// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_X87 #include "src/code-factory.h" #include "src/codegen.h" #include "src/deoptimizer.h" #include "src/full-codegen/full-codegen.h" #include "src/x87/frames-x87.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- eax : number of arguments excluding receiver // (only guaranteed when the called function // is not marked as DontAdaptArguments) // -- edi : called function // -- esp[0] : return address // -- esp[4] : last argument // -- ... // -- esp[4 * argc] : first argument // -- esp[4 * (argc +1)] : receiver // ----------------------------------- __ AssertFunction(edi); // Make sure we operate in the context of the called function (for example // ConstructStubs implemented in C++ will be run in the context of the caller // instead of the callee, due to the way that [[Construct]] is defined for // ordinary functions). // TODO(bmeurer): Can we make this more robust? __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; Register scratch = ebx; __ pop(scratch); // Save return address. __ push(edi); __ push(scratch); // Restore return address. } else { DCHECK(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects eax to contain the number of arguments // including the receiver and the extra arguments. But eax is only valid // if the called function is marked as DontAdaptArguments, otherwise we // need to load the argument count from the SharedFunctionInfo. Label argc, done_argc; __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); __ SmiUntag(ebx); __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel); __ j(equal, &argc, Label::kNear); __ lea(eax, Operand(ebx, num_extra_args + 1)); __ jmp(&done_argc, Label::kNear); __ bind(&argc); __ add(eax, Immediate(num_extra_args + 1)); __ bind(&done_argc); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } static void CallRuntimePassFunction( MacroAssembler* masm, Runtime::FunctionId function_id) { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function. __ push(edi); // Function is also the parameter to the runtime call. __ push(edi); __ CallRuntime(function_id, 1); // Restore receiver. __ pop(edi); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kCodeOffset)); __ lea(eax, FieldOperand(eax, Code::kHeaderSize)); __ jmp(eax); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm) { __ lea(eax, FieldOperand(eax, Code::kHeaderSize)); __ jmp(eax); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, // not checking may delay installing ready functions, and always checking // would be quite expensive. A good compromise is to first check against // stack limit as a cue for an interrupt signal. Label ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm->isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(above_equal, &ok, Label::kNear); CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode); GenerateTailCallToReturnedCode(masm); __ bind(&ok); GenerateTailCallToSharedCode(masm); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function) { // ----------- S t a t e ------------- // -- eax: number of arguments // -- edi: constructor function // -- ebx: allocation site or undefined // -- edx: original constructor // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ AssertUndefinedOrAllocationSite(ebx); __ push(ebx); __ SmiTag(eax); __ push(eax); __ push(edi); __ push(edx); // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(masm->isolate()); __ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0)); __ j(not_equal, &rt_call); // Verify that the original constructor is a JSFunction. __ CmpObjectType(edx, JS_FUNCTION_TYPE, ebx); __ j(not_equal, &rt_call); // Load the initial map and verify that it is in fact a map. // edx: original constructor __ mov(eax, FieldOperand(edx, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi __ JumpIfSmi(eax, &rt_call); // edi: constructor // eax: initial map (if proven valid below) __ CmpObjectType(eax, MAP_TYPE, ebx); __ j(not_equal, &rt_call); // Fall back to runtime if the expected base constructor and base // constructor differ. __ cmp(edi, FieldOperand(eax, Map::kConstructorOrBackPointerOffset)); __ j(not_equal, &rt_call); // Check that the constructor is not constructing a JSFunction (see // comments in Runtime_NewObject in runtime.cc). In which case the // initial map's instance type would be JS_FUNCTION_TYPE. // edi: constructor // eax: initial map __ CmpInstanceType(eax, JS_FUNCTION_TYPE); __ j(equal, &rt_call); if (!is_api_function) { Label allocate; // The code below relies on these assumptions. STATIC_ASSERT(Map::Counter::kShift + Map::Counter::kSize == 32); // Check if slack tracking is enabled. __ mov(esi, FieldOperand(eax, Map::kBitField3Offset)); __ shr(esi, Map::Counter::kShift); __ cmp(esi, Map::kSlackTrackingCounterEnd); __ j(less, &allocate); // Decrease generous allocation count. __ sub(FieldOperand(eax, Map::kBitField3Offset), Immediate(1 << Map::Counter::kShift)); __ cmp(esi, Map::kSlackTrackingCounterEnd); __ j(not_equal, &allocate); __ push(eax); __ push(edx); __ push(edi); __ push(eax); // initial map __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ pop(edi); __ pop(edx); __ pop(eax); __ mov(esi, Map::kSlackTrackingCounterEnd - 1); __ bind(&allocate); } // Now allocate the JSObject on the heap. // edi: constructor // eax: initial map __ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset)); __ shl(edi, kPointerSizeLog2); __ Allocate(edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS); Factory* factory = masm->isolate()->factory(); // Allocated the JSObject, now initialize the fields. // eax: initial map // ebx: JSObject // edi: start of next object __ mov(Operand(ebx, JSObject::kMapOffset), eax); __ mov(ecx, factory->empty_fixed_array()); __ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx); __ mov(Operand(ebx, JSObject::kElementsOffset), ecx); // Set extra fields in the newly allocated object. // eax: initial map // ebx: JSObject // edi: start of next object // esi: slack tracking counter (non-API function case) __ mov(edx, factory->undefined_value()); __ lea(ecx, Operand(ebx, JSObject::kHeaderSize)); if (!is_api_function) { Label no_inobject_slack_tracking; // Check if slack tracking is enabled. __ cmp(esi, Map::kSlackTrackingCounterEnd); __ j(less, &no_inobject_slack_tracking); // Allocate object with a slack. __ movzx_b( esi, FieldOperand( eax, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset)); __ movzx_b(eax, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset)); __ sub(esi, eax); __ lea(esi, Operand(ebx, esi, times_pointer_size, JSObject::kHeaderSize)); // esi: offset of first field after pre-allocated fields if (FLAG_debug_code) { __ cmp(esi, edi); __ Assert(less_equal, kUnexpectedNumberOfPreAllocatedPropertyFields); } __ InitializeFieldsWithFiller(ecx, esi, edx); __ mov(edx, factory->one_pointer_filler_map()); // Fill the remaining fields with one pointer filler map. __ bind(&no_inobject_slack_tracking); } __ InitializeFieldsWithFiller(ecx, edi, edx); // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. // ebx: JSObject (untagged) __ or_(ebx, Immediate(kHeapObjectTag)); // Continue with JSObject being successfully allocated // ebx: JSObject (tagged) __ jmp(&allocated); } // Allocate the new receiver object using the runtime call. // edx: original constructor __ bind(&rt_call); int offset = kPointerSize; // Must restore esi (context) and edi (constructor) before calling // runtime. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ mov(edi, Operand(esp, offset)); __ push(edi); // constructor function __ push(edx); // original constructor __ CallRuntime(Runtime::kNewObject, 2); __ mov(ebx, eax); // store result in ebx // New object allocated. // ebx: newly allocated object __ bind(&allocated); // Restore the parameters. __ pop(edx); // new.target __ pop(edi); // Constructor function. // Retrieve smi-tagged arguments count from the stack. __ mov(eax, Operand(esp, 0)); __ SmiUntag(eax); // Push new.target onto the construct frame. This is stored just below the // receiver on the stack. __ push(edx); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ push(ebx); __ push(ebx); // Set up pointer to last argument. __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(ecx, eax); __ jmp(&entry); __ bind(&loop); __ push(Operand(ebx, ecx, times_4, 0)); __ bind(&entry); __ dec(ecx); __ j(greater_equal, &loop); // Call the function. if (is_api_function) { __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); Handle<Code> code = masm->isolate()->builtins()->HandleApiCallConstruct(); __ call(code, RelocInfo::CODE_TARGET); } else { ParameterCount actual(eax); __ InvokeFunction(edi, actual, CALL_FUNCTION, NullCallWrapper()); } // Store offset of return address for deoptimizer. if (!is_api_function) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(eax, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(above_equal, &exit); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ mov(eax, Operand(esp, 0)); // Restore the arguments count and leave the construct frame. The arguments // count is stored below the reciever and the new.target. __ bind(&exit); __ mov(ebx, Operand(esp, 2 * kPointerSize)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1); __ ret(0); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true); } void Builtins::Generate_JSConstructStubForDerived(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax: number of arguments // -- edi: constructor function // -- ebx: allocation site or undefined // -- edx: original constructor // ----------------------------------- { FrameScope frame_scope(masm, StackFrame::CONSTRUCT); // Preserve allocation site. __ AssertUndefinedOrAllocationSite(ebx); __ push(ebx); // Preserve actual arguments count. __ SmiTag(eax); __ push(eax); __ SmiUntag(eax); // Push new.target. __ push(edx); // receiver is the hole. __ push(Immediate(masm->isolate()->factory()->the_hole_value())); // Set up pointer to last argument. __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(ecx, eax); __ jmp(&entry); __ bind(&loop); __ push(Operand(ebx, ecx, times_4, 0)); __ bind(&entry); __ dec(ecx); __ j(greater_equal, &loop); // Handle step in. Label skip_step_in; ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(masm->isolate()); __ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0)); __ j(equal, &skip_step_in); __ push(eax); __ push(edi); __ push(edi); __ CallRuntime(Runtime::kHandleStepInForDerivedConstructors, 1); __ pop(edi); __ pop(eax); __ bind(&skip_step_in); // Invoke function. ParameterCount actual(eax); __ InvokeFunction(edi, actual, CALL_FUNCTION, NullCallWrapper()); // Restore context from the frame. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); // Get arguments count, skipping over new.target. __ mov(ebx, Operand(esp, kPointerSize)); } __ pop(ecx); // Return address. __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); __ push(ecx); __ ret(0); } enum IsTagged { kEaxIsSmiTagged, kEaxIsUntaggedInt }; // Clobbers ecx, edx, edi; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, IsTagged eax_is_tagged) { // eax : the number of items to be pushed to the stack // // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; ExternalReference real_stack_limit = ExternalReference::address_of_real_stack_limit(masm->isolate()); __ mov(edi, Operand::StaticVariable(real_stack_limit)); // Make ecx the space we have left. The stack might already be overflowed // here which will cause ecx to become negative. __ mov(ecx, esp); __ sub(ecx, edi); // Make edx the space we need for the array when it is unrolled onto the // stack. __ mov(edx, eax); int smi_tag = eax_is_tagged == kEaxIsSmiTagged ? kSmiTagSize : 0; __ shl(edx, kPointerSizeLog2 - smi_tag); // Check if the arguments will overflow the stack. __ cmp(ecx, edx); __ j(greater, &okay); // Signed comparison. // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow, 0); __ bind(&okay); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { ProfileEntryHookStub::MaybeCallEntryHook(masm); // Clear the context before we push it when entering the internal frame. __ Move(esi, Immediate(0)); { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address(Isolate::kContextAddress, masm->isolate()); __ mov(esi, Operand::StaticVariable(context_address)); // Load the previous frame pointer (ebx) to access C arguments __ mov(ebx, Operand(ebp, 0)); // Push the function and the receiver onto the stack. __ push(Operand(ebx, EntryFrameConstants::kFunctionArgOffset)); __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset)); // Load the number of arguments and setup pointer to the arguments. __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset)); __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset)); // Check if we have enough stack space to push all arguments. // Expects argument count in eax. Clobbers ecx, edx, edi. Generate_CheckStackOverflow(masm, kEaxIsUntaggedInt); // Copy arguments to the stack in a loop. Label loop, entry; __ Move(ecx, Immediate(0)); __ jmp(&entry, Label::kNear); __ bind(&loop); __ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv __ push(Operand(edx, 0)); // dereference handle __ inc(ecx); __ bind(&entry); __ cmp(ecx, eax); __ j(not_equal, &loop); // Load the previous frame pointer (ebx) to access C arguments __ mov(ebx, Operand(ebp, 0)); // Get the new.target and function from the frame. __ mov(edx, Operand(ebx, EntryFrameConstants::kNewTargetArgOffset)); __ mov(edi, Operand(ebx, EntryFrameConstants::kFunctionArgOffset)); // Invoke the code. Handle<Code> builtin = is_construct ? masm->isolate()->builtins()->Construct() : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the internal frame. Notice that this also removes the empty. // context and the function left on the stack by the code // invocation. } __ ret(kPointerSize); // Remove receiver. } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o edi: the JS function object being called // o esi: our context // o ebp: the caller's frame pointer // o esp: stack pointer (pointing to return address) // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-ia32.h for its layout. // TODO(rmcilroy): We will need to include the current bytecode pointer in the // frame. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ push(ebp); // Caller's frame pointer. __ mov(ebp, esp); __ push(esi); // Callee's context. __ push(edi); // Callee's JS function. // Get the bytecode array from the function object and load the pointer to the // first entry into edi (InterpreterBytecodeRegister). __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(kInterpreterBytecodeArrayRegister, FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, eax); __ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Allocate the local and temporary register file on the stack. { // Load frame size from the BytecodeArray object. __ mov(ebx, FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ mov(ecx, esp); __ sub(ecx, ebx); ExternalReference stack_limit = ExternalReference::address_of_real_stack_limit(masm->isolate()); __ cmp(ecx, Operand::StaticVariable(stack_limit)); __ j(above_equal, &ok); __ CallRuntime(Runtime::kThrowStackOverflow, 0); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ mov(eax, Immediate(masm->isolate()->factory()->undefined_value())); __ jmp(&loop_check); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ push(eax); // Continue loop if not done. __ bind(&loop_check); __ sub(ebx, Immediate(kPointerSize)); __ j(greater_equal, &loop_header); } // TODO(rmcilroy): List of things not currently dealt with here but done in // fullcodegen's prologue: // - Support profiler (specifically profiling_counter). // - Call ProfileEntryHookStub when isolate has a function_entry_hook. // - Allow simulator stop operations if FLAG_stop_at is set. // - Code aging of the BytecodeArray object. // Perform stack guard check. { Label ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm->isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(above_equal, &ok); __ push(kInterpreterBytecodeArrayRegister); __ CallRuntime(Runtime::kStackGuard, 0); __ pop(kInterpreterBytecodeArrayRegister); __ bind(&ok); } // Load accumulator, register file, bytecode offset, dispatch table into // registers. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); __ mov(kInterpreterRegisterFileRegister, ebp); __ sub( kInterpreterRegisterFileRegister, Immediate(kPointerSize + StandardFrameConstants::kFixedFrameSizeFromFp)); __ mov(kInterpreterBytecodeOffsetRegister, Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Since the dispatch table root might be set after builtins are generated, // load directly from the roots table. __ LoadRoot(ebx, Heap::kInterpreterTableRootIndex); __ add(ebx, Immediate(FixedArray::kHeaderSize - kHeapObjectTag)); // Push context as a stack located parameter to the bytecode handler. DCHECK_EQ(-1, kInterpreterDispatchTableSpillSlot); __ push(ebx); // Dispatch to the first bytecode handler for the function. __ movzx_b(eax, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ mov(ebx, Operand(ebx, eax, times_pointer_size, 0)); // Restore undefined_value in accumulator (eax) // TODO(rmcilroy): Remove this once we move the dispatch table back into a // register. __ mov(eax, Immediate(masm->isolate()->factory()->undefined_value())); // TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging // and header removal. __ add(ebx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(ebx); } void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) { // TODO(rmcilroy): List of things not currently dealt with here but done in // fullcodegen's EmitReturnSequence. // - Supporting FLAG_trace for Runtime::TraceExit. // - Support profiler (specifically decrementing profiling_counter // appropriately and calling out to HandleInterrupts if necessary). // The return value is in accumulator, which is already in rax. // Leave the frame (also dropping the register file). __ leave(); // Drop receiver + arguments and return. __ mov(ebx, FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kParameterSizeOffset)); __ pop(ecx); __ add(esp, ebx); __ push(ecx); __ ret(0); } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register array_limit) { // ----------- S t a t e ------------- // -- ebx : Pointer to the last argument in the args array. // -- array_limit : Pointer to one before the first argument in the // args array. // ----------------------------------- Label loop_header, loop_check; __ jmp(&loop_check); __ bind(&loop_header); __ Push(Operand(ebx, 0)); __ sub(ebx, Immediate(kPointerSize)); __ bind(&loop_check); __ cmp(ebx, array_limit); __ j(greater, &loop_header, Label::kNear); } // static void Builtins::Generate_InterpreterPushArgsAndCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- ebx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- edi : the target to call (can be any Object). // ----------------------------------- // Pop return address to allow tail-call after pushing arguments. __ Pop(edx); // Find the address of the last argument. __ mov(ecx, eax); __ add(ecx, Immediate(1)); // Add one for receiver. __ shl(ecx, kPointerSizeLog2); __ neg(ecx); __ add(ecx, ebx); Generate_InterpreterPushArgs(masm, ecx); // Call the target. __ Push(edx); // Re-push return address. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_InterpreterPushArgsAndConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the original constructor // -- edi : the constructor // -- ebx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // ----------------------------------- // Save number of arguments on the stack below where arguments are going // to be pushed. __ mov(ecx, eax); __ neg(ecx); __ mov(Operand(esp, ecx, times_pointer_size, -kPointerSize), eax); __ mov(eax, ecx); // Pop return address to allow tail-call after pushing arguments. __ Pop(ecx); // Find the address of the last argument. __ shl(eax, kPointerSizeLog2); __ add(eax, ebx); // Push padding for receiver. __ Push(Immediate(0)); Generate_InterpreterPushArgs(masm, eax); // Restore number of arguments from slot on stack. __ mov(eax, Operand(esp, -kPointerSize)); // Re-push return address. __ Push(ecx); // Call the constructor with unmodified eax, edi, ebi values. __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CONSTRUCT_CALL); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileLazy); GenerateTailCallToReturnedCode(masm); } static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function. __ push(edi); // Function is also the parameter to the runtime call. __ push(edi); // Whether to compile in a background thread. __ Push(masm->isolate()->factory()->ToBoolean(concurrent)); __ CallRuntime(Runtime::kCompileOptimized, 2); // Restore receiver. __ pop(edi); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { CallCompileOptimized(masm, false); GenerateTailCallToReturnedCode(masm); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { CallCompileOptimized(masm, true); GenerateTailCallToReturnedCode(masm); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // Re-execute the code that was patched back to the young age when // the stub returns. __ sub(Operand(esp, 0), Immediate(5)); __ pushad(); __ mov(eax, Operand(esp, 8 * kPointerSize)); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(2, ebx); __ mov(Operand(esp, 1 * kPointerSize), Immediate(ExternalReference::isolate_address(masm->isolate()))); __ mov(Operand(esp, 0), eax); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); } __ popad(); __ ret(0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. __ pushad(); __ mov(eax, Operand(esp, 8 * kPointerSize)); __ sub(eax, Immediate(Assembler::kCallInstructionLength)); { // NOLINT FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(2, ebx); __ mov(Operand(esp, 1 * kPointerSize), Immediate(ExternalReference::isolate_address(masm->isolate()))); __ mov(Operand(esp, 0), eax); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function(masm->isolate()), 2); } __ popad(); // Perform prologue operations usually performed by the young code stub. __ pop(eax); // Pop return address into scratch register. __ push(ebp); // Caller's frame pointer. __ mov(ebp, esp); __ push(esi); // Callee's context. __ push(edi); // Callee's JS Function. __ push(eax); // Push return address after frame prologue. // Jump to point after the code-age stub. __ ret(0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) { Generate_MarkCodeAsExecutedOnce(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. __ pushad(); __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles); __ popad(); // Tear down internal frame. } __ pop(MemOperand(esp, 0)); // Ignore state offset __ ret(0); // Return to IC Miss stub, continuation still on stack. } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameScope scope(masm, StackFrame::INTERNAL); // Pass deoptimization type to the runtime system. __ push(Immediate(Smi::FromInt(static_cast<int>(type)))); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); // Tear down internal frame. } // Get the full codegen state from the stack and untag it. __ mov(ecx, Operand(esp, 1 * kPointerSize)); __ SmiUntag(ecx); // Switch on the state. Label not_no_registers, not_tos_eax; __ cmp(ecx, FullCodeGenerator::NO_REGISTERS); __ j(not_equal, ¬_no_registers, Label::kNear); __ ret(1 * kPointerSize); // Remove state. __ bind(¬_no_registers); __ mov(eax, Operand(esp, 2 * kPointerSize)); __ cmp(ecx, FullCodeGenerator::TOS_REG); __ j(not_equal, ¬_tos_eax, Label::kNear); __ ret(2 * kPointerSize); // Remove state, eax. __ bind(¬_tos_eax); __ Abort(kNoCasesLeft); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } // static void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // Stack Layout: // esp[0] : Return address // esp[8] : Argument n // esp[16] : Argument n-1 // ... // esp[8 * n] : Argument 1 // esp[8 * (n + 1)] : Receiver (callable to call) // // eax contains the number of arguments, n, not counting the receiver. // // 1. Make sure we have at least one argument. { Label done; __ test(eax, eax); __ j(not_zero, &done, Label::kNear); __ PopReturnAddressTo(ebx); __ PushRoot(Heap::kUndefinedValueRootIndex); __ PushReturnAddressFrom(ebx); __ inc(eax); __ bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. { Label loop; __ mov(ecx, eax); __ bind(&loop); __ mov(ebx, Operand(esp, ecx, times_pointer_size, 0)); __ mov(Operand(esp, ecx, times_pointer_size, kPointerSize), ebx); __ dec(ecx); __ j(not_sign, &loop); // While non-negative (to copy return address). __ pop(ebx); // Discard copy of return address. __ dec(eax); // One fewer argument (first argument is new receiver). } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } static void Generate_PushAppliedArguments(MacroAssembler* masm, const int vectorOffset, const int argumentsOffset, const int indexOffset, const int limitOffset) { // Copy all arguments from the array to the stack. Label entry, loop; Register receiver = LoadDescriptor::ReceiverRegister(); Register key = LoadDescriptor::NameRegister(); Register slot = LoadDescriptor::SlotRegister(); Register vector = LoadWithVectorDescriptor::VectorRegister(); __ mov(key, Operand(ebp, indexOffset)); __ jmp(&entry); __ bind(&loop); __ mov(receiver, Operand(ebp, argumentsOffset)); // load arguments // Use inline caching to speed up access to arguments. int slot_index = TypeFeedbackVector::PushAppliedArgumentsIndex(); __ mov(slot, Immediate(Smi::FromInt(slot_index))); __ mov(vector, Operand(ebp, vectorOffset)); Handle<Code> ic = KeyedLoadICStub(masm->isolate(), LoadICState(kNoExtraICState)).GetCode(); __ call(ic, RelocInfo::CODE_TARGET); // It is important that we do not have a test instruction after the // call. A test instruction after the call is used to indicate that // we have generated an inline version of the keyed load. In this // case, we know that we are not generating a test instruction next. // Push the nth argument. __ push(eax); // Update the index on the stack and in register key. __ mov(key, Operand(ebp, indexOffset)); __ add(key, Immediate(1 << kSmiTagSize)); __ mov(Operand(ebp, indexOffset), key); __ bind(&entry); __ cmp(key, Operand(ebp, limitOffset)); __ j(not_equal, &loop); // On exit, the pushed arguments count is in eax, untagged __ Move(eax, key); __ SmiUntag(eax); } // Used by FunctionApply and ReflectApply static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) { const int kFormalParameters = targetIsArgument ? 3 : 2; const int kStackSize = kFormalParameters + 1; // Stack at entry: // esp : return address // esp[4] : arguments // esp[8] : receiver ("this") // esp[12] : function { FrameScope frame_scope(masm, StackFrame::INTERNAL); // Stack frame: // ebp : Old base pointer // ebp[4] : return address // ebp[8] : function arguments // ebp[12] : receiver // ebp[16] : function static const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize; static const int kReceiverOffset = kArgumentsOffset + kPointerSize; static const int kFunctionOffset = kReceiverOffset + kPointerSize; static const int kVectorOffset = InternalFrameConstants::kCodeOffset - 1 * kPointerSize; // Push the vector. __ mov(edi, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(edi, FieldOperand(edi, SharedFunctionInfo::kFeedbackVectorOffset)); __ push(edi); __ push(Operand(ebp, kFunctionOffset)); // push this __ push(Operand(ebp, kArgumentsOffset)); // push arguments if (targetIsArgument) { __ InvokeBuiltin(Context::REFLECT_APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION); } else { __ InvokeBuiltin(Context::APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION); } Generate_CheckStackOverflow(masm, kEaxIsSmiTagged); // Push current index and limit. const int kLimitOffset = kVectorOffset - 1 * kPointerSize; const int kIndexOffset = kLimitOffset - 1 * kPointerSize; __ Push(eax); // limit __ Push(Immediate(0)); // index __ Push(Operand(ebp, kReceiverOffset)); // receiver // Loop over the arguments array, pushing each value to the stack Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset, kIndexOffset, kLimitOffset); // Call the callable. // TODO(bmeurer): This should be a tail call according to ES6. __ mov(edi, Operand(ebp, kFunctionOffset)); __ Call(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); // Leave internal frame. } __ ret(kStackSize * kPointerSize); // remove this, receiver, and arguments } // Used by ReflectConstruct static void Generate_ConstructHelper(MacroAssembler* masm) { const int kFormalParameters = 3; const int kStackSize = kFormalParameters + 1; // Stack at entry: // esp : return address // esp[4] : original constructor (new.target) // esp[8] : arguments // esp[16] : constructor { FrameScope frame_scope(masm, StackFrame::INTERNAL); // Stack frame: // ebp : Old base pointer // ebp[4] : return address // ebp[8] : original constructor (new.target) // ebp[12] : arguments // ebp[16] : constructor static const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize; static const int kArgumentsOffset = kNewTargetOffset + kPointerSize; static const int kFunctionOffset = kArgumentsOffset + kPointerSize; static const int kVectorOffset = InternalFrameConstants::kCodeOffset - 1 * kPointerSize; // Push the vector. __ mov(edi, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(edi, FieldOperand(edi, SharedFunctionInfo::kFeedbackVectorOffset)); __ push(edi); // If newTarget is not supplied, set it to constructor Label validate_arguments; __ mov(eax, Operand(ebp, kNewTargetOffset)); __ CompareRoot(eax, Heap::kUndefinedValueRootIndex); __ j(not_equal, &validate_arguments, Label::kNear); __ mov(eax, Operand(ebp, kFunctionOffset)); __ mov(Operand(ebp, kNewTargetOffset), eax); // Validate arguments __ bind(&validate_arguments); __ push(Operand(ebp, kFunctionOffset)); __ push(Operand(ebp, kArgumentsOffset)); __ push(Operand(ebp, kNewTargetOffset)); __ InvokeBuiltin(Context::REFLECT_CONSTRUCT_PREPARE_BUILTIN_INDEX, CALL_FUNCTION); Generate_CheckStackOverflow(masm, kEaxIsSmiTagged); // Push current index and limit. const int kLimitOffset = kVectorOffset - 1 * kPointerSize; const int kIndexOffset = kLimitOffset - 1 * kPointerSize; __ Push(eax); // limit __ push(Immediate(0)); // index // Push the constructor function as callee. __ push(Operand(ebp, kFunctionOffset)); // Loop over the arguments array, pushing each value to the stack Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset, kIndexOffset, kLimitOffset); // Use undefined feedback vector __ LoadRoot(ebx, Heap::kUndefinedValueRootIndex); __ mov(edi, Operand(ebp, kFunctionOffset)); __ mov(ecx, Operand(ebp, kNewTargetOffset)); // Call the function. CallConstructStub stub(masm->isolate(), SUPER_CONSTRUCTOR_CALL); __ call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); // Leave internal frame. } // remove this, target, arguments, and newTarget __ ret(kStackSize * kPointerSize); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { Generate_ApplyHelper(masm, false); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { Generate_ApplyHelper(masm, true); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { Generate_ConstructHelper(masm); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- Label generic_array_code; // Get the InternalArray function. __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, edi); if (FLAG_debug_code) { // Initial map for the builtin InternalArray function should be a map. __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ebx, Immediate(kSmiTagMask)); __ Assert(not_zero, kUnexpectedInitialMapForInternalArrayFunction); __ CmpObjectType(ebx, MAP_TYPE, ecx); __ Assert(equal, kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. // tail call a stub InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- Label generic_array_code; // Get the Array function. __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi); __ mov(edx, edi); if (FLAG_debug_code) { // Initial map for the builtin Array function should be a map. __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ebx, Immediate(kSmiTagMask)); __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(ebx, MAP_TYPE, ecx); __ Assert(equal, kUnexpectedInitialMapForArrayFunction); } // Run the native code for the Array function called as a normal function. // tail call a stub __ mov(ebx, masm->isolate()->factory()->undefined_value()); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } // static void Builtins::Generate_StringConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : number of arguments // -- edi : constructor function // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- // 1. Load the first argument into eax and get rid of the rest (including the // receiver). Label no_arguments; { __ test(eax, eax); __ j(zero, &no_arguments, Label::kNear); __ mov(ebx, Operand(esp, eax, times_pointer_size, 0)); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(ecx); __ mov(eax, ebx); } // 2a. At least one argument, return eax if it's a string, otherwise // dispatch to appropriate conversion. Label to_string, symbol_descriptive_string; { __ JumpIfSmi(eax, &to_string, Label::kNear); STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE); __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edx); __ j(above, &to_string, Label::kNear); __ j(equal, &symbol_descriptive_string, Label::kNear); __ Ret(); } // 2b. No arguments, return the empty string (and pop the receiver). __ bind(&no_arguments); { __ LoadRoot(eax, Heap::kempty_stringRootIndex); __ ret(1 * kPointerSize); } // 3a. Convert eax to a string. __ bind(&to_string); { ToStringStub stub(masm->isolate()); __ TailCallStub(&stub); } // 3b. Convert symbol in eax to a string. __ bind(&symbol_descriptive_string); { __ PopReturnAddressTo(ecx); __ Push(eax); __ PushReturnAddressFrom(ecx); __ TailCallRuntime(Runtime::kSymbolDescriptiveString, 1, 1); } } // static void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : number of arguments // -- edi : constructor function // -- edx : original constructor // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- // 1. Load the first argument into ebx and get rid of the rest (including the // receiver). { Label no_arguments, done; __ test(eax, eax); __ j(zero, &no_arguments, Label::kNear); __ mov(ebx, Operand(esp, eax, times_pointer_size, 0)); __ jmp(&done, Label::kNear); __ bind(&no_arguments); __ LoadRoot(ebx, Heap::kempty_stringRootIndex); __ bind(&done); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(ecx); } // 2. Make sure ebx is a string. { Label convert, done_convert; __ JumpIfSmi(ebx, &convert, Label::kNear); __ CmpObjectType(ebx, FIRST_NONSTRING_TYPE, ecx); __ j(below, &done_convert); __ bind(&convert); { FrameScope scope(masm, StackFrame::INTERNAL); ToStringStub stub(masm->isolate()); __ Push(edi); __ Push(edx); __ Move(eax, ebx); __ CallStub(&stub); __ Move(ebx, eax); __ Pop(edx); __ Pop(edi); } __ bind(&done_convert); } // 3. Check if original constructor and constructor differ. Label new_object; __ cmp(edx, edi); __ j(not_equal, &new_object); // 4. Allocate a JSValue wrapper for the string. { // ----------- S t a t e ------------- // -- ebx : the first argument // -- edi : constructor function // -- edx : original constructor // ----------------------------------- __ Allocate(JSValue::kSize, eax, ecx, no_reg, &new_object, TAG_OBJECT); // Initialize the JSValue in eax. __ LoadGlobalFunctionInitialMap(edi, ecx); __ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx); __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), masm->isolate()->factory()->empty_fixed_array()); __ mov(FieldOperand(eax, JSObject::kElementsOffset), masm->isolate()->factory()->empty_fixed_array()); __ mov(FieldOperand(eax, JSValue::kValueOffset), ebx); STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); __ Ret(); } // 5. Fallback to the runtime to create new object. __ bind(&new_object); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(ebx); // the first argument __ Push(edi); // constructor function __ Push(edx); // original constructor __ CallRuntime(Runtime::kNewObject, 2); __ Pop(FieldOperand(eax, JSValue::kValueOffset)); } __ Ret(); } static void ArgumentsAdaptorStackCheck(MacroAssembler* masm, Label* stack_overflow) { // ----------- S t a t e ------------- // -- eax : actual number of arguments // -- ebx : expected number of arguments // -- edi : function (passed through to callee) // ----------------------------------- // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. ExternalReference real_stack_limit = ExternalReference::address_of_real_stack_limit(masm->isolate()); __ mov(edx, Operand::StaticVariable(real_stack_limit)); // Make ecx the space we have left. The stack might already be overflowed // here which will cause ecx to become negative. __ mov(ecx, esp); __ sub(ecx, edx); // Make edx the space we need for the array when it is unrolled onto the // stack. __ mov(edx, ebx); __ shl(edx, kPointerSizeLog2); // Check if the arguments will overflow the stack. __ cmp(ecx, edx); __ j(less_equal, stack_overflow); // Signed comparison. } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ push(ebp); __ mov(ebp, esp); // Store the arguments adaptor context sentinel. __ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Push the function on the stack. __ push(edi); // Preserve the number of arguments on the stack. Must preserve eax, // ebx and ecx because these registers are used when copying the // arguments and the receiver. STATIC_ASSERT(kSmiTagSize == 1); __ lea(edi, Operand(eax, eax, times_1, kSmiTag)); __ push(edi); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ leave(); // Remove caller arguments from the stack. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(edi); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test_b(FieldOperand(edx, SharedFunctionInfo::kFunctionKindByteOffset), SharedFunctionInfo::kClassConstructorBitsWithinByte); __ j(not_zero, &class_constructor); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset == SharedFunctionInfo::kStrictModeByteOffset); __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ test_b(FieldOperand(edx, SharedFunctionInfo::kNativeByteOffset), (1 << SharedFunctionInfo::kNativeBitWithinByte) | (1 << SharedFunctionInfo::kStrictModeBitWithinByte)); __ j(not_zero, &done_convert); { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the shared function info. // -- edi : the function to call (checked to be a JSFunction) // -- esi : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(ecx); } else { Label convert_to_object, convert_receiver; __ mov(ecx, Operand(esp, eax, times_pointer_size, kPointerSize)); __ JumpIfSmi(ecx, &convert_to_object, Label::kNear); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ebx); __ j(above_equal, &done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(ecx, Heap::kUndefinedValueRootIndex, &convert_global_proxy, Label::kNear); __ JumpIfNotRoot(ecx, Heap::kNullValueRootIndex, &convert_to_object, Label::kNear); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(ecx); } __ jmp(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(eax); __ Push(eax); __ Push(edi); __ mov(eax, ecx); ToObjectStub stub(masm->isolate()); __ CallStub(&stub); __ mov(ecx, eax); __ Pop(edi); __ Pop(eax); __ SmiUntag(eax); } __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ecx); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the shared function info. // -- edi : the function to call (checked to be a JSFunction) // -- esi : the function context. // ----------------------------------- __ mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); __ SmiUntag(ebx); ParameterCount actual(eax); ParameterCount expected(ebx); __ InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), expected, actual, JUMP_FUNCTION, NullCallWrapper()); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowConstructorNonCallableError, 0); } } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(edi, &non_callable); __ bind(&non_smi); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(equal, masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET); __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE); __ j(not_equal, &non_function); // 1. Call to function proxy. // TODO(neis): This doesn't match the ES6 spec for [[Call]] on proxies. __ mov(edi, FieldOperand(edi, JSFunctionProxy::kCallTrapOffset)); __ AssertNotSmi(edi); __ jmp(&non_smi); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Check if target has a [[Call]] internal method. __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), 1 << Map::kIsCallable); __ j(zero, &non_callable, Label::kNear); // Overwrite the original receiver with the (original) target. __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi); // Let the "call_as_function_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, edi); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(edi); __ CallRuntime(Runtime::kThrowCalledNonCallable, 1); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the original constructor (checked to be a JSFunction) // -- edi : the constructor to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(edx); __ AssertFunction(edi); // Calling convention for function specific ConstructStubs require // ebx to contain either an AllocationSite or undefined. __ LoadRoot(ebx, Heap::kUndefinedValueRootIndex); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset)); __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize)); __ jmp(ecx); } // static void Builtins::Generate_ConstructProxy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the original constructor (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- edi : the constructor to call (checked to be a JSFunctionProxy) // ----------------------------------- // TODO(neis): This doesn't match the ES6 spec for [[Construct]] on proxies. __ mov(edi, FieldOperand(edi, JSFunctionProxy::kConstructTrapOffset)); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the original constructor (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- edi : the constructor to call (can be any Object) // ----------------------------------- // Check if target has a [[Construct]] internal method. Label non_constructor; __ JumpIfSmi(edi, &non_constructor, Label::kNear); __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset)); __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), 1 << Map::kIsConstructor); __ j(zero, &non_constructor, Label::kNear); // Dispatch based on instance type. __ CmpInstanceType(ecx, JS_FUNCTION_TYPE); __ j(equal, masm->isolate()->builtins()->ConstructFunction(), RelocInfo::CODE_TARGET); __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE); __ j(equal, masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. { // Overwrite the original receiver with the (original) target. __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, edi); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(edi); __ CallRuntime(Runtime::kThrowCalledNonCallable, 1); } } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : actual number of arguments // -- ebx : expected number of arguments // -- edi : function (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments; __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1); Label stack_overflow; ArgumentsAdaptorStackCheck(masm, &stack_overflow); Label enough, too_few; __ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset)); __ cmp(eax, ebx); __ j(less, &too_few); __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel); __ j(equal, &dont_adapt_arguments); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(edi, Operand(ebp, eax, times_4, offset)); __ mov(eax, -1); // account for receiver Label copy; __ bind(©); __ inc(eax); __ push(Operand(edi, 0)); __ sub(edi, Immediate(kPointerSize)); __ cmp(eax, ebx); __ j(less, ©); // eax now contains the expected number of arguments. __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); // If the function is strong we need to throw an error. Label no_strong_error; __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrongModeByteOffset), 1 << SharedFunctionInfo::kStrongModeBitWithinByte); __ j(equal, &no_strong_error, Label::kNear); // What we really care about is the required number of arguments. __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kLengthOffset)); __ SmiUntag(ecx); __ cmp(eax, ecx); __ j(greater_equal, &no_strong_error, Label::kNear); { FrameScope frame(masm, StackFrame::MANUAL); EnterArgumentsAdaptorFrame(masm); __ CallRuntime(Runtime::kThrowStrongModeTooFewArguments, 0); } __ bind(&no_strong_error); EnterArgumentsAdaptorFrame(masm); // Remember expected arguments in ecx. __ mov(ecx, ebx); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(edi, Operand(ebp, eax, times_4, offset)); // ebx = expected - actual. __ sub(ebx, eax); // eax = -actual - 1 __ neg(eax); __ sub(eax, Immediate(1)); Label copy; __ bind(©); __ inc(eax); __ push(Operand(edi, 0)); __ sub(edi, Immediate(kPointerSize)); __ test(eax, eax); __ j(not_zero, ©); // Fill remaining expected arguments with undefined values. Label fill; __ bind(&fill); __ inc(eax); __ push(Immediate(masm->isolate()->factory()->undefined_value())); __ cmp(eax, ebx); __ j(less, &fill); // Restore expected arguments. __ mov(eax, ecx); } // Call the entry point. __ bind(&invoke); // Restore function pointer. __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); // eax : expected number of arguments // edi : function (passed through to callee) __ call(edx); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ jmp(edx); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); EnterArgumentsAdaptorFrame(masm); __ CallRuntime(Runtime::kThrowStackOverflow, 0); __ int3(); } } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(eax); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); } Label skip; // If the code object is null, just return to the unoptimized code. __ cmp(eax, Immediate(0)); __ j(not_equal, &skip, Label::kNear); __ ret(0); __ bind(&skip); // Load deoptimization data from the code object. __ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. __ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag)); __ SmiUntag(ebx); // Compute the target address = code_obj + header_size + osr_offset __ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag)); // Overwrite the return address on the stack. __ mov(Operand(esp, 0), eax); // And "return" to the OSR entry point of the function. __ ret(0); } void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) { // We check the stack limit as indicator that recompilation might be done. Label ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm->isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(above_equal, &ok, Label::kNear); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kStackGuard, 0); } __ jmp(masm->isolate()->builtins()->OnStackReplacement(), RelocInfo::CODE_TARGET); __ bind(&ok); __ ret(0); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X87