// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_FACTORY_H_ #define V8_FACTORY_H_ #include "src/isolate.h" #include "src/messages.h" #include "src/type-feedback-vector.h" namespace v8 { namespace internal { // Interface for handle based allocation. class Factory final { public: Handle<Oddball> NewOddball(Handle<Map> map, const char* to_string, Handle<Object> to_number, const char* type_of, byte kind); // Allocates a fixed array initialized with undefined values. Handle<FixedArray> NewFixedArray( int size, PretenureFlag pretenure = NOT_TENURED); // Allocate a new fixed array with non-existing entries (the hole). Handle<FixedArray> NewFixedArrayWithHoles( int size, PretenureFlag pretenure = NOT_TENURED); // Allocates an uninitialized fixed array. It must be filled by the caller. Handle<FixedArray> NewUninitializedFixedArray(int size); // Allocate a new uninitialized fixed double array. // The function returns a pre-allocated empty fixed array for capacity = 0, // so the return type must be the general fixed array class. Handle<FixedArrayBase> NewFixedDoubleArray( int size, PretenureFlag pretenure = NOT_TENURED); // Allocate a new fixed double array with hole values. Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles( int size, PretenureFlag pretenure = NOT_TENURED); Handle<OrderedHashSet> NewOrderedHashSet(); Handle<OrderedHashMap> NewOrderedHashMap(); // Create a new boxed value. Handle<Box> NewBox(Handle<Object> value); // Create a new PrototypeInfo struct. Handle<PrototypeInfo> NewPrototypeInfo(); // Create a new SloppyBlockWithEvalContextExtension struct. Handle<SloppyBlockWithEvalContextExtension> NewSloppyBlockWithEvalContextExtension(Handle<ScopeInfo> scope_info, Handle<JSObject> extension); // Create a pre-tenured empty AccessorPair. Handle<AccessorPair> NewAccessorPair(); // Create an empty TypeFeedbackInfo. Handle<TypeFeedbackInfo> NewTypeFeedbackInfo(); // Finds the internalized copy for string in the string table. // If not found, a new string is added to the table and returned. Handle<String> InternalizeUtf8String(Vector<const char> str); Handle<String> InternalizeUtf8String(const char* str) { return InternalizeUtf8String(CStrVector(str)); } Handle<String> InternalizeString(Handle<String> str); Handle<String> InternalizeOneByteString(Vector<const uint8_t> str); Handle<String> InternalizeOneByteString( Handle<SeqOneByteString>, int from, int length); Handle<String> InternalizeTwoByteString(Vector<const uc16> str); template<class StringTableKey> Handle<String> InternalizeStringWithKey(StringTableKey* key); Handle<Name> InternalizeName(Handle<Name> name); // String creation functions. Most of the string creation functions take // a Heap::PretenureFlag argument to optionally request that they be // allocated in the old generation. The pretenure flag defaults to // DONT_TENURE. // // Creates a new String object. There are two String encodings: one-byte and // two-byte. One should choose between the three string factory functions // based on the encoding of the string buffer that the string is // initialized from. // - ...FromOneByte initializes the string from a buffer that is Latin1 // encoded (it does not check that the buffer is Latin1 encoded) and // the result will be Latin1 encoded. // - ...FromUtf8 initializes the string from a buffer that is UTF-8 // encoded. If the characters are all ASCII characters, the result // will be Latin1 encoded, otherwise it will converted to two-byte. // - ...FromTwoByte initializes the string from a buffer that is two-byte // encoded. If the characters are all Latin1 characters, the result // will be converted to Latin1, otherwise it will be left as two-byte. // // One-byte strings are pretenured when used as keys in the SourceCodeCache. MUST_USE_RESULT MaybeHandle<String> NewStringFromOneByte( Vector<const uint8_t> str, PretenureFlag pretenure = NOT_TENURED); template <size_t N> inline Handle<String> NewStringFromStaticChars( const char (&str)[N], PretenureFlag pretenure = NOT_TENURED) { DCHECK(N == StrLength(str) + 1); return NewStringFromOneByte(STATIC_CHAR_VECTOR(str), pretenure) .ToHandleChecked(); } inline Handle<String> NewStringFromAsciiChecked( const char* str, PretenureFlag pretenure = NOT_TENURED) { return NewStringFromOneByte( OneByteVector(str), pretenure).ToHandleChecked(); } // Allocates and fully initializes a String. There are two String encodings: // one-byte and two-byte. One should choose between the threestring // allocation functions based on the encoding of the string buffer used to // initialized the string. // - ...FromOneByte initializes the string from a buffer that is Latin1 // encoded (it does not check that the buffer is Latin1 encoded) and the // result will be Latin1 encoded. // - ...FromUTF8 initializes the string from a buffer that is UTF-8 // encoded. If the characters are all ASCII characters, the result // will be Latin1 encoded, otherwise it will converted to two-byte. // - ...FromTwoByte initializes the string from a buffer that is two-byte // encoded. If the characters are all Latin1 characters, the // result will be converted to Latin1, otherwise it will be left as // two-byte. // TODO(dcarney): remove this function. MUST_USE_RESULT inline MaybeHandle<String> NewStringFromAscii( Vector<const char> str, PretenureFlag pretenure = NOT_TENURED) { return NewStringFromOneByte(Vector<const uint8_t>::cast(str), pretenure); } // UTF8 strings are pretenured when used for regexp literal patterns and // flags in the parser. MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8( Vector<const char> str, PretenureFlag pretenure = NOT_TENURED); MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte( Vector<const uc16> str, PretenureFlag pretenure = NOT_TENURED); // Allocates an internalized string in old space based on the character // stream. Handle<String> NewInternalizedStringFromUtf8(Vector<const char> str, int chars, uint32_t hash_field); Handle<String> NewOneByteInternalizedString(Vector<const uint8_t> str, uint32_t hash_field); Handle<String> NewOneByteInternalizedSubString( Handle<SeqOneByteString> string, int offset, int length, uint32_t hash_field); Handle<String> NewTwoByteInternalizedString(Vector<const uc16> str, uint32_t hash_field); Handle<String> NewInternalizedStringImpl(Handle<String> string, int chars, uint32_t hash_field); // Compute the matching internalized string map for a string if possible. // Empty handle is returned if string is in new space or not flattened. MUST_USE_RESULT MaybeHandle<Map> InternalizedStringMapForString( Handle<String> string); // Allocates and partially initializes an one-byte or two-byte String. The // characters of the string are uninitialized. Currently used in regexp code // only, where they are pretenured. MUST_USE_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString( int length, PretenureFlag pretenure = NOT_TENURED); MUST_USE_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString( int length, PretenureFlag pretenure = NOT_TENURED); // Creates a single character string where the character has given code. // A cache is used for Latin1 codes. Handle<String> LookupSingleCharacterStringFromCode(uint32_t code); // Create a new cons string object which consists of a pair of strings. MUST_USE_RESULT MaybeHandle<String> NewConsString(Handle<String> left, Handle<String> right); // Create a new string object which holds a proper substring of a string. Handle<String> NewProperSubString(Handle<String> str, int begin, int end); // Create a new string object which holds a substring of a string. Handle<String> NewSubString(Handle<String> str, int begin, int end) { if (begin == 0 && end == str->length()) return str; return NewProperSubString(str, begin, end); } // Creates a new external String object. There are two String encodings // in the system: one-byte and two-byte. Unlike other String types, it does // not make sense to have a UTF-8 factory function for external strings, // because we cannot change the underlying buffer. Note that these strings // are backed by a string resource that resides outside the V8 heap. MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromOneByte( const ExternalOneByteString::Resource* resource); MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromTwoByte( const ExternalTwoByteString::Resource* resource); // Create a symbol. Handle<Symbol> NewSymbol(); Handle<Symbol> NewPrivateSymbol(); // Create a global (but otherwise uninitialized) context. Handle<Context> NewNativeContext(); // Create a script context. Handle<Context> NewScriptContext(Handle<JSFunction> function, Handle<ScopeInfo> scope_info); // Create an empty script context table. Handle<ScriptContextTable> NewScriptContextTable(); // Create a module context. Handle<Context> NewModuleContext(Handle<ScopeInfo> scope_info); // Create a function context. Handle<Context> NewFunctionContext(int length, Handle<JSFunction> function); // Create a catch context. Handle<Context> NewCatchContext(Handle<JSFunction> function, Handle<Context> previous, Handle<String> name, Handle<Object> thrown_object); // Create a 'with' context. Handle<Context> NewWithContext(Handle<JSFunction> function, Handle<Context> previous, Handle<JSReceiver> extension); // Create a block context. Handle<Context> NewBlockContext(Handle<JSFunction> function, Handle<Context> previous, Handle<ScopeInfo> scope_info); // Allocate a new struct. The struct is pretenured (allocated directly in // the old generation). Handle<Struct> NewStruct(InstanceType type); Handle<CodeCache> NewCodeCache(); Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry( int aliased_context_slot); Handle<ExecutableAccessorInfo> NewExecutableAccessorInfo(); Handle<Script> NewScript(Handle<String> source); // Foreign objects are pretenured when allocated by the bootstrapper. Handle<Foreign> NewForeign(Address addr, PretenureFlag pretenure = NOT_TENURED); // Allocate a new foreign object. The foreign is pretenured (allocated // directly in the old generation). Handle<Foreign> NewForeign(const AccessorDescriptor* foreign); Handle<ByteArray> NewByteArray(int length, PretenureFlag pretenure = NOT_TENURED); Handle<BytecodeArray> NewBytecodeArray(int length, const byte* raw_bytecodes, int frame_size, int parameter_count, Handle<FixedArray> constant_pool); Handle<FixedTypedArrayBase> NewFixedTypedArrayWithExternalPointer( int length, ExternalArrayType array_type, void* external_pointer, PretenureFlag pretenure = NOT_TENURED); Handle<FixedTypedArrayBase> NewFixedTypedArray( int length, ExternalArrayType array_type, bool initialize, PretenureFlag pretenure = NOT_TENURED); Handle<Cell> NewCell(Handle<Object> value); Handle<PropertyCell> NewPropertyCell(); Handle<WeakCell> NewWeakCell(Handle<HeapObject> value); // Allocate a tenured AllocationSite. It's payload is null. Handle<AllocationSite> NewAllocationSite(); Handle<Map> NewMap( InstanceType type, int instance_size, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND); Handle<HeapObject> NewFillerObject(int size, bool double_align, AllocationSpace space); Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function); Handle<JSObject> CopyJSObject(Handle<JSObject> object); Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object, Handle<AllocationSite> site); Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array, Handle<Map> map); Handle<FixedArray> CopyFixedArrayAndGrow( Handle<FixedArray> array, int grow_by, PretenureFlag pretenure = NOT_TENURED); Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array); // This method expects a COW array in new space, and creates a copy // of it in old space. Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array); Handle<FixedDoubleArray> CopyFixedDoubleArray( Handle<FixedDoubleArray> array); // Numbers (e.g. literals) are pretenured by the parser. // The return value may be a smi or a heap number. Handle<Object> NewNumber(double value, PretenureFlag pretenure = NOT_TENURED); Handle<Object> NewNumberFromInt(int32_t value, PretenureFlag pretenure = NOT_TENURED); Handle<Object> NewNumberFromUint(uint32_t value, PretenureFlag pretenure = NOT_TENURED); Handle<Object> NewNumberFromSize(size_t value, PretenureFlag pretenure = NOT_TENURED) { if (Smi::IsValid(static_cast<intptr_t>(value))) { return Handle<Object>(Smi::FromIntptr(static_cast<intptr_t>(value)), isolate()); } return NewNumber(static_cast<double>(value), pretenure); } Handle<HeapNumber> NewHeapNumber(double value, MutableMode mode = IMMUTABLE, PretenureFlag pretenure = NOT_TENURED); #define SIMD128_NEW_DECL(TYPE, Type, type, lane_count, lane_type) \ Handle<Type> New##Type(lane_type lanes[lane_count], \ PretenureFlag pretenure = NOT_TENURED); SIMD128_TYPES(SIMD128_NEW_DECL) #undef SIMD128_NEW_DECL // These objects are used by the api to create env-independent data // structures in the heap. inline Handle<JSObject> NewNeanderObject() { return NewJSObjectFromMap(neander_map()); } Handle<JSWeakMap> NewJSWeakMap(); Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length); // JS objects are pretenured when allocated by the bootstrapper and // runtime. Handle<JSObject> NewJSObject(Handle<JSFunction> constructor, PretenureFlag pretenure = NOT_TENURED); // JSObject that should have a memento pointing to the allocation site. Handle<JSObject> NewJSObjectWithMemento(Handle<JSFunction> constructor, Handle<AllocationSite> site); // Global objects are pretenured and initialized based on a constructor. Handle<JSGlobalObject> NewJSGlobalObject(Handle<JSFunction> constructor); // JS objects are pretenured when allocated by the bootstrapper and // runtime. Handle<JSObject> NewJSObjectFromMap( Handle<Map> map, PretenureFlag pretenure = NOT_TENURED, Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null()); // JS modules are pretenured. Handle<JSModule> NewJSModule(Handle<Context> context, Handle<ScopeInfo> scope_info); // JS arrays are pretenured when allocated by the parser. // Create a JSArray with no elements. Handle<JSArray> NewJSArray(ElementsKind elements_kind, Strength strength = Strength::WEAK, PretenureFlag pretenure = NOT_TENURED); // Create a JSArray with a specified length and elements initialized // according to the specified mode. Handle<JSArray> NewJSArray( ElementsKind elements_kind, int length, int capacity, Strength strength = Strength::WEAK, ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS, PretenureFlag pretenure = NOT_TENURED); Handle<JSArray> NewJSArray( int capacity, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND, Strength strength = Strength::WEAK, PretenureFlag pretenure = NOT_TENURED) { if (capacity != 0) { elements_kind = GetHoleyElementsKind(elements_kind); } return NewJSArray(elements_kind, 0, capacity, strength, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, pretenure); } // Create a JSArray with the given elements. Handle<JSArray> NewJSArrayWithElements(Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length, Strength strength = Strength::WEAK, PretenureFlag pretenure = NOT_TENURED); Handle<JSArray> NewJSArrayWithElements( Handle<FixedArrayBase> elements, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND, Strength strength = Strength::WEAK, PretenureFlag pretenure = NOT_TENURED) { return NewJSArrayWithElements(elements, elements_kind, elements->length(), strength, pretenure); } void NewJSArrayStorage( Handle<JSArray> array, int length, int capacity, ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS); Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function); Handle<JSArrayBuffer> NewJSArrayBuffer( SharedFlag shared = SharedFlag::kNotShared, PretenureFlag pretenure = NOT_TENURED); Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type, PretenureFlag pretenure = NOT_TENURED); Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind, PretenureFlag pretenure = NOT_TENURED); // Creates a new JSTypedArray with the specified buffer. Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type, Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t length, PretenureFlag pretenure = NOT_TENURED); // Creates a new on-heap JSTypedArray. Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind, size_t number_of_elements, PretenureFlag pretenure = NOT_TENURED); Handle<JSDataView> NewJSDataView(); Handle<JSDataView> NewJSDataView(Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length); Handle<JSMap> NewJSMap(); Handle<JSSet> NewJSSet(); // TODO(aandrey): Maybe these should take table, index and kind arguments. Handle<JSMapIterator> NewJSMapIterator(); Handle<JSSetIterator> NewJSSetIterator(); // Creates a new JSIteratorResult object with the arguments {value} and // {done}. Implemented according to ES6 section 7.4.7 CreateIterResultObject. Handle<JSIteratorResult> NewJSIteratorResult(Handle<Object> value, Handle<Object> done); // Allocates a Harmony proxy. Handle<JSProxy> NewJSProxy(Handle<Object> handler, Handle<Object> prototype); // Allocates a Harmony function proxy. Handle<JSProxy> NewJSFunctionProxy(Handle<Object> handler, Handle<JSReceiver> call_trap, Handle<Object> construct_trap, Handle<Object> prototype); // Reinitialize an JSGlobalProxy based on a constructor. The object // must have the same size as objects allocated using the // constructor. The object is reinitialized and behaves as an // object that has been freshly allocated using the constructor. void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global, Handle<JSFunction> constructor); Handle<JSGlobalProxy> NewUninitializedJSGlobalProxy(); // Change the type of the argument into a JS object/function and reinitialize. void BecomeJSObject(Handle<JSProxy> object); void BecomeJSFunction(Handle<JSProxy> object); Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code, Handle<Object> prototype, bool read_only_prototype = false, bool is_strict = false); Handle<JSFunction> NewFunction(Handle<String> name); Handle<JSFunction> NewFunctionWithoutPrototype(Handle<String> name, Handle<Code> code, bool is_strict = false); Handle<JSFunction> NewFunctionFromSharedFunctionInfo( Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info, Handle<Context> context, PretenureFlag pretenure = TENURED); Handle<JSFunction> NewFunctionFromSharedFunctionInfo( Handle<SharedFunctionInfo> function_info, Handle<Context> context, PretenureFlag pretenure = TENURED); Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code, Handle<Object> prototype, InstanceType type, int instance_size, bool read_only_prototype = false, bool install_constructor = false, bool is_strict = false); Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code, InstanceType type, int instance_size); // Create a serialized scope info. Handle<ScopeInfo> NewScopeInfo(int length); // Create an External object for V8's external API. Handle<JSObject> NewExternal(void* value); // The reference to the Code object is stored in self_reference. // This allows generated code to reference its own Code object // by containing this handle. Handle<Code> NewCode(const CodeDesc& desc, Code::Flags flags, Handle<Object> self_reference, bool immovable = false, bool crankshafted = false, int prologue_offset = Code::kPrologueOffsetNotSet, bool is_debug = false); Handle<Code> CopyCode(Handle<Code> code); Handle<Code> CopyCode(Handle<Code> code, Vector<byte> reloc_info); // Interface for creating error objects. Handle<Object> NewError(Handle<JSFunction> constructor, Handle<String> message); Handle<Object> NewInvalidStringLengthError() { return NewRangeError(MessageTemplate::kInvalidStringLength); } Handle<Object> NewError(Handle<JSFunction> constructor, MessageTemplate::Template template_index, Handle<Object> arg0 = Handle<Object>(), Handle<Object> arg1 = Handle<Object>(), Handle<Object> arg2 = Handle<Object>()); #define DECLARE_ERROR(NAME) \ Handle<Object> New##NAME(MessageTemplate::Template template_index, \ Handle<Object> arg0 = Handle<Object>(), \ Handle<Object> arg1 = Handle<Object>(), \ Handle<Object> arg2 = Handle<Object>()); DECLARE_ERROR(Error) DECLARE_ERROR(EvalError) DECLARE_ERROR(RangeError) DECLARE_ERROR(ReferenceError) DECLARE_ERROR(SyntaxError) DECLARE_ERROR(TypeError) #undef DEFINE_ERROR Handle<String> NumberToString(Handle<Object> number, bool check_number_string_cache = true); Handle<String> Uint32ToString(uint32_t value) { return NumberToString(NewNumberFromUint(value)); } Handle<JSFunction> InstallMembers(Handle<JSFunction> function); #define ROOT_ACCESSOR(type, name, camel_name) \ inline Handle<type> name() { \ return Handle<type>(bit_cast<type**>( \ &isolate()->heap()->roots_[Heap::k##camel_name##RootIndex])); \ } ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \ inline Handle<Map> name##_map() { \ return Handle<Map>(bit_cast<Map**>( \ &isolate()->heap()->roots_[Heap::k##Name##MapRootIndex])); \ } STRUCT_LIST(STRUCT_MAP_ACCESSOR) #undef STRUCT_MAP_ACCESSOR #define STRING_ACCESSOR(name, str) \ inline Handle<String> name() { \ return Handle<String>(bit_cast<String**>( \ &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \ } INTERNALIZED_STRING_LIST(STRING_ACCESSOR) #undef STRING_ACCESSOR #define SYMBOL_ACCESSOR(name) \ inline Handle<Symbol> name() { \ return Handle<Symbol>(bit_cast<Symbol**>( \ &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \ } PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR) #undef SYMBOL_ACCESSOR #define SYMBOL_ACCESSOR(name, description) \ inline Handle<Symbol> name() { \ return Handle<Symbol>(bit_cast<Symbol**>( \ &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \ } PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR) WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR) #undef SYMBOL_ACCESSOR // Allocates a new SharedFunctionInfo object. Handle<SharedFunctionInfo> NewSharedFunctionInfo( Handle<String> name, int number_of_literals, FunctionKind kind, Handle<Code> code, Handle<ScopeInfo> scope_info, Handle<TypeFeedbackVector> feedback_vector); Handle<SharedFunctionInfo> NewSharedFunctionInfo(Handle<String> name, MaybeHandle<Code> code); // Allocates a new JSMessageObject object. Handle<JSMessageObject> NewJSMessageObject(MessageTemplate::Template message, Handle<Object> argument, int start_position, int end_position, Handle<Object> script, Handle<Object> stack_frames); Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared); // Return a map for given number of properties using the map cache in the // native context. Handle<Map> ObjectLiteralMapFromCache(Handle<Context> context, int number_of_properties, bool is_strong, bool* is_result_from_cache); // Creates a new FixedArray that holds the data associated with the // atom regexp and stores it in the regexp. void SetRegExpAtomData(Handle<JSRegExp> regexp, JSRegExp::Type type, Handle<String> source, JSRegExp::Flags flags, Handle<Object> match_pattern); // Creates a new FixedArray that holds the data associated with the // irregexp regexp and stores it in the regexp. void SetRegExpIrregexpData(Handle<JSRegExp> regexp, JSRegExp::Type type, Handle<String> source, JSRegExp::Flags flags, int capture_count); // Returns the value for a known global constant (a property of the global // object which is neither configurable nor writable) like 'undefined'. // Returns a null handle when the given name is unknown. Handle<Object> GlobalConstantFor(Handle<Name> name); // Converts the given boolean condition to JavaScript boolean value. Handle<Object> ToBoolean(bool value); private: Isolate* isolate() { return reinterpret_cast<Isolate*>(this); } // Creates a heap object based on the map. The fields of the heap object are // not initialized by New<>() functions. It's the responsibility of the caller // to do that. template<typename T> Handle<T> New(Handle<Map> map, AllocationSpace space); template<typename T> Handle<T> New(Handle<Map> map, AllocationSpace space, Handle<AllocationSite> allocation_site); // Creates a code object that is not yet fully initialized yet. inline Handle<Code> NewCodeRaw(int object_size, bool immovable); // Attempt to find the number in a small cache. If we finds it, return // the string representation of the number. Otherwise return undefined. Handle<Object> GetNumberStringCache(Handle<Object> number); // Update the cache with a new number-string pair. void SetNumberStringCache(Handle<Object> number, Handle<String> string); // Initializes a function with a shared part and prototype. // Note: this code was factored out of NewFunction such that other parts of // the VM could use it. Specifically, a function that creates instances of // type JS_FUNCTION_TYPE benefit from the use of this function. inline void InitializeFunction(Handle<JSFunction> function, Handle<SharedFunctionInfo> info, Handle<Context> context); // Creates a function initialized with a shared part. Handle<JSFunction> NewFunction(Handle<Map> map, Handle<SharedFunctionInfo> info, Handle<Context> context, PretenureFlag pretenure = TENURED); Handle<JSFunction> NewFunction(Handle<Map> map, Handle<String> name, MaybeHandle<Code> maybe_code); // Reinitialize a JSProxy into an (empty) JS object of respective type and // size, but keeping the original prototype. The receiver must have at least // the size of the new object. The object is reinitialized and behaves as an // object that has been freshly allocated. void ReinitializeJSProxy(Handle<JSProxy> proxy, InstanceType type, int size); }; } // namespace internal } // namespace v8 #endif // V8_FACTORY_H_