// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/interpreter/interpreter-assembler.h" #include <limits> #include <ostream> #include "src/codegen/code-factory.h" #include "src/codegen/interface-descriptors-inl.h" #include "src/codegen/machine-type.h" #include "src/execution/frames.h" #include "src/interpreter/bytecodes.h" #include "src/interpreter/interpreter.h" #include "src/objects/objects-inl.h" #include "src/zone/zone.h" namespace v8 { namespace internal { namespace interpreter { using compiler::CodeAssemblerState; InterpreterAssembler::InterpreterAssembler(CodeAssemblerState* state, Bytecode bytecode, OperandScale operand_scale) : CodeStubAssembler(state), bytecode_(bytecode), operand_scale_(operand_scale), TVARIABLE_CONSTRUCTOR(interpreted_frame_pointer_), TVARIABLE_CONSTRUCTOR(bytecode_array_, Parameter<BytecodeArray>( InterpreterDispatchDescriptor::kBytecodeArray)), TVARIABLE_CONSTRUCTOR( bytecode_offset_, UncheckedParameter<IntPtrT>( InterpreterDispatchDescriptor::kBytecodeOffset)), TVARIABLE_CONSTRUCTOR(dispatch_table_, UncheckedParameter<ExternalReference>( InterpreterDispatchDescriptor::kDispatchTable)), TVARIABLE_CONSTRUCTOR( accumulator_, Parameter<Object>(InterpreterDispatchDescriptor::kAccumulator)), implicit_register_use_(ImplicitRegisterUse::kNone), made_call_(false), reloaded_frame_ptr_(false), bytecode_array_valid_(true) { #ifdef V8_TRACE_UNOPTIMIZED TraceBytecode(Runtime::kTraceUnoptimizedBytecodeEntry); #endif RegisterCallGenerationCallbacks([this] { CallPrologue(); }, [this] { CallEpilogue(); }); // Save the bytecode offset immediately if bytecode will make a call along // the critical path, or it is a return bytecode. if (Bytecodes::MakesCallAlongCriticalPath(bytecode) || Bytecodes::Returns(bytecode)) { SaveBytecodeOffset(); } } InterpreterAssembler::~InterpreterAssembler() { // If the following check fails the handler does not use the // accumulator in the way described in the bytecode definitions in // bytecodes.h. DCHECK_EQ(implicit_register_use_, Bytecodes::GetImplicitRegisterUse(bytecode_)); UnregisterCallGenerationCallbacks(); } TNode<RawPtrT> InterpreterAssembler::GetInterpretedFramePointer() { if (!interpreted_frame_pointer_.IsBound()) { interpreted_frame_pointer_ = LoadParentFramePointer(); } else if (Bytecodes::MakesCallAlongCriticalPath(bytecode_) && made_call_ && !reloaded_frame_ptr_) { interpreted_frame_pointer_ = LoadParentFramePointer(); reloaded_frame_ptr_ = true; } return interpreted_frame_pointer_.value(); } TNode<IntPtrT> InterpreterAssembler::BytecodeOffset() { if (Bytecodes::MakesCallAlongCriticalPath(bytecode_) && made_call_ && (bytecode_offset_.value() == UncheckedParameter<IntPtrT>( InterpreterDispatchDescriptor::kBytecodeOffset))) { bytecode_offset_ = ReloadBytecodeOffset(); } return bytecode_offset_.value(); } TNode<IntPtrT> InterpreterAssembler::ReloadBytecodeOffset() { TNode<IntPtrT> offset = LoadAndUntagRegister(Register::bytecode_offset()); if (operand_scale() != OperandScale::kSingle) { // Add one to the offset such that it points to the actual bytecode rather // than the Wide / ExtraWide prefix bytecode. offset = IntPtrAdd(offset, IntPtrConstant(1)); } return offset; } void InterpreterAssembler::SaveBytecodeOffset() { TNode<IntPtrT> bytecode_offset = BytecodeOffset(); if (operand_scale() != OperandScale::kSingle) { // Subtract one from the bytecode_offset such that it points to the Wide / // ExtraWide prefix bytecode. bytecode_offset = IntPtrSub(BytecodeOffset(), IntPtrConstant(1)); } int store_offset = Register::bytecode_offset().ToOperand() * kSystemPointerSize; TNode<RawPtrT> base = GetInterpretedFramePointer(); if (SmiValuesAre32Bits()) { int zero_offset = store_offset + 4; int payload_offset = store_offset; #if V8_TARGET_LITTLE_ENDIAN std::swap(zero_offset, payload_offset); #endif StoreNoWriteBarrier(MachineRepresentation::kWord32, base, IntPtrConstant(zero_offset), Int32Constant(0)); StoreNoWriteBarrier(MachineRepresentation::kWord32, base, IntPtrConstant(payload_offset), TruncateIntPtrToInt32(bytecode_offset)); } else { StoreFullTaggedNoWriteBarrier(base, IntPtrConstant(store_offset), SmiTag(bytecode_offset)); } } TNode<BytecodeArray> InterpreterAssembler::BytecodeArrayTaggedPointer() { // Force a re-load of the bytecode array after every call in case the debugger // has been activated. if (!bytecode_array_valid_) { bytecode_array_ = CAST(LoadRegister(Register::bytecode_array())); bytecode_array_valid_ = true; } return bytecode_array_.value(); } TNode<ExternalReference> InterpreterAssembler::DispatchTablePointer() { if (Bytecodes::MakesCallAlongCriticalPath(bytecode_) && made_call_ && (dispatch_table_.value() == UncheckedParameter<ExternalReference>( InterpreterDispatchDescriptor::kDispatchTable))) { dispatch_table_ = ExternalConstant( ExternalReference::interpreter_dispatch_table_address(isolate())); } return dispatch_table_.value(); } TNode<Object> InterpreterAssembler::GetAccumulatorUnchecked() { return accumulator_.value(); } TNode<Object> InterpreterAssembler::GetAccumulator() { DCHECK(Bytecodes::ReadsAccumulator(bytecode_)); implicit_register_use_ = implicit_register_use_ | ImplicitRegisterUse::kReadAccumulator; return TaggedPoisonOnSpeculation(GetAccumulatorUnchecked()); } void InterpreterAssembler::SetAccumulator(TNode<Object> value) { DCHECK(Bytecodes::WritesAccumulator(bytecode_)); implicit_register_use_ = implicit_register_use_ | ImplicitRegisterUse::kWriteAccumulator; accumulator_ = value; } TNode<Context> InterpreterAssembler::GetContext() { return CAST(LoadRegister(Register::current_context())); } void InterpreterAssembler::SetContext(TNode<Context> value) { StoreRegister(value, Register::current_context()); } TNode<Context> InterpreterAssembler::GetContextAtDepth(TNode<Context> context, TNode<Uint32T> depth) { TVARIABLE(Context, cur_context, context); TVARIABLE(Uint32T, cur_depth, depth); Label context_found(this); Label context_search(this, {&cur_depth, &cur_context}); // Fast path if the depth is 0. Branch(Word32Equal(depth, Int32Constant(0)), &context_found, &context_search); // Loop until the depth is 0. BIND(&context_search); { cur_depth = Unsigned(Int32Sub(cur_depth.value(), Int32Constant(1))); cur_context = CAST(LoadContextElement(cur_context.value(), Context::PREVIOUS_INDEX)); Branch(Word32Equal(cur_depth.value(), Int32Constant(0)), &context_found, &context_search); } BIND(&context_found); return cur_context.value(); } TNode<IntPtrT> InterpreterAssembler::RegisterLocation( TNode<IntPtrT> reg_index) { return Signed(WordPoisonOnSpeculation( IntPtrAdd(GetInterpretedFramePointer(), RegisterFrameOffset(reg_index)))); } TNode<IntPtrT> InterpreterAssembler::RegisterLocation(Register reg) { return RegisterLocation(IntPtrConstant(reg.ToOperand())); } TNode<IntPtrT> InterpreterAssembler::RegisterFrameOffset(TNode<IntPtrT> index) { return TimesSystemPointerSize(index); } TNode<Object> InterpreterAssembler::LoadRegister(TNode<IntPtrT> reg_index) { return LoadFullTagged(GetInterpretedFramePointer(), RegisterFrameOffset(reg_index), LoadSensitivity::kCritical); } TNode<Object> InterpreterAssembler::LoadRegister(Register reg) { return LoadFullTagged(GetInterpretedFramePointer(), IntPtrConstant(reg.ToOperand() * kSystemPointerSize)); } TNode<IntPtrT> InterpreterAssembler::LoadAndUntagRegister(Register reg) { TNode<RawPtrT> base = GetInterpretedFramePointer(); int index = reg.ToOperand() * kSystemPointerSize; if (SmiValuesAre32Bits()) { #if V8_TARGET_LITTLE_ENDIAN index += 4; #endif return ChangeInt32ToIntPtr(Load<Int32T>(base, IntPtrConstant(index))); } else { return SmiToIntPtr(CAST(LoadFullTagged(base, IntPtrConstant(index)))); } } TNode<Object> InterpreterAssembler::LoadRegisterAtOperandIndex( int operand_index) { return LoadRegister( BytecodeOperandReg(operand_index, LoadSensitivity::kSafe)); } std::pair<TNode<Object>, TNode<Object>> InterpreterAssembler::LoadRegisterPairAtOperandIndex(int operand_index) { DCHECK_EQ(OperandType::kRegPair, Bytecodes::GetOperandType(bytecode_, operand_index)); TNode<IntPtrT> first_reg_index = BytecodeOperandReg(operand_index, LoadSensitivity::kSafe); TNode<IntPtrT> second_reg_index = NextRegister(first_reg_index); return std::make_pair(LoadRegister(first_reg_index), LoadRegister(second_reg_index)); } InterpreterAssembler::RegListNodePair InterpreterAssembler::GetRegisterListAtOperandIndex(int operand_index) { DCHECK(Bytecodes::IsRegisterListOperandType( Bytecodes::GetOperandType(bytecode_, operand_index))); DCHECK_EQ(OperandType::kRegCount, Bytecodes::GetOperandType(bytecode_, operand_index + 1)); TNode<IntPtrT> base_reg = RegisterLocation( BytecodeOperandReg(operand_index, LoadSensitivity::kSafe)); TNode<Uint32T> reg_count = BytecodeOperandCount(operand_index + 1); return RegListNodePair(base_reg, reg_count); } TNode<Object> InterpreterAssembler::LoadRegisterFromRegisterList( const RegListNodePair& reg_list, int index) { TNode<IntPtrT> location = RegisterLocationInRegisterList(reg_list, index); // Location is already poisoned on speculation, so no need to poison here. return LoadFullTagged(location); } TNode<IntPtrT> InterpreterAssembler::RegisterLocationInRegisterList( const RegListNodePair& reg_list, int index) { CSA_ASSERT(this, Uint32GreaterThan(reg_list.reg_count(), Int32Constant(index))); TNode<IntPtrT> offset = RegisterFrameOffset(IntPtrConstant(index)); // Register indexes are negative, so subtract index from base location to get // location. return Signed(IntPtrSub(reg_list.base_reg_location(), offset)); } void InterpreterAssembler::StoreRegister(TNode<Object> value, Register reg) { StoreFullTaggedNoWriteBarrier( GetInterpretedFramePointer(), IntPtrConstant(reg.ToOperand() * kSystemPointerSize), value); } void InterpreterAssembler::StoreRegister(TNode<Object> value, TNode<IntPtrT> reg_index) { StoreFullTaggedNoWriteBarrier(GetInterpretedFramePointer(), RegisterFrameOffset(reg_index), value); } void InterpreterAssembler::StoreRegisterForShortStar(TNode<Object> value, TNode<WordT> opcode) { DCHECK(Bytecodes::IsShortStar(bytecode_)); implicit_register_use_ = implicit_register_use_ | ImplicitRegisterUse::kWriteShortStar; CSA_ASSERT( this, UintPtrGreaterThanOrEqual(opcode, UintPtrConstant(static_cast<int>( Bytecode::kFirstShortStar)))); CSA_ASSERT( this, UintPtrLessThanOrEqual( opcode, UintPtrConstant(static_cast<int>(Bytecode::kLastShortStar)))); // Compute the constant that we can add to a Bytecode value to map the range // [Bytecode::kStar15, Bytecode::kStar0] to the range // [Register(15).ToOperand(), Register(0).ToOperand()]. constexpr int short_star_to_operand = Register(0).ToOperand() - static_cast<int>(Bytecode::kStar0); // Make sure the values count in the right direction. STATIC_ASSERT(short_star_to_operand == Register(1).ToOperand() - static_cast<int>(Bytecode::kStar1)); TNode<IntPtrT> offset = IntPtrAdd(RegisterFrameOffset(Signed(opcode)), IntPtrConstant(short_star_to_operand * kSystemPointerSize)); StoreFullTaggedNoWriteBarrier(GetInterpretedFramePointer(), offset, value); } void InterpreterAssembler::StoreRegisterAtOperandIndex(TNode<Object> value, int operand_index) { StoreRegister(value, BytecodeOperandReg(operand_index, LoadSensitivity::kSafe)); } void InterpreterAssembler::StoreRegisterPairAtOperandIndex(TNode<Object> value1, TNode<Object> value2, int operand_index) { DCHECK_EQ(OperandType::kRegOutPair, Bytecodes::GetOperandType(bytecode_, operand_index)); TNode<IntPtrT> first_reg_index = BytecodeOperandReg(operand_index, LoadSensitivity::kSafe); StoreRegister(value1, first_reg_index); TNode<IntPtrT> second_reg_index = NextRegister(first_reg_index); StoreRegister(value2, second_reg_index); } void InterpreterAssembler::StoreRegisterTripleAtOperandIndex( TNode<Object> value1, TNode<Object> value2, TNode<Object> value3, int operand_index) { DCHECK_EQ(OperandType::kRegOutTriple, Bytecodes::GetOperandType(bytecode_, operand_index)); TNode<IntPtrT> first_reg_index = BytecodeOperandReg(operand_index, LoadSensitivity::kSafe); StoreRegister(value1, first_reg_index); TNode<IntPtrT> second_reg_index = NextRegister(first_reg_index); StoreRegister(value2, second_reg_index); TNode<IntPtrT> third_reg_index = NextRegister(second_reg_index); StoreRegister(value3, third_reg_index); } TNode<IntPtrT> InterpreterAssembler::NextRegister(TNode<IntPtrT> reg_index) { // Register indexes are negative, so the next index is minus one. return Signed(IntPtrAdd(reg_index, IntPtrConstant(-1))); } TNode<IntPtrT> InterpreterAssembler::OperandOffset(int operand_index) { return IntPtrConstant( Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale())); } TNode<Uint8T> InterpreterAssembler::BytecodeOperandUnsignedByte( int operand_index, LoadSensitivity needs_poisoning) { DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_)); DCHECK_EQ(OperandSize::kByte, Bytecodes::GetOperandSize( bytecode_, operand_index, operand_scale())); TNode<IntPtrT> operand_offset = OperandOffset(operand_index); return Load<Uint8T>(BytecodeArrayTaggedPointer(), IntPtrAdd(BytecodeOffset(), operand_offset), needs_poisoning); } TNode<Int8T> InterpreterAssembler::BytecodeOperandSignedByte( int operand_index, LoadSensitivity needs_poisoning) { DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_)); DCHECK_EQ(OperandSize::kByte, Bytecodes::GetOperandSize( bytecode_, operand_index, operand_scale())); TNode<IntPtrT> operand_offset = OperandOffset(operand_index); return Load<Int8T>(BytecodeArrayTaggedPointer(), IntPtrAdd(BytecodeOffset(), operand_offset), needs_poisoning); } TNode<Word32T> InterpreterAssembler::BytecodeOperandReadUnaligned( int relative_offset, MachineType result_type, LoadSensitivity needs_poisoning) { static const int kMaxCount = 4; DCHECK(!TargetSupportsUnalignedAccess()); int count; switch (result_type.representation()) { case MachineRepresentation::kWord16: count = 2; break; case MachineRepresentation::kWord32: count = 4; break; default: UNREACHABLE(); } MachineType msb_type = result_type.IsSigned() ? MachineType::Int8() : MachineType::Uint8(); #if V8_TARGET_LITTLE_ENDIAN const int kStep = -1; int msb_offset = count - 1; #elif V8_TARGET_BIG_ENDIAN const int kStep = 1; int msb_offset = 0; #else #error "Unknown Architecture" #endif // Read the most signicant bytecode into bytes[0] and then in order // down to least significant in bytes[count - 1]. DCHECK_LE(count, kMaxCount); TNode<Word32T> bytes[kMaxCount]; for (int i = 0; i < count; i++) { MachineType machine_type = (i == 0) ? msb_type : MachineType::Uint8(); TNode<IntPtrT> offset = IntPtrConstant(relative_offset + msb_offset + i * kStep); TNode<IntPtrT> array_offset = IntPtrAdd(BytecodeOffset(), offset); bytes[i] = UncheckedCast<Word32T>(Load(machine_type, BytecodeArrayTaggedPointer(), array_offset, needs_poisoning)); } // Pack LSB to MSB. TNode<Word32T> result = bytes[--count]; for (int i = 1; --count >= 0; i++) { TNode<Int32T> shift = Int32Constant(i * kBitsPerByte); TNode<Word32T> value = Word32Shl(bytes[count], shift); result = Word32Or(value, result); } return result; } TNode<Uint16T> InterpreterAssembler::BytecodeOperandUnsignedShort( int operand_index, LoadSensitivity needs_poisoning) { DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_)); DCHECK_EQ( OperandSize::kShort, Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale())); int operand_offset = Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale()); if (TargetSupportsUnalignedAccess()) { return Load<Uint16T>( BytecodeArrayTaggedPointer(), IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)), needs_poisoning); } else { return UncheckedCast<Uint16T>(BytecodeOperandReadUnaligned( operand_offset, MachineType::Uint16(), needs_poisoning)); } } TNode<Int16T> InterpreterAssembler::BytecodeOperandSignedShort( int operand_index, LoadSensitivity needs_poisoning) { DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_)); DCHECK_EQ( OperandSize::kShort, Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale())); int operand_offset = Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale()); if (TargetSupportsUnalignedAccess()) { return Load<Int16T>( BytecodeArrayTaggedPointer(), IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)), needs_poisoning); } else { return UncheckedCast<Int16T>(BytecodeOperandReadUnaligned( operand_offset, MachineType::Int16(), needs_poisoning)); } } TNode<Uint32T> InterpreterAssembler::BytecodeOperandUnsignedQuad( int operand_index, LoadSensitivity needs_poisoning) { DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_)); DCHECK_EQ(OperandSize::kQuad, Bytecodes::GetOperandSize( bytecode_, operand_index, operand_scale())); int operand_offset = Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale()); if (TargetSupportsUnalignedAccess()) { return Load<Uint32T>( BytecodeArrayTaggedPointer(), IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)), needs_poisoning); } else { return UncheckedCast<Uint32T>(BytecodeOperandReadUnaligned( operand_offset, MachineType::Uint32(), needs_poisoning)); } } TNode<Int32T> InterpreterAssembler::BytecodeOperandSignedQuad( int operand_index, LoadSensitivity needs_poisoning) { DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_)); DCHECK_EQ(OperandSize::kQuad, Bytecodes::GetOperandSize( bytecode_, operand_index, operand_scale())); int operand_offset = Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale()); if (TargetSupportsUnalignedAccess()) { return Load<Int32T>( BytecodeArrayTaggedPointer(), IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)), needs_poisoning); } else { return UncheckedCast<Int32T>(BytecodeOperandReadUnaligned( operand_offset, MachineType::Int32(), needs_poisoning)); } } TNode<Int32T> InterpreterAssembler::BytecodeSignedOperand( int operand_index, OperandSize operand_size, LoadSensitivity needs_poisoning) { DCHECK(!Bytecodes::IsUnsignedOperandType( Bytecodes::GetOperandType(bytecode_, operand_index))); switch (operand_size) { case OperandSize::kByte: return BytecodeOperandSignedByte(operand_index, needs_poisoning); case OperandSize::kShort: return BytecodeOperandSignedShort(operand_index, needs_poisoning); case OperandSize::kQuad: return BytecodeOperandSignedQuad(operand_index, needs_poisoning); case OperandSize::kNone: UNREACHABLE(); } } TNode<Uint32T> InterpreterAssembler::BytecodeUnsignedOperand( int operand_index, OperandSize operand_size, LoadSensitivity needs_poisoning) { DCHECK(Bytecodes::IsUnsignedOperandType( Bytecodes::GetOperandType(bytecode_, operand_index))); switch (operand_size) { case OperandSize::kByte: return BytecodeOperandUnsignedByte(operand_index, needs_poisoning); case OperandSize::kShort: return BytecodeOperandUnsignedShort(operand_index, needs_poisoning); case OperandSize::kQuad: return BytecodeOperandUnsignedQuad(operand_index, needs_poisoning); case OperandSize::kNone: UNREACHABLE(); } } TNode<Uint32T> InterpreterAssembler::BytecodeOperandCount(int operand_index) { DCHECK_EQ(OperandType::kRegCount, Bytecodes::GetOperandType(bytecode_, operand_index)); OperandSize operand_size = Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()); return BytecodeUnsignedOperand(operand_index, operand_size); } TNode<Uint32T> InterpreterAssembler::BytecodeOperandFlag(int operand_index) { DCHECK_EQ(OperandType::kFlag8, Bytecodes::GetOperandType(bytecode_, operand_index)); OperandSize operand_size = Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()); DCHECK_EQ(operand_size, OperandSize::kByte); return BytecodeUnsignedOperand(operand_index, operand_size); } TNode<Uint32T> InterpreterAssembler::BytecodeOperandUImm(int operand_index) { DCHECK_EQ(OperandType::kUImm, Bytecodes::GetOperandType(bytecode_, operand_index)); OperandSize operand_size = Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()); return BytecodeUnsignedOperand(operand_index, operand_size); } TNode<UintPtrT> InterpreterAssembler::BytecodeOperandUImmWord( int operand_index) { return ChangeUint32ToWord(BytecodeOperandUImm(operand_index)); } TNode<Smi> InterpreterAssembler::BytecodeOperandUImmSmi(int operand_index) { return SmiFromUint32(BytecodeOperandUImm(operand_index)); } TNode<Int32T> InterpreterAssembler::BytecodeOperandImm(int operand_index) { DCHECK_EQ(OperandType::kImm, Bytecodes::GetOperandType(bytecode_, operand_index)); OperandSize operand_size = Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()); return BytecodeSignedOperand(operand_index, operand_size); } TNode<IntPtrT> InterpreterAssembler::BytecodeOperandImmIntPtr( int operand_index) { return ChangeInt32ToIntPtr(BytecodeOperandImm(operand_index)); } TNode<Smi> InterpreterAssembler::BytecodeOperandImmSmi(int operand_index) { return SmiFromInt32(BytecodeOperandImm(operand_index)); } TNode<Uint32T> InterpreterAssembler::BytecodeOperandIdxInt32( int operand_index) { DCHECK_EQ(OperandType::kIdx, Bytecodes::GetOperandType(bytecode_, operand_index)); OperandSize operand_size = Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()); return BytecodeUnsignedOperand(operand_index, operand_size); } TNode<UintPtrT> InterpreterAssembler::BytecodeOperandIdx(int operand_index) { return ChangeUint32ToWord(BytecodeOperandIdxInt32(operand_index)); } TNode<Smi> InterpreterAssembler::BytecodeOperandIdxSmi(int operand_index) { return SmiTag(Signed(BytecodeOperandIdx(operand_index))); } TNode<TaggedIndex> InterpreterAssembler::BytecodeOperandIdxTaggedIndex( int operand_index) { TNode<IntPtrT> index = ChangeInt32ToIntPtr(Signed(BytecodeOperandIdxInt32(operand_index))); return IntPtrToTaggedIndex(index); } TNode<UintPtrT> InterpreterAssembler::BytecodeOperandConstantPoolIdx( int operand_index, LoadSensitivity needs_poisoning) { DCHECK_EQ(OperandType::kIdx, Bytecodes::GetOperandType(bytecode_, operand_index)); OperandSize operand_size = Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()); return ChangeUint32ToWord( BytecodeUnsignedOperand(operand_index, operand_size, needs_poisoning)); } TNode<IntPtrT> InterpreterAssembler::BytecodeOperandReg( int operand_index, LoadSensitivity needs_poisoning) { DCHECK(Bytecodes::IsRegisterOperandType( Bytecodes::GetOperandType(bytecode_, operand_index))); OperandSize operand_size = Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()); return ChangeInt32ToIntPtr( BytecodeSignedOperand(operand_index, operand_size, needs_poisoning)); } TNode<Uint32T> InterpreterAssembler::BytecodeOperandRuntimeId( int operand_index) { DCHECK_EQ(OperandType::kRuntimeId, Bytecodes::GetOperandType(bytecode_, operand_index)); OperandSize operand_size = Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()); DCHECK_EQ(operand_size, OperandSize::kShort); return BytecodeUnsignedOperand(operand_index, operand_size); } TNode<UintPtrT> InterpreterAssembler::BytecodeOperandNativeContextIndex( int operand_index) { DCHECK_EQ(OperandType::kNativeContextIndex, Bytecodes::GetOperandType(bytecode_, operand_index)); OperandSize operand_size = Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()); return ChangeUint32ToWord( BytecodeUnsignedOperand(operand_index, operand_size)); } TNode<Uint32T> InterpreterAssembler::BytecodeOperandIntrinsicId( int operand_index) { DCHECK_EQ(OperandType::kIntrinsicId, Bytecodes::GetOperandType(bytecode_, operand_index)); OperandSize operand_size = Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()); DCHECK_EQ(operand_size, OperandSize::kByte); return BytecodeUnsignedOperand(operand_index, operand_size); } TNode<Object> InterpreterAssembler::LoadConstantPoolEntry(TNode<WordT> index) { TNode<FixedArray> constant_pool = CAST(LoadObjectField( BytecodeArrayTaggedPointer(), BytecodeArray::kConstantPoolOffset)); return UnsafeLoadFixedArrayElement(constant_pool, UncheckedCast<IntPtrT>(index), 0, LoadSensitivity::kCritical); } TNode<IntPtrT> InterpreterAssembler::LoadAndUntagConstantPoolEntry( TNode<WordT> index) { return SmiUntag(CAST(LoadConstantPoolEntry(index))); } TNode<Object> InterpreterAssembler::LoadConstantPoolEntryAtOperandIndex( int operand_index) { TNode<UintPtrT> index = BytecodeOperandConstantPoolIdx(operand_index, LoadSensitivity::kSafe); return LoadConstantPoolEntry(index); } TNode<IntPtrT> InterpreterAssembler::LoadAndUntagConstantPoolEntryAtOperandIndex( int operand_index) { return SmiUntag(CAST(LoadConstantPoolEntryAtOperandIndex(operand_index))); } TNode<HeapObject> InterpreterAssembler::LoadFeedbackVector() { TNode<JSFunction> function = CAST(LoadRegister(Register::function_closure())); return CodeStubAssembler::LoadFeedbackVector(function); } void InterpreterAssembler::CallPrologue() { if (!Bytecodes::MakesCallAlongCriticalPath(bytecode_)) { // Bytecodes that make a call along the critical path save the bytecode // offset in the bytecode handler's prologue. For other bytecodes, if // there are multiple calls in the bytecode handler, you need to spill // before each of them, unless SaveBytecodeOffset has explicitly been called // in a path that dominates _all_ of those calls (which we don't track). SaveBytecodeOffset(); } bytecode_array_valid_ = false; made_call_ = true; } void InterpreterAssembler::CallEpilogue() {} void InterpreterAssembler::CallJSAndDispatch( TNode<Object> function, TNode<Context> context, const RegListNodePair& args, ConvertReceiverMode receiver_mode) { DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_)); DCHECK(Bytecodes::IsCallOrConstruct(bytecode_) || bytecode_ == Bytecode::kInvokeIntrinsic); DCHECK_EQ(Bytecodes::GetReceiverMode(bytecode_), receiver_mode); TNode<Word32T> args_count; if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { // The receiver is implied, so it is not in the argument list. args_count = args.reg_count(); } else { // Subtract the receiver from the argument count. TNode<Int32T> receiver_count = Int32Constant(1); args_count = Int32Sub(args.reg_count(), receiver_count); } Callable callable = CodeFactory::InterpreterPushArgsThenCall( isolate(), receiver_mode, InterpreterPushArgsMode::kOther); TNode<Code> code_target = HeapConstant(callable.code()); TailCallStubThenBytecodeDispatch(callable.descriptor(), code_target, context, args_count, args.base_reg_location(), function); // TailCallStubThenDispatch updates accumulator with result. implicit_register_use_ = implicit_register_use_ | ImplicitRegisterUse::kWriteAccumulator; } template <class... TArgs> void InterpreterAssembler::CallJSAndDispatch(TNode<Object> function, TNode<Context> context, TNode<Word32T> arg_count, ConvertReceiverMode receiver_mode, TArgs... args) { DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_)); DCHECK(Bytecodes::IsCallOrConstruct(bytecode_) || bytecode_ == Bytecode::kInvokeIntrinsic); DCHECK_EQ(Bytecodes::GetReceiverMode(bytecode_), receiver_mode); Callable callable = CodeFactory::Call(isolate()); TNode<Code> code_target = HeapConstant(callable.code()); if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { // The first argument parameter (the receiver) is implied to be undefined. TailCallStubThenBytecodeDispatch(callable.descriptor(), code_target, context, function, arg_count, args..., UndefinedConstant()); } else { TailCallStubThenBytecodeDispatch(callable.descriptor(), code_target, context, function, arg_count, args...); } // TailCallStubThenDispatch updates accumulator with result. implicit_register_use_ = implicit_register_use_ | ImplicitRegisterUse::kWriteAccumulator; } // Instantiate CallJSAndDispatch() for argument counts used by interpreter // generator. template V8_EXPORT_PRIVATE void InterpreterAssembler::CallJSAndDispatch( TNode<Object> function, TNode<Context> context, TNode<Word32T> arg_count, ConvertReceiverMode receiver_mode); template V8_EXPORT_PRIVATE void InterpreterAssembler::CallJSAndDispatch( TNode<Object> function, TNode<Context> context, TNode<Word32T> arg_count, ConvertReceiverMode receiver_mode, TNode<Object>); template V8_EXPORT_PRIVATE void InterpreterAssembler::CallJSAndDispatch( TNode<Object> function, TNode<Context> context, TNode<Word32T> arg_count, ConvertReceiverMode receiver_mode, TNode<Object>, TNode<Object>); template V8_EXPORT_PRIVATE void InterpreterAssembler::CallJSAndDispatch( TNode<Object> function, TNode<Context> context, TNode<Word32T> arg_count, ConvertReceiverMode receiver_mode, TNode<Object>, TNode<Object>, TNode<Object>); void InterpreterAssembler::CallJSWithSpreadAndDispatch( TNode<Object> function, TNode<Context> context, const RegListNodePair& args, TNode<UintPtrT> slot_id, TNode<HeapObject> maybe_feedback_vector) { DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_)); DCHECK_EQ(Bytecodes::GetReceiverMode(bytecode_), ConvertReceiverMode::kAny); LazyNode<Object> receiver = [=] { return LoadRegisterAtOperandIndex(1); }; CollectCallFeedback(function, receiver, context, maybe_feedback_vector, slot_id); Comment("call using CallWithSpread builtin"); Callable callable = CodeFactory::InterpreterPushArgsThenCall( isolate(), ConvertReceiverMode::kAny, InterpreterPushArgsMode::kWithFinalSpread); TNode<Code> code_target = HeapConstant(callable.code()); TNode<Int32T> receiver_count = Int32Constant(1); TNode<Word32T> args_count = Int32Sub(args.reg_count(), receiver_count); TailCallStubThenBytecodeDispatch(callable.descriptor(), code_target, context, args_count, args.base_reg_location(), function); // TailCallStubThenDispatch updates accumulator with result. implicit_register_use_ = implicit_register_use_ | ImplicitRegisterUse::kWriteAccumulator; } TNode<Object> InterpreterAssembler::Construct( TNode<Object> target, TNode<Context> context, TNode<Object> new_target, const RegListNodePair& args, TNode<UintPtrT> slot_id, TNode<HeapObject> maybe_feedback_vector) { DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_)); TVARIABLE(Object, var_result); TVARIABLE(AllocationSite, var_site); Label return_result(this), construct_generic(this), construct_array(this, &var_site); CollectConstructFeedback(context, target, new_target, maybe_feedback_vector, slot_id, UpdateFeedbackMode::kOptionalFeedback, &construct_generic, &construct_array, &var_site); BIND(&construct_generic); { // TODO(bmeurer): Remove the generic type_info parameter from the Construct. Comment("call using Construct builtin"); Callable callable = CodeFactory::InterpreterPushArgsThenConstruct( isolate(), InterpreterPushArgsMode::kOther); var_result = CallStub(callable, context, args.reg_count(), args.base_reg_location(), target, new_target, UndefinedConstant()); Goto(&return_result); } BIND(&construct_array); { // TODO(bmeurer): Introduce a dedicated builtin to deal with the Array // constructor feedback collection inside of Ignition. Comment("call using ConstructArray builtin"); Callable callable = CodeFactory::InterpreterPushArgsThenConstruct( isolate(), InterpreterPushArgsMode::kArrayFunction); var_result = CallStub(callable, context, args.reg_count(), args.base_reg_location(), target, new_target, var_site.value()); Goto(&return_result); } BIND(&return_result); return var_result.value(); } TNode<Object> InterpreterAssembler::ConstructWithSpread( TNode<Object> target, TNode<Context> context, TNode<Object> new_target, const RegListNodePair& args, TNode<UintPtrT> slot_id, TNode<HeapObject> maybe_feedback_vector) { // TODO(bmeurer): Unify this with the Construct bytecode feedback // above once we have a way to pass the AllocationSite to the Array // constructor _and_ spread the last argument at the same time. DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_)); Label extra_checks(this, Label::kDeferred), construct(this); GotoIf(IsUndefined(maybe_feedback_vector), &construct); TNode<FeedbackVector> feedback_vector = CAST(maybe_feedback_vector); // Increment the call count. IncrementCallCount(feedback_vector, slot_id); // Check if we have monomorphic {new_target} feedback already. TNode<MaybeObject> feedback = LoadFeedbackVectorSlot(feedback_vector, slot_id); Branch(IsWeakReferenceToObject(feedback, new_target), &construct, &extra_checks); BIND(&extra_checks); { Label check_initialized(this), initialize(this), mark_megamorphic(this); // Check if it is a megamorphic {new_target}. Comment("check if megamorphic"); TNode<BoolT> is_megamorphic = TaggedEqual( feedback, HeapConstant(FeedbackVector::MegamorphicSentinel(isolate()))); GotoIf(is_megamorphic, &construct); Comment("check if weak reference"); GotoIfNot(IsWeakOrCleared(feedback), &check_initialized); // If the weak reference is cleared, we have a new chance to become // monomorphic. Comment("check if weak reference is cleared"); Branch(IsCleared(feedback), &initialize, &mark_megamorphic); BIND(&check_initialized); { // Check if it is uninitialized. Comment("check if uninitialized"); TNode<BoolT> is_uninitialized = TaggedEqual(feedback, UninitializedSymbolConstant()); Branch(is_uninitialized, &initialize, &mark_megamorphic); } BIND(&initialize); { Comment("check if function in same native context"); GotoIf(TaggedIsSmi(new_target), &mark_megamorphic); // Check if the {new_target} is a JSFunction or JSBoundFunction // in the current native context. TVARIABLE(HeapObject, var_current, CAST(new_target)); Label loop(this, &var_current), done_loop(this); Goto(&loop); BIND(&loop); { Label if_boundfunction(this), if_function(this); TNode<HeapObject> current = var_current.value(); TNode<Uint16T> current_instance_type = LoadInstanceType(current); GotoIf(InstanceTypeEqual(current_instance_type, JS_BOUND_FUNCTION_TYPE), &if_boundfunction); Branch(IsJSFunctionInstanceType(current_instance_type), &if_function, &mark_megamorphic); BIND(&if_function); { // Check that the JSFunction {current} is in the current native // context. TNode<Context> current_context = CAST(LoadObjectField(current, JSFunction::kContextOffset)); TNode<NativeContext> current_native_context = LoadNativeContext(current_context); Branch( TaggedEqual(LoadNativeContext(context), current_native_context), &done_loop, &mark_megamorphic); } BIND(&if_boundfunction); { // Continue with the [[BoundTargetFunction]] of {current}. var_current = LoadObjectField<HeapObject>( current, JSBoundFunction::kBoundTargetFunctionOffset); Goto(&loop); } } BIND(&done_loop); StoreWeakReferenceInFeedbackVector(feedback_vector, slot_id, CAST(new_target)); ReportFeedbackUpdate(feedback_vector, slot_id, "ConstructWithSpread:Initialize"); Goto(&construct); } BIND(&mark_megamorphic); { // MegamorphicSentinel is an immortal immovable object so // write-barrier is not needed. Comment("transition to megamorphic"); DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kmegamorphic_symbol)); StoreFeedbackVectorSlot( feedback_vector, slot_id, HeapConstant(FeedbackVector::MegamorphicSentinel(isolate())), SKIP_WRITE_BARRIER); ReportFeedbackUpdate(feedback_vector, slot_id, "ConstructWithSpread:TransitionMegamorphic"); Goto(&construct); } } BIND(&construct); Comment("call using ConstructWithSpread builtin"); Callable callable = CodeFactory::InterpreterPushArgsThenConstruct( isolate(), InterpreterPushArgsMode::kWithFinalSpread); return CallStub(callable, context, args.reg_count(), args.base_reg_location(), target, new_target, UndefinedConstant()); } template <class T> TNode<T> InterpreterAssembler::CallRuntimeN(TNode<Uint32T> function_id, TNode<Context> context, const RegListNodePair& args, int return_count) { DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_)); DCHECK(Bytecodes::IsCallRuntime(bytecode_)); Callable callable = CodeFactory::InterpreterCEntry(isolate(), return_count); TNode<Code> code_target = HeapConstant(callable.code()); // Get the function entry from the function id. TNode<RawPtrT> function_table = ReinterpretCast<RawPtrT>(ExternalConstant( ExternalReference::runtime_function_table_address(isolate()))); TNode<Word32T> function_offset = Int32Mul(function_id, Int32Constant(sizeof(Runtime::Function))); TNode<WordT> function = IntPtrAdd(function_table, ChangeUint32ToWord(function_offset)); TNode<RawPtrT> function_entry = Load<RawPtrT>( function, IntPtrConstant(offsetof(Runtime::Function, entry))); return CallStub<T>(callable.descriptor(), code_target, context, args.reg_count(), args.base_reg_location(), function_entry); } template V8_EXPORT_PRIVATE TNode<Object> InterpreterAssembler::CallRuntimeN( TNode<Uint32T> function_id, TNode<Context> context, const RegListNodePair& args, int return_count); template V8_EXPORT_PRIVATE TNode<PairT<Object, Object>> InterpreterAssembler::CallRuntimeN(TNode<Uint32T> function_id, TNode<Context> context, const RegListNodePair& args, int return_count); void InterpreterAssembler::UpdateInterruptBudget(TNode<Int32T> weight, bool backward) { Comment("[ UpdateInterruptBudget"); // Assert that the weight is positive (negative weights should be implemented // as backward updates). CSA_ASSERT(this, Int32GreaterThanOrEqual(weight, Int32Constant(0))); Label load_budget_from_bytecode(this), load_budget_done(this); TNode<JSFunction> function = CAST(LoadRegister(Register::function_closure())); TNode<FeedbackCell> feedback_cell = LoadObjectField<FeedbackCell>(function, JSFunction::kFeedbackCellOffset); TNode<Int32T> old_budget = LoadObjectField<Int32T>( feedback_cell, FeedbackCell::kInterruptBudgetOffset); // Make sure we include the current bytecode in the budget calculation. TNode<Int32T> budget_after_bytecode = Int32Sub(old_budget, Int32Constant(CurrentBytecodeSize())); Label done(this); TVARIABLE(Int32T, new_budget); if (backward) { // Update budget by |weight| and check if it reaches zero. new_budget = Int32Sub(budget_after_bytecode, weight); TNode<BoolT> condition = Int32GreaterThanOrEqual(new_budget.value(), Int32Constant(0)); Label ok(this), interrupt_check(this, Label::kDeferred); Branch(condition, &ok, &interrupt_check); BIND(&interrupt_check); CallRuntime(Runtime::kBytecodeBudgetInterruptFromBytecode, GetContext(), function); Goto(&done); BIND(&ok); } else { // For a forward jump, we know we only increase the interrupt budget, so // no need to check if it's below zero. new_budget = Int32Add(budget_after_bytecode, weight); } // Update budget. StoreObjectFieldNoWriteBarrier( feedback_cell, FeedbackCell::kInterruptBudgetOffset, new_budget.value()); Goto(&done); BIND(&done); Comment("] UpdateInterruptBudget"); } TNode<IntPtrT> InterpreterAssembler::Advance() { return Advance(CurrentBytecodeSize()); } TNode<IntPtrT> InterpreterAssembler::Advance(int delta) { return Advance(IntPtrConstant(delta)); } TNode<IntPtrT> InterpreterAssembler::Advance(TNode<IntPtrT> delta, bool backward) { #ifdef V8_TRACE_UNOPTIMIZED TraceBytecode(Runtime::kTraceUnoptimizedBytecodeExit); #endif TNode<IntPtrT> next_offset = backward ? IntPtrSub(BytecodeOffset(), delta) : IntPtrAdd(BytecodeOffset(), delta); bytecode_offset_ = next_offset; return next_offset; } void InterpreterAssembler::Jump(TNode<IntPtrT> jump_offset, bool backward) { DCHECK(!Bytecodes::IsStarLookahead(bytecode_, operand_scale_)); UpdateInterruptBudget(TruncateIntPtrToInt32(jump_offset), backward); TNode<IntPtrT> new_bytecode_offset = Advance(jump_offset, backward); TNode<RawPtrT> target_bytecode = UncheckedCast<RawPtrT>(LoadBytecode(new_bytecode_offset)); DispatchToBytecode(target_bytecode, new_bytecode_offset); } void InterpreterAssembler::Jump(TNode<IntPtrT> jump_offset) { Jump(jump_offset, false); } void InterpreterAssembler::JumpBackward(TNode<IntPtrT> jump_offset) { Jump(jump_offset, true); } void InterpreterAssembler::JumpConditional(TNode<BoolT> condition, TNode<IntPtrT> jump_offset) { Label match(this), no_match(this); Branch(condition, &match, &no_match); BIND(&match); Jump(jump_offset); BIND(&no_match); Dispatch(); } void InterpreterAssembler::JumpIfTaggedEqual(TNode<Object> lhs, TNode<Object> rhs, TNode<IntPtrT> jump_offset) { JumpConditional(TaggedEqual(lhs, rhs), jump_offset); } void InterpreterAssembler::JumpIfTaggedNotEqual(TNode<Object> lhs, TNode<Object> rhs, TNode<IntPtrT> jump_offset) { JumpConditional(TaggedNotEqual(lhs, rhs), jump_offset); } TNode<WordT> InterpreterAssembler::LoadBytecode( TNode<IntPtrT> bytecode_offset) { TNode<Uint8T> bytecode = Load<Uint8T>(BytecodeArrayTaggedPointer(), bytecode_offset); return ChangeUint32ToWord(bytecode); } void InterpreterAssembler::StarDispatchLookahead(TNode<WordT> target_bytecode) { Label do_inline_star(this), done(this); // Check whether the following opcode is one of the short Star codes. All // opcodes higher than the short Star variants are invalid, and invalid // opcodes are never deliberately written, so we can use a one-sided check. // This is no less secure than the normal-length Star handler, which performs // no validation on its operand. STATIC_ASSERT(static_cast<int>(Bytecode::kLastShortStar) + 1 == static_cast<int>(Bytecode::kIllegal)); STATIC_ASSERT(Bytecode::kIllegal == Bytecode::kLast); TNode<Int32T> first_short_star_bytecode = Int32Constant(static_cast<int>(Bytecode::kFirstShortStar)); TNode<BoolT> is_star = Uint32GreaterThanOrEqual( TruncateWordToInt32(target_bytecode), first_short_star_bytecode); Branch(is_star, &do_inline_star, &done); BIND(&do_inline_star); { InlineShortStar(target_bytecode); // Rather than merging control flow to a single indirect jump, we can get // better branch prediction by duplicating it. This is because the // instruction following a merged X + StarN is a bad predictor of the // instruction following a non-merged X, and vice versa. DispatchToBytecode(LoadBytecode(BytecodeOffset()), BytecodeOffset()); } BIND(&done); } void InterpreterAssembler::InlineShortStar(TNode<WordT> target_bytecode) { Bytecode previous_bytecode = bytecode_; ImplicitRegisterUse previous_acc_use = implicit_register_use_; // At this point we don't know statically what bytecode we're executing, but // kStar0 has the right attributes (namely, no operands) for any of the short // Star codes. bytecode_ = Bytecode::kStar0; implicit_register_use_ = ImplicitRegisterUse::kNone; #ifdef V8_TRACE_UNOPTIMIZED TraceBytecode(Runtime::kTraceUnoptimizedBytecodeEntry); #endif StoreRegisterForShortStar(GetAccumulator(), target_bytecode); DCHECK_EQ(implicit_register_use_, Bytecodes::GetImplicitRegisterUse(bytecode_)); Advance(); bytecode_ = previous_bytecode; implicit_register_use_ = previous_acc_use; } void InterpreterAssembler::Dispatch() { Comment("========= Dispatch"); DCHECK_IMPLIES(Bytecodes::MakesCallAlongCriticalPath(bytecode_), made_call_); TNode<IntPtrT> target_offset = Advance(); TNode<WordT> target_bytecode = LoadBytecode(target_offset); DispatchToBytecodeWithOptionalStarLookahead(target_bytecode); } void InterpreterAssembler::DispatchToBytecodeWithOptionalStarLookahead( TNode<WordT> target_bytecode) { if (Bytecodes::IsStarLookahead(bytecode_, operand_scale_)) { StarDispatchLookahead(target_bytecode); } DispatchToBytecode(target_bytecode, BytecodeOffset()); } void InterpreterAssembler::DispatchToBytecode( TNode<WordT> target_bytecode, TNode<IntPtrT> new_bytecode_offset) { if (FLAG_trace_ignition_dispatches) { TraceBytecodeDispatch(target_bytecode); } TNode<RawPtrT> target_code_entry = Load<RawPtrT>( DispatchTablePointer(), TimesSystemPointerSize(target_bytecode)); DispatchToBytecodeHandlerEntry(target_code_entry, new_bytecode_offset); } void InterpreterAssembler::DispatchToBytecodeHandlerEntry( TNode<RawPtrT> handler_entry, TNode<IntPtrT> bytecode_offset) { // Propagate speculation poisoning. TNode<RawPtrT> poisoned_handler_entry = UncheckedCast<RawPtrT>(WordPoisonOnSpeculation(handler_entry)); TailCallBytecodeDispatch(InterpreterDispatchDescriptor{}, poisoned_handler_entry, GetAccumulatorUnchecked(), bytecode_offset, BytecodeArrayTaggedPointer(), DispatchTablePointer()); } void InterpreterAssembler::DispatchWide(OperandScale operand_scale) { // Dispatching a wide bytecode requires treating the prefix // bytecode a base pointer into the dispatch table and dispatching // the bytecode that follows relative to this base. // // Indices 0-255 correspond to bytecodes with operand_scale == 0 // Indices 256-511 correspond to bytecodes with operand_scale == 1 // Indices 512-767 correspond to bytecodes with operand_scale == 2 DCHECK_IMPLIES(Bytecodes::MakesCallAlongCriticalPath(bytecode_), made_call_); TNode<IntPtrT> next_bytecode_offset = Advance(1); TNode<WordT> next_bytecode = LoadBytecode(next_bytecode_offset); if (FLAG_trace_ignition_dispatches) { TraceBytecodeDispatch(next_bytecode); } TNode<IntPtrT> base_index; switch (operand_scale) { case OperandScale::kDouble: base_index = IntPtrConstant(1 << kBitsPerByte); break; case OperandScale::kQuadruple: base_index = IntPtrConstant(2 << kBitsPerByte); break; default: UNREACHABLE(); } TNode<WordT> target_index = IntPtrAdd(base_index, next_bytecode); TNode<RawPtrT> target_code_entry = Load<RawPtrT>( DispatchTablePointer(), TimesSystemPointerSize(target_index)); DispatchToBytecodeHandlerEntry(target_code_entry, next_bytecode_offset); } void InterpreterAssembler::UpdateInterruptBudgetOnReturn() { // TODO(rmcilroy): Investigate whether it is worth supporting self // optimization of primitive functions like FullCodegen. // Update profiling count by the number of bytes between the end of the // current bytecode and the start of the first one, to simulate backedge to // start of function. // // With headers and current offset, the bytecode array layout looks like: // // <---------- simulated backedge ---------- // | header | first bytecode | .... | return bytecode | // |<------ current offset -------> // ^ tagged bytecode array pointer // // UpdateInterruptBudget already handles adding the bytecode size to the // length of the back-edge, so we just have to correct for the non-zero offset // of the first bytecode. const int kFirstBytecodeOffset = BytecodeArray::kHeaderSize - kHeapObjectTag; TNode<Int32T> profiling_weight = Int32Sub(TruncateIntPtrToInt32(BytecodeOffset()), Int32Constant(kFirstBytecodeOffset)); UpdateInterruptBudget(profiling_weight, true); } TNode<Int8T> InterpreterAssembler::LoadOsrNestingLevel() { return LoadObjectField<Int8T>(BytecodeArrayTaggedPointer(), BytecodeArray::kOsrNestingLevelOffset); } void InterpreterAssembler::Abort(AbortReason abort_reason) { TNode<Smi> abort_id = SmiConstant(abort_reason); CallRuntime(Runtime::kAbort, GetContext(), abort_id); } void InterpreterAssembler::AbortIfWordNotEqual(TNode<WordT> lhs, TNode<WordT> rhs, AbortReason abort_reason) { Label ok(this), abort(this, Label::kDeferred); Branch(WordEqual(lhs, rhs), &ok, &abort); BIND(&abort); Abort(abort_reason); Goto(&ok); BIND(&ok); } void InterpreterAssembler::OnStackReplacement(TNode<Context> context, TNode<IntPtrT> relative_jump) { TNode<JSFunction> function = CAST(LoadRegister(Register::function_closure())); TNode<HeapObject> shared_info = LoadJSFunctionSharedFunctionInfo(function); TNode<Object> sfi_data = LoadObjectField(shared_info, SharedFunctionInfo::kFunctionDataOffset); TNode<Uint16T> data_type = LoadInstanceType(CAST(sfi_data)); Label baseline(this); GotoIf(InstanceTypeEqual(data_type, BASELINE_DATA_TYPE), &baseline); { Callable callable = CodeFactory::InterpreterOnStackReplacement(isolate()); CallStub(callable, context); JumpBackward(relative_jump); } BIND(&baseline); { Callable callable = CodeFactory::InterpreterOnStackReplacement_ToBaseline(isolate()); // We already compiled the baseline code, so we don't need to handle failed // compilation as in the Ignition -> Turbofan case. Therefore we can just // tailcall to the OSR builtin. SaveBytecodeOffset(); TailCallStub(callable, context); } } void InterpreterAssembler::TraceBytecode(Runtime::FunctionId function_id) { CallRuntime(function_id, GetContext(), BytecodeArrayTaggedPointer(), SmiTag(BytecodeOffset()), GetAccumulatorUnchecked()); } void InterpreterAssembler::TraceBytecodeDispatch(TNode<WordT> target_bytecode) { TNode<ExternalReference> counters_table = ExternalConstant( ExternalReference::interpreter_dispatch_counters(isolate())); TNode<IntPtrT> source_bytecode_table_index = IntPtrConstant( static_cast<int>(bytecode_) * (static_cast<int>(Bytecode::kLast) + 1)); TNode<WordT> counter_offset = TimesSystemPointerSize( IntPtrAdd(source_bytecode_table_index, target_bytecode)); TNode<IntPtrT> old_counter = Load<IntPtrT>(counters_table, counter_offset); Label counter_ok(this), counter_saturated(this, Label::kDeferred); TNode<BoolT> counter_reached_max = WordEqual( old_counter, IntPtrConstant(std::numeric_limits<uintptr_t>::max())); Branch(counter_reached_max, &counter_saturated, &counter_ok); BIND(&counter_ok); { TNode<IntPtrT> new_counter = IntPtrAdd(old_counter, IntPtrConstant(1)); StoreNoWriteBarrier(MachineType::PointerRepresentation(), counters_table, counter_offset, new_counter); Goto(&counter_saturated); } BIND(&counter_saturated); } // static bool InterpreterAssembler::TargetSupportsUnalignedAccess() { #if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_RISCV64 return false; #elif V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_S390 || \ V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_PPC || \ V8_TARGET_ARCH_PPC64 return true; #else #error "Unknown Architecture" #endif } void InterpreterAssembler::AbortIfRegisterCountInvalid( TNode<FixedArrayBase> parameters_and_registers, TNode<IntPtrT> formal_parameter_count, TNode<UintPtrT> register_count) { TNode<IntPtrT> array_size = LoadAndUntagFixedArrayBaseLength(parameters_and_registers); Label ok(this), abort(this, Label::kDeferred); Branch(UintPtrLessThanOrEqual( IntPtrAdd(formal_parameter_count, register_count), array_size), &ok, &abort); BIND(&abort); Abort(AbortReason::kInvalidParametersAndRegistersInGenerator); Goto(&ok); BIND(&ok); } TNode<FixedArray> InterpreterAssembler::ExportParametersAndRegisterFile( TNode<FixedArray> array, const RegListNodePair& registers, TNode<Int32T> formal_parameter_count) { // Store the formal parameters (without receiver) followed by the // registers into the generator's internal parameters_and_registers field. TNode<IntPtrT> formal_parameter_count_intptr = Signed(ChangeUint32ToWord(formal_parameter_count)); TNode<UintPtrT> register_count = ChangeUint32ToWord(registers.reg_count()); if (FLAG_debug_code) { CSA_ASSERT(this, IntPtrEqual(registers.base_reg_location(), RegisterLocation(Register(0)))); AbortIfRegisterCountInvalid(array, formal_parameter_count_intptr, register_count); } { TVARIABLE(IntPtrT, var_index); var_index = IntPtrConstant(0); // Iterate over parameters and write them into the array. Label loop(this, &var_index), done_loop(this); TNode<IntPtrT> reg_base = IntPtrConstant(Register::FromParameterIndex(0, 1).ToOperand() + 1); Goto(&loop); BIND(&loop); { TNode<IntPtrT> index = var_index.value(); GotoIfNot(UintPtrLessThan(index, formal_parameter_count_intptr), &done_loop); TNode<IntPtrT> reg_index = IntPtrAdd(reg_base, index); TNode<Object> value = LoadRegister(reg_index); StoreFixedArrayElement(array, index, value); var_index = IntPtrAdd(index, IntPtrConstant(1)); Goto(&loop); } BIND(&done_loop); } { // Iterate over register file and write values into array. // The mapping of register to array index must match that used in // BytecodeGraphBuilder::VisitResumeGenerator. TVARIABLE(IntPtrT, var_index); var_index = IntPtrConstant(0); Label loop(this, &var_index), done_loop(this); Goto(&loop); BIND(&loop); { TNode<IntPtrT> index = var_index.value(); GotoIfNot(UintPtrLessThan(index, register_count), &done_loop); TNode<IntPtrT> reg_index = IntPtrSub(IntPtrConstant(Register(0).ToOperand()), index); TNode<Object> value = LoadRegister(reg_index); TNode<IntPtrT> array_index = IntPtrAdd(formal_parameter_count_intptr, index); StoreFixedArrayElement(array, array_index, value); var_index = IntPtrAdd(index, IntPtrConstant(1)); Goto(&loop); } BIND(&done_loop); } return array; } TNode<FixedArray> InterpreterAssembler::ImportRegisterFile( TNode<FixedArray> array, const RegListNodePair& registers, TNode<Int32T> formal_parameter_count) { TNode<IntPtrT> formal_parameter_count_intptr = Signed(ChangeUint32ToWord(formal_parameter_count)); TNode<UintPtrT> register_count = ChangeUint32ToWord(registers.reg_count()); if (FLAG_debug_code) { CSA_ASSERT(this, IntPtrEqual(registers.base_reg_location(), RegisterLocation(Register(0)))); AbortIfRegisterCountInvalid(array, formal_parameter_count_intptr, register_count); } TVARIABLE(IntPtrT, var_index, IntPtrConstant(0)); // Iterate over array and write values into register file. Also erase the // array contents to not keep them alive artificially. Label loop(this, &var_index), done_loop(this); Goto(&loop); BIND(&loop); { TNode<IntPtrT> index = var_index.value(); GotoIfNot(UintPtrLessThan(index, register_count), &done_loop); TNode<IntPtrT> array_index = IntPtrAdd(formal_parameter_count_intptr, index); TNode<Object> value = LoadFixedArrayElement(array, array_index); TNode<IntPtrT> reg_index = IntPtrSub(IntPtrConstant(Register(0).ToOperand()), index); StoreRegister(value, reg_index); StoreFixedArrayElement(array, array_index, StaleRegisterConstant()); var_index = IntPtrAdd(index, IntPtrConstant(1)); Goto(&loop); } BIND(&done_loop); return array; } int InterpreterAssembler::CurrentBytecodeSize() const { return Bytecodes::Size(bytecode_, operand_scale_); } void InterpreterAssembler::ToNumberOrNumeric(Object::Conversion mode) { TNode<Object> object = GetAccumulator(); TNode<Context> context = GetContext(); TVARIABLE(Smi, var_type_feedback); TVARIABLE(Numeric, var_result); Label if_done(this), if_objectissmi(this), if_objectisheapnumber(this), if_objectisother(this, Label::kDeferred); GotoIf(TaggedIsSmi(object), &if_objectissmi); Branch(IsHeapNumber(CAST(object)), &if_objectisheapnumber, &if_objectisother); BIND(&if_objectissmi); { var_result = CAST(object); var_type_feedback = SmiConstant(BinaryOperationFeedback::kSignedSmall); Goto(&if_done); } BIND(&if_objectisheapnumber); { var_result = CAST(object); var_type_feedback = SmiConstant(BinaryOperationFeedback::kNumber); Goto(&if_done); } BIND(&if_objectisother); { auto builtin = Builtins::kNonNumberToNumber; if (mode == Object::Conversion::kToNumeric) { builtin = Builtins::kNonNumberToNumeric; // Special case for collecting BigInt feedback. Label not_bigint(this); GotoIfNot(IsBigInt(CAST(object)), ¬_bigint); { var_result = CAST(object); var_type_feedback = SmiConstant(BinaryOperationFeedback::kBigInt); Goto(&if_done); } BIND(¬_bigint); } // Convert {object} by calling out to the appropriate builtin. var_result = CAST(CallBuiltin(builtin, context, object)); var_type_feedback = SmiConstant(BinaryOperationFeedback::kAny); Goto(&if_done); } BIND(&if_done); // Record the type feedback collected for {object}. TNode<UintPtrT> slot_index = BytecodeOperandIdx(0); TNode<HeapObject> maybe_feedback_vector = LoadFeedbackVector(); MaybeUpdateFeedback(var_type_feedback.value(), maybe_feedback_vector, slot_index); SetAccumulator(var_result.value()); Dispatch(); } } // namespace interpreter } // namespace internal } // namespace v8