// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <memory>

#include "src/ast/scopes.h"
#include "src/builtins/accessors.h"
#include "src/common/message-template.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/arguments-inl.h"
#include "src/execution/frames-inl.h"
#include "src/execution/isolate-inl.h"
#include "src/heap/heap-inl.h"  // For ToBoolean. TODO(jkummerow): Drop.
#include "src/init/bootstrapper.h"
#include "src/logging/counters.h"
#include "src/objects/heap-object-inl.h"
#include "src/objects/module-inl.h"
#include "src/objects/smi.h"
#include "src/runtime/runtime-utils.h"

namespace v8 {
namespace internal {

RUNTIME_FUNCTION(Runtime_ThrowConstAssignError) {
  HandleScope scope(isolate);
  THROW_NEW_ERROR_RETURN_FAILURE(isolate,
                                 NewTypeError(MessageTemplate::kConstAssign));
}

namespace {

enum class RedeclarationType { kSyntaxError = 0, kTypeError = 1 };

Object ThrowRedeclarationError(Isolate* isolate, Handle<String> name,
                               RedeclarationType redeclaration_type) {
  HandleScope scope(isolate);
  if (redeclaration_type == RedeclarationType::kSyntaxError) {
    THROW_NEW_ERROR_RETURN_FAILURE(
        isolate, NewSyntaxError(MessageTemplate::kVarRedeclaration, name));
  } else {
    THROW_NEW_ERROR_RETURN_FAILURE(
        isolate, NewTypeError(MessageTemplate::kVarRedeclaration, name));
  }
}

// May throw a RedeclarationError.
Object DeclareGlobal(
    Isolate* isolate, Handle<JSGlobalObject> global, Handle<String> name,
    Handle<Object> value, PropertyAttributes attr, bool is_var,
    bool is_function_declaration, RedeclarationType redeclaration_type,
    Handle<FeedbackVector> feedback_vector = Handle<FeedbackVector>(),
    FeedbackSlot slot = FeedbackSlot::Invalid()) {
  Handle<ScriptContextTable> script_contexts(
      global->native_context().script_context_table(), isolate);
  ScriptContextTable::LookupResult lookup;
  if (ScriptContextTable::Lookup(isolate, *script_contexts, *name, &lookup) &&
      IsLexicalVariableMode(lookup.mode)) {
    // ES#sec-globaldeclarationinstantiation 6.a:
    // If envRec.HasLexicalDeclaration(name) is true, throw a SyntaxError
    // exception.
    return ThrowRedeclarationError(isolate, name,
                                   RedeclarationType::kSyntaxError);
  }

  // Do the lookup own properties only, see ES5 erratum.
  LookupIterator::Configuration lookup_config(
      LookupIterator::Configuration::OWN_SKIP_INTERCEPTOR);
  if (is_function_declaration) {
    // For function declarations, use the interceptor on the declaration. For
    // non-functions, use it only on initialization.
    lookup_config = LookupIterator::Configuration::OWN;
  }
  LookupIterator it(global, name, global, lookup_config);
  Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
  if (maybe.IsNothing()) return ReadOnlyRoots(isolate).exception();

  if (it.IsFound()) {
    PropertyAttributes old_attributes = maybe.FromJust();
    // The name was declared before; check for conflicting re-declarations.

    // Skip var re-declarations.
    if (is_var) return ReadOnlyRoots(isolate).undefined_value();

    DCHECK(is_function_declaration);
    if ((old_attributes & DONT_DELETE) != 0) {
      // Only allow reconfiguring globals to functions in user code (no
      // natives, which are marked as read-only).
      DCHECK_EQ(attr & READ_ONLY, 0);

      // Check whether we can reconfigure the existing property into a
      // function.
      if (old_attributes & READ_ONLY || old_attributes & DONT_ENUM ||
          (it.state() == LookupIterator::ACCESSOR)) {
        // ECMA-262 section 15.1.11 GlobalDeclarationInstantiation 5.d:
        // If hasRestrictedGlobal is true, throw a SyntaxError exception.
        // ECMA-262 section 18.2.1.3 EvalDeclarationInstantiation 8.a.iv.1.b:
        // If fnDefinable is false, throw a TypeError exception.
        return ThrowRedeclarationError(isolate, name, redeclaration_type);
      }
      // If the existing property is not configurable, keep its attributes. Do
      attr = old_attributes;
    }

    // If the current state is ACCESSOR, this could mean it's an AccessorInfo
    // type property. We are not allowed to call into such setters during global
    // function declaration since this would break e.g., onload. Meaning
    // 'function onload() {}' would invalidly register that function as the
    // onload callback. To avoid this situation, we first delete the property
    // before readding it as a regular data property below.
    if (it.state() == LookupIterator::ACCESSOR) it.Delete();
  }

  if (is_function_declaration) {
    it.Restart();
  }

  // Define or redefine own property.
  RETURN_FAILURE_ON_EXCEPTION(
      isolate, JSObject::DefineOwnPropertyIgnoreAttributes(&it, value, attr));

  if (!feedback_vector.is_null() &&
      it.state() != LookupIterator::State::INTERCEPTOR) {
    DCHECK_EQ(*global, *it.GetHolder<Object>());
    // Preinitialize the feedback slot if the global object does not have
    // named interceptor or the interceptor is not masking.
    if (!global->HasNamedInterceptor() ||
        global->GetNamedInterceptor().non_masking()) {
      FeedbackNexus nexus(feedback_vector, slot);
      nexus.ConfigurePropertyCellMode(it.GetPropertyCell());
    }
  }
  return ReadOnlyRoots(isolate).undefined_value();
}

Object DeclareGlobals(Isolate* isolate, Handle<FixedArray> declarations,
                      int flags, Handle<JSFunction> closure) {
  HandleScope scope(isolate);
  Handle<JSGlobalObject> global(isolate->global_object());
  Handle<Context> context(isolate->context(), isolate);

  Handle<FeedbackVector> feedback_vector = Handle<FeedbackVector>::null();
  Handle<ClosureFeedbackCellArray> closure_feedback_cell_array =
      Handle<ClosureFeedbackCellArray>::null();
  if (closure->has_feedback_vector()) {
    feedback_vector =
        Handle<FeedbackVector>(closure->feedback_vector(), isolate);
    closure_feedback_cell_array = Handle<ClosureFeedbackCellArray>(
        feedback_vector->closure_feedback_cell_array(), isolate);
  } else {
    closure_feedback_cell_array = Handle<ClosureFeedbackCellArray>(
        closure->closure_feedback_cell_array(), isolate);
  }

  // Traverse the name/value pairs and set the properties.
  int length = declarations->length();
  FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < length, i += 4, {
    Handle<String> name(String::cast(declarations->get(i)), isolate);
    FeedbackSlot slot(Smi::ToInt(declarations->get(i + 1)));
    Handle<Object> possibly_feedback_cell_slot(declarations->get(i + 2),
                                               isolate);
    Handle<Object> initial_value(declarations->get(i + 3), isolate);

    bool is_var = initial_value->IsUndefined(isolate);
    bool is_function = initial_value->IsSharedFunctionInfo();
    DCHECK_NE(is_var, is_function);

    Handle<Object> value;
    if (is_function) {
      DCHECK(possibly_feedback_cell_slot->IsSmi());
      Handle<FeedbackCell> feedback_cell =
          closure_feedback_cell_array->GetFeedbackCell(
              Smi::ToInt(*possibly_feedback_cell_slot));
      // Copy the function and update its context. Use it as value.
      Handle<SharedFunctionInfo> shared =
          Handle<SharedFunctionInfo>::cast(initial_value);
      Handle<JSFunction> function =
          isolate->factory()->NewFunctionFromSharedFunctionInfo(
              shared, context, feedback_cell, AllocationType::kOld);
      value = function;
    } else {
      value = isolate->factory()->undefined_value();
    }

    // Compute the property attributes. According to ECMA-262,
    // the property must be non-configurable except in eval.
    bool is_eval = DeclareGlobalsEvalFlag::decode(flags);
    int attr = NONE;
    if (!is_eval) attr |= DONT_DELETE;

    // ES#sec-globaldeclarationinstantiation 5.d:
    // If hasRestrictedGlobal is true, throw a SyntaxError exception.
    Object result = DeclareGlobal(isolate, global, name, value,
                                  static_cast<PropertyAttributes>(attr), is_var,
                                  is_function, RedeclarationType::kSyntaxError,
                                  feedback_vector, slot);
    if (isolate->has_pending_exception()) return result;
  });

  return ReadOnlyRoots(isolate).undefined_value();
}

}  // namespace

RUNTIME_FUNCTION(Runtime_DeclareGlobals) {
  HandleScope scope(isolate);
  DCHECK_EQ(3, args.length());

  CONVERT_ARG_HANDLE_CHECKED(FixedArray, declarations, 0);
  CONVERT_SMI_ARG_CHECKED(flags, 1);
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, closure, 2);

  return DeclareGlobals(isolate, declarations, flags, closure);
}

namespace {

Object DeclareEvalHelper(Isolate* isolate, Handle<String> name,
                         Handle<Object> value) {
  // Declarations are always made in a function, native, eval, or script
  // context, or a declaration block scope. Since this is called from eval, the
  // context passed is the context of the caller, which may be some nested
  // context and not the declaration context.
  Handle<Context> context(isolate->context().declaration_context(), isolate);

  DCHECK(context->IsFunctionContext() || context->IsNativeContext() ||
         context->IsScriptContext() || context->IsEvalContext() ||
         (context->IsBlockContext() &&
          context->scope_info().is_declaration_scope()));

  bool is_function = value->IsJSFunction();
  bool is_var = !is_function;
  DCHECK(!is_var || value->IsUndefined(isolate));

  int index;
  PropertyAttributes attributes;
  InitializationFlag init_flag;
  VariableMode mode;

  Handle<Object> holder =
      Context::Lookup(context, name, DONT_FOLLOW_CHAINS, &index, &attributes,
                      &init_flag, &mode);
  DCHECK(holder.is_null() || !holder->IsSourceTextModule());
  DCHECK(!isolate->has_pending_exception());

  Handle<JSObject> object;

  if (attributes != ABSENT && holder->IsJSGlobalObject()) {
    // ES#sec-evaldeclarationinstantiation 8.a.iv.1.b:
    // If fnDefinable is false, throw a TypeError exception.
    return DeclareGlobal(isolate, Handle<JSGlobalObject>::cast(holder), name,
                         value, NONE, is_var, is_function,
                         RedeclarationType::kTypeError);
  }
  if (context->extension().IsJSGlobalObject()) {
    Handle<JSGlobalObject> global(JSGlobalObject::cast(context->extension()),
                                  isolate);
    return DeclareGlobal(isolate, global, name, value, NONE, is_var,
                         is_function, RedeclarationType::kTypeError);
  } else if (context->IsScriptContext()) {
    DCHECK(context->global_object().IsJSGlobalObject());
    Handle<JSGlobalObject> global(
        JSGlobalObject::cast(context->global_object()), isolate);
    return DeclareGlobal(isolate, global, name, value, NONE, is_var,
                         is_function, RedeclarationType::kTypeError);
  }

  if (attributes != ABSENT) {
    DCHECK_EQ(NONE, attributes);

    // Skip var re-declarations.
    if (is_var) return ReadOnlyRoots(isolate).undefined_value();

    DCHECK(is_function);
    if (index != Context::kNotFound) {
      DCHECK(holder.is_identical_to(context));
      context->set(index, *value);
      return ReadOnlyRoots(isolate).undefined_value();
    }

    object = Handle<JSObject>::cast(holder);

  } else if (context->has_extension()) {
    object = handle(context->extension_object(), isolate);
    DCHECK(object->IsJSContextExtensionObject());
  } else {
    // Sloppy varblock and function contexts might not have an extension object
    // yet. Sloppy eval will never have an extension object, as vars are hoisted
    // out, and lets are known statically.
    DCHECK((context->IsBlockContext() &&
            context->scope_info().is_declaration_scope()) ||
           context->IsFunctionContext());
    object =
        isolate->factory()->NewJSObject(isolate->context_extension_function());

    context->set_extension(*object);
  }

  RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
                                           object, name, value, NONE));

  return ReadOnlyRoots(isolate).undefined_value();
}

}  // namespace

RUNTIME_FUNCTION(Runtime_DeclareEvalFunction) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
  CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
  return DeclareEvalHelper(isolate, name, value);
}

RUNTIME_FUNCTION(Runtime_DeclareEvalVar) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
  return DeclareEvalHelper(isolate, name,
                           isolate->factory()->undefined_value());
}

namespace {

// Find the arguments of the JavaScript function invocation that called
// into C++ code. Collect these in a newly allocated array of handles.
std::unique_ptr<Handle<Object>[]> GetCallerArguments(Isolate* isolate,
                                                     int* total_argc) {
  // Find frame containing arguments passed to the caller.
  JavaScriptFrameIterator it(isolate);
  JavaScriptFrame* frame = it.frame();
  std::vector<SharedFunctionInfo> functions;
  frame->GetFunctions(&functions);
  if (functions.size() > 1) {
    int inlined_jsframe_index = static_cast<int>(functions.size()) - 1;
    TranslatedState translated_values(frame);
    translated_values.Prepare(frame->fp());

    int argument_count = 0;
    TranslatedFrame* translated_frame =
        translated_values.GetArgumentsInfoFromJSFrameIndex(
            inlined_jsframe_index, &argument_count);
    TranslatedFrame::iterator iter = translated_frame->begin();

    // Skip the function.
    iter++;

    // Skip the receiver.
    iter++;
    argument_count--;

    *total_argc = argument_count;
    std::unique_ptr<Handle<Object>[]> param_data(
        NewArray<Handle<Object>>(*total_argc));
    bool should_deoptimize = false;
    for (int i = 0; i < argument_count; i++) {
      // If we materialize any object, we should deoptimize the frame because we
      // might alias an object that was eliminated by escape analysis.
      should_deoptimize = should_deoptimize || iter->IsMaterializedObject();
      Handle<Object> value = iter->GetValue();
      param_data[i] = value;
      iter++;
    }

    if (should_deoptimize) {
      translated_values.StoreMaterializedValuesAndDeopt(frame);
    }

    return param_data;
  } else {
    if (it.frame()->has_adapted_arguments()) {
      it.AdvanceOneFrame();
      DCHECK(it.frame()->is_arguments_adaptor());
    }
    frame = it.frame();
    int args_count = frame->ComputeParametersCount();

    *total_argc = args_count;
    std::unique_ptr<Handle<Object>[]> param_data(
        NewArray<Handle<Object>>(*total_argc));
    for (int i = 0; i < args_count; i++) {
      Handle<Object> val = Handle<Object>(frame->GetParameter(i), isolate);
      param_data[i] = val;
    }
    return param_data;
  }
}

template <typename T>
Handle<JSObject> NewSloppyArguments(Isolate* isolate, Handle<JSFunction> callee,
                                    T parameters, int argument_count) {
  CHECK(!IsDerivedConstructor(callee->shared().kind()));
  DCHECK(callee->shared().has_simple_parameters());
  Handle<JSObject> result =
      isolate->factory()->NewArgumentsObject(callee, argument_count);

  // Allocate the elements if needed.
  int parameter_count = callee->shared().internal_formal_parameter_count();
  if (argument_count > 0) {
    if (parameter_count > 0) {
      int mapped_count = Min(argument_count, parameter_count);
      Handle<FixedArray> parameter_map = isolate->factory()->NewFixedArray(
          mapped_count + 2, AllocationType::kYoung);
      parameter_map->set_map(
          ReadOnlyRoots(isolate).sloppy_arguments_elements_map());
      result->set_map(isolate->native_context()->fast_aliased_arguments_map());
      result->set_elements(*parameter_map);

      // Store the context and the arguments array at the beginning of the
      // parameter map.
      Handle<Context> context(isolate->context(), isolate);
      Handle<FixedArray> arguments = isolate->factory()->NewFixedArray(
          argument_count, AllocationType::kYoung);
      parameter_map->set(0, *context);
      parameter_map->set(1, *arguments);

      // Loop over the actual parameters backwards.
      int index = argument_count - 1;
      while (index >= mapped_count) {
        // These go directly in the arguments array and have no
        // corresponding slot in the parameter map.
        arguments->set(index, parameters[index]);
        --index;
      }

      Handle<ScopeInfo> scope_info(callee->shared().scope_info(), isolate);

      // First mark all mappable slots as unmapped and copy the values into the
      // arguments object.
      for (int i = 0; i < mapped_count; i++) {
        arguments->set(i, parameters[i]);
        parameter_map->set_the_hole(i + 2);
      }

      // Walk all context slots to find context allocated parameters. Mark each
      // found parameter as mapped.
      for (int i = 0; i < scope_info->ContextLocalCount(); i++) {
        if (!scope_info->ContextLocalIsParameter(i)) continue;
        int parameter = scope_info->ContextLocalParameterNumber(i);
        if (parameter >= mapped_count) continue;
        arguments->set_the_hole(parameter);
        Smi slot = Smi::FromInt(Context::MIN_CONTEXT_SLOTS + i);
        parameter_map->set(parameter + 2, slot);
      }
    } else {
      // If there is no aliasing, the arguments object elements are not
      // special in any way.
      Handle<FixedArray> elements = isolate->factory()->NewFixedArray(
          argument_count, AllocationType::kYoung);
      result->set_elements(*elements);
      for (int i = 0; i < argument_count; ++i) {
        elements->set(i, parameters[i]);
      }
    }
  }
  return result;
}

class HandleArguments {
 public:
  explicit HandleArguments(Handle<Object>* array) : array_(array) {}
  Object operator[](int index) { return *array_[index]; }

 private:
  Handle<Object>* array_;
};

class ParameterArguments {
 public:
  explicit ParameterArguments(Address parameters) : parameters_(parameters) {}
  Object operator[](int index) {
    return *FullObjectSlot(parameters_ - (index + 1) * kSystemPointerSize);
  }

 private:
  Address parameters_;
};

}  // namespace


RUNTIME_FUNCTION(Runtime_NewSloppyArguments_Generic) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
  // This generic runtime function can also be used when the caller has been
  // inlined, we use the slow but accurate {GetCallerArguments}.
  int argument_count = 0;
  std::unique_ptr<Handle<Object>[]> arguments =
      GetCallerArguments(isolate, &argument_count);
  HandleArguments argument_getter(arguments.get());
  return *NewSloppyArguments(isolate, callee, argument_getter, argument_count);
}


RUNTIME_FUNCTION(Runtime_NewStrictArguments) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
  // This generic runtime function can also be used when the caller has been
  // inlined, we use the slow but accurate {GetCallerArguments}.
  int argument_count = 0;
  std::unique_ptr<Handle<Object>[]> arguments =
      GetCallerArguments(isolate, &argument_count);
  Handle<JSObject> result =
      isolate->factory()->NewArgumentsObject(callee, argument_count);
  if (argument_count) {
    Handle<FixedArray> array =
        isolate->factory()->NewUninitializedFixedArray(argument_count);
    DisallowHeapAllocation no_gc;
    WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
    for (int i = 0; i < argument_count; i++) {
      array->set(i, *arguments[i], mode);
    }
    result->set_elements(*array);
  }
  return *result;
}


RUNTIME_FUNCTION(Runtime_NewRestParameter) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0)
  int start_index = callee->shared().internal_formal_parameter_count();
  // This generic runtime function can also be used when the caller has been
  // inlined, we use the slow but accurate {GetCallerArguments}.
  int argument_count = 0;
  std::unique_ptr<Handle<Object>[]> arguments =
      GetCallerArguments(isolate, &argument_count);
  int num_elements = std::max(0, argument_count - start_index);
  Handle<JSObject> result = isolate->factory()->NewJSArray(
      PACKED_ELEMENTS, num_elements, num_elements,
      DONT_INITIALIZE_ARRAY_ELEMENTS);
  {
    DisallowHeapAllocation no_gc;
    FixedArray elements = FixedArray::cast(result->elements());
    WriteBarrierMode mode = elements.GetWriteBarrierMode(no_gc);
    for (int i = 0; i < num_elements; i++) {
      elements.set(i, *arguments[i + start_index], mode);
    }
  }
  return *result;
}


RUNTIME_FUNCTION(Runtime_NewSloppyArguments) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
  StackFrameIterator iterator(isolate);

  // Stub/interpreter handler frame
  iterator.Advance();
  DCHECK(iterator.frame()->type() == StackFrame::STUB);

  // Function frame
  iterator.Advance();
  JavaScriptFrame* function_frame = JavaScriptFrame::cast(iterator.frame());
  DCHECK(function_frame->is_java_script());
  int argc = function_frame->ComputeParametersCount();
  Address fp = function_frame->fp();
  if (function_frame->has_adapted_arguments()) {
    iterator.Advance();
    ArgumentsAdaptorFrame* adaptor_frame =
        ArgumentsAdaptorFrame::cast(iterator.frame());
    argc = adaptor_frame->ComputeParametersCount();
    fp = adaptor_frame->fp();
  }

  Address parameters =
      fp + argc * kSystemPointerSize + StandardFrameConstants::kCallerSPOffset;
  ParameterArguments argument_getter(parameters);
  return *NewSloppyArguments(isolate, callee, argument_getter, argc);
}

RUNTIME_FUNCTION(Runtime_NewArgumentsElements) {
  HandleScope scope(isolate);
  DCHECK_EQ(3, args.length());
  // Note that args[0] is the address of an array of full object pointers
  // (a.k.a. FullObjectSlot), which looks like a Smi because it's aligned.
  DCHECK(args[0].IsSmi());
  FullObjectSlot frame(args[0].ptr());
  CONVERT_SMI_ARG_CHECKED(length, 1);
  CONVERT_SMI_ARG_CHECKED(mapped_count, 2);
  Handle<FixedArray> result =
      isolate->factory()->NewUninitializedFixedArray(length);
  int const offset = length + 1;
  DisallowHeapAllocation no_gc;
  WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
  int number_of_holes = Min(mapped_count, length);
  for (int index = 0; index < number_of_holes; ++index) {
    result->set_the_hole(isolate, index);
  }
  for (int index = number_of_holes; index < length; ++index) {
    result->set(index, *(frame + (offset - index)), mode);
  }
  return *result;
}

RUNTIME_FUNCTION(Runtime_NewClosure) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 0);
  CONVERT_ARG_HANDLE_CHECKED(FeedbackCell, feedback_cell, 1);
  Handle<Context> context(isolate->context(), isolate);
  Handle<JSFunction> function =
      isolate->factory()->NewFunctionFromSharedFunctionInfo(
          shared, context, feedback_cell, AllocationType::kYoung);
  return *function;
}

RUNTIME_FUNCTION(Runtime_NewClosure_Tenured) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 0);
  CONVERT_ARG_HANDLE_CHECKED(FeedbackCell, feedback_cell, 1);
  Handle<Context> context(isolate->context(), isolate);
  // The caller ensures that we pretenure closures that are assigned
  // directly to properties.
  Handle<JSFunction> function =
      isolate->factory()->NewFunctionFromSharedFunctionInfo(
          shared, context, feedback_cell, AllocationType::kOld);
  return *function;
}

static Object FindNameClash(Isolate* isolate, Handle<ScopeInfo> scope_info,
                            Handle<JSGlobalObject> global_object,
                            Handle<ScriptContextTable> script_context) {
  for (int var = 0; var < scope_info->ContextLocalCount(); var++) {
    Handle<String> name(scope_info->ContextLocalName(var), isolate);
    VariableMode mode = scope_info->ContextLocalMode(var);
    ScriptContextTable::LookupResult lookup;
    if (ScriptContextTable::Lookup(isolate, *script_context, *name, &lookup)) {
      if (IsLexicalVariableMode(mode) || IsLexicalVariableMode(lookup.mode)) {
        // ES#sec-globaldeclarationinstantiation 5.b:
        // If envRec.HasLexicalDeclaration(name) is true, throw a SyntaxError
        // exception.
        return ThrowRedeclarationError(isolate, name,
                                       RedeclarationType::kSyntaxError);
      }
    }

    if (IsLexicalVariableMode(mode)) {
      LookupIterator it(global_object, name, global_object,
                        LookupIterator::OWN_SKIP_INTERCEPTOR);
      Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
      if (maybe.IsNothing()) return ReadOnlyRoots(isolate).exception();
      if ((maybe.FromJust() & DONT_DELETE) != 0) {
        // ES#sec-globaldeclarationinstantiation 5.a:
        // If envRec.HasVarDeclaration(name) is true, throw a SyntaxError
        // exception.
        // ES#sec-globaldeclarationinstantiation 5.d:
        // If hasRestrictedGlobal is true, throw a SyntaxError exception.
        return ThrowRedeclarationError(isolate, name,
                                       RedeclarationType::kSyntaxError);
      }

      JSGlobalObject::InvalidatePropertyCell(global_object, name);
    }
  }
  return ReadOnlyRoots(isolate).undefined_value();
}

RUNTIME_FUNCTION(Runtime_NewScriptContext) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());

  CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 0);
  Handle<NativeContext> native_context(NativeContext::cast(isolate->context()),
                                       isolate);
  Handle<JSGlobalObject> global_object(native_context->global_object(),
                                       isolate);
  Handle<ScriptContextTable> script_context_table(
      native_context->script_context_table(), isolate);

  Object name_clash_result =
      FindNameClash(isolate, scope_info, global_object, script_context_table);
  if (isolate->has_pending_exception()) return name_clash_result;

  Handle<Context> result =
      isolate->factory()->NewScriptContext(native_context, scope_info);

  Handle<ScriptContextTable> new_script_context_table =
      ScriptContextTable::Extend(script_context_table, result);
  native_context->set_script_context_table(*new_script_context_table);
  return *result;
}

RUNTIME_FUNCTION(Runtime_NewFunctionContext) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());

  CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 0);

  Handle<Context> outer(isolate->context(), isolate);
  return *isolate->factory()->NewFunctionContext(outer, scope_info);
}

RUNTIME_FUNCTION(Runtime_PushWithContext) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, extension_object, 0);
  CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
  Handle<Context> current(isolate->context(), isolate);
  Handle<Context> context =
      isolate->factory()->NewWithContext(current, scope_info, extension_object);
  isolate->set_context(*context);
  return *context;
}

RUNTIME_FUNCTION(Runtime_PushModuleContext) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(SourceTextModule, module, 0);
  CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);

  Handle<NativeContext> outer(NativeContext::cast(isolate->context()), isolate);
  Handle<Context> context =
      isolate->factory()->NewModuleContext(module, outer, scope_info);
  isolate->set_context(*context);
  return *context;
}

RUNTIME_FUNCTION(Runtime_PushCatchContext) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(Object, thrown_object, 0);
  CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
  Handle<Context> current(isolate->context(), isolate);
  Handle<Context> context =
      isolate->factory()->NewCatchContext(current, scope_info, thrown_object);
  isolate->set_context(*context);
  return *context;
}


RUNTIME_FUNCTION(Runtime_PushBlockContext) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 0);
  Handle<Context> current(isolate->context(), isolate);
  Handle<Context> context =
      isolate->factory()->NewBlockContext(current, scope_info);
  isolate->set_context(*context);
  return *context;
}


RUNTIME_FUNCTION(Runtime_DeleteLookupSlot) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, name, 0);

  int index;
  PropertyAttributes attributes;
  InitializationFlag flag;
  VariableMode mode;
  Handle<Context> context(isolate->context(), isolate);
  Handle<Object> holder = Context::Lookup(context, name, FOLLOW_CHAINS, &index,
                                          &attributes, &flag, &mode);

  // If the slot was not found the result is true.
  if (holder.is_null()) {
    // In case of JSProxy, an exception might have been thrown.
    if (isolate->has_pending_exception())
      return ReadOnlyRoots(isolate).exception();
    return ReadOnlyRoots(isolate).true_value();
  }

  // If the slot was found in a context or in module imports and exports it
  // should be DONT_DELETE.
  if (holder->IsContext() || holder->IsSourceTextModule()) {
    return ReadOnlyRoots(isolate).false_value();
  }

  // The slot was found in a JSReceiver, either a context extension object,
  // the global object, or the subject of a with.  Try to delete it
  // (respecting DONT_DELETE).
  Handle<JSReceiver> object = Handle<JSReceiver>::cast(holder);
  Maybe<bool> result = JSReceiver::DeleteProperty(object, name);
  MAYBE_RETURN(result, ReadOnlyRoots(isolate).exception());
  return isolate->heap()->ToBoolean(result.FromJust());
}


namespace {

MaybeHandle<Object> LoadLookupSlot(Isolate* isolate, Handle<String> name,
                                   ShouldThrow should_throw,
                                   Handle<Object>* receiver_return = nullptr) {
  int index;
  PropertyAttributes attributes;
  InitializationFlag flag;
  VariableMode mode;
  Handle<Context> context(isolate->context(), isolate);
  Handle<Object> holder = Context::Lookup(context, name, FOLLOW_CHAINS, &index,
                                          &attributes, &flag, &mode);
  if (isolate->has_pending_exception()) return MaybeHandle<Object>();

  if (!holder.is_null() && holder->IsSourceTextModule()) {
    Handle<Object> receiver = isolate->factory()->undefined_value();
    if (receiver_return) *receiver_return = receiver;
    return SourceTextModule::LoadVariable(
        isolate, Handle<SourceTextModule>::cast(holder), index);
  }
  if (index != Context::kNotFound) {
    DCHECK(holder->IsContext());
    // If the "property" we were looking for is a local variable, the
    // receiver is the global object; see ECMA-262, 3rd., 10.1.6 and 10.2.3.
    Handle<Object> receiver = isolate->factory()->undefined_value();
    Handle<Object> value = handle(Context::cast(*holder).get(index), isolate);
    // Check for uninitialized bindings.
    if (flag == kNeedsInitialization && value->IsTheHole(isolate)) {
      THROW_NEW_ERROR(isolate,
                      NewReferenceError(MessageTemplate::kNotDefined, name),
                      Object);
    }
    DCHECK(!value->IsTheHole(isolate));
    if (receiver_return) *receiver_return = receiver;
    return value;
  }

  // Otherwise, if the slot was found the holder is a context extension
  // object, subject of a with, or a global object.  We read the named
  // property from it.
  if (!holder.is_null()) {
    // No need to unhole the value here.  This is taken care of by the
    // GetProperty function.
    Handle<Object> value;
    ASSIGN_RETURN_ON_EXCEPTION(
        isolate, value, Object::GetProperty(isolate, holder, name), Object);
    if (receiver_return) {
      *receiver_return =
          (holder->IsJSGlobalObject() || holder->IsJSContextExtensionObject())
              ? Handle<Object>::cast(isolate->factory()->undefined_value())
              : holder;
    }
    return value;
  }

  if (should_throw == kThrowOnError) {
    // The property doesn't exist - throw exception.
    THROW_NEW_ERROR(
        isolate, NewReferenceError(MessageTemplate::kNotDefined, name), Object);
  }

  // The property doesn't exist - return undefined.
  if (receiver_return) *receiver_return = isolate->factory()->undefined_value();
  return isolate->factory()->undefined_value();
}

}  // namespace


RUNTIME_FUNCTION(Runtime_LoadLookupSlot) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
  RETURN_RESULT_OR_FAILURE(isolate,
                           LoadLookupSlot(isolate, name, kThrowOnError));
}


RUNTIME_FUNCTION(Runtime_LoadLookupSlotInsideTypeof) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
  RETURN_RESULT_OR_FAILURE(isolate, LoadLookupSlot(isolate, name, kDontThrow));
}


RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlotForCall) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  DCHECK(args[0].IsString());
  Handle<String> name = args.at<String>(0);
  Handle<Object> value;
  Handle<Object> receiver;
  ASSIGN_RETURN_ON_EXCEPTION_VALUE(
      isolate, value, LoadLookupSlot(isolate, name, kThrowOnError, &receiver),
      MakePair(ReadOnlyRoots(isolate).exception(), Object()));
  return MakePair(*value, *receiver);
}


namespace {

MaybeHandle<Object> StoreLookupSlot(
    Isolate* isolate, Handle<Context> context, Handle<String> name,
    Handle<Object> value, LanguageMode language_mode,
    ContextLookupFlags context_lookup_flags = FOLLOW_CHAINS) {
  int index;
  PropertyAttributes attributes;
  InitializationFlag flag;
  VariableMode mode;
  bool is_sloppy_function_name;
  Handle<Object> holder =
      Context::Lookup(context, name, context_lookup_flags, &index, &attributes,
                      &flag, &mode, &is_sloppy_function_name);
  if (holder.is_null()) {
    // In case of JSProxy, an exception might have been thrown.
    if (isolate->has_pending_exception()) return MaybeHandle<Object>();
  } else if (holder->IsSourceTextModule()) {
    if ((attributes & READ_ONLY) == 0) {
      SourceTextModule::StoreVariable(Handle<SourceTextModule>::cast(holder),
                                      index, value);
    } else {
      THROW_NEW_ERROR(
          isolate, NewTypeError(MessageTemplate::kConstAssign, name), Object);
    }
    return value;
  }
  // The property was found in a context slot.
  if (index != Context::kNotFound) {
    if (flag == kNeedsInitialization &&
        Handle<Context>::cast(holder)->get(index).IsTheHole(isolate)) {
      THROW_NEW_ERROR(isolate,
                      NewReferenceError(MessageTemplate::kNotDefined, name),
                      Object);
    }
    if ((attributes & READ_ONLY) == 0) {
      Handle<Context>::cast(holder)->set(index, *value);
    } else if (!is_sloppy_function_name || is_strict(language_mode)) {
      THROW_NEW_ERROR(
          isolate, NewTypeError(MessageTemplate::kConstAssign, name), Object);
    }
    return value;
  }

  // Slow case: The property is not in a context slot.  It is either in a
  // context extension object, a property of the subject of a with, or a
  // property of the global object.
  Handle<JSReceiver> object;
  if (attributes != ABSENT) {
    // The property exists on the holder.
    object = Handle<JSReceiver>::cast(holder);
  } else if (is_strict(language_mode)) {
    // If absent in strict mode: throw.
    THROW_NEW_ERROR(
        isolate, NewReferenceError(MessageTemplate::kNotDefined, name), Object);
  } else {
    // If absent in sloppy mode: add the property to the global object.
    object = handle(context->global_object(), isolate);
  }

  ASSIGN_RETURN_ON_EXCEPTION(isolate, value,
                             Object::SetProperty(isolate, object, name, value),
                             Object);
  return value;
}

}  // namespace


RUNTIME_FUNCTION(Runtime_StoreLookupSlot_Sloppy) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
  CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
  Handle<Context> context(isolate->context(), isolate);
  RETURN_RESULT_OR_FAILURE(
      isolate,
      StoreLookupSlot(isolate, context, name, value, LanguageMode::kSloppy));
}

RUNTIME_FUNCTION(Runtime_StoreLookupSlot_Strict) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
  CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
  Handle<Context> context(isolate->context(), isolate);
  RETURN_RESULT_OR_FAILURE(
      isolate,
      StoreLookupSlot(isolate, context, name, value, LanguageMode::kStrict));
}

// Store into a dynamic declaration context for sloppy-mode block-scoped
// function hoisting which leaks out of an eval.
RUNTIME_FUNCTION(Runtime_StoreLookupSlot_SloppyHoisting) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
  CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
  const ContextLookupFlags lookup_flags =
      static_cast<ContextLookupFlags>(DONT_FOLLOW_CHAINS);
  Handle<Context> declaration_context(isolate->context().declaration_context(),
                                      isolate);
  RETURN_RESULT_OR_FAILURE(
      isolate, StoreLookupSlot(isolate, declaration_context, name, value,
                               LanguageMode::kSloppy, lookup_flags));
}

}  // namespace internal
}  // namespace v8