCharacter('.'); const int extra = negative ? 2 : 1; if (decimal_rep_length > decimal_point) { const size_t len = strlen(decimal_rep + decimal_point); DCHECK_GE(kMaxInt, len); const int n = std::min(static_cast<int>(len), p - (builder.position() - extra)); builder.AddSubstring(decimal_rep + decimal_point, n); } builder.AddPadding('0', extra + (p - builder.position())); } } result = builder.Finalize(); } return result; } char* DoubleToRadixCString(double value, int radix) { DCHECK(radix >= 2 && radix <= 36); DCHECK(std::isfinite(value)); DCHECK_NE(0.0, value); // Character array used for conversion. static const char chars[] = "0123456789abcdefghijklmnopqrstuvwxyz"; // Temporary buffer for the result. We start with the decimal point in the // middle and write to the left for the integer part and to the right for the // fractional part. 1024 characters for the exponent and 52 for the mantissa // either way, with additional space for sign, decimal point and string // termination should be sufficient. static const int kBufferSize = 2200; char buffer[kBufferSize]; int integer_cursor = kBufferSize / 2; int fraction_cursor = integer_cursor; bool negative = value < 0; if (negative) value = -value; // Split the value into an integer part and a fractional part. double integer = std::floor(value); double fraction = value - integer; // We only compute fractional digits up to the input double's precision. double delta = 0.5 * (Double(value).NextDouble() - value); delta = std::max(Double(0.0).NextDouble(), delta); DCHECK_GT(delta, 0.0); if (fraction >= delta) { // Insert decimal point. buffer[fraction_cursor++] = '.'; do { // Shift up by one digit. fraction *= radix; delta *= radix; // Write digit. int digit = static_cast<int>(fraction); buffer[fraction_cursor++] = chars[digit]; // Calculate remainder. fraction -= digit; // Round to even. if (fraction > 0.5 || (fraction == 0.5 && (digit & 1))) { if (fraction + delta > 1) { // We need to back trace already written digits in case of carry-over. while (true) { fraction_cursor--; if (fraction_cursor == kBufferSize / 2) { CHECK_EQ('.', buffer[fraction_cursor]); // Carry over to the integer part. integer += 1; break; } char c = buffer[fraction_cursor]; // Reconstruct digit. int digit = c > '9' ? (c - 'a' + 10) : (c - '0'); if (digit + 1 < radix) { buffer[fraction_cursor++] = chars[digit + 1]; break; } } break; } } } while (fraction >= delta); } // Compute integer digits. Fill unrepresented digits with zero. while (Double(integer / radix).Exponent() > 0) { integer /= radix; buffer[--integer_cursor] = '0'; } do { double remainder = Modulo(integer, radix); buffer[--integer_cursor] = chars[static_cast<int>(remainder)]; integer = (integer - remainder) / radix; } while (integer > 0); // Add sign and terminate string. if (negative) buffer[--integer_cursor] = '-'; buffer[fraction_cursor++] = '\0'; DCHECK_LT(fraction_cursor, kBufferSize); DCHECK_LE(0, integer_cursor); // Allocate new string as return value. char* result = NewArray<char>(fraction_cursor - integer_cursor); base::Memcpy(result, buffer + integer_cursor, fraction_cursor - integer_cursor); return result; } // ES6 18.2.4 parseFloat(string) double StringToDouble(Isolate* isolate, Handle<String> string, int flags, double empty_string_val) { Handle<String> flattened = String::Flatten(isolate, string); { DisallowGarbageCollection no_gc; String::FlatContent flat = flattened->GetFlatContent(no_gc); DCHECK(flat.IsFlat()); if (flat.IsOneByte()) { return StringToDouble(flat.ToOneByteVector(), flags, empty_string_val); } else { return StringToDouble(flat.ToUC16Vector(), flags, empty_string_val); } } } base::Optional<double> TryStringToDouble(LocalIsolate* isolate, Handle<String> object, int max_length_for_conversion) { DisallowGarbageCollection no_gc; int length = object->length(); if (length > max_length_for_conversion) { return base::nullopt; } const int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_BINARY; auto buffer = std::make_unique<uc16[]>(max_length_for_conversion); SharedStringAccessGuardIfNeeded access_guard(isolate); String::WriteToFlat(*object, buffer.get(), 0, length, access_guard); Vector<const uc16> v(buffer.get(), length); return StringToDouble(v, flags); } bool IsSpecialIndex(String string) { // Max length of canonical double: -X.XXXXXXXXXXXXXXXXX-eXXX const int kBufferSize = 24; const int length = string.length(); if (length == 0 || length > kBufferSize) return false; uint16_t buffer[kBufferSize]; String::WriteToFlat(string, buffer, 0, length); // If the first char is not a digit or a '-' or we can't match 'NaN' or // '(-)Infinity', bailout immediately. int offset = 0; if (!IsDecimalDigit(buffer[0])) { if (buffer[0] == '-') { if (length == 1) return false; // Just '-' is bad. if (!IsDecimalDigit(buffer[1])) { if (buffer[1] == 'I' && length == 9) { // Allow matching of '-Infinity' below. } else { return false; } } offset++; } else if (buffer[0] == 'I' && length == 8) { // Allow matching of 'Infinity' below. } else if (buffer[0] == 'N' && length == 3) { // Match NaN. return buffer[1] == 'a' && buffer[2] == 'N'; } else { return false; } } // Expected fast path: key is an integer. static const int kRepresentableIntegerLength = 15; // (-)XXXXXXXXXXXXXXX if (length - offset <= kRepresentableIntegerLength) { const int initial_offset = offset; bool matches = true; for (; offset < length; offset++) { matches &= IsDecimalDigit(buffer[offset]); } if (matches) { // Match 0 and -0. if (buffer[initial_offset] == '0') return initial_offset == length - 1; return true; } } // Slow path: test DoubleToString(StringToDouble(string)) == string. Vector<const uint16_t> vector(buffer, length); double d = StringToDouble(vector, NO_FLAGS); if (std::isnan(d)) return false; // Compute reverse string. char reverse_buffer[kBufferSize + 1]; // Result will be /0 terminated. Vector<char> reverse_vector(reverse_buffer, arraysize(reverse_buffer)); const char* reverse_string = DoubleToCString(d, reverse_vector); for (int i = 0; i < length; ++i) { if (static_cast<uint16_t>(reverse_string[i]) != buffer[i]) return false; } return true; } } // namespace internal } // namespace v8 #undef FPCLASSIFY_NAMESPACE