// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/x64/codegen-x64.h" #if V8_TARGET_ARCH_X64 #include "src/codegen.h" #include "src/macro-assembler.h" #include "src/x64/assembler-x64-inl.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // Platform-specific RuntimeCallHelper functions. void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { masm->EnterFrame(StackFrame::INTERNAL); DCHECK(!masm->has_frame()); masm->set_has_frame(true); } void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { masm->LeaveFrame(StackFrame::INTERNAL); DCHECK(masm->has_frame()); masm->set_has_frame(false); } #define __ masm. UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) { size_t actual_size; // Allocate buffer in executable space. byte* buffer = static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); if (buffer == nullptr) return nullptr; MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size), CodeObjectRequired::kNo); // xmm0: raw double input. // Move double input into registers. __ Sqrtsd(xmm0, xmm0); __ Ret(); CodeDesc desc; masm.GetCode(&desc); DCHECK(!RelocInfo::RequiresRelocation(desc)); Assembler::FlushICache(isolate, buffer, actual_size); base::OS::ProtectCode(buffer, actual_size); return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer); } #undef __ // ------------------------------------------------------------------------- // Code generators #define __ ACCESS_MASM(masm) void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string, Register index, Register result, Label* call_runtime) { Label indirect_string_loaded; __ bind(&indirect_string_loaded); // Fetch the instance type of the receiver into result register. __ movp(result, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset)); // We need special handling for indirect strings. Label check_sequential; __ testb(result, Immediate(kIsIndirectStringMask)); __ j(zero, &check_sequential, Label::kNear); // Dispatch on the indirect string shape: slice or cons. Label cons_string, thin_string; __ andl(result, Immediate(kStringRepresentationMask)); __ cmpl(result, Immediate(kConsStringTag)); __ j(equal, &cons_string, Label::kNear); __ cmpl(result, Immediate(kThinStringTag)); __ j(equal, &thin_string, Label::kNear); // Handle slices. __ SmiToInteger32(result, FieldOperand(string, SlicedString::kOffsetOffset)); __ addp(index, result); __ movp(string, FieldOperand(string, SlicedString::kParentOffset)); __ jmp(&indirect_string_loaded); // Handle thin strings. __ bind(&thin_string); __ movp(string, FieldOperand(string, ThinString::kActualOffset)); __ jmp(&indirect_string_loaded); // Handle cons strings. // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we would rather go to the runtime system now to flatten // the string. __ bind(&cons_string); __ CompareRoot(FieldOperand(string, ConsString::kSecondOffset), Heap::kempty_stringRootIndex); __ j(not_equal, call_runtime); __ movp(string, FieldOperand(string, ConsString::kFirstOffset)); __ jmp(&indirect_string_loaded); // Distinguish sequential and external strings. Only these two string // representations can reach here (slices and flat cons strings have been // reduced to the underlying sequential or external string). Label seq_string; __ bind(&check_sequential); STATIC_ASSERT(kSeqStringTag == 0); __ testb(result, Immediate(kStringRepresentationMask)); __ j(zero, &seq_string, Label::kNear); // Handle external strings. Label one_byte_external, done; if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ testb(result, Immediate(kIsIndirectStringMask)); __ Assert(zero, kExternalStringExpectedButNotFound); } // Rule out short external strings. STATIC_ASSERT(kShortExternalStringTag != 0); __ testb(result, Immediate(kShortExternalStringTag)); __ j(not_zero, call_runtime); // Check encoding. STATIC_ASSERT(kTwoByteStringTag == 0); __ testb(result, Immediate(kStringEncodingMask)); __ movp(result, FieldOperand(string, ExternalString::kResourceDataOffset)); __ j(not_equal, &one_byte_external, Label::kNear); // Two-byte string. __ movzxwl(result, Operand(result, index, times_2, 0)); __ jmp(&done, Label::kNear); __ bind(&one_byte_external); // One-byte string. __ movzxbl(result, Operand(result, index, times_1, 0)); __ jmp(&done, Label::kNear); // Dispatch on the encoding: one-byte or two-byte. Label one_byte; __ bind(&seq_string); STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ testb(result, Immediate(kStringEncodingMask)); __ j(not_zero, &one_byte, Label::kNear); // Two-byte string. // Load the two-byte character code into the result register. STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ movzxwl(result, FieldOperand(string, index, times_2, SeqTwoByteString::kHeaderSize)); __ jmp(&done, Label::kNear); // One-byte string. // Load the byte into the result register. __ bind(&one_byte); __ movzxbl(result, FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize)); __ bind(&done); } #undef __ CodeAgingHelper::CodeAgingHelper(Isolate* isolate) { USE(isolate); DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength); // The sequence of instructions that is patched out for aging code is the // following boilerplate stack-building prologue that is found both in // FUNCTION and OPTIMIZED_FUNCTION code: CodePatcher patcher(isolate, young_sequence_.start(), young_sequence_.length()); patcher.masm()->pushq(rbp); patcher.masm()->movp(rbp, rsp); patcher.masm()->Push(rsi); patcher.masm()->Push(rdi); } #ifdef DEBUG bool CodeAgingHelper::IsOld(byte* candidate) const { return *candidate == kCallOpcode; } #endif bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) { bool result = isolate->code_aging_helper()->IsYoung(sequence); DCHECK(result || isolate->code_aging_helper()->IsOld(sequence)); return result; } Code::Age Code::GetCodeAge(Isolate* isolate, byte* sequence) { if (IsYoungSequence(isolate, sequence)) return kNoAgeCodeAge; sequence++; // Skip the kCallOpcode byte Address target_address = sequence + *reinterpret_cast<int*>(sequence) + Assembler::kCallTargetAddressOffset; Code* stub = GetCodeFromTargetAddress(target_address); return GetAgeOfCodeAgeStub(stub); } void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Code::Age age) { uint32_t young_length = isolate->code_aging_helper()->young_sequence_length(); if (age == kNoAgeCodeAge) { isolate->code_aging_helper()->CopyYoungSequenceTo(sequence); Assembler::FlushICache(isolate, sequence, young_length); } else { Code* stub = GetCodeAgeStub(isolate, age); CodePatcher patcher(isolate, sequence, young_length); patcher.masm()->call(stub->instruction_start()); patcher.masm()->Nop( kNoCodeAgeSequenceLength - Assembler::kShortCallInstructionLength); } } Operand StackArgumentsAccessor::GetArgumentOperand(int index) { DCHECK(index >= 0); int receiver = (receiver_mode_ == ARGUMENTS_CONTAIN_RECEIVER) ? 1 : 0; int displacement_to_last_argument = base_reg_.is(rsp) ? kPCOnStackSize : kFPOnStackSize + kPCOnStackSize; displacement_to_last_argument += extra_displacement_to_last_argument_; if (argument_count_reg_.is(no_reg)) { // argument[0] is at base_reg_ + displacement_to_last_argument + // (argument_count_immediate_ + receiver - 1) * kPointerSize. DCHECK(argument_count_immediate_ + receiver > 0); return Operand(base_reg_, displacement_to_last_argument + (argument_count_immediate_ + receiver - 1 - index) * kPointerSize); } else { // argument[0] is at base_reg_ + displacement_to_last_argument + // argument_count_reg_ * times_pointer_size + (receiver - 1) * kPointerSize. return Operand(base_reg_, argument_count_reg_, times_pointer_size, displacement_to_last_argument + (receiver - 1 - index) * kPointerSize); } } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X64