// Copyright 2018 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef INCLUDE_V8_INTERNAL_H_ #define INCLUDE_V8_INTERNAL_H_ #include <stddef.h> #include <stdint.h> #include <string.h> #include <type_traits> #include "v8-version.h" // NOLINT(build/include_directory) #include "v8config.h" // NOLINT(build/include_directory) namespace v8 { class Array; class Context; class Data; class Isolate; template <typename T> class Local; namespace internal { class Isolate; typedef uintptr_t Address; static const Address kNullAddress = 0; constexpr int KB = 1024; constexpr int MB = KB * 1024; constexpr int GB = MB * 1024; #ifdef V8_TARGET_ARCH_X64 constexpr size_t TB = size_t{GB} * 1024; #endif /** * Configuration of tagging scheme. */ const int kApiSystemPointerSize = sizeof(void*); const int kApiDoubleSize = sizeof(double); const int kApiInt32Size = sizeof(int32_t); const int kApiInt64Size = sizeof(int64_t); const int kApiSizetSize = sizeof(size_t); // Tag information for HeapObject. const int kHeapObjectTag = 1; const int kWeakHeapObjectTag = 3; const int kHeapObjectTagSize = 2; const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1; // Tag information for fowarding pointers stored in object headers. // 0b00 at the lowest 2 bits in the header indicates that the map word is a // forwarding pointer. const int kForwardingTag = 0; const int kForwardingTagSize = 2; const intptr_t kForwardingTagMask = (1 << kForwardingTagSize) - 1; // Tag information for Smi. const int kSmiTag = 0; const int kSmiTagSize = 1; const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1; template <size_t tagged_ptr_size> struct SmiTagging; constexpr intptr_t kIntptrAllBitsSet = intptr_t{-1}; constexpr uintptr_t kUintptrAllBitsSet = static_cast<uintptr_t>(kIntptrAllBitsSet); // Smi constants for systems where tagged pointer is a 32-bit value. template <> struct SmiTagging<4> { enum { kSmiShiftSize = 0, kSmiValueSize = 31 }; static constexpr intptr_t kSmiMinValue = static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1)); static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1); V8_INLINE static int SmiToInt(const internal::Address value) { int shift_bits = kSmiTagSize + kSmiShiftSize; // Truncate and shift down (requires >> to be sign extending). return static_cast<int32_t>(static_cast<uint32_t>(value)) >> shift_bits; } V8_INLINE static constexpr bool IsValidSmi(intptr_t value) { // Is value in range [kSmiMinValue, kSmiMaxValue]. // Use unsigned operations in order to avoid undefined behaviour in case of // signed integer overflow. return (static_cast<uintptr_t>(value) - static_cast<uintptr_t>(kSmiMinValue)) <= (static_cast<uintptr_t>(kSmiMaxValue) - static_cast<uintptr_t>(kSmiMinValue)); } }; // Smi constants for systems where tagged pointer is a 64-bit value. template <> struct SmiTagging<8> { enum { kSmiShiftSize = 31, kSmiValueSize = 32 }; static constexpr intptr_t kSmiMinValue = static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1)); static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1); V8_INLINE static int SmiToInt(const internal::Address value) { int shift_bits = kSmiTagSize + kSmiShiftSize; // Shift down and throw away top 32 bits. return static_cast<int>(static_cast<intptr_t>(value) >> shift_bits); } V8_INLINE static constexpr bool IsValidSmi(intptr_t value) { // To be representable as a long smi, the value must be a 32-bit integer. return (value == static_cast<int32_t>(value)); } }; #ifdef V8_COMPRESS_POINTERS // See v8:7703 or src/common/ptr-compr-inl.h for details about pointer // compression. constexpr size_t kPtrComprCageReservationSize = size_t{1} << 32; constexpr size_t kPtrComprCageBaseAlignment = size_t{1} << 32; static_assert( kApiSystemPointerSize == kApiInt64Size, "Pointer compression can be enabled only for 64-bit architectures"); const int kApiTaggedSize = kApiInt32Size; #else const int kApiTaggedSize = kApiSystemPointerSize; #endif constexpr bool PointerCompressionIsEnabled() { return kApiTaggedSize != kApiSystemPointerSize; } #ifdef V8_31BIT_SMIS_ON_64BIT_ARCH using PlatformSmiTagging = SmiTagging<kApiInt32Size>; #else using PlatformSmiTagging = SmiTagging<kApiTaggedSize>; #endif // TODO(ishell): Consinder adding kSmiShiftBits = kSmiShiftSize + kSmiTagSize // since it's used much more often than the inividual constants. const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize; const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize; const int kSmiMinValue = static_cast<int>(PlatformSmiTagging::kSmiMinValue); const int kSmiMaxValue = static_cast<int>(PlatformSmiTagging::kSmiMaxValue); constexpr bool SmiValuesAre31Bits() { return kSmiValueSize == 31; } constexpr bool SmiValuesAre32Bits() { return kSmiValueSize == 32; } V8_INLINE static constexpr internal::Address IntToSmi(int value) { return (static_cast<Address>(value) << (kSmiTagSize + kSmiShiftSize)) | kSmiTag; } /* * Sandbox related types, constants, and functions. */ constexpr bool SandboxIsEnabled() { #ifdef V8_SANDBOX return true; #else return false; #endif } constexpr bool SandboxedExternalPointersAreEnabled() { #ifdef V8_SANDBOXED_EXTERNAL_POINTERS return true; #else return false; #endif } // SandboxedPointers are guaranteed to point into the sandbox. This is achieved // for example by storing them as offset rather than as raw pointers. using SandboxedPointer_t = Address; // ExternalPointers point to objects located outside the sandbox. When sandboxed // external pointers are enabled, these are stored in an external pointer table // and referenced from HeapObjects through indices. #ifdef V8_SANDBOXED_EXTERNAL_POINTERS using ExternalPointer_t = uint32_t; #else using ExternalPointer_t = Address; #endif #ifdef V8_SANDBOX_IS_AVAILABLE // Size of the sandbox, excluding the guard regions surrounding it. constexpr size_t kSandboxSizeLog2 = 40; // 1 TB constexpr size_t kSandboxSize = 1ULL << kSandboxSizeLog2; // Required alignment of the sandbox. For simplicity, we require the // size of the guard regions to be a multiple of this, so that this specifies // the alignment of the sandbox including and excluding surrounding guard // regions. The alignment requirement is due to the pointer compression cage // being located at the start of the sandbox. constexpr size_t kSandboxAlignment = kPtrComprCageBaseAlignment; // Sandboxed pointers are stored inside the heap as offset from the sandbox // base shifted to the left. This way, it is guaranteed that the offset is // smaller than the sandbox size after shifting it to the right again. This // constant specifies the shift amount. constexpr uint64_t kSandboxedPointerShift = 64 - kSandboxSizeLog2; // Size of the guard regions surrounding the sandbox. This assumes a worst-case // scenario of a 32-bit unsigned index used to access an array of 64-bit // values. constexpr size_t kSandboxGuardRegionSize = 32ULL * GB; static_assert((kSandboxGuardRegionSize % kSandboxAlignment) == 0, "The size of the guard regions around the sandbox must be a " "multiple of its required alignment."); // Minimum size of the sandbox, excluding the guard regions surrounding it. If // the virtual memory reservation for the sandbox fails, its size is currently // halved until either the reservation succeeds or the minimum size is reached. // A minimum of 32GB allows the 4GB pointer compression region as well as the // ArrayBuffer partition and two 10GB Wasm memory cages to fit into the // sandbox. 32GB should also be the minimum possible size of the userspace // address space as there are some machine configurations with only 36 virtual // address bits. constexpr size_t kSandboxMinimumSize = 32ULL * GB; static_assert(kSandboxMinimumSize <= kSandboxSize, "The minimal size of the sandbox must be smaller or equal to the " "regular size."); // On OSes where reserving virtual memory is too expensive to reserve the // entire address space backing the sandbox, notably Windows pre 8.1, we create // a partially reserved sandbox that doesn't actually reserve most of the // memory, and so doesn't have the desired security properties as unrelated // memory allocations could end up inside of it, but which still ensures that // objects that should be located inside the sandbox are allocated within // kSandboxSize bytes from the start of the sandbox. The minimum size of the // region that is actually reserved for such a sandbox is specified by this // constant and should be big enough to contain the pointer compression cage as // well as the ArrayBuffer partition. constexpr size_t kSandboxMinimumReservationSize = 8ULL * GB; static_assert(kSandboxMinimumSize > kPtrComprCageReservationSize, "The sandbox must be larger than the pointer compression cage " "contained within it."); static_assert(kSandboxMinimumReservationSize > kPtrComprCageReservationSize, "The minimum reservation size for a sandbox must be larger than " "the pointer compression cage contained within it."); // For now, even if the sandbox is enabled, we still allow backing stores to be // allocated outside of it as fallback. This will simplify the initial rollout. // However, if sandboxed pointers are also enabled, we must always place // backing stores inside the sandbox as they will be referenced though them. #ifdef V8_SANDBOXED_POINTERS constexpr bool kAllowBackingStoresOutsideSandbox = false; #else constexpr bool kAllowBackingStoresOutsideSandbox = true; #endif // V8_SANDBOXED_POINTERS // The size of the virtual memory reservation for an external pointer table. // This determines the maximum number of entries in a table. Using a maximum // size allows omitting bounds checks on table accesses if the indices are // guaranteed (e.g. through shifting) to be below the maximum index. This // value must be a power of two. static const size_t kExternalPointerTableReservationSize = 128 * MB; // The maximum number of entries in an external pointer table. static const size_t kMaxSandboxedExternalPointers = kExternalPointerTableReservationSize / kApiSystemPointerSize; // The external pointer table indices stored in HeapObjects as external // pointers are shifted to the left by this amount to guarantee that they are // smaller than the maximum table size. static const uint32_t kExternalPointerIndexShift = 8; static_assert((1 << (32 - kExternalPointerIndexShift)) == kMaxSandboxedExternalPointers, "kExternalPointerTableReservationSize and " "kExternalPointerIndexShift don't match"); #endif // V8_SANDBOX_IS_AVAILABLE // If sandboxed external pointers are enabled, these tag values will be ORed // with the external pointers in the external pointer table to prevent use of // pointers of the wrong type. When a pointer is loaded, it is ANDed with the // inverse of the expected type's tag. The tags are constructed in a way that // guarantees that a failed type check will result in one or more of the top // bits of the pointer to be set, rendering the pointer inacessible. Besides // the type tag bits (48 through 62), the tags also have the GC mark bit (63) // set, so that the mark bit is automatically set when a pointer is written // into the external pointer table (in which case it is clearly alive) and is // cleared when the pointer is loaded. The exception to this is the free entry // tag, which doesn't have the mark bit set, as the entry is not alive. This // construction allows performing the type check and removing GC marking bits // (the MSB) from the pointer at the same time. // Note: this scheme assumes a 48-bit address space and will likely break if // more virtual address bits are used. constexpr uint64_t kExternalPointerTagMask = 0xffff000000000000; constexpr uint64_t kExternalPointerTagShift = 48; #define MAKE_TAG(v) (static_cast<uint64_t>(v) << kExternalPointerTagShift) // clang-format off enum ExternalPointerTag : uint64_t { kExternalPointerNullTag = MAKE_TAG(0b0000000000000000), kExternalPointerFreeEntryTag = MAKE_TAG(0b0111111110000000), kExternalStringResourceTag = MAKE_TAG(0b1000000011111111), kExternalStringResourceDataTag = MAKE_TAG(0b1000000101111111), kForeignForeignAddressTag = MAKE_TAG(0b1000000110111111), kNativeContextMicrotaskQueueTag = MAKE_TAG(0b1000000111011111), kEmbedderDataSlotPayloadTag = MAKE_TAG(0b1000000111101111), kCodeEntryPointTag = MAKE_TAG(0b1000000111110111), kExternalObjectValueTag = MAKE_TAG(0b1000000111111011), }; // clang-format on #undef MAKE_TAG // Converts encoded external pointer to address. V8_EXPORT Address DecodeExternalPointerImpl(const Isolate* isolate, ExternalPointer_t pointer, ExternalPointerTag tag); // {obj} must be the raw tagged pointer representation of a HeapObject // that's guaranteed to never be in ReadOnlySpace. V8_EXPORT internal::Isolate* IsolateFromNeverReadOnlySpaceObject(Address obj); // Returns if we need to throw when an error occurs. This infers the language // mode based on the current context and the closure. This returns true if the // language mode is strict. V8_EXPORT bool ShouldThrowOnError(v8::internal::Isolate* isolate); V8_EXPORT bool CanHaveInternalField(int instance_type); /** * This class exports constants and functionality from within v8 that * is necessary to implement inline functions in the v8 api. Don't * depend on functions and constants defined here. */ class Internals { #ifdef V8_MAP_PACKING V8_INLINE static constexpr internal::Address UnpackMapWord( internal::Address mapword) { // TODO(wenyuzhao): Clear header metadata. return mapword ^ kMapWordXorMask; } #endif public: // These values match non-compiler-dependent values defined within // the implementation of v8. static const int kHeapObjectMapOffset = 0; static const int kMapInstanceTypeOffset = 1 * kApiTaggedSize + kApiInt32Size; static const int kStringResourceOffset = 1 * kApiTaggedSize + 2 * kApiInt32Size; static const int kOddballKindOffset = 4 * kApiTaggedSize + kApiDoubleSize; static const int kJSObjectHeaderSize = 3 * kApiTaggedSize; static const int kFixedArrayHeaderSize = 2 * kApiTaggedSize; static const int kEmbedderDataArrayHeaderSize = 2 * kApiTaggedSize; static const int kEmbedderDataSlotSize = kApiSystemPointerSize; #ifdef V8_SANDBOXED_EXTERNAL_POINTERS static const int kEmbedderDataSlotRawPayloadOffset = kApiTaggedSize; #endif static const int kNativeContextEmbedderDataOffset = 6 * kApiTaggedSize; static const int kStringRepresentationAndEncodingMask = 0x0f; static const int kStringEncodingMask = 0x8; static const int kExternalTwoByteRepresentationTag = 0x02; static const int kExternalOneByteRepresentationTag = 0x0a; static const uint32_t kNumIsolateDataSlots = 4; static const int kStackGuardSize = 7 * kApiSystemPointerSize; static const int kBuiltinTier0EntryTableSize = 9 * kApiSystemPointerSize; static const int kBuiltinTier0TableSize = 9 * kApiSystemPointerSize; // IsolateData layout guarantees. static const int kIsolateCageBaseOffset = 0; static const int kIsolateStackGuardOffset = kIsolateCageBaseOffset + kApiSystemPointerSize; static const int kBuiltinTier0EntryTableOffset = kIsolateStackGuardOffset + kStackGuardSize; static const int kBuiltinTier0TableOffset = kBuiltinTier0EntryTableOffset + kBuiltinTier0EntryTableSize; static const int kIsolateEmbedderDataOffset = kBuiltinTier0TableOffset + kBuiltinTier0TableSize; static const int kIsolateFastCCallCallerFpOffset = kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize; static const int kIsolateFastCCallCallerPcOffset = kIsolateFastCCallCallerFpOffset + kApiSystemPointerSize; static const int kIsolateFastApiCallTargetOffset = kIsolateFastCCallCallerPcOffset + kApiSystemPointerSize; static const int kIsolateLongTaskStatsCounterOffset = kIsolateFastApiCallTargetOffset + kApiSystemPointerSize; static const int kIsolateRootsOffset = kIsolateLongTaskStatsCounterOffset + kApiSizetSize; static const int kExternalPointerTableBufferOffset = 0; static const int kExternalPointerTableCapacityOffset = kExternalPointerTableBufferOffset + kApiSystemPointerSize; static const int kExternalPointerTableFreelistHeadOffset = kExternalPointerTableCapacityOffset + kApiInt32Size; static const int kUndefinedValueRootIndex = 4; static const int kTheHoleValueRootIndex = 5; static const int kNullValueRootIndex = 6; static const int kTrueValueRootIndex = 7; static const int kFalseValueRootIndex = 8; static const int kEmptyStringRootIndex = 9; static const int kNodeClassIdOffset = 1 * kApiSystemPointerSize; static const int kNodeFlagsOffset = 1 * kApiSystemPointerSize + 3; static const int kNodeStateMask = 0x7; static const int kNodeStateIsWeakValue = 2; static const int kFirstNonstringType = 0x80; static const int kOddballType = 0x83; static const int kForeignType = 0xcc; static const int kJSSpecialApiObjectType = 0x410; static const int kJSObjectType = 0x421; static const int kFirstJSApiObjectType = 0x422; static const int kLastJSApiObjectType = 0x80A; static const int kUndefinedOddballKind = 5; static const int kNullOddballKind = 3; // Constants used by PropertyCallbackInfo to check if we should throw when an // error occurs. static const int kThrowOnError = 0; static const int kDontThrow = 1; static const int kInferShouldThrowMode = 2; // Soft limit for AdjustAmountofExternalAllocatedMemory. Trigger an // incremental GC once the external memory reaches this limit. static constexpr int kExternalAllocationSoftLimit = 64 * 1024 * 1024; #ifdef V8_MAP_PACKING static const uintptr_t kMapWordMetadataMask = 0xffffULL << 48; // The lowest two bits of mapwords are always `0b10` static const uintptr_t kMapWordSignature = 0b10; // XORing a (non-compressed) map with this mask ensures that the two // low-order bits are 0b10. The 0 at the end makes this look like a Smi, // although real Smis have all lower 32 bits unset. We only rely on these // values passing as Smis in very few places. static const int kMapWordXorMask = 0b11; #endif V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate); V8_INLINE static void CheckInitialized(v8::Isolate* isolate) { #ifdef V8_ENABLE_CHECKS CheckInitializedImpl(isolate); #endif } V8_INLINE static bool HasHeapObjectTag(const internal::Address value) { return (value & kHeapObjectTagMask) == static_cast<Address>(kHeapObjectTag); } V8_INLINE static int SmiValue(const internal::Address value) { return PlatformSmiTagging::SmiToInt(value); } V8_INLINE static constexpr internal::Address IntToSmi(int value) { return internal::IntToSmi(value); } V8_INLINE static constexpr bool IsValidSmi(intptr_t value) { return PlatformSmiTagging::IsValidSmi(value); } V8_INLINE static int GetInstanceType(const internal::Address obj) { typedef internal::Address A; A map = ReadTaggedPointerField(obj, kHeapObjectMapOffset); #ifdef V8_MAP_PACKING map = UnpackMapWord(map); #endif return ReadRawField<uint16_t>(map, kMapInstanceTypeOffset); } V8_INLINE static int GetOddballKind(const internal::Address obj) { return SmiValue(ReadTaggedSignedField(obj, kOddballKindOffset)); } V8_INLINE static bool IsExternalTwoByteString(int instance_type) { int representation = (instance_type & kStringRepresentationAndEncodingMask); return representation == kExternalTwoByteRepresentationTag; } V8_INLINE static uint8_t GetNodeFlag(internal::Address* obj, int shift) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; return *addr & static_cast<uint8_t>(1U << shift); } V8_INLINE static void UpdateNodeFlag(internal::Address* obj, bool value, int shift) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; uint8_t mask = static_cast<uint8_t>(1U << shift); *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift)); } V8_INLINE static uint8_t GetNodeState(internal::Address* obj) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; return *addr & kNodeStateMask; } V8_INLINE static void UpdateNodeState(internal::Address* obj, uint8_t value) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value); } V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot, void* data) { internal::Address addr = reinterpret_cast<internal::Address>(isolate) + kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize; *reinterpret_cast<void**>(addr) = data; } V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate, uint32_t slot) { internal::Address addr = reinterpret_cast<internal::Address>(isolate) + kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize; return *reinterpret_cast<void* const*>(addr); } V8_INLINE static void IncrementLongTasksStatsCounter(v8::Isolate* isolate) { internal::Address addr = reinterpret_cast<internal::Address>(isolate) + kIsolateLongTaskStatsCounterOffset; ++(*reinterpret_cast<size_t*>(addr)); } V8_INLINE static internal::Address* GetRoot(v8::Isolate* isolate, int index) { internal::Address addr = reinterpret_cast<internal::Address>(isolate) + kIsolateRootsOffset + index * kApiSystemPointerSize; return reinterpret_cast<internal::Address*>(addr); } template <typename T> V8_INLINE static T ReadRawField(internal::Address heap_object_ptr, int offset) { internal::Address addr = heap_object_ptr + offset - kHeapObjectTag; #ifdef V8_COMPRESS_POINTERS if (sizeof(T) > kApiTaggedSize) { // TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size // fields (external pointers, doubles and BigInt data) are only // kTaggedSize aligned so we have to use unaligned pointer friendly way of // accessing them in order to avoid undefined behavior in C++ code. T r; memcpy(&r, reinterpret_cast<void*>(addr), sizeof(T)); return r; } #endif return *reinterpret_cast<const T*>(addr); } V8_INLINE static internal::Address ReadTaggedPointerField( internal::Address heap_object_ptr, int offset) { #ifdef V8_COMPRESS_POINTERS uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset); internal::Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr); return base + static_cast<internal::Address>(static_cast<uintptr_t>(value)); #else return ReadRawField<internal::Address>(heap_object_ptr, offset); #endif } V8_INLINE static internal::Address ReadTaggedSignedField( internal::Address heap_object_ptr, int offset) { #ifdef V8_COMPRESS_POINTERS uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset); return static_cast<internal::Address>(static_cast<uintptr_t>(value)); #else return ReadRawField<internal::Address>(heap_object_ptr, offset); #endif } V8_INLINE static internal::Isolate* GetIsolateForSandbox( internal::Address obj) { #ifdef V8_SANDBOXED_EXTERNAL_POINTERS return internal::IsolateFromNeverReadOnlySpaceObject(obj); #else // Not used in non-sandbox mode. return nullptr; #endif } V8_INLINE static Address DecodeExternalPointer( const Isolate* isolate, ExternalPointer_t encoded_pointer, ExternalPointerTag tag) { #ifdef V8_SANDBOXED_EXTERNAL_POINTERS return internal::DecodeExternalPointerImpl(isolate, encoded_pointer, tag); #else return encoded_pointer; #endif } V8_INLINE static internal::Address ReadExternalPointerField( internal::Isolate* isolate, internal::Address heap_object_ptr, int offset, ExternalPointerTag tag) { #ifdef V8_SANDBOXED_EXTERNAL_POINTERS internal::ExternalPointer_t encoded_value = ReadRawField<uint32_t>(heap_object_ptr, offset); // We currently have to treat zero as nullptr in embedder slots. return encoded_value ? DecodeExternalPointer(isolate, encoded_value, tag) : 0; #else return ReadRawField<Address>(heap_object_ptr, offset); #endif } #ifdef V8_COMPRESS_POINTERS V8_INLINE static internal::Address GetPtrComprCageBaseFromOnHeapAddress( internal::Address addr) { return addr & -static_cast<intptr_t>(kPtrComprCageBaseAlignment); } V8_INLINE static internal::Address DecompressTaggedAnyField( internal::Address heap_object_ptr, uint32_t value) { internal::Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr); return base + static_cast<internal::Address>(static_cast<uintptr_t>(value)); } #endif // V8_COMPRESS_POINTERS }; // Only perform cast check for types derived from v8::Data since // other types do not implement the Cast method. template <bool PerformCheck> struct CastCheck { template <class T> static void Perform(T* data); }; template <> template <class T> void CastCheck<true>::Perform(T* data) { T::Cast(data); } template <> template <class T> void CastCheck<false>::Perform(T* data) {} template <class T> V8_INLINE void PerformCastCheck(T* data) { CastCheck<std::is_base_of<Data, T>::value && !std::is_same<Data, std::remove_cv_t<T>>::value>::Perform(data); } // A base class for backing stores, which is needed due to vagaries of // how static casts work with std::shared_ptr. class BackingStoreBase {}; // The maximum value in enum GarbageCollectionReason, defined in heap.h. // This is needed for histograms sampling garbage collection reasons. constexpr int kGarbageCollectionReasonMaxValue = 25; } // namespace internal } // namespace v8 #endif // INCLUDE_V8_INTERNAL_H_