// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_X64 #include "src/ic/call-optimization.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void PropertyHandlerCompiler::PushVectorAndSlot(Register vector, Register slot) { MacroAssembler* masm = this->masm(); __ Push(vector); __ Push(slot); } void PropertyHandlerCompiler::PopVectorAndSlot(Register vector, Register slot) { MacroAssembler* masm = this->masm(); __ Pop(slot); __ Pop(vector); } void PropertyHandlerCompiler::DiscardVectorAndSlot() { MacroAssembler* masm = this->masm(); // Remove vector and slot. __ addp(rsp, Immediate(2 * kPointerSize)); } void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup( MacroAssembler* masm, Label* miss_label, Register receiver, Handle<Name> name, Register scratch0, Register scratch1) { DCHECK(name->IsUniqueName()); DCHECK(!receiver.is(scratch0)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->negative_lookups(), 1); __ IncrementCounter(counters->negative_lookups_miss(), 1); __ movp(scratch0, FieldOperand(receiver, HeapObject::kMapOffset)); const int kInterceptorOrAccessCheckNeededMask = (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); // Bail out if the receiver has a named interceptor or requires access checks. __ testb(FieldOperand(scratch0, Map::kBitFieldOffset), Immediate(kInterceptorOrAccessCheckNeededMask)); __ j(not_zero, miss_label); // Check that receiver is a JSObject. __ CmpInstanceType(scratch0, FIRST_SPEC_OBJECT_TYPE); __ j(below, miss_label); // Load properties array. Register properties = scratch0; __ movp(properties, FieldOperand(receiver, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. __ CompareRoot(FieldOperand(properties, HeapObject::kMapOffset), Heap::kHashTableMapRootIndex); __ j(not_equal, miss_label); Label done; NameDictionaryLookupStub::GenerateNegativeLookup(masm, miss_label, &done, properties, name, scratch1); __ bind(&done); __ DecrementCounter(counters->negative_lookups_miss(), 1); } void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype( MacroAssembler* masm, int index, Register result, Label* miss) { const int offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX); __ movp(result, Operand(rsi, offset)); __ movp(result, FieldOperand(result, GlobalObject::kNativeContextOffset)); __ movp(result, Operand(result, Context::SlotOffset(index))); // Load its initial map. The global functions all have initial maps. __ movp(result, FieldOperand(result, JSFunction::kPrototypeOrInitialMapOffset)); // Load the prototype from the initial map. __ movp(result, FieldOperand(result, Map::kPrototypeOffset)); } void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype( MacroAssembler* masm, Register receiver, Register result, Register scratch, Label* miss_label) { __ TryGetFunctionPrototype(receiver, result, miss_label); if (!result.is(rax)) __ movp(rax, result); __ ret(0); } static void PushInterceptorArguments(MacroAssembler* masm, Register receiver, Register holder, Register name, Handle<JSObject> holder_obj) { STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 1); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 2); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 3); __ Push(name); __ Push(receiver); __ Push(holder); } static void CompileCallLoadPropertyWithInterceptor( MacroAssembler* masm, Register receiver, Register holder, Register name, Handle<JSObject> holder_obj, IC::UtilityId id) { PushInterceptorArguments(masm, receiver, holder, name, holder_obj); __ CallExternalReference(ExternalReference(IC_Utility(id), masm->isolate()), NamedLoadHandlerCompiler::kInterceptorArgsLength); } // Generate call to api function. void PropertyHandlerCompiler::GenerateApiAccessorCall( MacroAssembler* masm, const CallOptimization& optimization, Handle<Map> receiver_map, Register receiver, Register scratch, bool is_store, Register store_parameter, Register accessor_holder, int accessor_index) { DCHECK(!accessor_holder.is(scratch)); DCHECK(optimization.is_simple_api_call()); __ PopReturnAddressTo(scratch); // receiver __ Push(receiver); // Write the arguments to stack frame. if (is_store) { DCHECK(!receiver.is(store_parameter)); DCHECK(!scratch.is(store_parameter)); __ Push(store_parameter); } __ PushReturnAddressFrom(scratch); // Stack now matches JSFunction abi. // Abi for CallApiFunctionStub. Register callee = rdi; Register data = rbx; Register holder = rcx; Register api_function_address = rdx; scratch = no_reg; // Put callee in place. __ LoadAccessor(callee, accessor_holder, accessor_index, is_store ? ACCESSOR_SETTER : ACCESSOR_GETTER); // Put holder in place. CallOptimization::HolderLookup holder_lookup; int holder_depth = 0; optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup, &holder_depth); switch (holder_lookup) { case CallOptimization::kHolderIsReceiver: __ Move(holder, receiver); break; case CallOptimization::kHolderFound: __ movp(holder, FieldOperand(receiver, HeapObject::kMapOffset)); __ movp(holder, FieldOperand(holder, Map::kPrototypeOffset)); for (int i = 1; i < holder_depth; i++) { __ movp(holder, FieldOperand(holder, HeapObject::kMapOffset)); __ movp(holder, FieldOperand(holder, Map::kPrototypeOffset)); } break; case CallOptimization::kHolderNotFound: UNREACHABLE(); break; } Isolate* isolate = masm->isolate(); Handle<CallHandlerInfo> api_call_info = optimization.api_call_info(); bool call_data_undefined = false; // Put call data in place. if (api_call_info->data()->IsUndefined()) { call_data_undefined = true; __ LoadRoot(data, Heap::kUndefinedValueRootIndex); } else { __ movp(data, FieldOperand(callee, JSFunction::kSharedFunctionInfoOffset)); __ movp(data, FieldOperand(data, SharedFunctionInfo::kFunctionDataOffset)); __ movp(data, FieldOperand(data, FunctionTemplateInfo::kCallCodeOffset)); __ movp(data, FieldOperand(data, CallHandlerInfo::kDataOffset)); } // Put api_function_address in place. Address function_address = v8::ToCData<Address>(api_call_info->callback()); __ Move(api_function_address, function_address, RelocInfo::EXTERNAL_REFERENCE); // Jump to stub. CallApiAccessorStub stub(isolate, is_store, call_data_undefined); __ TailCallStub(&stub); } void PropertyHandlerCompiler::GenerateCheckPropertyCell( MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name, Register scratch, Label* miss) { Handle<PropertyCell> cell = JSGlobalObject::EnsurePropertyCell(global, name); DCHECK(cell->value()->IsTheHole()); Factory* factory = masm->isolate()->factory(); Handle<WeakCell> weak_cell = factory->NewWeakCell(cell); __ LoadWeakValue(scratch, weak_cell, miss); __ Cmp(FieldOperand(scratch, Cell::kValueOffset), factory->the_hole_value()); __ j(not_equal, miss); } void NamedStoreHandlerCompiler::GenerateStoreViaSetter( MacroAssembler* masm, Handle<HeapType> type, Register receiver, Register holder, int accessor_index, int expected_arguments, Register scratch) { // ----------- S t a t e ------------- // -- rsp[0] : return address // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Save value register, so we can restore it later. __ Push(value()); if (accessor_index >= 0) { DCHECK(!holder.is(scratch)); DCHECK(!receiver.is(scratch)); DCHECK(!value().is(scratch)); // Call the JavaScript setter with receiver and value on the stack. if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) { // Swap in the global receiver. __ movp(scratch, FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset)); receiver = scratch; } __ Push(receiver); __ Push(value()); ParameterCount actual(1); ParameterCount expected(expected_arguments); __ LoadAccessor(rdi, holder, accessor_index, ACCESSOR_SETTER); __ InvokeFunction(rdi, expected, actual, CALL_FUNCTION, NullCallWrapper()); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset()); } // We have to return the passed value, not the return value of the setter. __ Pop(rax); // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } __ ret(0); } void NamedLoadHandlerCompiler::GenerateLoadViaGetter( MacroAssembler* masm, Handle<HeapType> type, Register receiver, Register holder, int accessor_index, int expected_arguments, Register scratch) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); if (accessor_index >= 0) { DCHECK(!holder.is(scratch)); DCHECK(!receiver.is(scratch)); // Call the JavaScript getter with the receiver on the stack. if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) { // Swap in the global receiver. __ movp(scratch, FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset)); receiver = scratch; } __ Push(receiver); ParameterCount actual(0); ParameterCount expected(expected_arguments); __ LoadAccessor(rdi, holder, accessor_index, ACCESSOR_GETTER); __ InvokeFunction(rdi, expected, actual, CALL_FUNCTION, NullCallWrapper()); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset()); } // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } __ ret(0); } static void StoreIC_PushArgs(MacroAssembler* masm) { Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); Register value = StoreDescriptor::ValueRegister(); DCHECK(!rbx.is(receiver) && !rbx.is(name) && !rbx.is(value)); __ PopReturnAddressTo(rbx); __ Push(receiver); __ Push(name); __ Push(value); __ PushReturnAddressFrom(rbx); } void NamedStoreHandlerCompiler::GenerateSlow(MacroAssembler* masm) { // Return address is on the stack. StoreIC_PushArgs(masm); // Do tail-call to runtime routine. ExternalReference ref(IC_Utility(IC::kStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void ElementHandlerCompiler::GenerateStoreSlow(MacroAssembler* masm) { // Return address is on the stack. StoreIC_PushArgs(masm); // Do tail-call to runtime routine. ExternalReference ref(IC_Utility(IC::kKeyedStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } #undef __ #define __ ACCESS_MASM((masm())) void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label, Handle<Name> name) { if (!label->is_unused()) { __ bind(label); __ Move(this->name(), name); } } void NamedStoreHandlerCompiler::GenerateRestoreName(Handle<Name> name) { __ Move(this->name(), name); } void NamedStoreHandlerCompiler::GenerateRestoreMap(Handle<Map> transition, Register scratch, Label* miss) { Handle<WeakCell> cell = Map::WeakCellForMap(transition); Register map_reg = StoreTransitionDescriptor::MapRegister(); DCHECK(!map_reg.is(scratch)); __ LoadWeakValue(map_reg, cell, miss); if (transition->CanBeDeprecated()) { __ movl(scratch, FieldOperand(map_reg, Map::kBitField3Offset)); __ andl(scratch, Immediate(Map::Deprecated::kMask)); __ j(not_zero, miss); } } void NamedStoreHandlerCompiler::GenerateConstantCheck(Register map_reg, int descriptor, Register value_reg, Register scratch, Label* miss_label) { DCHECK(!map_reg.is(scratch)); DCHECK(!map_reg.is(value_reg)); DCHECK(!value_reg.is(scratch)); __ LoadInstanceDescriptors(map_reg, scratch); __ movp(scratch, FieldOperand(scratch, DescriptorArray::GetValueOffset(descriptor))); __ cmpp(value_reg, scratch); __ j(not_equal, miss_label); } void NamedStoreHandlerCompiler::GenerateFieldTypeChecks(HeapType* field_type, Register value_reg, Label* miss_label) { Register map_reg = scratch1(); Register scratch = scratch2(); DCHECK(!value_reg.is(map_reg)); DCHECK(!value_reg.is(scratch)); __ JumpIfSmi(value_reg, miss_label); HeapType::Iterator<Map> it = field_type->Classes(); if (!it.Done()) { Label do_store; __ movp(map_reg, FieldOperand(value_reg, HeapObject::kMapOffset)); while (true) { __ CmpWeakValue(map_reg, Map::WeakCellForMap(it.Current()), scratch); it.Advance(); if (it.Done()) { __ j(not_equal, miss_label); break; } __ j(equal, &do_store, Label::kNear); } __ bind(&do_store); } } Register PropertyHandlerCompiler::CheckPrototypes( Register object_reg, Register holder_reg, Register scratch1, Register scratch2, Handle<Name> name, Label* miss, PrototypeCheckType check) { Handle<Map> receiver_map(IC::TypeToMap(*type(), isolate())); // Make sure there's no overlap between holder and object registers. DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg)); DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg) && !scratch2.is(scratch1)); // Keep track of the current object in register reg. On the first // iteration, reg is an alias for object_reg, on later iterations, // it is an alias for holder_reg. Register reg = object_reg; int depth = 0; Handle<JSObject> current = Handle<JSObject>::null(); if (type()->IsConstant()) { current = Handle<JSObject>::cast(type()->AsConstant()->Value()); } Handle<JSObject> prototype = Handle<JSObject>::null(); Handle<Map> current_map = receiver_map; Handle<Map> holder_map(holder()->map()); // Traverse the prototype chain and check the maps in the prototype chain for // fast and global objects or do negative lookup for normal objects. while (!current_map.is_identical_to(holder_map)) { ++depth; // Only global objects and objects that do not require access // checks are allowed in stubs. DCHECK(current_map->IsJSGlobalProxyMap() || !current_map->is_access_check_needed()); prototype = handle(JSObject::cast(current_map->prototype())); if (current_map->is_dictionary_map() && !current_map->IsJSGlobalObjectMap()) { DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast. if (!name->IsUniqueName()) { DCHECK(name->IsString()); name = factory()->InternalizeString(Handle<String>::cast(name)); } DCHECK(current.is_null() || current->property_dictionary()->FindEntry(name) == NameDictionary::kNotFound); GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1, scratch2); __ movp(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); reg = holder_reg; // From now on the object will be in holder_reg. __ movp(reg, FieldOperand(scratch1, Map::kPrototypeOffset)); } else { Register map_reg = scratch1; __ movp(map_reg, FieldOperand(reg, HeapObject::kMapOffset)); if (depth != 1 || check == CHECK_ALL_MAPS) { Handle<WeakCell> cell = Map::WeakCellForMap(current_map); __ CmpWeakValue(map_reg, cell, scratch2); __ j(not_equal, miss); } // Check access rights to the global object. This has to happen after // the map check so that we know that the object is actually a global // object. // This allows us to install generated handlers for accesses to the // global proxy (as opposed to using slow ICs). See corresponding code // in LookupForRead(). if (current_map->IsJSGlobalProxyMap()) { __ CheckAccessGlobalProxy(reg, scratch2, miss); } else if (current_map->IsJSGlobalObjectMap()) { GenerateCheckPropertyCell(masm(), Handle<JSGlobalObject>::cast(current), name, scratch2, miss); } reg = holder_reg; // From now on the object will be in holder_reg. __ movp(reg, FieldOperand(map_reg, Map::kPrototypeOffset)); } // Go to the next object in the prototype chain. current = prototype; current_map = handle(current->map()); } // Log the check depth. LOG(isolate(), IntEvent("check-maps-depth", depth + 1)); if (depth != 0 || check == CHECK_ALL_MAPS) { __ movp(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); Handle<WeakCell> cell = Map::WeakCellForMap(current_map); __ CmpWeakValue(scratch1, cell, scratch2); __ j(not_equal, miss); } // Perform security check for access to the global object. DCHECK(current_map->IsJSGlobalProxyMap() || !current_map->is_access_check_needed()); if (current_map->IsJSGlobalProxyMap()) { __ CheckAccessGlobalProxy(reg, scratch1, miss); } // Return the register containing the holder. return reg; } void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) { if (!miss->is_unused()) { Label success; __ jmp(&success); __ bind(miss); if (IC::ICUseVector(kind())) { DCHECK(kind() == Code::LOAD_IC); PopVectorAndSlot(); } TailCallBuiltin(masm(), MissBuiltin(kind())); __ bind(&success); } } void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) { if (!miss->is_unused()) { Label success; __ jmp(&success); GenerateRestoreName(miss, name); TailCallBuiltin(masm(), MissBuiltin(kind())); __ bind(&success); } } void NamedLoadHandlerCompiler::GenerateLoadCallback( Register reg, Handle<ExecutableAccessorInfo> callback) { // Insert additional parameters into the stack frame above return address. DCHECK(!scratch4().is(reg)); __ PopReturnAddressTo(scratch4()); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 6); __ Push(receiver()); // receiver Handle<Object> data(callback->data(), isolate()); if (data->IsUndefined() || data->IsSmi()) { __ Push(data); } else { DCHECK(!scratch2().is(reg)); Handle<WeakCell> cell = isolate()->factory()->NewWeakCell(Handle<HeapObject>::cast(data)); // The callback is alive if this instruction is executed, // so the weak cell is not cleared and points to data. __ GetWeakValue(scratch2(), cell); __ Push(scratch2()); } DCHECK(!kScratchRegister.is(reg)); __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); __ Push(kScratchRegister); // return value __ Push(kScratchRegister); // return value default __ PushAddress(ExternalReference::isolate_address(isolate())); __ Push(reg); // holder __ Push(name()); // name // Save a pointer to where we pushed the arguments pointer. This will be // passed as the const PropertyAccessorInfo& to the C++ callback. __ PushReturnAddressFrom(scratch4()); // Abi for CallApiGetter Register api_function_address = ApiGetterDescriptor::function_address(); Address getter_address = v8::ToCData<Address>(callback->getter()); __ Move(api_function_address, getter_address, RelocInfo::EXTERNAL_REFERENCE); CallApiGetterStub stub(isolate()); __ TailCallStub(&stub); } void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle<Object> value) { // Return the constant value. __ Move(rax, value); __ ret(0); } void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup( LookupIterator* it, Register holder_reg) { DCHECK(holder()->HasNamedInterceptor()); DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined()); // Compile the interceptor call, followed by inline code to load the // property from further up the prototype chain if the call fails. // Check that the maps haven't changed. DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1())); // Preserve the receiver register explicitly whenever it is different from the // holder and it is needed should the interceptor return without any result. // The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD // case might cause a miss during the prototype check. bool must_perform_prototype_check = !holder().is_identical_to(it->GetHolder<JSObject>()); bool must_preserve_receiver_reg = !receiver().is(holder_reg) && (it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check); // Save necessary data before invoking an interceptor. // Requires a frame to make GC aware of pushed pointers. { FrameScope frame_scope(masm(), StackFrame::INTERNAL); if (must_preserve_receiver_reg) { __ Push(receiver()); } __ Push(holder_reg); __ Push(this->name()); InterceptorVectorSlotPush(holder_reg); // Invoke an interceptor. Note: map checks from receiver to // interceptor's holder has been compiled before (see a caller // of this method.) CompileCallLoadPropertyWithInterceptor( masm(), receiver(), holder_reg, this->name(), holder(), IC::kLoadPropertyWithInterceptorOnly); // Check if interceptor provided a value for property. If it's // the case, return immediately. Label interceptor_failed; __ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex); __ j(equal, &interceptor_failed); frame_scope.GenerateLeaveFrame(); __ ret(0); __ bind(&interceptor_failed); InterceptorVectorSlotPop(holder_reg); __ Pop(this->name()); __ Pop(holder_reg); if (must_preserve_receiver_reg) { __ Pop(receiver()); } // Leave the internal frame. } GenerateLoadPostInterceptor(it, holder_reg); } void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) { // Call the runtime system to load the interceptor. DCHECK(holder()->HasNamedInterceptor()); DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined()); __ PopReturnAddressTo(scratch2()); PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(), holder()); __ PushReturnAddressFrom(scratch2()); ExternalReference ref = ExternalReference( IC_Utility(IC::kLoadPropertyWithInterceptor), isolate()); __ TailCallExternalReference( ref, NamedLoadHandlerCompiler::kInterceptorArgsLength, 1); } Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback( Handle<JSObject> object, Handle<Name> name, int accessor_index) { Register holder_reg = Frontend(name); __ PopReturnAddressTo(scratch1()); __ Push(receiver()); __ Push(holder_reg); __ Push(Smi::FromInt(accessor_index)); __ Push(name); __ Push(value()); __ PushReturnAddressFrom(scratch1()); // Do tail-call to the runtime system. ExternalReference store_callback_property = ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate()); __ TailCallExternalReference(store_callback_property, 5, 1); // Return the generated code. return GetCode(kind(), Code::FAST, name); } Handle<Code> NamedStoreHandlerCompiler::CompileStoreInterceptor( Handle<Name> name) { __ PopReturnAddressTo(scratch1()); __ Push(receiver()); __ Push(this->name()); __ Push(value()); __ PushReturnAddressFrom(scratch1()); // Do tail-call to the runtime system. ExternalReference store_ic_property = ExternalReference( IC_Utility(IC::kStorePropertyWithInterceptor), isolate()); __ TailCallExternalReference(store_ic_property, 3, 1); // Return the generated code. return GetCode(kind(), Code::FAST, name); } Register NamedStoreHandlerCompiler::value() { return StoreDescriptor::ValueRegister(); } Handle<Code> NamedLoadHandlerCompiler::CompileLoadGlobal( Handle<PropertyCell> cell, Handle<Name> name, bool is_configurable) { Label miss; if (IC::ICUseVector(kind())) { PushVectorAndSlot(); } FrontendHeader(receiver(), name, &miss); // Get the value from the cell. Register result = StoreDescriptor::ValueRegister(); Handle<WeakCell> weak_cell = factory()->NewWeakCell(cell); __ LoadWeakValue(result, weak_cell, &miss); __ movp(result, FieldOperand(result, PropertyCell::kValueOffset)); // Check for deleted property if property can actually be deleted. if (is_configurable) { __ CompareRoot(result, Heap::kTheHoleValueRootIndex); __ j(equal, &miss); } else if (FLAG_debug_code) { __ CompareRoot(result, Heap::kTheHoleValueRootIndex); __ Check(not_equal, kDontDeleteCellsCannotContainTheHole); } Counters* counters = isolate()->counters(); __ IncrementCounter(counters->named_load_global_stub(), 1); if (IC::ICUseVector(kind())) { DiscardVectorAndSlot(); } __ ret(0); FrontendFooter(name, &miss); // Return the generated code. return GetCode(kind(), Code::NORMAL, name); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64