// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/api.h" #include <string.h> // For memcpy, strlen. #ifdef V8_USE_ADDRESS_SANITIZER #include <sanitizer/asan_interface.h> #endif // V8_USE_ADDRESS_SANITIZER #include <cmath> // For isnan. #include <limits> #include <vector> #include "include/v8-debug.h" #include "include/v8-experimental.h" #include "include/v8-profiler.h" #include "include/v8-testing.h" #include "src/accessors.h" #include "src/api-experimental.h" #include "src/api-natives.h" #include "src/assert-scope.h" #include "src/background-parsing-task.h" #include "src/base/functional.h" #include "src/base/platform/platform.h" #include "src/base/platform/time.h" #include "src/base/utils/random-number-generator.h" #include "src/bootstrapper.h" #include "src/char-predicates-inl.h" #include "src/code-stubs.h" #include "src/compiler.h" #include "src/context-measure.h" #include "src/contexts.h" #include "src/conversions-inl.h" #include "src/counters.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/execution.h" #include "src/gdb-jit.h" #include "src/global-handles.h" #include "src/icu_util.h" #include "src/isolate-inl.h" #include "src/json-parser.h" #include "src/messages.h" #include "src/parsing/parser.h" #include "src/parsing/scanner-character-streams.h" #include "src/pending-compilation-error-handler.h" #include "src/profiler/cpu-profiler.h" #include "src/profiler/heap-profiler.h" #include "src/profiler/heap-snapshot-generator-inl.h" #include "src/profiler/profile-generator-inl.h" #include "src/profiler/sampler.h" #include "src/property.h" #include "src/property-descriptor.h" #include "src/property-details.h" #include "src/prototype.h" #include "src/runtime/runtime.h" #include "src/runtime-profiler.h" #include "src/simulator.h" #include "src/snapshot/natives.h" #include "src/snapshot/snapshot.h" #include "src/startup-data-util.h" #include "src/tracing/trace-event.h" #include "src/unicode-inl.h" #include "src/v8.h" #include "src/v8threads.h" #include "src/version.h" #include "src/vm-state-inl.h" namespace v8 { #define LOG_API(isolate, expr) LOG(isolate, ApiEntryCall(expr)) #define ENTER_V8(isolate) i::VMState<v8::OTHER> __state__((isolate)) #define PREPARE_FOR_EXECUTION_GENERIC(isolate, context, function_name, \ bailout_value, HandleScopeClass, \ do_callback) \ if (IsExecutionTerminatingCheck(isolate)) { \ return bailout_value; \ } \ HandleScopeClass handle_scope(isolate); \ CallDepthScope call_depth_scope(isolate, context, do_callback); \ LOG_API(isolate, function_name); \ ENTER_V8(isolate); \ bool has_pending_exception = false #define PREPARE_FOR_EXECUTION_WITH_CONTEXT( \ context, function_name, bailout_value, HandleScopeClass, do_callback) \ auto isolate = context.IsEmpty() \ ? i::Isolate::Current() \ : reinterpret_cast<i::Isolate*>(context->GetIsolate()); \ PREPARE_FOR_EXECUTION_GENERIC(isolate, context, function_name, \ bailout_value, HandleScopeClass, do_callback); #define PREPARE_FOR_EXECUTION_WITH_ISOLATE(isolate, function_name, T) \ PREPARE_FOR_EXECUTION_GENERIC(isolate, Local<Context>(), function_name, \ MaybeLocal<T>(), InternalEscapableScope, \ false); #define PREPARE_FOR_EXECUTION(context, function_name, T) \ PREPARE_FOR_EXECUTION_WITH_CONTEXT(context, function_name, MaybeLocal<T>(), \ InternalEscapableScope, false) #define PREPARE_FOR_EXECUTION_WITH_CALLBACK(context, function_name, T) \ PREPARE_FOR_EXECUTION_WITH_CONTEXT(context, function_name, MaybeLocal<T>(), \ InternalEscapableScope, true) #define PREPARE_FOR_EXECUTION_PRIMITIVE(context, function_name, T) \ PREPARE_FOR_EXECUTION_WITH_CONTEXT(context, function_name, Nothing<T>(), \ i::HandleScope, false) #define EXCEPTION_BAILOUT_CHECK_SCOPED(isolate, value) \ do { \ if (has_pending_exception) { \ call_depth_scope.Escape(); \ return value; \ } \ } while (false) #define RETURN_ON_FAILED_EXECUTION(T) \ EXCEPTION_BAILOUT_CHECK_SCOPED(isolate, MaybeLocal<T>()) #define RETURN_ON_FAILED_EXECUTION_PRIMITIVE(T) \ EXCEPTION_BAILOUT_CHECK_SCOPED(isolate, Nothing<T>()) #define RETURN_TO_LOCAL_UNCHECKED(maybe_local, T) \ return maybe_local.FromMaybe(Local<T>()); #define RETURN_ESCAPED(value) return handle_scope.Escape(value); namespace { Local<Context> ContextFromHeapObject(i::Handle<i::Object> obj) { return reinterpret_cast<v8::Isolate*>(i::HeapObject::cast(*obj)->GetIsolate()) ->GetCurrentContext(); } class InternalEscapableScope : public v8::EscapableHandleScope { public: explicit inline InternalEscapableScope(i::Isolate* isolate) : v8::EscapableHandleScope(reinterpret_cast<v8::Isolate*>(isolate)) {} }; #ifdef DEBUG void CheckMicrotasksScopesConsistency(i::Isolate* isolate) { auto handle_scope_implementer = isolate->handle_scope_implementer(); if (handle_scope_implementer->microtasks_policy() == v8::MicrotasksPolicy::kScoped) { DCHECK(handle_scope_implementer->GetMicrotasksScopeDepth() || !handle_scope_implementer->DebugMicrotasksScopeDepthIsZero()); } } #endif class CallDepthScope { public: explicit CallDepthScope(i::Isolate* isolate, Local<Context> context, bool do_callback) : isolate_(isolate), context_(context), escaped_(false), do_callback_(do_callback) { // TODO(dcarney): remove this when blink stops crashing. DCHECK(!isolate_->external_caught_exception()); isolate_->IncrementJsCallsFromApiCounter(); isolate_->handle_scope_implementer()->IncrementCallDepth(); if (!context_.IsEmpty()) context_->Enter(); if (do_callback_) isolate_->FireBeforeCallEnteredCallback(); } ~CallDepthScope() { if (!context_.IsEmpty()) context_->Exit(); if (!escaped_) isolate_->handle_scope_implementer()->DecrementCallDepth(); if (do_callback_) isolate_->FireCallCompletedCallback(); #ifdef DEBUG if (do_callback_) CheckMicrotasksScopesConsistency(isolate_); #endif } void Escape() { DCHECK(!escaped_); escaped_ = true; auto handle_scope_implementer = isolate_->handle_scope_implementer(); handle_scope_implementer->DecrementCallDepth(); bool call_depth_is_zero = handle_scope_implementer->CallDepthIsZero(); isolate_->OptionalRescheduleException(call_depth_is_zero); } private: i::Isolate* const isolate_; Local<Context> context_; bool escaped_; bool do_callback_; }; } // namespace static ScriptOrigin GetScriptOriginForScript(i::Isolate* isolate, i::Handle<i::Script> script) { i::Handle<i::Object> scriptName(i::Script::GetNameOrSourceURL(script)); i::Handle<i::Object> source_map_url(script->source_mapping_url(), isolate); v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(script->GetIsolate()); ScriptOriginOptions options(script->origin_options()); v8::ScriptOrigin origin( Utils::ToLocal(scriptName), v8::Integer::New(v8_isolate, script->line_offset()), v8::Integer::New(v8_isolate, script->column_offset()), v8::Boolean::New(v8_isolate, options.IsSharedCrossOrigin()), v8::Integer::New(v8_isolate, script->id()), v8::Boolean::New(v8_isolate, options.IsEmbedderDebugScript()), Utils::ToLocal(source_map_url), v8::Boolean::New(v8_isolate, options.IsOpaque())); return origin; } // --- E x c e p t i o n B e h a v i o r --- void i::FatalProcessOutOfMemory(const char* location) { i::V8::FatalProcessOutOfMemory(location, false); } // When V8 cannot allocated memory FatalProcessOutOfMemory is called. // The default fatal error handler is called and execution is stopped. void i::V8::FatalProcessOutOfMemory(const char* location, bool take_snapshot) { i::Isolate* isolate = i::Isolate::Current(); char last_few_messages[Heap::kTraceRingBufferSize + 1]; char js_stacktrace[Heap::kStacktraceBufferSize + 1]; memset(last_few_messages, 0, Heap::kTraceRingBufferSize + 1); memset(js_stacktrace, 0, Heap::kStacktraceBufferSize + 1); i::HeapStats heap_stats; int start_marker; heap_stats.start_marker = &start_marker; int new_space_size; heap_stats.new_space_size = &new_space_size; int new_space_capacity; heap_stats.new_space_capacity = &new_space_capacity; intptr_t old_space_size; heap_stats.old_space_size = &old_space_size; intptr_t old_space_capacity; heap_stats.old_space_capacity = &old_space_capacity; intptr_t code_space_size; heap_stats.code_space_size = &code_space_size; intptr_t code_space_capacity; heap_stats.code_space_capacity = &code_space_capacity; intptr_t map_space_size; heap_stats.map_space_size = &map_space_size; intptr_t map_space_capacity; heap_stats.map_space_capacity = &map_space_capacity; intptr_t lo_space_size; heap_stats.lo_space_size = &lo_space_size; int global_handle_count; heap_stats.global_handle_count = &global_handle_count; int weak_global_handle_count; heap_stats.weak_global_handle_count = &weak_global_handle_count; int pending_global_handle_count; heap_stats.pending_global_handle_count = &pending_global_handle_count; int near_death_global_handle_count; heap_stats.near_death_global_handle_count = &near_death_global_handle_count; int free_global_handle_count; heap_stats.free_global_handle_count = &free_global_handle_count; intptr_t memory_allocator_size; heap_stats.memory_allocator_size = &memory_allocator_size; intptr_t memory_allocator_capacity; heap_stats.memory_allocator_capacity = &memory_allocator_capacity; int objects_per_type[LAST_TYPE + 1] = {0}; heap_stats.objects_per_type = objects_per_type; int size_per_type[LAST_TYPE + 1] = {0}; heap_stats.size_per_type = size_per_type; int os_error; heap_stats.os_error = &os_error; heap_stats.last_few_messages = last_few_messages; heap_stats.js_stacktrace = js_stacktrace; int end_marker; heap_stats.end_marker = &end_marker; if (isolate->heap()->HasBeenSetUp()) { // BUG(1718): Don't use the take_snapshot since we don't support // HeapIterator here without doing a special GC. isolate->heap()->RecordStats(&heap_stats, false); char* first_newline = strchr(last_few_messages, '\n'); if (first_newline == NULL || first_newline[1] == '\0') first_newline = last_few_messages; PrintF("\n<--- Last few GCs --->\n%s\n", first_newline); PrintF("\n<--- JS stacktrace --->\n%s\n", js_stacktrace); } Utils::ApiCheck(false, location, "Allocation failed - process out of memory"); // If the fatal error handler returns, we stop execution. FATAL("API fatal error handler returned after process out of memory"); } void Utils::ReportApiFailure(const char* location, const char* message) { i::Isolate* isolate = i::Isolate::Current(); FatalErrorCallback callback = isolate->exception_behavior(); if (callback == NULL) { base::OS::PrintError("\n#\n# Fatal error in %s\n# %s\n#\n\n", location, message); base::OS::Abort(); } else { callback(location, message); } isolate->SignalFatalError(); } static inline bool IsExecutionTerminatingCheck(i::Isolate* isolate) { if (isolate->has_scheduled_exception()) { return isolate->scheduled_exception() == isolate->heap()->termination_exception(); } return false; } void V8::SetNativesDataBlob(StartupData* natives_blob) { i::V8::SetNativesBlob(natives_blob); } void V8::SetSnapshotDataBlob(StartupData* snapshot_blob) { i::V8::SetSnapshotBlob(snapshot_blob); } namespace { class ArrayBufferAllocator : public v8::ArrayBuffer::Allocator { public: virtual void* Allocate(size_t length) { void* data = AllocateUninitialized(length); return data == NULL ? data : memset(data, 0, length); } virtual void* AllocateUninitialized(size_t length) { return malloc(length); } virtual void Free(void* data, size_t) { free(data); } }; bool RunExtraCode(Isolate* isolate, Local<Context> context, const char* utf8_source, const char* name) { base::ElapsedTimer timer; timer.Start(); Context::Scope context_scope(context); TryCatch try_catch(isolate); Local<String> source_string; if (!String::NewFromUtf8(isolate, utf8_source, NewStringType::kNormal) .ToLocal(&source_string)) { return false; } Local<String> resource_name = String::NewFromUtf8(isolate, name, NewStringType::kNormal) .ToLocalChecked(); ScriptOrigin origin(resource_name); ScriptCompiler::Source source(source_string, origin); Local<Script> script; if (!ScriptCompiler::Compile(context, &source).ToLocal(&script)) return false; if (script->Run(context).IsEmpty()) return false; if (i::FLAG_profile_deserialization) { i::PrintF("Executing custom snapshot script %s took %0.3f ms\n", name, timer.Elapsed().InMillisecondsF()); } timer.Stop(); CHECK(!try_catch.HasCaught()); return true; } StartupData SerializeIsolateAndContext( Isolate* isolate, Persistent<Context>* context, i::Snapshot::Metadata metadata, i::StartupSerializer::FunctionCodeHandling function_code_handling) { if (context->IsEmpty()) return {NULL, 0}; i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); // If we don't do this then we end up with a stray root pointing at the // context even after we have disposed of the context. internal_isolate->heap()->CollectAllAvailableGarbage("mksnapshot"); // GC may have cleared weak cells, so compact any WeakFixedArrays // found on the heap. i::HeapIterator iterator(internal_isolate->heap(), i::HeapIterator::kFilterUnreachable); for (i::HeapObject* o = iterator.next(); o != NULL; o = iterator.next()) { if (o->IsPrototypeInfo()) { i::Object* prototype_users = i::PrototypeInfo::cast(o)->prototype_users(); if (prototype_users->IsWeakFixedArray()) { i::WeakFixedArray* array = i::WeakFixedArray::cast(prototype_users); array->Compact<i::JSObject::PrototypeRegistryCompactionCallback>(); } } else if (o->IsScript()) { i::Object* shared_list = i::Script::cast(o)->shared_function_infos(); if (shared_list->IsWeakFixedArray()) { i::WeakFixedArray* array = i::WeakFixedArray::cast(shared_list); array->Compact<i::WeakFixedArray::NullCallback>(); } } } i::Object* raw_context = *v8::Utils::OpenPersistent(*context); context->Reset(); i::SnapshotByteSink snapshot_sink; i::StartupSerializer ser(internal_isolate, &snapshot_sink, function_code_handling); ser.SerializeStrongReferences(); i::SnapshotByteSink context_sink; i::PartialSerializer context_ser(internal_isolate, &ser, &context_sink); context_ser.Serialize(&raw_context); ser.SerializeWeakReferencesAndDeferred(); return i::Snapshot::CreateSnapshotBlob(ser, context_ser, metadata); } } // namespace StartupData V8::CreateSnapshotDataBlob(const char* embedded_source) { // Create a new isolate and a new context from scratch, optionally run // a script to embed, and serialize to create a snapshot blob. StartupData result = {NULL, 0}; base::ElapsedTimer timer; timer.Start(); ArrayBufferAllocator allocator; i::Isolate* internal_isolate = new i::Isolate(true); internal_isolate->set_array_buffer_allocator(&allocator); Isolate* isolate = reinterpret_cast<Isolate*>(internal_isolate); { Isolate::Scope isolate_scope(isolate); internal_isolate->Init(NULL); Persistent<Context> context; { HandleScope handle_scope(isolate); Local<Context> new_context = Context::New(isolate); context.Reset(isolate, new_context); if (embedded_source != NULL && !RunExtraCode(isolate, new_context, embedded_source, "<embedded>")) { context.Reset(); } } i::Snapshot::Metadata metadata; metadata.set_embeds_script(embedded_source != NULL); result = SerializeIsolateAndContext( isolate, &context, metadata, i::StartupSerializer::CLEAR_FUNCTION_CODE); DCHECK(context.IsEmpty()); } isolate->Dispose(); if (i::FLAG_profile_deserialization) { i::PrintF("Creating snapshot took %0.3f ms\n", timer.Elapsed().InMillisecondsF()); } timer.Stop(); return result; } StartupData V8::WarmUpSnapshotDataBlob(StartupData cold_snapshot_blob, const char* warmup_source) { CHECK(cold_snapshot_blob.raw_size > 0 && cold_snapshot_blob.data != NULL); CHECK(warmup_source != NULL); // Use following steps to create a warmed up snapshot blob from a cold one: // - Create a new isolate from the cold snapshot. // - Create a new context to run the warmup script. This will trigger // compilation of executed functions. // - Create a new context. This context will be unpolluted. // - Serialize the isolate and the second context into a new snapshot blob. StartupData result = {NULL, 0}; base::ElapsedTimer timer; timer.Start(); ArrayBufferAllocator allocator; i::Isolate* internal_isolate = new i::Isolate(true); internal_isolate->set_array_buffer_allocator(&allocator); internal_isolate->set_snapshot_blob(&cold_snapshot_blob); Isolate* isolate = reinterpret_cast<Isolate*>(internal_isolate); { Isolate::Scope isolate_scope(isolate); i::Snapshot::Initialize(internal_isolate); Persistent<Context> context; bool success; { HandleScope handle_scope(isolate); Local<Context> new_context = Context::New(isolate); success = RunExtraCode(isolate, new_context, warmup_source, "<warm-up>"); } if (success) { HandleScope handle_scope(isolate); isolate->ContextDisposedNotification(false); Local<Context> new_context = Context::New(isolate); context.Reset(isolate, new_context); } i::Snapshot::Metadata metadata; metadata.set_embeds_script(i::Snapshot::EmbedsScript(internal_isolate)); result = SerializeIsolateAndContext( isolate, &context, metadata, i::StartupSerializer::KEEP_FUNCTION_CODE); DCHECK(context.IsEmpty()); } isolate->Dispose(); if (i::FLAG_profile_deserialization) { i::PrintF("Warming up snapshot took %0.3f ms\n", timer.Elapsed().InMillisecondsF()); } timer.Stop(); return result; } void V8::SetFlagsFromString(const char* str, int length) { i::FlagList::SetFlagsFromString(str, length); } void V8::SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags) { i::FlagList::SetFlagsFromCommandLine(argc, argv, remove_flags); } RegisteredExtension* RegisteredExtension::first_extension_ = NULL; RegisteredExtension::RegisteredExtension(Extension* extension) : extension_(extension) { } void RegisteredExtension::Register(RegisteredExtension* that) { that->next_ = first_extension_; first_extension_ = that; } void RegisteredExtension::UnregisterAll() { RegisteredExtension* re = first_extension_; while (re != NULL) { RegisteredExtension* next = re->next(); delete re; re = next; } first_extension_ = NULL; } void RegisterExtension(Extension* that) { RegisteredExtension* extension = new RegisteredExtension(that); RegisteredExtension::Register(extension); } Extension::Extension(const char* name, const char* source, int dep_count, const char** deps, int source_length) : name_(name), source_length_(source_length >= 0 ? source_length : (source ? static_cast<int>(strlen(source)) : 0)), source_(source, source_length_), dep_count_(dep_count), deps_(deps), auto_enable_(false) { CHECK(source != NULL || source_length_ == 0); } ResourceConstraints::ResourceConstraints() : max_semi_space_size_(0), max_old_space_size_(0), max_executable_size_(0), stack_limit_(NULL), code_range_size_(0) { } void ResourceConstraints::ConfigureDefaults(uint64_t physical_memory, uint64_t virtual_memory_limit) { #if V8_OS_ANDROID // Android has higher physical memory requirements before raising the maximum // heap size limits since it has no swap space. const uint64_t low_limit = 512ul * i::MB; const uint64_t medium_limit = 1ul * i::GB; const uint64_t high_limit = 2ul * i::GB; #else const uint64_t low_limit = 512ul * i::MB; const uint64_t medium_limit = 768ul * i::MB; const uint64_t high_limit = 1ul * i::GB; #endif if (physical_memory <= low_limit) { set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeLowMemoryDevice); set_max_old_space_size(i::Heap::kMaxOldSpaceSizeLowMemoryDevice); set_max_executable_size(i::Heap::kMaxExecutableSizeLowMemoryDevice); } else if (physical_memory <= medium_limit) { set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeMediumMemoryDevice); set_max_old_space_size(i::Heap::kMaxOldSpaceSizeMediumMemoryDevice); set_max_executable_size(i::Heap::kMaxExecutableSizeMediumMemoryDevice); } else if (physical_memory <= high_limit) { set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeHighMemoryDevice); set_max_old_space_size(i::Heap::kMaxOldSpaceSizeHighMemoryDevice); set_max_executable_size(i::Heap::kMaxExecutableSizeHighMemoryDevice); } else { set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeHugeMemoryDevice); set_max_old_space_size(i::Heap::kMaxOldSpaceSizeHugeMemoryDevice); set_max_executable_size(i::Heap::kMaxExecutableSizeHugeMemoryDevice); } if (virtual_memory_limit > 0 && i::kRequiresCodeRange) { // Reserve no more than 1/8 of the memory for the code range, but at most // kMaximalCodeRangeSize. set_code_range_size( i::Min(i::kMaximalCodeRangeSize / i::MB, static_cast<size_t>((virtual_memory_limit >> 3) / i::MB))); } } void SetResourceConstraints(i::Isolate* isolate, const ResourceConstraints& constraints) { int semi_space_size = constraints.max_semi_space_size(); int old_space_size = constraints.max_old_space_size(); int max_executable_size = constraints.max_executable_size(); size_t code_range_size = constraints.code_range_size(); if (semi_space_size != 0 || old_space_size != 0 || max_executable_size != 0 || code_range_size != 0) { isolate->heap()->ConfigureHeap(semi_space_size, old_space_size, max_executable_size, code_range_size); } if (constraints.stack_limit() != NULL) { uintptr_t limit = reinterpret_cast<uintptr_t>(constraints.stack_limit()); isolate->stack_guard()->SetStackLimit(limit); } } i::Object** V8::GlobalizeReference(i::Isolate* isolate, i::Object** obj) { LOG_API(isolate, "Persistent::New"); i::Handle<i::Object> result = isolate->global_handles()->Create(*obj); #ifdef VERIFY_HEAP if (i::FLAG_verify_heap) { (*obj)->ObjectVerify(); } #endif // VERIFY_HEAP return result.location(); } i::Object** V8::CopyPersistent(i::Object** obj) { i::Handle<i::Object> result = i::GlobalHandles::CopyGlobal(obj); #ifdef VERIFY_HEAP if (i::FLAG_verify_heap) { (*obj)->ObjectVerify(); } #endif // VERIFY_HEAP return result.location(); } void V8::MakeWeak(i::Object** object, void* parameter, WeakCallback weak_callback) { i::GlobalHandles::MakeWeak(object, parameter, weak_callback); } void V8::MakeWeak(i::Object** object, void* parameter, int internal_field_index1, int internal_field_index2, WeakCallbackInfo<void>::Callback weak_callback) { WeakCallbackType type = WeakCallbackType::kParameter; if (internal_field_index1 == 0) { if (internal_field_index2 == 1) { type = WeakCallbackType::kInternalFields; } else { DCHECK_EQ(internal_field_index2, -1); type = WeakCallbackType::kInternalFields; } } else { DCHECK_EQ(internal_field_index1, -1); DCHECK_EQ(internal_field_index2, -1); } i::GlobalHandles::MakeWeak(object, parameter, weak_callback, type); } void V8::MakeWeak(i::Object** object, void* parameter, WeakCallbackInfo<void>::Callback weak_callback, WeakCallbackType type) { i::GlobalHandles::MakeWeak(object, parameter, weak_callback, type); } void* V8::ClearWeak(i::Object** obj) { return i::GlobalHandles::ClearWeakness(obj); } void V8::DisposeGlobal(i::Object** obj) { i::GlobalHandles::Destroy(obj); } void V8::Eternalize(Isolate* v8_isolate, Value* value, int* index) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); i::Object* object = *Utils::OpenHandle(value); isolate->eternal_handles()->Create(isolate, object, index); } Local<Value> V8::GetEternal(Isolate* v8_isolate, int index) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); return Utils::ToLocal(isolate->eternal_handles()->Get(index)); } void V8::FromJustIsNothing() { Utils::ApiCheck(false, "v8::FromJust", "Maybe value is Nothing."); } void V8::ToLocalEmpty() { Utils::ApiCheck(false, "v8::ToLocalChecked", "Empty MaybeLocal."); } void V8::InternalFieldOutOfBounds(int index) { Utils::ApiCheck(0 <= index && index < kInternalFieldsInWeakCallback, "WeakCallbackInfo::GetInternalField", "Internal field out of bounds."); } // --- H a n d l e s --- HandleScope::HandleScope(Isolate* isolate) { Initialize(isolate); } void HandleScope::Initialize(Isolate* isolate) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); // We do not want to check the correct usage of the Locker class all over the // place, so we do it only here: Without a HandleScope, an embedder can do // almost nothing, so it is enough to check in this central place. // We make an exception if the serializer is enabled, which means that the // Isolate is exclusively used to create a snapshot. Utils::ApiCheck( !v8::Locker::IsActive() || internal_isolate->thread_manager()->IsLockedByCurrentThread() || internal_isolate->serializer_enabled(), "HandleScope::HandleScope", "Entering the V8 API without proper locking in place"); i::HandleScopeData* current = internal_isolate->handle_scope_data(); isolate_ = internal_isolate; prev_next_ = current->next; prev_limit_ = current->limit; current->level++; } HandleScope::~HandleScope() { i::HandleScope::CloseScope(isolate_, prev_next_, prev_limit_); } int HandleScope::NumberOfHandles(Isolate* isolate) { return i::HandleScope::NumberOfHandles( reinterpret_cast<i::Isolate*>(isolate)); } i::Object** HandleScope::CreateHandle(i::Isolate* isolate, i::Object* value) { return i::HandleScope::CreateHandle(isolate, value); } i::Object** HandleScope::CreateHandle(i::HeapObject* heap_object, i::Object* value) { DCHECK(heap_object->IsHeapObject()); return i::HandleScope::CreateHandle(heap_object->GetIsolate(), value); } EscapableHandleScope::EscapableHandleScope(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); escape_slot_ = CreateHandle(isolate, isolate->heap()->the_hole_value()); Initialize(v8_isolate); } i::Object** EscapableHandleScope::Escape(i::Object** escape_value) { i::Heap* heap = reinterpret_cast<i::Isolate*>(GetIsolate())->heap(); Utils::ApiCheck(*escape_slot_ == heap->the_hole_value(), "EscapeableHandleScope::Escape", "Escape value set twice"); if (escape_value == NULL) { *escape_slot_ = heap->undefined_value(); return NULL; } *escape_slot_ = *escape_value; return escape_slot_; } SealHandleScope::SealHandleScope(Isolate* isolate) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); isolate_ = internal_isolate; i::HandleScopeData* current = internal_isolate->handle_scope_data(); prev_limit_ = current->limit; current->limit = current->next; prev_sealed_level_ = current->sealed_level; current->sealed_level = current->level; } SealHandleScope::~SealHandleScope() { i::HandleScopeData* current = isolate_->handle_scope_data(); DCHECK_EQ(current->next, current->limit); current->limit = prev_limit_; DCHECK_EQ(current->level, current->sealed_level); current->sealed_level = prev_sealed_level_; } void Context::Enter() { i::Handle<i::Context> env = Utils::OpenHandle(this); i::Isolate* isolate = env->GetIsolate(); ENTER_V8(isolate); i::HandleScopeImplementer* impl = isolate->handle_scope_implementer(); impl->EnterContext(env); impl->SaveContext(isolate->context()); isolate->set_context(*env); } void Context::Exit() { i::Handle<i::Context> env = Utils::OpenHandle(this); i::Isolate* isolate = env->GetIsolate(); ENTER_V8(isolate); i::HandleScopeImplementer* impl = isolate->handle_scope_implementer(); if (!Utils::ApiCheck(impl->LastEnteredContextWas(env), "v8::Context::Exit()", "Cannot exit non-entered context")) { return; } impl->LeaveContext(); isolate->set_context(impl->RestoreContext()); } static void* DecodeSmiToAligned(i::Object* value, const char* location) { Utils::ApiCheck(value->IsSmi(), location, "Not a Smi"); return reinterpret_cast<void*>(value); } static i::Smi* EncodeAlignedAsSmi(void* value, const char* location) { i::Smi* smi = reinterpret_cast<i::Smi*>(value); Utils::ApiCheck(smi->IsSmi(), location, "Pointer is not aligned"); return smi; } static i::Handle<i::FixedArray> EmbedderDataFor(Context* context, int index, bool can_grow, const char* location) { i::Handle<i::Context> env = Utils::OpenHandle(context); i::Isolate* isolate = env->GetIsolate(); bool ok = Utils::ApiCheck(env->IsNativeContext(), location, "Not a native context") && Utils::ApiCheck(index >= 0, location, "Negative index"); if (!ok) return i::Handle<i::FixedArray>(); i::Handle<i::FixedArray> data(env->embedder_data()); if (index < data->length()) return data; if (!Utils::ApiCheck(can_grow, location, "Index too large")) { return i::Handle<i::FixedArray>(); } int new_size = i::Max(index, data->length() << 1) + 1; int grow_by = new_size - data->length(); data = isolate->factory()->CopyFixedArrayAndGrow(data, grow_by); env->set_embedder_data(*data); return data; } v8::Local<v8::Value> Context::SlowGetEmbedderData(int index) { const char* location = "v8::Context::GetEmbedderData()"; i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, false, location); if (data.is_null()) return Local<Value>(); i::Handle<i::Object> result(data->get(index), data->GetIsolate()); return Utils::ToLocal(result); } void Context::SetEmbedderData(int index, v8::Local<Value> value) { const char* location = "v8::Context::SetEmbedderData()"; i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, true, location); if (data.is_null()) return; i::Handle<i::Object> val = Utils::OpenHandle(*value); data->set(index, *val); DCHECK_EQ(*Utils::OpenHandle(*value), *Utils::OpenHandle(*GetEmbedderData(index))); } void* Context::SlowGetAlignedPointerFromEmbedderData(int index) { const char* location = "v8::Context::GetAlignedPointerFromEmbedderData()"; i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, false, location); if (data.is_null()) return NULL; return DecodeSmiToAligned(data->get(index), location); } void Context::SetAlignedPointerInEmbedderData(int index, void* value) { const char* location = "v8::Context::SetAlignedPointerInEmbedderData()"; i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, true, location); data->set(index, EncodeAlignedAsSmi(value, location)); DCHECK_EQ(value, GetAlignedPointerFromEmbedderData(index)); } // --- N e a n d e r --- // A constructor cannot easily return an error value, therefore it is necessary // to check for a dead VM with ON_BAILOUT before constructing any Neander // objects. To remind you about this there is no HandleScope in the // NeanderObject constructor. When you add one to the site calling the // constructor you should check that you ensured the VM was not dead first. NeanderObject::NeanderObject(v8::internal::Isolate* isolate, int size) { ENTER_V8(isolate); value_ = isolate->factory()->NewNeanderObject(); i::Handle<i::FixedArray> elements = isolate->factory()->NewFixedArray(size); value_->set_elements(*elements); } int NeanderObject::size() { return i::FixedArray::cast(value_->elements())->length(); } NeanderArray::NeanderArray(v8::internal::Isolate* isolate) : obj_(isolate, 2) { obj_.set(0, i::Smi::FromInt(0)); } int NeanderArray::length() { return i::Smi::cast(obj_.get(0))->value(); } i::Object* NeanderArray::get(int offset) { DCHECK_LE(0, offset); DCHECK_LT(offset, length()); return obj_.get(offset + 1); } // This method cannot easily return an error value, therefore it is necessary // to check for a dead VM with ON_BAILOUT before calling it. To remind you // about this there is no HandleScope in this method. When you add one to the // site calling this method you should check that you ensured the VM was not // dead first. void NeanderArray::add(i::Isolate* isolate, i::Handle<i::Object> value) { int length = this->length(); int size = obj_.size(); if (length == size - 1) { i::Factory* factory = isolate->factory(); i::Handle<i::FixedArray> new_elms = factory->NewFixedArray(2 * size); for (int i = 0; i < length; i++) new_elms->set(i + 1, get(i)); obj_.value()->set_elements(*new_elms); } obj_.set(length + 1, *value); obj_.set(0, i::Smi::FromInt(length + 1)); } void NeanderArray::set(int index, i::Object* value) { if (index < 0 || index >= this->length()) return; obj_.set(index + 1, value); } // --- T e m p l a t e --- static void InitializeTemplate(i::Handle<i::TemplateInfo> that, int type) { that->set_number_of_properties(0); that->set_tag(i::Smi::FromInt(type)); } void Template::Set(v8::Local<Name> name, v8::Local<Data> value, v8::PropertyAttribute attribute) { auto templ = Utils::OpenHandle(this); i::Isolate* isolate = templ->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); auto value_obj = Utils::OpenHandle(*value); if (value_obj->IsObjectTemplateInfo()) { templ->set_serial_number(i::Smi::FromInt(0)); if (templ->IsFunctionTemplateInfo()) { i::Handle<i::FunctionTemplateInfo>::cast(templ)->set_do_not_cache(true); } } // TODO(dcarney): split api to allow values of v8::Value or v8::TemplateInfo. i::ApiNatives::AddDataProperty(isolate, templ, Utils::OpenHandle(*name), value_obj, static_cast<i::PropertyAttributes>(attribute)); } void Template::SetAccessorProperty( v8::Local<v8::Name> name, v8::Local<FunctionTemplate> getter, v8::Local<FunctionTemplate> setter, v8::PropertyAttribute attribute, v8::AccessControl access_control) { // TODO(verwaest): Remove |access_control|. DCHECK_EQ(v8::DEFAULT, access_control); auto templ = Utils::OpenHandle(this); auto isolate = templ->GetIsolate(); ENTER_V8(isolate); DCHECK(!name.IsEmpty()); DCHECK(!getter.IsEmpty() || !setter.IsEmpty()); i::HandleScope scope(isolate); i::ApiNatives::AddAccessorProperty( isolate, templ, Utils::OpenHandle(*name), Utils::OpenHandle(*getter, true), Utils::OpenHandle(*setter, true), static_cast<i::PropertyAttributes>(attribute)); } // --- F u n c t i o n T e m p l a t e --- static void InitializeFunctionTemplate( i::Handle<i::FunctionTemplateInfo> info) { InitializeTemplate(info, Consts::FUNCTION_TEMPLATE); info->set_flag(0); } static Local<ObjectTemplate> ObjectTemplateNew( i::Isolate* isolate, v8::Local<FunctionTemplate> constructor, bool do_not_cache); Local<ObjectTemplate> FunctionTemplate::PrototypeTemplate() { i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(i_isolate); i::Handle<i::Object> result(Utils::OpenHandle(this)->prototype_template(), i_isolate); if (result->IsUndefined()) { // Do not cache prototype objects. result = Utils::OpenHandle( *ObjectTemplateNew(i_isolate, Local<FunctionTemplate>(), true)); Utils::OpenHandle(this)->set_prototype_template(*result); } return ToApiHandle<ObjectTemplate>(result); } static void EnsureNotInstantiated(i::Handle<i::FunctionTemplateInfo> info, const char* func) { Utils::ApiCheck(!info->instantiated(), func, "FunctionTemplate already instantiated"); } void FunctionTemplate::Inherit(v8::Local<FunctionTemplate> value) { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::Inherit"); i::Isolate* isolate = info->GetIsolate(); ENTER_V8(isolate); info->set_parent_template(*Utils::OpenHandle(*value)); } static Local<FunctionTemplate> FunctionTemplateNew( i::Isolate* isolate, FunctionCallback callback, experimental::FastAccessorBuilder* fast_handler, v8::Local<Value> data, v8::Local<Signature> signature, int length, bool do_not_cache) { i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(i::FUNCTION_TEMPLATE_INFO_TYPE); i::Handle<i::FunctionTemplateInfo> obj = i::Handle<i::FunctionTemplateInfo>::cast(struct_obj); InitializeFunctionTemplate(obj); obj->set_do_not_cache(do_not_cache); int next_serial_number = 0; if (!do_not_cache) { next_serial_number = isolate->next_serial_number() + 1; isolate->set_next_serial_number(next_serial_number); } obj->set_serial_number(i::Smi::FromInt(next_serial_number)); if (callback != 0) { if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } Utils::ToLocal(obj)->SetCallHandler(callback, data, fast_handler); } obj->set_length(length); obj->set_undetectable(false); obj->set_needs_access_check(false); obj->set_accept_any_receiver(true); if (!signature.IsEmpty()) obj->set_signature(*Utils::OpenHandle(*signature)); return Utils::ToLocal(obj); } Local<FunctionTemplate> FunctionTemplate::New(Isolate* isolate, FunctionCallback callback, v8::Local<Value> data, v8::Local<Signature> signature, int length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); // Changes to the environment cannot be captured in the snapshot. Expect no // function templates when the isolate is created for serialization. DCHECK(!i_isolate->serializer_enabled()); LOG_API(i_isolate, "FunctionTemplate::New"); ENTER_V8(i_isolate); return FunctionTemplateNew(i_isolate, callback, nullptr, data, signature, length, false); } Local<FunctionTemplate> FunctionTemplate::NewWithFastHandler( Isolate* isolate, FunctionCallback callback, experimental::FastAccessorBuilder* fast_handler, v8::Local<Value> data, v8::Local<Signature> signature, int length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); DCHECK(!i_isolate->serializer_enabled()); LOG_API(i_isolate, "FunctionTemplate::NewWithFastHandler"); ENTER_V8(i_isolate); return FunctionTemplateNew(i_isolate, callback, fast_handler, data, signature, length, false); } Local<Signature> Signature::New(Isolate* isolate, Local<FunctionTemplate> receiver) { return Utils::SignatureToLocal(Utils::OpenHandle(*receiver)); } Local<AccessorSignature> AccessorSignature::New( Isolate* isolate, Local<FunctionTemplate> receiver) { return Utils::AccessorSignatureToLocal(Utils::OpenHandle(*receiver)); } #define SET_FIELD_WRAPPED(obj, setter, cdata) do { \ i::Handle<i::Object> foreign = FromCData(obj->GetIsolate(), cdata); \ (obj)->setter(*foreign); \ } while (false) void FunctionTemplate::SetCallHandler( FunctionCallback callback, v8::Local<Value> data, experimental::FastAccessorBuilder* fast_handler) { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::SetCallHandler"); i::Isolate* isolate = info->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(i::CALL_HANDLER_INFO_TYPE); i::Handle<i::CallHandlerInfo> obj = i::Handle<i::CallHandlerInfo>::cast(struct_obj); SET_FIELD_WRAPPED(obj, set_callback, callback); i::MaybeHandle<i::Code> code = i::experimental::BuildCodeFromFastAccessorBuilder(fast_handler); if (!code.is_null()) { obj->set_fast_handler(*code.ToHandleChecked()); } if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); info->set_call_code(*obj); } static i::Handle<i::AccessorInfo> SetAccessorInfoProperties( i::Handle<i::AccessorInfo> obj, v8::Local<Name> name, v8::AccessControl settings, v8::PropertyAttribute attributes, v8::Local<AccessorSignature> signature) { obj->set_name(*Utils::OpenHandle(*name)); if (settings & ALL_CAN_READ) obj->set_all_can_read(true); if (settings & ALL_CAN_WRITE) obj->set_all_can_write(true); obj->set_property_attributes(static_cast<i::PropertyAttributes>(attributes)); if (!signature.IsEmpty()) { obj->set_expected_receiver_type(*Utils::OpenHandle(*signature)); } return obj; } template <typename Getter, typename Setter> static i::Handle<i::AccessorInfo> MakeAccessorInfo( v8::Local<Name> name, Getter getter, Setter setter, v8::Local<Value> data, v8::AccessControl settings, v8::PropertyAttribute attributes, v8::Local<AccessorSignature> signature, bool is_special_data_property) { i::Isolate* isolate = Utils::OpenHandle(*name)->GetIsolate(); i::Handle<i::AccessorInfo> obj = isolate->factory()->NewAccessorInfo(); SET_FIELD_WRAPPED(obj, set_getter, getter); if (is_special_data_property && setter == nullptr) { setter = reinterpret_cast<Setter>(&i::Accessors::ReconfigureToDataProperty); } SET_FIELD_WRAPPED(obj, set_setter, setter); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); obj->set_is_special_data_property(is_special_data_property); return SetAccessorInfoProperties(obj, name, settings, attributes, signature); } Local<ObjectTemplate> FunctionTemplate::InstanceTemplate() { i::Handle<i::FunctionTemplateInfo> handle = Utils::OpenHandle(this, true); if (!Utils::ApiCheck(!handle.is_null(), "v8::FunctionTemplate::InstanceTemplate()", "Reading from empty handle")) { return Local<ObjectTemplate>(); } i::Isolate* isolate = handle->GetIsolate(); ENTER_V8(isolate); if (handle->instance_template()->IsUndefined()) { Local<ObjectTemplate> templ = ObjectTemplate::New(isolate, ToApiHandle<FunctionTemplate>(handle)); handle->set_instance_template(*Utils::OpenHandle(*templ)); } i::Handle<i::ObjectTemplateInfo> result( i::ObjectTemplateInfo::cast(handle->instance_template())); return Utils::ToLocal(result); } void FunctionTemplate::SetLength(int length) { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::SetLength"); auto isolate = info->GetIsolate(); ENTER_V8(isolate); info->set_length(length); } void FunctionTemplate::SetClassName(Local<String> name) { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::SetClassName"); auto isolate = info->GetIsolate(); ENTER_V8(isolate); info->set_class_name(*Utils::OpenHandle(*name)); } void FunctionTemplate::SetAcceptAnyReceiver(bool value) { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::SetAcceptAnyReceiver"); auto isolate = info->GetIsolate(); ENTER_V8(isolate); info->set_accept_any_receiver(value); } void FunctionTemplate::SetHiddenPrototype(bool value) { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::SetHiddenPrototype"); auto isolate = info->GetIsolate(); ENTER_V8(isolate); info->set_hidden_prototype(value); } void FunctionTemplate::ReadOnlyPrototype() { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::ReadOnlyPrototype"); auto isolate = info->GetIsolate(); ENTER_V8(isolate); info->set_read_only_prototype(true); } void FunctionTemplate::RemovePrototype() { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::RemovePrototype"); auto isolate = info->GetIsolate(); ENTER_V8(isolate); info->set_remove_prototype(true); } // --- O b j e c t T e m p l a t e --- Local<ObjectTemplate> ObjectTemplate::New( Isolate* isolate, v8::Local<FunctionTemplate> constructor) { return New(reinterpret_cast<i::Isolate*>(isolate), constructor); } Local<ObjectTemplate> ObjectTemplate::New() { return New(i::Isolate::Current(), Local<FunctionTemplate>()); } static Local<ObjectTemplate> ObjectTemplateNew( i::Isolate* isolate, v8::Local<FunctionTemplate> constructor, bool do_not_cache) { // Changes to the environment cannot be captured in the snapshot. Expect no // object templates when the isolate is created for serialization. DCHECK(!isolate->serializer_enabled()); LOG_API(isolate, "ObjectTemplate::New"); ENTER_V8(isolate); i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(i::OBJECT_TEMPLATE_INFO_TYPE); i::Handle<i::ObjectTemplateInfo> obj = i::Handle<i::ObjectTemplateInfo>::cast(struct_obj); InitializeTemplate(obj, Consts::OBJECT_TEMPLATE); int next_serial_number = 0; if (!do_not_cache) { next_serial_number = isolate->next_serial_number() + 1; isolate->set_next_serial_number(next_serial_number); } obj->set_serial_number(i::Smi::FromInt(next_serial_number)); if (!constructor.IsEmpty()) obj->set_constructor(*Utils::OpenHandle(*constructor)); obj->set_internal_field_count(i::Smi::FromInt(0)); return Utils::ToLocal(obj); } Local<ObjectTemplate> ObjectTemplate::New( i::Isolate* isolate, v8::Local<FunctionTemplate> constructor) { return ObjectTemplateNew(isolate, constructor, false); } // Ensure that the object template has a constructor. If no // constructor is available we create one. static i::Handle<i::FunctionTemplateInfo> EnsureConstructor( i::Isolate* isolate, ObjectTemplate* object_template) { i::Object* obj = Utils::OpenHandle(object_template)->constructor(); if (!obj ->IsUndefined()) { i::FunctionTemplateInfo* info = i::FunctionTemplateInfo::cast(obj); return i::Handle<i::FunctionTemplateInfo>(info, isolate); } Local<FunctionTemplate> templ = FunctionTemplate::New(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::FunctionTemplateInfo> constructor = Utils::OpenHandle(*templ); constructor->set_instance_template(*Utils::OpenHandle(object_template)); Utils::OpenHandle(object_template)->set_constructor(*constructor); return constructor; } template <typename Getter, typename Setter, typename Data, typename Template> static bool TemplateSetAccessor(Template* template_obj, v8::Local<Name> name, Getter getter, Setter setter, Data data, AccessControl settings, PropertyAttribute attribute, v8::Local<AccessorSignature> signature, bool is_special_data_property) { auto info = Utils::OpenHandle(template_obj); auto isolate = info->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); auto obj = MakeAccessorInfo(name, getter, setter, data, settings, attribute, signature, is_special_data_property); if (obj.is_null()) return false; i::ApiNatives::AddNativeDataProperty(isolate, info, obj); return true; } void Template::SetNativeDataProperty(v8::Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter, v8::Local<Value> data, PropertyAttribute attribute, v8::Local<AccessorSignature> signature, AccessControl settings) { TemplateSetAccessor(this, name, getter, setter, data, settings, attribute, signature, true); } void Template::SetNativeDataProperty(v8::Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter, v8::Local<Value> data, PropertyAttribute attribute, v8::Local<AccessorSignature> signature, AccessControl settings) { TemplateSetAccessor(this, name, getter, setter, data, settings, attribute, signature, true); } void Template::SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic, PropertyAttribute attribute) { auto templ = Utils::OpenHandle(this); i::Isolate* isolate = templ->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::ApiNatives::AddDataProperty(isolate, templ, Utils::OpenHandle(*name), intrinsic, static_cast<i::PropertyAttributes>(attribute)); } void ObjectTemplate::SetAccessor(v8::Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter, v8::Local<Value> data, AccessControl settings, PropertyAttribute attribute, v8::Local<AccessorSignature> signature) { TemplateSetAccessor(this, name, getter, setter, data, settings, attribute, signature, i::FLAG_disable_old_api_accessors); } void ObjectTemplate::SetAccessor(v8::Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter, v8::Local<Value> data, AccessControl settings, PropertyAttribute attribute, v8::Local<AccessorSignature> signature) { TemplateSetAccessor(this, name, getter, setter, data, settings, attribute, signature, i::FLAG_disable_old_api_accessors); } template <typename Getter, typename Setter, typename Query, typename Deleter, typename Enumerator> static void ObjectTemplateSetNamedPropertyHandler(ObjectTemplate* templ, Getter getter, Setter setter, Query query, Deleter remover, Enumerator enumerator, Local<Value> data, PropertyHandlerFlags flags) { i::Isolate* isolate = Utils::OpenHandle(templ)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); auto cons = EnsureConstructor(isolate, templ); EnsureNotInstantiated(cons, "ObjectTemplateSetNamedPropertyHandler"); auto obj = i::Handle<i::InterceptorInfo>::cast( isolate->factory()->NewStruct(i::INTERCEPTOR_INFO_TYPE)); obj->set_flags(0); if (getter != 0) SET_FIELD_WRAPPED(obj, set_getter, getter); if (setter != 0) SET_FIELD_WRAPPED(obj, set_setter, setter); if (query != 0) SET_FIELD_WRAPPED(obj, set_query, query); if (remover != 0) SET_FIELD_WRAPPED(obj, set_deleter, remover); if (enumerator != 0) SET_FIELD_WRAPPED(obj, set_enumerator, enumerator); obj->set_can_intercept_symbols( !(static_cast<int>(flags) & static_cast<int>(PropertyHandlerFlags::kOnlyInterceptStrings))); obj->set_all_can_read(static_cast<int>(flags) & static_cast<int>(PropertyHandlerFlags::kAllCanRead)); obj->set_non_masking(static_cast<int>(flags) & static_cast<int>(PropertyHandlerFlags::kNonMasking)); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); cons->set_named_property_handler(*obj); } void ObjectTemplate::SetNamedPropertyHandler( NamedPropertyGetterCallback getter, NamedPropertySetterCallback setter, NamedPropertyQueryCallback query, NamedPropertyDeleterCallback remover, NamedPropertyEnumeratorCallback enumerator, Local<Value> data) { ObjectTemplateSetNamedPropertyHandler( this, getter, setter, query, remover, enumerator, data, PropertyHandlerFlags::kOnlyInterceptStrings); } void ObjectTemplate::SetHandler( const NamedPropertyHandlerConfiguration& config) { ObjectTemplateSetNamedPropertyHandler( this, config.getter, config.setter, config.query, config.deleter, config.enumerator, config.data, config.flags); } void ObjectTemplate::MarkAsUndetectable() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); auto cons = EnsureConstructor(isolate, this); EnsureNotInstantiated(cons, "v8::ObjectTemplate::MarkAsUndetectable"); cons->set_undetectable(true); } void ObjectTemplate::SetAccessCheckCallback(AccessCheckCallback callback, Local<Value> data) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); auto cons = EnsureConstructor(isolate, this); EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetAccessCheckCallback"); i::Handle<i::Struct> struct_info = isolate->factory()->NewStruct(i::ACCESS_CHECK_INFO_TYPE); i::Handle<i::AccessCheckInfo> info = i::Handle<i::AccessCheckInfo>::cast(struct_info); SET_FIELD_WRAPPED(info, set_callback, callback); SET_FIELD_WRAPPED(info, set_named_callback, nullptr); SET_FIELD_WRAPPED(info, set_indexed_callback, nullptr); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } info->set_data(*Utils::OpenHandle(*data)); cons->set_access_check_info(*info); cons->set_needs_access_check(true); } void ObjectTemplate::SetAccessCheckCallback( DeprecatedAccessCheckCallback callback, Local<Value> data) { SetAccessCheckCallback(reinterpret_cast<AccessCheckCallback>(callback), data); } void ObjectTemplate::SetAccessCheckCallbacks( NamedSecurityCallback named_callback, IndexedSecurityCallback indexed_callback, Local<Value> data) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); auto cons = EnsureConstructor(isolate, this); EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetAccessCheckCallbacks"); i::Handle<i::Struct> struct_info = isolate->factory()->NewStruct(i::ACCESS_CHECK_INFO_TYPE); i::Handle<i::AccessCheckInfo> info = i::Handle<i::AccessCheckInfo>::cast(struct_info); SET_FIELD_WRAPPED(info, set_callback, nullptr); SET_FIELD_WRAPPED(info, set_named_callback, named_callback); SET_FIELD_WRAPPED(info, set_indexed_callback, indexed_callback); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } info->set_data(*Utils::OpenHandle(*data)); cons->set_access_check_info(*info); cons->set_needs_access_check(true); } void ObjectTemplate::SetHandler( const IndexedPropertyHandlerConfiguration& config) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); auto cons = EnsureConstructor(isolate, this); EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetHandler"); auto obj = i::Handle<i::InterceptorInfo>::cast( isolate->factory()->NewStruct(i::INTERCEPTOR_INFO_TYPE)); obj->set_flags(0); if (config.getter != 0) SET_FIELD_WRAPPED(obj, set_getter, config.getter); if (config.setter != 0) SET_FIELD_WRAPPED(obj, set_setter, config.setter); if (config.query != 0) SET_FIELD_WRAPPED(obj, set_query, config.query); if (config.deleter != 0) SET_FIELD_WRAPPED(obj, set_deleter, config.deleter); if (config.enumerator != 0) { SET_FIELD_WRAPPED(obj, set_enumerator, config.enumerator); } obj->set_all_can_read(static_cast<int>(config.flags) & static_cast<int>(PropertyHandlerFlags::kAllCanRead)); v8::Local<v8::Value> data = config.data; if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); cons->set_indexed_property_handler(*obj); } void ObjectTemplate::SetCallAsFunctionHandler(FunctionCallback callback, Local<Value> data) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); auto cons = EnsureConstructor(isolate, this); EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetCallAsFunctionHandler"); i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(i::CALL_HANDLER_INFO_TYPE); i::Handle<i::CallHandlerInfo> obj = i::Handle<i::CallHandlerInfo>::cast(struct_obj); SET_FIELD_WRAPPED(obj, set_callback, callback); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); cons->set_instance_call_handler(*obj); } int ObjectTemplate::InternalFieldCount() { return i::Smi::cast(Utils::OpenHandle(this)->internal_field_count())->value(); } void ObjectTemplate::SetInternalFieldCount(int value) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); if (!Utils::ApiCheck(i::Smi::IsValid(value), "v8::ObjectTemplate::SetInternalFieldCount()", "Invalid internal field count")) { return; } ENTER_V8(isolate); if (value > 0) { // The internal field count is set by the constructor function's // construct code, so we ensure that there is a constructor // function to do the setting. EnsureConstructor(isolate, this); } Utils::OpenHandle(this)->set_internal_field_count(i::Smi::FromInt(value)); } // --- S c r i p t s --- // Internally, UnboundScript is a SharedFunctionInfo, and Script is a // JSFunction. ScriptCompiler::CachedData::CachedData(const uint8_t* data_, int length_, BufferPolicy buffer_policy_) : data(data_), length(length_), rejected(false), buffer_policy(buffer_policy_) {} ScriptCompiler::CachedData::~CachedData() { if (buffer_policy == BufferOwned) { delete[] data; } } bool ScriptCompiler::ExternalSourceStream::SetBookmark() { return false; } void ScriptCompiler::ExternalSourceStream::ResetToBookmark() { UNREACHABLE(); } ScriptCompiler::StreamedSource::StreamedSource(ExternalSourceStream* stream, Encoding encoding) : impl_(new i::StreamedSource(stream, encoding)) {} ScriptCompiler::StreamedSource::~StreamedSource() { delete impl_; } const ScriptCompiler::CachedData* ScriptCompiler::StreamedSource::GetCachedData() const { return impl_->cached_data.get(); } Local<Script> UnboundScript::BindToCurrentContext() { i::Handle<i::HeapObject> obj = i::Handle<i::HeapObject>::cast(Utils::OpenHandle(this)); i::Handle<i::SharedFunctionInfo> function_info(i::SharedFunctionInfo::cast(*obj), obj->GetIsolate()); i::Isolate* isolate = obj->GetIsolate(); i::Handle<i::JSReceiver> global(isolate->native_context()->global_object()); i::Handle<i::JSFunction> function = obj->GetIsolate()->factory()->NewFunctionFromSharedFunctionInfo( function_info, isolate->native_context()); return ToApiHandle<Script>(function); } int UnboundScript::GetId() { i::Handle<i::HeapObject> obj = i::Handle<i::HeapObject>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); LOG_API(isolate, "v8::UnboundScript::GetId"); i::HandleScope scope(isolate); i::Handle<i::SharedFunctionInfo> function_info( i::SharedFunctionInfo::cast(*obj)); i::Handle<i::Script> script(i::Script::cast(function_info->script())); return script->id(); } int UnboundScript::GetLineNumber(int code_pos) { i::Handle<i::SharedFunctionInfo> obj = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); LOG_API(isolate, "UnboundScript::GetLineNumber"); if (obj->script()->IsScript()) { i::Handle<i::Script> script(i::Script::cast(obj->script())); return i::Script::GetLineNumber(script, code_pos); } else { return -1; } } Local<Value> UnboundScript::GetScriptName() { i::Handle<i::SharedFunctionInfo> obj = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); LOG_API(isolate, "UnboundScript::GetName"); if (obj->script()->IsScript()) { i::Object* name = i::Script::cast(obj->script())->name(); return Utils::ToLocal(i::Handle<i::Object>(name, isolate)); } else { return Local<String>(); } } Local<Value> UnboundScript::GetSourceURL() { i::Handle<i::SharedFunctionInfo> obj = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); LOG_API(isolate, "UnboundScript::GetSourceURL"); if (obj->script()->IsScript()) { i::Object* url = i::Script::cast(obj->script())->source_url(); return Utils::ToLocal(i::Handle<i::Object>(url, isolate)); } else { return Local<String>(); } } Local<Value> UnboundScript::GetSourceMappingURL() { i::Handle<i::SharedFunctionInfo> obj = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); LOG_API(isolate, "UnboundScript::GetSourceMappingURL"); if (obj->script()->IsScript()) { i::Object* url = i::Script::cast(obj->script())->source_mapping_url(); return Utils::ToLocal(i::Handle<i::Object>(url, isolate)); } else { return Local<String>(); } } MaybeLocal<Value> Script::Run(Local<Context> context) { PREPARE_FOR_EXECUTION_WITH_CALLBACK(context, "v8::Script::Run()", Value) i::AggregatingHistogramTimerScope timer(isolate->counters()->compile_lazy()); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); TRACE_EVENT0("v8", "V8.Execute"); auto fun = i::Handle<i::JSFunction>::cast(Utils::OpenHandle(this)); i::Handle<i::Object> receiver(isolate->global_proxy(), isolate); Local<Value> result; has_pending_exception = !ToLocal<Value>(i::Execution::Call(isolate, fun, receiver, 0, NULL), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } Local<Value> Script::Run() { auto self = Utils::OpenHandle(this, true); // If execution is terminating, Compile(..)->Run() requires this // check. if (self.is_null()) return Local<Value>(); auto context = ContextFromHeapObject(self); RETURN_TO_LOCAL_UNCHECKED(Run(context), Value); } Local<UnboundScript> Script::GetUnboundScript() { i::Handle<i::Object> obj = Utils::OpenHandle(this); return ToApiHandle<UnboundScript>( i::Handle<i::SharedFunctionInfo>(i::JSFunction::cast(*obj)->shared())); } MaybeLocal<UnboundScript> ScriptCompiler::CompileUnboundInternal( Isolate* v8_isolate, Source* source, CompileOptions options, bool is_module) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); PREPARE_FOR_EXECUTION_WITH_ISOLATE( isolate, "v8::ScriptCompiler::CompileUnbound()", UnboundScript); // Don't try to produce any kind of cache when the debugger is loaded. if (isolate->debug()->is_loaded() && (options == kProduceParserCache || options == kProduceCodeCache)) { options = kNoCompileOptions; } i::ScriptData* script_data = NULL; if (options == kConsumeParserCache || options == kConsumeCodeCache) { DCHECK(source->cached_data); // ScriptData takes care of pointer-aligning the data. script_data = new i::ScriptData(source->cached_data->data, source->cached_data->length); } i::Handle<i::String> str = Utils::OpenHandle(*(source->source_string)); i::Handle<i::SharedFunctionInfo> result; { i::HistogramTimerScope total(isolate->counters()->compile_script(), true); TRACE_EVENT0("v8", "V8.CompileScript"); i::Handle<i::Object> name_obj; i::Handle<i::Object> source_map_url; int line_offset = 0; int column_offset = 0; if (!source->resource_name.IsEmpty()) { name_obj = Utils::OpenHandle(*(source->resource_name)); } if (!source->resource_line_offset.IsEmpty()) { line_offset = static_cast<int>(source->resource_line_offset->Value()); } if (!source->resource_column_offset.IsEmpty()) { column_offset = static_cast<int>(source->resource_column_offset->Value()); } if (!source->source_map_url.IsEmpty()) { source_map_url = Utils::OpenHandle(*(source->source_map_url)); } result = i::Compiler::GetSharedFunctionInfoForScript( str, name_obj, line_offset, column_offset, source->resource_options, source_map_url, isolate->native_context(), NULL, &script_data, options, i::NOT_NATIVES_CODE, is_module); has_pending_exception = result.is_null(); if (has_pending_exception && script_data != NULL) { // This case won't happen during normal operation; we have compiled // successfully and produced cached data, and but the second compilation // of the same source code fails. delete script_data; script_data = NULL; } RETURN_ON_FAILED_EXECUTION(UnboundScript); if ((options == kProduceParserCache || options == kProduceCodeCache) && script_data != NULL) { // script_data now contains the data that was generated. source will // take the ownership. source->cached_data = new CachedData( script_data->data(), script_data->length(), CachedData::BufferOwned); script_data->ReleaseDataOwnership(); } else if (options == kConsumeParserCache || options == kConsumeCodeCache) { source->cached_data->rejected = script_data->rejected(); } delete script_data; } RETURN_ESCAPED(ToApiHandle<UnboundScript>(result)); } MaybeLocal<UnboundScript> ScriptCompiler::CompileUnboundScript( Isolate* v8_isolate, Source* source, CompileOptions options) { return CompileUnboundInternal(v8_isolate, source, options, false); } Local<UnboundScript> ScriptCompiler::CompileUnbound(Isolate* v8_isolate, Source* source, CompileOptions options) { RETURN_TO_LOCAL_UNCHECKED( CompileUnboundInternal(v8_isolate, source, options, false), UnboundScript); } MaybeLocal<Script> ScriptCompiler::Compile(Local<Context> context, Source* source, CompileOptions options) { auto isolate = context->GetIsolate(); auto maybe = CompileUnboundInternal(isolate, source, options, false); Local<UnboundScript> result; if (!maybe.ToLocal(&result)) return MaybeLocal<Script>(); v8::Context::Scope scope(context); return result->BindToCurrentContext(); } Local<Script> ScriptCompiler::Compile( Isolate* v8_isolate, Source* source, CompileOptions options) { auto context = v8_isolate->GetCurrentContext(); RETURN_TO_LOCAL_UNCHECKED(Compile(context, source, options), Script); } MaybeLocal<Script> ScriptCompiler::CompileModule(Local<Context> context, Source* source, CompileOptions options) { auto isolate = context->GetIsolate(); auto maybe = CompileUnboundInternal(isolate, source, options, true); Local<UnboundScript> generic; if (!maybe.ToLocal(&generic)) return MaybeLocal<Script>(); v8::Context::Scope scope(context); return generic->BindToCurrentContext(); } class IsIdentifierHelper { public: IsIdentifierHelper() : is_identifier_(false), first_char_(true) {} bool Check(i::String* string) { i::ConsString* cons_string = i::String::VisitFlat(this, string, 0); if (cons_string == NULL) return is_identifier_; // We don't support cons strings here. return false; } void VisitOneByteString(const uint8_t* chars, int length) { for (int i = 0; i < length; ++i) { if (first_char_) { first_char_ = false; is_identifier_ = unicode_cache_.IsIdentifierStart(chars[0]); } else { is_identifier_ &= unicode_cache_.IsIdentifierPart(chars[i]); } } } void VisitTwoByteString(const uint16_t* chars, int length) { for (int i = 0; i < length; ++i) { if (first_char_) { first_char_ = false; is_identifier_ = unicode_cache_.IsIdentifierStart(chars[0]); } else { is_identifier_ &= unicode_cache_.IsIdentifierPart(chars[i]); } } } private: bool is_identifier_; bool first_char_; i::UnicodeCache unicode_cache_; DISALLOW_COPY_AND_ASSIGN(IsIdentifierHelper); }; MaybeLocal<Function> ScriptCompiler::CompileFunctionInContext( Local<Context> v8_context, Source* source, size_t arguments_count, Local<String> arguments[], size_t context_extension_count, Local<Object> context_extensions[]) { PREPARE_FOR_EXECUTION( v8_context, "v8::ScriptCompiler::CompileFunctionInContext()", Function); i::Handle<i::String> source_string; auto factory = isolate->factory(); if (arguments_count) { source_string = factory->NewStringFromStaticChars("(function("); for (size_t i = 0; i < arguments_count; ++i) { IsIdentifierHelper helper; if (!helper.Check(*Utils::OpenHandle(*arguments[i]))) { return Local<Function>(); } has_pending_exception = !factory->NewConsString(source_string, Utils::OpenHandle(*arguments[i])) .ToHandle(&source_string); RETURN_ON_FAILED_EXECUTION(Function); if (i + 1 == arguments_count) continue; has_pending_exception = !factory->NewConsString(source_string, factory->LookupSingleCharacterStringFromCode( ',')).ToHandle(&source_string); RETURN_ON_FAILED_EXECUTION(Function); } auto brackets = factory->NewStringFromStaticChars("){"); has_pending_exception = !factory->NewConsString(source_string, brackets) .ToHandle(&source_string); RETURN_ON_FAILED_EXECUTION(Function); } else { source_string = factory->NewStringFromStaticChars("(function(){"); } int scope_position = source_string->length(); has_pending_exception = !factory->NewConsString(source_string, Utils::OpenHandle(*source->source_string)) .ToHandle(&source_string); RETURN_ON_FAILED_EXECUTION(Function); // Include \n in case the source contains a line end comment. auto brackets = factory->NewStringFromStaticChars("\n})"); has_pending_exception = !factory->NewConsString(source_string, brackets).ToHandle(&source_string); RETURN_ON_FAILED_EXECUTION(Function); i::Handle<i::Context> context = Utils::OpenHandle(*v8_context); i::Handle<i::SharedFunctionInfo> outer_info(context->closure()->shared(), isolate); for (size_t i = 0; i < context_extension_count; ++i) { i::Handle<i::JSReceiver> extension = Utils::OpenHandle(*context_extensions[i]); if (!extension->IsJSObject()) return Local<Function>(); i::Handle<i::JSFunction> closure(context->closure(), isolate); context = factory->NewWithContext(closure, context, extension); } i::Handle<i::Object> name_obj; int line_offset = 0; int column_offset = 0; if (!source->resource_name.IsEmpty()) { name_obj = Utils::OpenHandle(*(source->resource_name)); } if (!source->resource_line_offset.IsEmpty()) { line_offset = static_cast<int>(source->resource_line_offset->Value()); } if (!source->resource_column_offset.IsEmpty()) { column_offset = static_cast<int>(source->resource_column_offset->Value()); } i::Handle<i::JSFunction> fun; has_pending_exception = !i::Compiler::GetFunctionFromEval( source_string, outer_info, context, i::SLOPPY, i::ONLY_SINGLE_FUNCTION_LITERAL, line_offset, column_offset - scope_position, name_obj, source->resource_options).ToHandle(&fun); if (has_pending_exception) { isolate->ReportPendingMessages(); } RETURN_ON_FAILED_EXECUTION(Function); i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call(isolate, fun, Utils::OpenHandle(*v8_context->Global()), 0, nullptr).ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Function); RETURN_ESCAPED( Utils::CallableToLocal(i::Handle<i::JSFunction>::cast(result))); } Local<Function> ScriptCompiler::CompileFunctionInContext( Isolate* v8_isolate, Source* source, Local<Context> v8_context, size_t arguments_count, Local<String> arguments[], size_t context_extension_count, Local<Object> context_extensions[]) { RETURN_TO_LOCAL_UNCHECKED( CompileFunctionInContext(v8_context, source, arguments_count, arguments, context_extension_count, context_extensions), Function); } ScriptCompiler::ScriptStreamingTask* ScriptCompiler::StartStreamingScript( Isolate* v8_isolate, StreamedSource* source, CompileOptions options) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); return new i::BackgroundParsingTask(source->impl(), options, i::FLAG_stack_size, isolate); } MaybeLocal<Script> ScriptCompiler::Compile(Local<Context> context, StreamedSource* v8_source, Local<String> full_source_string, const ScriptOrigin& origin) { PREPARE_FOR_EXECUTION(context, "v8::ScriptCompiler::Compile()", Script); i::StreamedSource* source = v8_source->impl(); i::Handle<i::String> str = Utils::OpenHandle(*(full_source_string)); i::Handle<i::Script> script = isolate->factory()->NewScript(str); if (!origin.ResourceName().IsEmpty()) { script->set_name(*Utils::OpenHandle(*(origin.ResourceName()))); } if (!origin.ResourceLineOffset().IsEmpty()) { script->set_line_offset( static_cast<int>(origin.ResourceLineOffset()->Value())); } if (!origin.ResourceColumnOffset().IsEmpty()) { script->set_column_offset( static_cast<int>(origin.ResourceColumnOffset()->Value())); } script->set_origin_options(origin.Options()); if (!origin.SourceMapUrl().IsEmpty()) { script->set_source_mapping_url( *Utils::OpenHandle(*(origin.SourceMapUrl()))); } source->info->set_script(script); source->info->set_context(isolate->native_context()); // Do the parsing tasks which need to be done on the main thread. This will // also handle parse errors. source->parser->Internalize(isolate, script, source->info->literal() == nullptr); source->parser->HandleSourceURLComments(isolate, script); i::Handle<i::SharedFunctionInfo> result; if (source->info->literal() != nullptr) { // Parsing has succeeded. result = i::Compiler::GetSharedFunctionInfoForStreamedScript( script, source->info.get(), str->length()); } has_pending_exception = result.is_null(); if (has_pending_exception) isolate->ReportPendingMessages(); RETURN_ON_FAILED_EXECUTION(Script); source->info->clear_script(); // because script goes out of scope. Local<UnboundScript> generic = ToApiHandle<UnboundScript>(result); if (generic.IsEmpty()) return Local<Script>(); Local<Script> bound = generic->BindToCurrentContext(); if (bound.IsEmpty()) return Local<Script>(); RETURN_ESCAPED(bound); } Local<Script> ScriptCompiler::Compile(Isolate* v8_isolate, StreamedSource* v8_source, Local<String> full_source_string, const ScriptOrigin& origin) { auto context = v8_isolate->GetCurrentContext(); RETURN_TO_LOCAL_UNCHECKED( Compile(context, v8_source, full_source_string, origin), Script); } uint32_t ScriptCompiler::CachedDataVersionTag() { return static_cast<uint32_t>(base::hash_combine( internal::Version::Hash(), internal::FlagList::Hash(), static_cast<uint32_t>(internal::CpuFeatures::SupportedFeatures()))); } MaybeLocal<Script> Script::Compile(Local<Context> context, Local<String> source, ScriptOrigin* origin) { if (origin) { ScriptCompiler::Source script_source(source, *origin); return ScriptCompiler::Compile(context, &script_source); } ScriptCompiler::Source script_source(source); return ScriptCompiler::Compile(context, &script_source); } Local<Script> Script::Compile(v8::Local<String> source, v8::ScriptOrigin* origin) { auto str = Utils::OpenHandle(*source); auto context = ContextFromHeapObject(str); RETURN_TO_LOCAL_UNCHECKED(Compile(context, source, origin), Script); } Local<Script> Script::Compile(v8::Local<String> source, v8::Local<String> file_name) { auto str = Utils::OpenHandle(*source); auto context = ContextFromHeapObject(str); ScriptOrigin origin(file_name); return Compile(context, source, &origin).FromMaybe(Local<Script>()); } // --- E x c e p t i o n s --- v8::TryCatch::TryCatch() : isolate_(i::Isolate::Current()), next_(isolate_->try_catch_handler()), is_verbose_(false), can_continue_(true), capture_message_(true), rethrow_(false), has_terminated_(false) { ResetInternal(); // Special handling for simulators which have a separate JS stack. js_stack_comparable_address_ = reinterpret_cast<void*>(v8::internal::SimulatorStack::RegisterCTryCatch( isolate_, v8::internal::GetCurrentStackPosition())); isolate_->RegisterTryCatchHandler(this); } v8::TryCatch::TryCatch(v8::Isolate* isolate) : isolate_(reinterpret_cast<i::Isolate*>(isolate)), next_(isolate_->try_catch_handler()), is_verbose_(false), can_continue_(true), capture_message_(true), rethrow_(false), has_terminated_(false) { ResetInternal(); // Special handling for simulators which have a separate JS stack. js_stack_comparable_address_ = reinterpret_cast<void*>(v8::internal::SimulatorStack::RegisterCTryCatch( isolate_, v8::internal::GetCurrentStackPosition())); isolate_->RegisterTryCatchHandler(this); } v8::TryCatch::~TryCatch() { if (rethrow_) { v8::Isolate* isolate = reinterpret_cast<Isolate*>(isolate_); v8::HandleScope scope(isolate); v8::Local<v8::Value> exc = v8::Local<v8::Value>::New(isolate, Exception()); if (HasCaught() && capture_message_) { // If an exception was caught and rethrow_ is indicated, the saved // message, script, and location need to be restored to Isolate TLS // for reuse. capture_message_ needs to be disabled so that Throw() // does not create a new message. isolate_->thread_local_top()->rethrowing_message_ = true; isolate_->RestorePendingMessageFromTryCatch(this); } isolate_->UnregisterTryCatchHandler(this); v8::internal::SimulatorStack::UnregisterCTryCatch(isolate_); reinterpret_cast<Isolate*>(isolate_)->ThrowException(exc); DCHECK(!isolate_->thread_local_top()->rethrowing_message_); } else { if (HasCaught() && isolate_->has_scheduled_exception()) { // If an exception was caught but is still scheduled because no API call // promoted it, then it is canceled to prevent it from being propagated. // Note that this will not cancel termination exceptions. isolate_->CancelScheduledExceptionFromTryCatch(this); } isolate_->UnregisterTryCatchHandler(this); v8::internal::SimulatorStack::UnregisterCTryCatch(isolate_); } } bool v8::TryCatch::HasCaught() const { return !reinterpret_cast<i::Object*>(exception_)->IsTheHole(); } bool v8::TryCatch::CanContinue() const { return can_continue_; } bool v8::TryCatch::HasTerminated() const { return has_terminated_; } v8::Local<v8::Value> v8::TryCatch::ReThrow() { if (!HasCaught()) return v8::Local<v8::Value>(); rethrow_ = true; return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate_)); } v8::Local<Value> v8::TryCatch::Exception() const { if (HasCaught()) { // Check for out of memory exception. i::Object* exception = reinterpret_cast<i::Object*>(exception_); return v8::Utils::ToLocal(i::Handle<i::Object>(exception, isolate_)); } else { return v8::Local<Value>(); } } MaybeLocal<Value> v8::TryCatch::StackTrace(Local<Context> context) const { if (!HasCaught()) return v8::Local<Value>(); i::Object* raw_obj = reinterpret_cast<i::Object*>(exception_); if (!raw_obj->IsJSObject()) return v8::Local<Value>(); PREPARE_FOR_EXECUTION(context, "v8::TryCatch::StackTrace", Value); i::Handle<i::JSObject> obj(i::JSObject::cast(raw_obj), isolate_); i::Handle<i::String> name = isolate->factory()->stack_string(); Maybe<bool> maybe = i::JSReceiver::HasProperty(obj, name); has_pending_exception = !maybe.IsJust(); RETURN_ON_FAILED_EXECUTION(Value); if (!maybe.FromJust()) return v8::Local<Value>(); Local<Value> result; has_pending_exception = !ToLocal<Value>(i::JSReceiver::GetProperty(obj, name), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } v8::Local<Value> v8::TryCatch::StackTrace() const { auto context = reinterpret_cast<v8::Isolate*>(isolate_)->GetCurrentContext(); RETURN_TO_LOCAL_UNCHECKED(StackTrace(context), Value); } v8::Local<v8::Message> v8::TryCatch::Message() const { i::Object* message = reinterpret_cast<i::Object*>(message_obj_); DCHECK(message->IsJSMessageObject() || message->IsTheHole()); if (HasCaught() && !message->IsTheHole()) { return v8::Utils::MessageToLocal(i::Handle<i::Object>(message, isolate_)); } else { return v8::Local<v8::Message>(); } } void v8::TryCatch::Reset() { if (!rethrow_ && HasCaught() && isolate_->has_scheduled_exception()) { // If an exception was caught but is still scheduled because no API call // promoted it, then it is canceled to prevent it from being propagated. // Note that this will not cancel termination exceptions. isolate_->CancelScheduledExceptionFromTryCatch(this); } ResetInternal(); } void v8::TryCatch::ResetInternal() { i::Object* the_hole = isolate_->heap()->the_hole_value(); exception_ = the_hole; message_obj_ = the_hole; } void v8::TryCatch::SetVerbose(bool value) { is_verbose_ = value; } void v8::TryCatch::SetCaptureMessage(bool value) { capture_message_ = value; } // --- M e s s a g e --- Local<String> Message::Get() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::String> raw_result = i::MessageHandler::GetMessage(isolate, obj); Local<String> result = Utils::ToLocal(raw_result); return scope.Escape(result); } ScriptOrigin Message::GetScriptOrigin() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); auto message = i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this)); auto script_wraper = i::Handle<i::Object>(message->script(), isolate); auto script_value = i::Handle<i::JSValue>::cast(script_wraper); i::Handle<i::Script> script(i::Script::cast(script_value->value())); return GetScriptOriginForScript(isolate, script); } v8::Local<Value> Message::GetScriptResourceName() const { return GetScriptOrigin().ResourceName(); } v8::Local<v8::StackTrace> Message::GetStackTrace() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); auto message = i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this)); i::Handle<i::Object> stackFramesObj(message->stack_frames(), isolate); if (!stackFramesObj->IsJSArray()) return v8::Local<v8::StackTrace>(); auto stackTrace = i::Handle<i::JSArray>::cast(stackFramesObj); return scope.Escape(Utils::StackTraceToLocal(stackTrace)); } Maybe<int> Message::GetLineNumber(Local<Context> context) const { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Message::GetLineNumber()", int); i::Handle<i::JSFunction> fun = isolate->message_get_line_number(); i::Handle<i::Object> undefined = isolate->factory()->undefined_value(); i::Handle<i::Object> args[] = {Utils::OpenHandle(this)}; i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call(isolate, fun, undefined, arraysize(args), args) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int); return Just(static_cast<int>(result->Number())); } int Message::GetLineNumber() const { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return GetLineNumber(context).FromMaybe(0); } int Message::GetStartPosition() const { auto self = Utils::OpenHandle(this); return self->start_position(); } int Message::GetEndPosition() const { auto self = Utils::OpenHandle(this); return self->end_position(); } Maybe<int> Message::GetStartColumn(Local<Context> context) const { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Message::GetStartColumn()", int); i::Handle<i::JSFunction> fun = isolate->message_get_column_number(); i::Handle<i::Object> undefined = isolate->factory()->undefined_value(); i::Handle<i::Object> args[] = {Utils::OpenHandle(this)}; i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call(isolate, fun, undefined, arraysize(args), args) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int); return Just(static_cast<int>(result->Number())); } int Message::GetStartColumn() const { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); const int default_value = kNoColumnInfo; return GetStartColumn(context).FromMaybe(default_value); } Maybe<int> Message::GetEndColumn(Local<Context> context) const { auto self = Utils::OpenHandle(this); PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Message::GetEndColumn()", int); i::Handle<i::JSFunction> fun = isolate->message_get_column_number(); i::Handle<i::Object> undefined = isolate->factory()->undefined_value(); i::Handle<i::Object> args[] = {self}; i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call(isolate, fun, undefined, arraysize(args), args) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int); int start = self->start_position(); int end = self->end_position(); return Just(static_cast<int>(result->Number()) + (end - start)); } int Message::GetEndColumn() const { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); const int default_value = kNoColumnInfo; return GetEndColumn(context).FromMaybe(default_value); } bool Message::IsSharedCrossOrigin() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); auto self = Utils::OpenHandle(this); auto script = i::Handle<i::JSValue>::cast( i::Handle<i::Object>(self->script(), isolate)); return i::Script::cast(script->value()) ->origin_options() .IsSharedCrossOrigin(); } bool Message::IsOpaque() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); auto self = Utils::OpenHandle(this); auto script = i::Handle<i::JSValue>::cast( i::Handle<i::Object>(self->script(), isolate)); return i::Script::cast(script->value())->origin_options().IsOpaque(); } MaybeLocal<String> Message::GetSourceLine(Local<Context> context) const { PREPARE_FOR_EXECUTION(context, "v8::Message::GetSourceLine()", String); i::Handle<i::JSFunction> fun = isolate->message_get_source_line(); i::Handle<i::Object> undefined = isolate->factory()->undefined_value(); i::Handle<i::Object> args[] = {Utils::OpenHandle(this)}; i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call(isolate, fun, undefined, arraysize(args), args) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(String); Local<String> str; if (result->IsString()) { str = Utils::ToLocal(i::Handle<i::String>::cast(result)); } RETURN_ESCAPED(str); } Local<String> Message::GetSourceLine() const { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(GetSourceLine(context), String) } void Message::PrintCurrentStackTrace(Isolate* isolate, FILE* out) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8(i_isolate); i_isolate->PrintCurrentStackTrace(out); } // --- S t a c k T r a c e --- Local<StackFrame> StackTrace::GetFrame(uint32_t index) const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); auto self = Utils::OpenHandle(this); auto obj = i::JSReceiver::GetElement(isolate, self, index).ToHandleChecked(); auto jsobj = i::Handle<i::JSObject>::cast(obj); return scope.Escape(Utils::StackFrameToLocal(jsobj)); } int StackTrace::GetFrameCount() const { return i::Smi::cast(Utils::OpenHandle(this)->length())->value(); } Local<Array> StackTrace::AsArray() { return Utils::ToLocal(Utils::OpenHandle(this)); } Local<StackTrace> StackTrace::CurrentStackTrace( Isolate* isolate, int frame_limit, StackTraceOptions options) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8(i_isolate); // TODO(dcarney): remove when ScriptDebugServer is fixed. options = static_cast<StackTraceOptions>( static_cast<int>(options) | kExposeFramesAcrossSecurityOrigins); i::Handle<i::JSArray> stackTrace = i_isolate->CaptureCurrentStackTrace(frame_limit, options); return Utils::StackTraceToLocal(stackTrace); } // --- S t a c k F r a m e --- static int getIntProperty(const StackFrame* f, const char* propertyName, int defaultValue) { i::Isolate* isolate = Utils::OpenHandle(f)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(f); i::Handle<i::Object> obj = i::JSReceiver::GetProperty(isolate, self, propertyName).ToHandleChecked(); return obj->IsSmi() ? i::Smi::cast(*obj)->value() : defaultValue; } int StackFrame::GetLineNumber() const { return getIntProperty(this, "lineNumber", Message::kNoLineNumberInfo); } int StackFrame::GetColumn() const { return getIntProperty(this, "column", Message::kNoColumnInfo); } int StackFrame::GetScriptId() const { return getIntProperty(this, "scriptId", Message::kNoScriptIdInfo); } static Local<String> getStringProperty(const StackFrame* f, const char* propertyName) { i::Isolate* isolate = Utils::OpenHandle(f)->GetIsolate(); ENTER_V8(isolate); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::JSObject> self = Utils::OpenHandle(f); i::Handle<i::Object> obj = i::JSReceiver::GetProperty(isolate, self, propertyName).ToHandleChecked(); return obj->IsString() ? scope.Escape(Local<String>::Cast(Utils::ToLocal(obj))) : Local<String>(); } Local<String> StackFrame::GetScriptName() const { return getStringProperty(this, "scriptName"); } Local<String> StackFrame::GetScriptNameOrSourceURL() const { return getStringProperty(this, "scriptNameOrSourceURL"); } Local<String> StackFrame::GetFunctionName() const { return getStringProperty(this, "functionName"); } static bool getBoolProperty(const StackFrame* f, const char* propertyName) { i::Isolate* isolate = Utils::OpenHandle(f)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(f); i::Handle<i::Object> obj = i::JSReceiver::GetProperty(isolate, self, propertyName).ToHandleChecked(); return obj->IsTrue(); } bool StackFrame::IsEval() const { return getBoolProperty(this, "isEval"); } bool StackFrame::IsConstructor() const { return getBoolProperty(this, "isConstructor"); } // --- N a t i v e W e a k M a p --- Local<NativeWeakMap> NativeWeakMap::New(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8(isolate); i::Handle<i::JSWeakMap> weakmap = isolate->factory()->NewJSWeakMap(); i::JSWeakCollection::Initialize(weakmap, isolate); return Utils::NativeWeakMapToLocal(weakmap); } void NativeWeakMap::Set(Local<Value> v8_key, Local<Value> v8_value) { i::Handle<i::JSWeakMap> weak_collection = Utils::OpenHandle(this); i::Isolate* isolate = weak_collection->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::Object> key = Utils::OpenHandle(*v8_key); i::Handle<i::Object> value = Utils::OpenHandle(*v8_value); if (!key->IsJSReceiver() && !key->IsSymbol()) { DCHECK(false); return; } i::Handle<i::ObjectHashTable> table( i::ObjectHashTable::cast(weak_collection->table())); if (!table->IsKey(*key)) { DCHECK(false); return; } int32_t hash = i::Object::GetOrCreateHash(isolate, key)->value(); i::JSWeakCollection::Set(weak_collection, key, value, hash); } Local<Value> NativeWeakMap::Get(Local<Value> v8_key) { i::Handle<i::JSWeakMap> weak_collection = Utils::OpenHandle(this); i::Isolate* isolate = weak_collection->GetIsolate(); ENTER_V8(isolate); i::Handle<i::Object> key = Utils::OpenHandle(*v8_key); if (!key->IsJSReceiver() && !key->IsSymbol()) { DCHECK(false); return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } i::Handle<i::ObjectHashTable> table( i::ObjectHashTable::cast(weak_collection->table())); if (!table->IsKey(*key)) { DCHECK(false); return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } i::Handle<i::Object> lookup(table->Lookup(key), isolate); if (lookup->IsTheHole()) return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); return Utils::ToLocal(lookup); } bool NativeWeakMap::Has(Local<Value> v8_key) { i::Handle<i::JSWeakMap> weak_collection = Utils::OpenHandle(this); i::Isolate* isolate = weak_collection->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::Object> key = Utils::OpenHandle(*v8_key); if (!key->IsJSReceiver() && !key->IsSymbol()) { DCHECK(false); return false; } i::Handle<i::ObjectHashTable> table( i::ObjectHashTable::cast(weak_collection->table())); if (!table->IsKey(*key)) { DCHECK(false); return false; } i::Handle<i::Object> lookup(table->Lookup(key), isolate); return !lookup->IsTheHole(); } bool NativeWeakMap::Delete(Local<Value> v8_key) { i::Handle<i::JSWeakMap> weak_collection = Utils::OpenHandle(this); i::Isolate* isolate = weak_collection->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::Object> key = Utils::OpenHandle(*v8_key); if (!key->IsJSReceiver() && !key->IsSymbol()) { DCHECK(false); return false; } i::Handle<i::ObjectHashTable> table( i::ObjectHashTable::cast(weak_collection->table())); if (!table->IsKey(*key)) { DCHECK(false); return false; } int32_t hash = i::Object::GetOrCreateHash(isolate, key)->value(); return i::JSWeakCollection::Delete(weak_collection, key, hash); } // --- J S O N --- MaybeLocal<Value> JSON::Parse(Isolate* v8_isolate, Local<String> json_string) { auto isolate = reinterpret_cast<i::Isolate*>(v8_isolate); PREPARE_FOR_EXECUTION_WITH_ISOLATE(isolate, "JSON::Parse", Value); i::Handle<i::String> string = Utils::OpenHandle(*json_string); i::Handle<i::String> source = i::String::Flatten(string); auto maybe = source->IsSeqOneByteString() ? i::JsonParser<true>::Parse(source) : i::JsonParser<false>::Parse(source); Local<Value> result; has_pending_exception = !ToLocal<Value>(maybe, &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } Local<Value> JSON::Parse(Local<String> json_string) { auto isolate = reinterpret_cast<v8::Isolate*>( Utils::OpenHandle(*json_string)->GetIsolate()); RETURN_TO_LOCAL_UNCHECKED(Parse(isolate, json_string), Value); } // --- D a t a --- bool Value::FullIsUndefined() const { bool result = Utils::OpenHandle(this)->IsUndefined(); DCHECK_EQ(result, QuickIsUndefined()); return result; } bool Value::FullIsNull() const { bool result = Utils::OpenHandle(this)->IsNull(); DCHECK_EQ(result, QuickIsNull()); return result; } bool Value::IsTrue() const { return Utils::OpenHandle(this)->IsTrue(); } bool Value::IsFalse() const { return Utils::OpenHandle(this)->IsFalse(); } bool Value::IsFunction() const { return Utils::OpenHandle(this)->IsCallable(); } bool Value::IsName() const { return Utils::OpenHandle(this)->IsName(); } bool Value::FullIsString() const { bool result = Utils::OpenHandle(this)->IsString(); DCHECK_EQ(result, QuickIsString()); return result; } bool Value::IsSymbol() const { return Utils::OpenHandle(this)->IsSymbol(); } bool Value::IsArray() const { return Utils::OpenHandle(this)->IsJSArray(); } bool Value::IsArrayBuffer() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->IsJSArrayBuffer() && !i::JSArrayBuffer::cast(*obj)->is_shared(); } bool Value::IsArrayBufferView() const { return Utils::OpenHandle(this)->IsJSArrayBufferView(); } bool Value::IsTypedArray() const { return Utils::OpenHandle(this)->IsJSTypedArray(); } #define VALUE_IS_TYPED_ARRAY(Type, typeName, TYPE, ctype, size) \ bool Value::Is##Type##Array() const { \ i::Handle<i::Object> obj = Utils::OpenHandle(this); \ return obj->IsJSTypedArray() && \ i::JSTypedArray::cast(*obj)->type() == i::kExternal##Type##Array; \ } TYPED_ARRAYS(VALUE_IS_TYPED_ARRAY) #undef VALUE_IS_TYPED_ARRAY bool Value::IsDataView() const { return Utils::OpenHandle(this)->IsJSDataView(); } bool Value::IsSharedArrayBuffer() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->IsJSArrayBuffer() && i::JSArrayBuffer::cast(*obj)->is_shared(); } bool Value::IsObject() const { return Utils::OpenHandle(this)->IsJSReceiver(); } bool Value::IsNumber() const { return Utils::OpenHandle(this)->IsNumber(); } bool Value::IsProxy() const { return Utils::OpenHandle(this)->IsJSProxy(); } #define VALUE_IS_SPECIFIC_TYPE(Type, Class) \ bool Value::Is##Type() const { \ i::Handle<i::Object> obj = Utils::OpenHandle(this); \ if (!obj->IsHeapObject()) return false; \ i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); \ return obj->HasSpecificClassOf(isolate->heap()->Class##_string()); \ } VALUE_IS_SPECIFIC_TYPE(ArgumentsObject, Arguments) VALUE_IS_SPECIFIC_TYPE(BooleanObject, Boolean) VALUE_IS_SPECIFIC_TYPE(NumberObject, Number) VALUE_IS_SPECIFIC_TYPE(StringObject, String) VALUE_IS_SPECIFIC_TYPE(SymbolObject, Symbol) VALUE_IS_SPECIFIC_TYPE(Date, Date) VALUE_IS_SPECIFIC_TYPE(Map, Map) VALUE_IS_SPECIFIC_TYPE(Set, Set) VALUE_IS_SPECIFIC_TYPE(WeakMap, WeakMap) VALUE_IS_SPECIFIC_TYPE(WeakSet, WeakSet) #undef VALUE_IS_SPECIFIC_TYPE bool Value::IsBoolean() const { return Utils::OpenHandle(this)->IsBoolean(); } bool Value::IsExternal() const { return Utils::OpenHandle(this)->IsExternal(); } bool Value::IsInt32() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) return true; if (obj->IsNumber()) { return i::IsInt32Double(obj->Number()); } return false; } bool Value::IsUint32() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) return i::Smi::cast(*obj)->value() >= 0; if (obj->IsNumber()) { double value = obj->Number(); return !i::IsMinusZero(value) && value >= 0 && value <= i::kMaxUInt32 && value == i::FastUI2D(i::FastD2UI(value)); } return false; } bool Value::IsNativeError() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (!obj->IsJSObject()) return false; i::Handle<i::JSObject> js_obj = i::Handle<i::JSObject>::cast(obj); i::Isolate* isolate = js_obj->GetIsolate(); i::Handle<i::Object> constructor(js_obj->map()->GetConstructor(), isolate); if (!constructor->IsJSFunction()) return false; i::Handle<i::JSFunction> function = i::Handle<i::JSFunction>::cast(constructor); if (!function->shared()->native()) return false; return function.is_identical_to(isolate->error_function()) || function.is_identical_to(isolate->eval_error_function()) || function.is_identical_to(isolate->range_error_function()) || function.is_identical_to(isolate->reference_error_function()) || function.is_identical_to(isolate->syntax_error_function()) || function.is_identical_to(isolate->type_error_function()) || function.is_identical_to(isolate->uri_error_function()); } bool Value::IsRegExp() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->IsJSRegExp(); } bool Value::IsGeneratorFunction() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (!obj->IsJSFunction()) return false; i::Handle<i::JSFunction> func = i::Handle<i::JSFunction>::cast(obj); return func->shared()->is_generator(); } bool Value::IsGeneratorObject() const { return Utils::OpenHandle(this)->IsJSGeneratorObject(); } bool Value::IsMapIterator() const { return Utils::OpenHandle(this)->IsJSMapIterator(); } bool Value::IsSetIterator() const { return Utils::OpenHandle(this)->IsJSSetIterator(); } bool Value::IsPromise() const { auto self = Utils::OpenHandle(this); return i::Object::IsPromise(self); } MaybeLocal<String> Value::ToString(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsString()) return ToApiHandle<String>(obj); PREPARE_FOR_EXECUTION(context, "ToString", String); Local<String> result; has_pending_exception = !ToLocal<String>(i::Object::ToString(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(String); RETURN_ESCAPED(result); } Local<String> Value::ToString(Isolate* isolate) const { RETURN_TO_LOCAL_UNCHECKED(ToString(isolate->GetCurrentContext()), String); } MaybeLocal<String> Value::ToDetailString(Local<Context> context) const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsString()) return ToApiHandle<String>(obj); PREPARE_FOR_EXECUTION(context, "ToDetailString", String); Local<String> result; i::Handle<i::Object> args[] = {obj}; has_pending_exception = !ToLocal<String>( i::Execution::TryCall(isolate, isolate->no_side_effects_to_string_fun(), isolate->factory()->undefined_value(), arraysize(args), args), &result); RETURN_ON_FAILED_EXECUTION(String); RETURN_ESCAPED(result); } Local<String> Value::ToDetailString(Isolate* isolate) const { RETURN_TO_LOCAL_UNCHECKED(ToDetailString(isolate->GetCurrentContext()), String); } MaybeLocal<Object> Value::ToObject(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsJSReceiver()) return ToApiHandle<Object>(obj); PREPARE_FOR_EXECUTION(context, "ToObject", Object); Local<Object> result; has_pending_exception = !ToLocal<Object>(i::Object::ToObject(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(Object); RETURN_ESCAPED(result); } Local<v8::Object> Value::ToObject(Isolate* isolate) const { RETURN_TO_LOCAL_UNCHECKED(ToObject(isolate->GetCurrentContext()), Object); } MaybeLocal<Boolean> Value::ToBoolean(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsBoolean()) return ToApiHandle<Boolean>(obj); auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); auto val = isolate->factory()->ToBoolean(obj->BooleanValue()); return ToApiHandle<Boolean>(val); } Local<Boolean> Value::ToBoolean(Isolate* v8_isolate) const { return ToBoolean(v8_isolate->GetCurrentContext()).ToLocalChecked(); } MaybeLocal<Number> Value::ToNumber(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) return ToApiHandle<Number>(obj); PREPARE_FOR_EXECUTION(context, "ToNumber", Number); Local<Number> result; has_pending_exception = !ToLocal<Number>(i::Object::ToNumber(obj), &result); RETURN_ON_FAILED_EXECUTION(Number); RETURN_ESCAPED(result); } Local<Number> Value::ToNumber(Isolate* isolate) const { RETURN_TO_LOCAL_UNCHECKED(ToNumber(isolate->GetCurrentContext()), Number); } MaybeLocal<Integer> Value::ToInteger(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsSmi()) return ToApiHandle<Integer>(obj); PREPARE_FOR_EXECUTION(context, "ToInteger", Integer); Local<Integer> result; has_pending_exception = !ToLocal<Integer>(i::Object::ToInteger(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(Integer); RETURN_ESCAPED(result); } Local<Integer> Value::ToInteger(Isolate* isolate) const { RETURN_TO_LOCAL_UNCHECKED(ToInteger(isolate->GetCurrentContext()), Integer); } MaybeLocal<Int32> Value::ToInt32(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsSmi()) return ToApiHandle<Int32>(obj); Local<Int32> result; PREPARE_FOR_EXECUTION(context, "ToInt32", Int32); has_pending_exception = !ToLocal<Int32>(i::Object::ToInt32(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(Int32); RETURN_ESCAPED(result); } Local<Int32> Value::ToInt32(Isolate* isolate) const { RETURN_TO_LOCAL_UNCHECKED(ToInt32(isolate->GetCurrentContext()), Int32); } MaybeLocal<Uint32> Value::ToUint32(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsSmi()) return ToApiHandle<Uint32>(obj); Local<Uint32> result; PREPARE_FOR_EXECUTION(context, "ToUint32", Uint32); has_pending_exception = !ToLocal<Uint32>(i::Object::ToUint32(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(Uint32); RETURN_ESCAPED(result); } Local<Uint32> Value::ToUint32(Isolate* isolate) const { RETURN_TO_LOCAL_UNCHECKED(ToUint32(isolate->GetCurrentContext()), Uint32); } void i::Internals::CheckInitializedImpl(v8::Isolate* external_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate); Utils::ApiCheck(isolate != NULL && !isolate->IsDead(), "v8::internal::Internals::CheckInitialized()", "Isolate is not initialized or V8 has died"); } void External::CheckCast(v8::Value* that) { Utils::ApiCheck(Utils::OpenHandle(that)->IsExternal(), "v8::External::Cast()", "Could not convert to external"); } void v8::Object::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSReceiver(), "v8::Object::Cast()", "Could not convert to object"); } void v8::Function::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsCallable(), "v8::Function::Cast()", "Could not convert to function"); } void v8::Boolean::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsBoolean(), "v8::Boolean::Cast()", "Could not convert to boolean"); } void v8::Name::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsName(), "v8::Name::Cast()", "Could not convert to name"); } void v8::String::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsString(), "v8::String::Cast()", "Could not convert to string"); } void v8::Symbol::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsSymbol(), "v8::Symbol::Cast()", "Could not convert to symbol"); } void v8::Number::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsNumber(), "v8::Number::Cast()", "Could not convert to number"); } void v8::Integer::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsNumber(), "v8::Integer::Cast()", "Could not convert to number"); } void v8::Int32::CheckCast(v8::Value* that) { Utils::ApiCheck(that->IsInt32(), "v8::Int32::Cast()", "Could not convert to 32-bit signed integer"); } void v8::Uint32::CheckCast(v8::Value* that) { Utils::ApiCheck(that->IsUint32(), "v8::Uint32::Cast()", "Could not convert to 32-bit unsigned integer"); } void v8::Array::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSArray(), "v8::Array::Cast()", "Could not convert to array"); } void v8::Map::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSMap(), "v8::Map::Cast()", "Could not convert to Map"); } void v8::Set::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSSet(), "v8::Set::Cast()", "Could not convert to Set"); } void v8::Promise::CheckCast(Value* that) { Utils::ApiCheck(that->IsPromise(), "v8::Promise::Cast()", "Could not convert to promise"); } void v8::Promise::Resolver::CheckCast(Value* that) { Utils::ApiCheck(that->IsPromise(), "v8::Promise::Resolver::Cast()", "Could not convert to promise resolver"); } void v8::Proxy::CheckCast(Value* that) { Utils::ApiCheck(that->IsProxy(), "v8::Proxy::Cast()", "Could not convert to proxy"); } void v8::ArrayBuffer::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck( obj->IsJSArrayBuffer() && !i::JSArrayBuffer::cast(*obj)->is_shared(), "v8::ArrayBuffer::Cast()", "Could not convert to ArrayBuffer"); } void v8::ArrayBufferView::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSArrayBufferView(), "v8::ArrayBufferView::Cast()", "Could not convert to ArrayBufferView"); } void v8::TypedArray::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSTypedArray(), "v8::TypedArray::Cast()", "Could not convert to TypedArray"); } #define CHECK_TYPED_ARRAY_CAST(Type, typeName, TYPE, ctype, size) \ void v8::Type##Array::CheckCast(Value* that) { \ i::Handle<i::Object> obj = Utils::OpenHandle(that); \ Utils::ApiCheck( \ obj->IsJSTypedArray() && \ i::JSTypedArray::cast(*obj)->type() == i::kExternal##Type##Array, \ "v8::" #Type "Array::Cast()", "Could not convert to " #Type "Array"); \ } TYPED_ARRAYS(CHECK_TYPED_ARRAY_CAST) #undef CHECK_TYPED_ARRAY_CAST void v8::DataView::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSDataView(), "v8::DataView::Cast()", "Could not convert to DataView"); } void v8::SharedArrayBuffer::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck( obj->IsJSArrayBuffer() && i::JSArrayBuffer::cast(*obj)->is_shared(), "v8::SharedArrayBuffer::Cast()", "Could not convert to SharedArrayBuffer"); } void v8::Date::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); i::Isolate* isolate = NULL; if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate(); Utils::ApiCheck(isolate != NULL && obj->HasSpecificClassOf(isolate->heap()->Date_string()), "v8::Date::Cast()", "Could not convert to date"); } void v8::StringObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); i::Isolate* isolate = NULL; if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate(); Utils::ApiCheck(isolate != NULL && obj->HasSpecificClassOf(isolate->heap()->String_string()), "v8::StringObject::Cast()", "Could not convert to StringObject"); } void v8::SymbolObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); i::Isolate* isolate = NULL; if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate(); Utils::ApiCheck(isolate != NULL && obj->HasSpecificClassOf(isolate->heap()->Symbol_string()), "v8::SymbolObject::Cast()", "Could not convert to SymbolObject"); } void v8::NumberObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); i::Isolate* isolate = NULL; if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate(); Utils::ApiCheck(isolate != NULL && obj->HasSpecificClassOf(isolate->heap()->Number_string()), "v8::NumberObject::Cast()", "Could not convert to NumberObject"); } void v8::BooleanObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); i::Isolate* isolate = NULL; if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate(); Utils::ApiCheck(isolate != NULL && obj->HasSpecificClassOf(isolate->heap()->Boolean_string()), "v8::BooleanObject::Cast()", "Could not convert to BooleanObject"); } void v8::RegExp::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSRegExp(), "v8::RegExp::Cast()", "Could not convert to regular expression"); } Maybe<bool> Value::BooleanValue(Local<Context> context) const { return Just(Utils::OpenHandle(this)->BooleanValue()); } bool Value::BooleanValue() const { return Utils::OpenHandle(this)->BooleanValue(); } Maybe<double> Value::NumberValue(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) return Just(obj->Number()); PREPARE_FOR_EXECUTION_PRIMITIVE(context, "NumberValue", double); i::Handle<i::Object> num; has_pending_exception = !i::Object::ToNumber(obj).ToHandle(&num); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(double); return Just(num->Number()); } double Value::NumberValue() const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) return obj->Number(); return NumberValue(ContextFromHeapObject(obj)) .FromMaybe(std::numeric_limits<double>::quiet_NaN()); } Maybe<int64_t> Value::IntegerValue(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) { return Just(NumberToInt64(*obj)); } PREPARE_FOR_EXECUTION_PRIMITIVE(context, "IntegerValue", int64_t); i::Handle<i::Object> num; has_pending_exception = !i::Object::ToInteger(isolate, obj).ToHandle(&num); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int64_t); return Just(NumberToInt64(*num)); } int64_t Value::IntegerValue() const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) { if (obj->IsSmi()) { return i::Smi::cast(*obj)->value(); } else { return static_cast<int64_t>(obj->Number()); } } return IntegerValue(ContextFromHeapObject(obj)).FromMaybe(0); } Maybe<int32_t> Value::Int32Value(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) return Just(NumberToInt32(*obj)); PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Int32Value", int32_t); i::Handle<i::Object> num; has_pending_exception = !i::Object::ToInt32(isolate, obj).ToHandle(&num); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int32_t); return Just(num->IsSmi() ? i::Smi::cast(*num)->value() : static_cast<int32_t>(num->Number())); } int32_t Value::Int32Value() const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) return NumberToInt32(*obj); return Int32Value(ContextFromHeapObject(obj)).FromMaybe(0); } Maybe<uint32_t> Value::Uint32Value(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) return Just(NumberToUint32(*obj)); PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Uint32Value", uint32_t); i::Handle<i::Object> num; has_pending_exception = !i::Object::ToUint32(isolate, obj).ToHandle(&num); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(uint32_t); return Just(num->IsSmi() ? static_cast<uint32_t>(i::Smi::cast(*num)->value()) : static_cast<uint32_t>(num->Number())); } uint32_t Value::Uint32Value() const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) return NumberToUint32(*obj); return Uint32Value(ContextFromHeapObject(obj)).FromMaybe(0); } MaybeLocal<Uint32> Value::ToArrayIndex(Local<Context> context) const { auto self = Utils::OpenHandle(this); if (self->IsSmi()) { if (i::Smi::cast(*self)->value() >= 0) return Utils::Uint32ToLocal(self); return Local<Uint32>(); } PREPARE_FOR_EXECUTION(context, "ToArrayIndex", Uint32); i::Handle<i::Object> string_obj; has_pending_exception = !i::Object::ToString(isolate, self).ToHandle(&string_obj); RETURN_ON_FAILED_EXECUTION(Uint32); i::Handle<i::String> str = i::Handle<i::String>::cast(string_obj); uint32_t index; if (str->AsArrayIndex(&index)) { i::Handle<i::Object> value; if (index <= static_cast<uint32_t>(i::Smi::kMaxValue)) { value = i::Handle<i::Object>(i::Smi::FromInt(index), isolate); } else { value = isolate->factory()->NewNumber(index); } RETURN_ESCAPED(Utils::Uint32ToLocal(value)); } return Local<Uint32>(); } Local<Uint32> Value::ToArrayIndex() const { auto self = Utils::OpenHandle(this); if (self->IsSmi()) { if (i::Smi::cast(*self)->value() >= 0) return Utils::Uint32ToLocal(self); return Local<Uint32>(); } auto context = ContextFromHeapObject(self); RETURN_TO_LOCAL_UNCHECKED(ToArrayIndex(context), Uint32); } Maybe<bool> Value::Equals(Local<Context> context, Local<Value> that) const { auto self = Utils::OpenHandle(this); auto other = Utils::OpenHandle(*that); return i::Object::Equals(self, other); } bool Value::Equals(Local<Value> that) const { auto self = Utils::OpenHandle(this); auto other = Utils::OpenHandle(*that); if (self->IsSmi() && other->IsSmi()) { return self->Number() == other->Number(); } if (self->IsJSObject() && other->IsJSObject()) { return *self == *other; } auto heap_object = self->IsSmi() ? other : self; auto context = ContextFromHeapObject(heap_object); return Equals(context, that).FromMaybe(false); } bool Value::StrictEquals(Local<Value> that) const { auto self = Utils::OpenHandle(this); auto other = Utils::OpenHandle(*that); return self->StrictEquals(*other); } bool Value::SameValue(Local<Value> that) const { auto self = Utils::OpenHandle(this); auto other = Utils::OpenHandle(*that); return self->SameValue(*other); } Maybe<bool> v8::Object::Set(v8::Local<v8::Context> context, v8::Local<Value> key, v8::Local<Value> value) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::Set()", bool); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); auto value_obj = Utils::OpenHandle(*value); has_pending_exception = i::Runtime::SetObjectProperty(isolate, self, key_obj, value_obj, i::SLOPPY).is_null(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } bool v8::Object::Set(v8::Local<Value> key, v8::Local<Value> value) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return Set(context, key, value).FromMaybe(false); } Maybe<bool> v8::Object::Set(v8::Local<v8::Context> context, uint32_t index, v8::Local<Value> value) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::Set()", bool); auto self = Utils::OpenHandle(this); auto value_obj = Utils::OpenHandle(*value); has_pending_exception = i::Object::SetElement(isolate, self, index, value_obj, i::SLOPPY).is_null(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } bool v8::Object::Set(uint32_t index, v8::Local<Value> value) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return Set(context, index, value).FromMaybe(false); } Maybe<bool> v8::Object::CreateDataProperty(v8::Local<v8::Context> context, v8::Local<Name> key, v8::Local<Value> value) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::CreateDataProperty()", bool); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); i::Handle<i::Name> key_obj = Utils::OpenHandle(*key); i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); i::LookupIterator it = i::LookupIterator::PropertyOrElement( isolate, self, key_obj, self, i::LookupIterator::OWN); Maybe<bool> result = i::JSReceiver::CreateDataProperty(&it, value_obj, i::Object::DONT_THROW); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } Maybe<bool> v8::Object::CreateDataProperty(v8::Local<v8::Context> context, uint32_t index, v8::Local<Value> value) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::CreateDataProperty()", bool); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); i::LookupIterator it(isolate, self, index, self, i::LookupIterator::OWN); Maybe<bool> result = i::JSReceiver::CreateDataProperty(&it, value_obj, i::Object::DONT_THROW); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } Maybe<bool> v8::Object::DefineOwnProperty(v8::Local<v8::Context> context, v8::Local<Name> key, v8::Local<Value> value, v8::PropertyAttribute attributes) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::DefineOwnProperty()", bool); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); i::Handle<i::Name> key_obj = Utils::OpenHandle(*key); i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); if (self->IsAccessCheckNeeded() && !isolate->MayAccess(handle(isolate->context()), i::Handle<i::JSObject>::cast(self))) { isolate->ReportFailedAccessCheck(i::Handle<i::JSObject>::cast(self)); return Nothing<bool>(); } i::PropertyDescriptor desc; desc.set_writable(!(attributes & v8::ReadOnly)); desc.set_enumerable(!(attributes & v8::DontEnum)); desc.set_configurable(!(attributes & v8::DontDelete)); desc.set_value(value_obj); Maybe<bool> success = i::JSReceiver::DefineOwnProperty( isolate, self, key_obj, &desc, i::Object::DONT_THROW); // Even though we said DONT_THROW, there might be accessors that do throw. RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return success; } MUST_USE_RESULT static i::MaybeHandle<i::Object> DefineObjectProperty( i::Handle<i::JSObject> js_object, i::Handle<i::Object> key, i::Handle<i::Object> value, i::PropertyAttributes attrs) { i::Isolate* isolate = js_object->GetIsolate(); bool success = false; i::LookupIterator it = i::LookupIterator::PropertyOrElement( isolate, js_object, key, &success, i::LookupIterator::OWN); if (!success) return i::MaybeHandle<i::Object>(); return i::JSObject::DefineOwnPropertyIgnoreAttributes( &it, value, attrs, i::JSObject::FORCE_FIELD); } Maybe<bool> v8::Object::ForceSet(v8::Local<v8::Context> context, v8::Local<Value> key, v8::Local<Value> value, v8::PropertyAttribute attribs) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::ForceSet()", bool); auto self = i::Handle<i::JSObject>::cast(Utils::OpenHandle(this)); auto key_obj = Utils::OpenHandle(*key); auto value_obj = Utils::OpenHandle(*value); has_pending_exception = DefineObjectProperty(self, key_obj, value_obj, static_cast<i::PropertyAttributes>(attribs)) .is_null(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } bool v8::Object::ForceSet(v8::Local<Value> key, v8::Local<Value> value, v8::PropertyAttribute attribs) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); PREPARE_FOR_EXECUTION_GENERIC(isolate, Local<Context>(), "v8::Object::ForceSet", false, i::HandleScope, false); i::Handle<i::JSObject> self = i::Handle<i::JSObject>::cast(Utils::OpenHandle(this)); i::Handle<i::Object> key_obj = Utils::OpenHandle(*key); i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); has_pending_exception = DefineObjectProperty(self, key_obj, value_obj, static_cast<i::PropertyAttributes>(attribs)) .is_null(); EXCEPTION_BAILOUT_CHECK_SCOPED(isolate, false); return true; } Maybe<bool> v8::Object::SetPrivate(Local<Context> context, Local<Private> key, Local<Value> value) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::SetPrivate()", bool); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(reinterpret_cast<Name*>(*key)); auto value_obj = Utils::OpenHandle(*value); if (self->IsJSProxy()) { i::PropertyDescriptor desc; desc.set_writable(true); desc.set_enumerable(false); desc.set_configurable(true); desc.set_value(value_obj); return i::JSProxy::SetPrivateProperty( isolate, i::Handle<i::JSProxy>::cast(self), i::Handle<i::Symbol>::cast(key_obj), &desc, i::Object::DONT_THROW); } auto js_object = i::Handle<i::JSObject>::cast(self); i::LookupIterator it(js_object, key_obj, js_object); has_pending_exception = i::JSObject::DefineOwnPropertyIgnoreAttributes( &it, value_obj, i::DONT_ENUM) .is_null(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } MaybeLocal<Value> v8::Object::Get(Local<v8::Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION(context, "v8::Object::Get()", Value); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); i::Handle<i::Object> result; has_pending_exception = !i::Runtime::GetObjectProperty(isolate, self, key_obj).ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(Utils::ToLocal(result)); } Local<Value> v8::Object::Get(v8::Local<Value> key) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(Get(context, key), Value); } MaybeLocal<Value> v8::Object::Get(Local<Context> context, uint32_t index) { PREPARE_FOR_EXECUTION(context, "v8::Object::Get()", Value); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; has_pending_exception = !i::JSReceiver::GetElement(isolate, self, index).ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(Utils::ToLocal(result)); } Local<Value> v8::Object::Get(uint32_t index) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(Get(context, index), Value); } MaybeLocal<Value> v8::Object::GetPrivate(Local<Context> context, Local<Private> key) { return Get(context, Local<Value>(reinterpret_cast<Value*>(*key))); } Maybe<PropertyAttribute> v8::Object::GetPropertyAttributes( Local<Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION_PRIMITIVE( context, "v8::Object::GetPropertyAttributes()", PropertyAttribute); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); if (!key_obj->IsName()) { has_pending_exception = !i::Object::ToString(isolate, key_obj).ToHandle(&key_obj); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute); } auto key_name = i::Handle<i::Name>::cast(key_obj); auto result = i::JSReceiver::GetPropertyAttributes(self, key_name); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute); if (result.FromJust() == i::ABSENT) { return Just(static_cast<PropertyAttribute>(i::NONE)); } return Just(static_cast<PropertyAttribute>(result.FromJust())); } PropertyAttribute v8::Object::GetPropertyAttributes(v8::Local<Value> key) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return GetPropertyAttributes(context, key) .FromMaybe(static_cast<PropertyAttribute>(i::NONE)); } MaybeLocal<Value> v8::Object::GetOwnPropertyDescriptor(Local<Context> context, Local<String> key) { PREPARE_FOR_EXECUTION(context, "v8::Object::GetOwnPropertyDescriptor()", Value); i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this); i::Handle<i::String> key_name = Utils::OpenHandle(*key); i::PropertyDescriptor desc; Maybe<bool> found = i::JSReceiver::GetOwnPropertyDescriptor(isolate, obj, key_name, &desc); has_pending_exception = found.IsNothing(); RETURN_ON_FAILED_EXECUTION(Value); if (!found.FromJust()) { return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } RETURN_ESCAPED(Utils::ToLocal(desc.ToObject(isolate))); } Local<Value> v8::Object::GetOwnPropertyDescriptor(Local<String> key) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(GetOwnPropertyDescriptor(context, key), Value); } Local<Value> v8::Object::GetPrototype() { auto isolate = Utils::OpenHandle(this)->GetIsolate(); auto self = Utils::OpenHandle(this); i::PrototypeIterator iter(isolate, self); return Utils::ToLocal(i::PrototypeIterator::GetCurrent(iter)); } Maybe<bool> v8::Object::SetPrototype(Local<Context> context, Local<Value> value) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::SetPrototype()", bool); auto self = Utils::OpenHandle(this); auto value_obj = Utils::OpenHandle(*value); // We do not allow exceptions thrown while setting the prototype // to propagate outside. TryCatch try_catch(reinterpret_cast<v8::Isolate*>(isolate)); auto result = i::JSReceiver::SetPrototype(self, value_obj, false, i::Object::THROW_ON_ERROR); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } bool v8::Object::SetPrototype(Local<Value> value) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return SetPrototype(context, value).FromMaybe(false); } Local<Object> v8::Object::FindInstanceInPrototypeChain( v8::Local<FunctionTemplate> tmpl) { auto isolate = Utils::OpenHandle(this)->GetIsolate(); i::PrototypeIterator iter(isolate, *Utils::OpenHandle(this), i::PrototypeIterator::START_AT_RECEIVER); auto tmpl_info = *Utils::OpenHandle(*tmpl); while (!tmpl_info->IsTemplateFor(iter.GetCurrent())) { iter.Advance(); if (iter.IsAtEnd()) { return Local<Object>(); } } // IsTemplateFor() ensures that iter.GetCurrent() can't be a Proxy here. return Utils::ToLocal(i::handle(iter.GetCurrent<i::JSObject>(), isolate)); } MaybeLocal<Array> v8::Object::GetPropertyNames(Local<Context> context) { PREPARE_FOR_EXECUTION(context, "v8::Object::GetPropertyNames()", Array); auto self = Utils::OpenHandle(this); i::Handle<i::FixedArray> value; has_pending_exception = !i::JSReceiver::GetKeys(self, i::INCLUDE_PROTOS, i::ENUMERABLE_STRINGS) .ToHandle(&value); RETURN_ON_FAILED_EXECUTION(Array); DCHECK(self->map()->EnumLength() == i::kInvalidEnumCacheSentinel || self->map()->EnumLength() == 0 || self->map()->instance_descriptors()->GetEnumCache() != *value); auto result = isolate->factory()->NewJSArrayWithElements(value); RETURN_ESCAPED(Utils::ToLocal(result)); } Local<Array> v8::Object::GetPropertyNames() { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(GetPropertyNames(context), Array); } MaybeLocal<Array> v8::Object::GetOwnPropertyNames(Local<Context> context) { PREPARE_FOR_EXECUTION(context, "v8::Object::GetOwnPropertyNames()", Array); auto self = Utils::OpenHandle(this); i::Handle<i::FixedArray> value; has_pending_exception = !i::JSReceiver::GetKeys(self, i::OWN_ONLY, i::ENUMERABLE_STRINGS) .ToHandle(&value); RETURN_ON_FAILED_EXECUTION(Array); DCHECK(self->map()->EnumLength() == i::kInvalidEnumCacheSentinel || self->map()->EnumLength() == 0 || self->map()->instance_descriptors()->GetEnumCache() != *value); auto result = isolate->factory()->NewJSArrayWithElements(value); RETURN_ESCAPED(Utils::ToLocal(result)); } Local<Array> v8::Object::GetOwnPropertyNames() { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(GetOwnPropertyNames(context), Array); } MaybeLocal<String> v8::Object::ObjectProtoToString(Local<Context> context) { PREPARE_FOR_EXECUTION(context, "v8::Object::ObjectProtoToString", String); auto obj = Utils::OpenHandle(this); Local<String> result; has_pending_exception = !ToLocal<String>(i::JSObject::ObjectProtoToString(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(String); RETURN_ESCAPED(result); } Local<String> v8::Object::ObjectProtoToString() { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(ObjectProtoToString(context), String); } Local<String> v8::Object::GetConstructorName() { auto self = Utils::OpenHandle(this); i::Handle<i::String> name = i::JSReceiver::GetConstructorName(self); return Utils::ToLocal(name); } Maybe<bool> v8::Object::Delete(Local<Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::Delete()", bool); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); Maybe<bool> result = i::Runtime::DeleteObjectProperty(isolate, self, key_obj, i::SLOPPY); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } bool v8::Object::Delete(v8::Local<Value> key) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return Delete(context, key).FromMaybe(false); } Maybe<bool> v8::Object::DeletePrivate(Local<Context> context, Local<Private> key) { return Delete(context, Local<Value>(reinterpret_cast<Value*>(*key))); } Maybe<bool> v8::Object::Has(Local<Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::Get()", bool); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); Maybe<bool> maybe = Nothing<bool>(); // Check if the given key is an array index. uint32_t index = 0; if (key_obj->ToArrayIndex(&index)) { maybe = i::JSReceiver::HasElement(self, index); } else { // Convert the key to a name - possibly by calling back into JavaScript. i::Handle<i::Name> name; if (i::Object::ToName(isolate, key_obj).ToHandle(&name)) { maybe = i::JSReceiver::HasProperty(self, name); } } has_pending_exception = maybe.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return maybe; } bool v8::Object::Has(v8::Local<Value> key) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return Has(context, key).FromMaybe(false); } Maybe<bool> v8::Object::HasPrivate(Local<Context> context, Local<Private> key) { return HasOwnProperty(context, Local<Name>(reinterpret_cast<Name*>(*key))); } Maybe<bool> v8::Object::Delete(Local<Context> context, uint32_t index) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::DeleteProperty()", bool); auto self = Utils::OpenHandle(this); Maybe<bool> result = i::JSReceiver::DeleteElement(self, index); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } bool v8::Object::Delete(uint32_t index) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return Delete(context, index).FromMaybe(false); } Maybe<bool> v8::Object::Has(Local<Context> context, uint32_t index) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::Get()", bool); auto self = Utils::OpenHandle(this); auto maybe = i::JSReceiver::HasElement(self, index); has_pending_exception = maybe.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return maybe; } bool v8::Object::Has(uint32_t index) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return Has(context, index).FromMaybe(false); } template <typename Getter, typename Setter, typename Data> static Maybe<bool> ObjectSetAccessor(Local<Context> context, Object* self, Local<Name> name, Getter getter, Setter setter, Data data, AccessControl settings, PropertyAttribute attributes) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::SetAccessor()", bool); if (!Utils::OpenHandle(self)->IsJSObject()) return Just(false); i::Handle<i::JSObject> obj = i::Handle<i::JSObject>::cast(Utils::OpenHandle(self)); v8::Local<AccessorSignature> signature; auto info = MakeAccessorInfo(name, getter, setter, data, settings, attributes, signature, i::FLAG_disable_old_api_accessors); if (info.is_null()) return Nothing<bool>(); bool fast = obj->HasFastProperties(); i::Handle<i::Object> result; has_pending_exception = !i::JSObject::SetAccessor(obj, info).ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); if (result->IsUndefined()) return Nothing<bool>(); if (fast) { i::JSObject::MigrateSlowToFast(obj, 0, "APISetAccessor"); } return Just(true); } Maybe<bool> Object::SetAccessor(Local<Context> context, Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter, MaybeLocal<Value> data, AccessControl settings, PropertyAttribute attribute) { return ObjectSetAccessor(context, this, name, getter, setter, data.FromMaybe(Local<Value>()), settings, attribute); } bool Object::SetAccessor(Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter, v8::Local<Value> data, AccessControl settings, PropertyAttribute attributes) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return ObjectSetAccessor(context, this, name, getter, setter, data, settings, attributes).FromMaybe(false); } bool Object::SetAccessor(Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter, v8::Local<Value> data, AccessControl settings, PropertyAttribute attributes) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return ObjectSetAccessor(context, this, name, getter, setter, data, settings, attributes).FromMaybe(false); } void Object::SetAccessorProperty(Local<Name> name, Local<Function> getter, Local<Function> setter, PropertyAttribute attribute, AccessControl settings) { // TODO(verwaest): Remove |settings|. DCHECK_EQ(v8::DEFAULT, settings); i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); auto self = Utils::OpenHandle(this); if (!self->IsJSObject()) return; i::Handle<i::Object> getter_i = v8::Utils::OpenHandle(*getter); i::Handle<i::Object> setter_i = v8::Utils::OpenHandle(*setter, true); if (setter_i.is_null()) setter_i = isolate->factory()->null_value(); i::JSObject::DefineAccessor(i::Handle<i::JSObject>::cast(self), v8::Utils::OpenHandle(*name), getter_i, setter_i, static_cast<i::PropertyAttributes>(attribute)); } Maybe<bool> v8::Object::HasOwnProperty(Local<Context> context, Local<Name> key) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::HasOwnProperty()", bool); auto self = Utils::OpenHandle(this); auto key_val = Utils::OpenHandle(*key); auto result = i::JSReceiver::HasOwnProperty(self, key_val); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } bool v8::Object::HasOwnProperty(Local<String> key) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return HasOwnProperty(context, key).FromMaybe(false); } Maybe<bool> v8::Object::HasRealNamedProperty(Local<Context> context, Local<Name> key) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::HasRealNamedProperty()", bool); auto self = Utils::OpenHandle(this); if (!self->IsJSObject()) return Just(false); auto key_val = Utils::OpenHandle(*key); auto result = i::JSObject::HasRealNamedProperty( i::Handle<i::JSObject>::cast(self), key_val); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } bool v8::Object::HasRealNamedProperty(Local<String> key) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return HasRealNamedProperty(context, key).FromMaybe(false); } Maybe<bool> v8::Object::HasRealIndexedProperty(Local<Context> context, uint32_t index) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::HasRealIndexedProperty()", bool); auto self = Utils::OpenHandle(this); if (!self->IsJSObject()) return Just(false); auto result = i::JSObject::HasRealElementProperty( i::Handle<i::JSObject>::cast(self), index); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } bool v8::Object::HasRealIndexedProperty(uint32_t index) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return HasRealIndexedProperty(context, index).FromMaybe(false); } Maybe<bool> v8::Object::HasRealNamedCallbackProperty(Local<Context> context, Local<Name> key) { PREPARE_FOR_EXECUTION_PRIMITIVE( context, "v8::Object::HasRealNamedCallbackProperty()", bool); auto self = Utils::OpenHandle(this); if (!self->IsJSObject()) return Just(false); auto key_val = Utils::OpenHandle(*key); auto result = i::JSObject::HasRealNamedCallbackProperty( i::Handle<i::JSObject>::cast(self), key_val); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } bool v8::Object::HasRealNamedCallbackProperty(Local<String> key) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return HasRealNamedCallbackProperty(context, key).FromMaybe(false); } bool v8::Object::HasNamedLookupInterceptor() { auto self = Utils::OpenHandle(this); return self->IsJSObject() && i::Handle<i::JSObject>::cast(self)->HasNamedInterceptor(); } bool v8::Object::HasIndexedLookupInterceptor() { auto self = Utils::OpenHandle(this); return self->IsJSObject() && i::Handle<i::JSObject>::cast(self)->HasIndexedInterceptor(); } MaybeLocal<Value> v8::Object::GetRealNamedPropertyInPrototypeChain( Local<Context> context, Local<Name> key) { PREPARE_FOR_EXECUTION( context, "v8::Object::GetRealNamedPropertyInPrototypeChain()", Value); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); if (!self->IsJSObject()) return MaybeLocal<Value>(); i::Handle<i::Name> key_obj = Utils::OpenHandle(*key); i::PrototypeIterator iter(isolate, self); if (iter.IsAtEnd()) return MaybeLocal<Value>(); i::Handle<i::JSReceiver> proto = i::PrototypeIterator::GetCurrent<i::JSReceiver>(iter); i::LookupIterator it = i::LookupIterator::PropertyOrElement( isolate, self, key_obj, proto, i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); Local<Value> result; has_pending_exception = !ToLocal<Value>(i::Object::GetProperty(&it), &result); RETURN_ON_FAILED_EXECUTION(Value); if (!it.IsFound()) return MaybeLocal<Value>(); RETURN_ESCAPED(result); } Local<Value> v8::Object::GetRealNamedPropertyInPrototypeChain( Local<String> key) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(GetRealNamedPropertyInPrototypeChain(context, key), Value); } Maybe<PropertyAttribute> v8::Object::GetRealNamedPropertyAttributesInPrototypeChain( Local<Context> context, Local<Name> key) { PREPARE_FOR_EXECUTION_PRIMITIVE( context, "v8::Object::GetRealNamedPropertyAttributesInPrototypeChain()", PropertyAttribute); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); if (!self->IsJSObject()) return Nothing<PropertyAttribute>(); i::Handle<i::Name> key_obj = Utils::OpenHandle(*key); i::PrototypeIterator iter(isolate, self); if (iter.IsAtEnd()) return Nothing<PropertyAttribute>(); i::Handle<i::JSReceiver> proto = i::PrototypeIterator::GetCurrent<i::JSReceiver>(iter); i::LookupIterator it = i::LookupIterator::PropertyOrElement( isolate, self, key_obj, proto, i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); Maybe<i::PropertyAttributes> result = i::JSReceiver::GetPropertyAttributes(&it); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute); if (!it.IsFound()) return Nothing<PropertyAttribute>(); if (result.FromJust() == i::ABSENT) return Just(None); return Just(static_cast<PropertyAttribute>(result.FromJust())); } Maybe<PropertyAttribute> v8::Object::GetRealNamedPropertyAttributesInPrototypeChain(Local<String> key) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return GetRealNamedPropertyAttributesInPrototypeChain(context, key); } MaybeLocal<Value> v8::Object::GetRealNamedProperty(Local<Context> context, Local<Name> key) { PREPARE_FOR_EXECUTION(context, "v8::Object::GetRealNamedProperty()", Value); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); i::LookupIterator it = i::LookupIterator::PropertyOrElement( isolate, self, key_obj, self, i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); Local<Value> result; has_pending_exception = !ToLocal<Value>(i::Object::GetProperty(&it), &result); RETURN_ON_FAILED_EXECUTION(Value); if (!it.IsFound()) return MaybeLocal<Value>(); RETURN_ESCAPED(result); } Local<Value> v8::Object::GetRealNamedProperty(Local<String> key) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(GetRealNamedProperty(context, key), Value); } Maybe<PropertyAttribute> v8::Object::GetRealNamedPropertyAttributes( Local<Context> context, Local<Name> key) { PREPARE_FOR_EXECUTION_PRIMITIVE( context, "v8::Object::GetRealNamedPropertyAttributes()", PropertyAttribute); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); i::LookupIterator it = i::LookupIterator::PropertyOrElement( isolate, self, key_obj, self, i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); auto result = i::JSReceiver::GetPropertyAttributes(&it); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute); if (!it.IsFound()) return Nothing<PropertyAttribute>(); if (result.FromJust() == i::ABSENT) { return Just(static_cast<PropertyAttribute>(i::NONE)); } return Just<PropertyAttribute>( static_cast<PropertyAttribute>(result.FromJust())); } Maybe<PropertyAttribute> v8::Object::GetRealNamedPropertyAttributes( Local<String> key) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); return GetRealNamedPropertyAttributes(context, key); } Local<v8::Object> v8::Object::Clone() { auto self = i::Handle<i::JSObject>::cast(Utils::OpenHandle(this)); auto isolate = self->GetIsolate(); ENTER_V8(isolate); auto result = isolate->factory()->CopyJSObject(self); CHECK(!result.is_null()); return Utils::ToLocal(result); } Local<v8::Context> v8::Object::CreationContext() { auto self = Utils::OpenHandle(this); auto context = handle(self->GetCreationContext()); return Utils::ToLocal(context); } int v8::Object::GetIdentityHash() { auto isolate = Utils::OpenHandle(this)->GetIsolate(); i::HandleScope scope(isolate); auto self = Utils::OpenHandle(this); return i::JSReceiver::GetOrCreateIdentityHash(self)->value(); } bool v8::Object::SetHiddenValue(v8::Local<v8::String> key, v8::Local<v8::Value> value) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); if (!self->IsJSObject()) return false; i::Handle<i::String> key_obj = Utils::OpenHandle(*key); i::Handle<i::String> key_string = isolate->factory()->InternalizeString(key_obj); if (value.IsEmpty()) { i::JSObject::DeleteHiddenProperty(i::Handle<i::JSObject>::cast(self), key_string); return true; } i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); i::Handle<i::Object> result = i::JSObject::SetHiddenProperty( i::Handle<i::JSObject>::cast(self), key_string, value_obj); return *result == *self; } v8::Local<v8::Value> v8::Object::GetHiddenValue(v8::Local<v8::String> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); if (!self->IsJSObject()) return v8::Local<v8::Value>(); i::Handle<i::String> key_obj = Utils::OpenHandle(*key); i::Handle<i::String> key_string = isolate->factory()->InternalizeString(key_obj); i::Handle<i::Object> result( i::Handle<i::JSObject>::cast(self)->GetHiddenProperty(key_string), isolate); if (result->IsTheHole()) return v8::Local<v8::Value>(); return Utils::ToLocal(result); } bool v8::Object::DeleteHiddenValue(v8::Local<v8::String> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); if (!self->IsJSObject()) return false; i::Handle<i::String> key_obj = Utils::OpenHandle(*key); i::Handle<i::String> key_string = isolate->factory()->InternalizeString(key_obj); i::JSObject::DeleteHiddenProperty(i::Handle<i::JSObject>::cast(self), key_string); return true; } bool v8::Object::IsCallable() { auto self = Utils::OpenHandle(this); return self->IsCallable(); } MaybeLocal<Value> Object::CallAsFunction(Local<Context> context, Local<Value> recv, int argc, Local<Value> argv[]) { PREPARE_FOR_EXECUTION_WITH_CALLBACK(context, "v8::Object::CallAsFunction()", Value); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); TRACE_EVENT0("v8", "V8.Execute"); auto self = Utils::OpenHandle(this); auto recv_obj = Utils::OpenHandle(*recv); STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Object**)); i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv); Local<Value> result; has_pending_exception = !ToLocal<Value>( i::Execution::Call(isolate, self, recv_obj, argc, args), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } Local<v8::Value> Object::CallAsFunction(v8::Local<v8::Value> recv, int argc, v8::Local<v8::Value> argv[]) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); Local<Value>* argv_cast = reinterpret_cast<Local<Value>*>(argv); RETURN_TO_LOCAL_UNCHECKED(CallAsFunction(context, recv, argc, argv_cast), Value); } MaybeLocal<Value> Object::CallAsConstructor(Local<Context> context, int argc, Local<Value> argv[]) { PREPARE_FOR_EXECUTION_WITH_CALLBACK(context, "v8::Object::CallAsConstructor()", Value); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); TRACE_EVENT0("v8", "V8.Execute"); auto self = Utils::OpenHandle(this); STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Object**)); i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv); Local<Value> result; has_pending_exception = !ToLocal<Value>( i::Execution::New(isolate, self, self, argc, args), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } Local<v8::Value> Object::CallAsConstructor(int argc, v8::Local<v8::Value> argv[]) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); Local<Value>* argv_cast = reinterpret_cast<Local<Value>*>(argv); RETURN_TO_LOCAL_UNCHECKED(CallAsConstructor(context, argc, argv_cast), Value); } MaybeLocal<Function> Function::New(Local<Context> context, FunctionCallback callback, Local<Value> data, int length) { i::Isolate* isolate = Utils::OpenHandle(*context)->GetIsolate(); LOG_API(isolate, "Function::New"); ENTER_V8(isolate); return FunctionTemplateNew(isolate, callback, nullptr, data, Local<Signature>(), length, true) ->GetFunction(context); } Local<Function> Function::New(Isolate* v8_isolate, FunctionCallback callback, Local<Value> data, int length) { return Function::New(v8_isolate->GetCurrentContext(), callback, data, length) .FromMaybe(Local<Function>()); } Local<v8::Object> Function::NewInstance() const { return NewInstance(Isolate::GetCurrent()->GetCurrentContext(), 0, NULL) .FromMaybe(Local<Object>()); } MaybeLocal<Object> Function::NewInstance(Local<Context> context, int argc, v8::Local<v8::Value> argv[]) const { PREPARE_FOR_EXECUTION_WITH_CALLBACK(context, "v8::Function::NewInstance()", Object); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); TRACE_EVENT0("v8", "V8.Execute"); auto self = Utils::OpenHandle(this); STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Object**)); i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv); Local<Object> result; has_pending_exception = !ToLocal<Object>( i::Execution::New(isolate, self, self, argc, args), &result); RETURN_ON_FAILED_EXECUTION(Object); RETURN_ESCAPED(result); } Local<v8::Object> Function::NewInstance(int argc, v8::Local<v8::Value> argv[]) const { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(NewInstance(context, argc, argv), Object); } MaybeLocal<v8::Value> Function::Call(Local<Context> context, v8::Local<v8::Value> recv, int argc, v8::Local<v8::Value> argv[]) { PREPARE_FOR_EXECUTION_WITH_CALLBACK(context, "v8::Function::Call()", Value); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); TRACE_EVENT0("v8", "V8.Execute"); auto self = Utils::OpenHandle(this); i::Handle<i::Object> recv_obj = Utils::OpenHandle(*recv); STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Object**)); i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv); Local<Value> result; has_pending_exception = !ToLocal<Value>( i::Execution::Call(isolate, self, recv_obj, argc, args), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } Local<v8::Value> Function::Call(v8::Local<v8::Value> recv, int argc, v8::Local<v8::Value> argv[]) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(Call(context, recv, argc, argv), Value); } void Function::SetName(v8::Local<v8::String> name) { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) return; auto func = i::Handle<i::JSFunction>::cast(self); func->shared()->set_name(*Utils::OpenHandle(*name)); } Local<Value> Function::GetName() const { auto self = Utils::OpenHandle(this); if (self->IsJSBoundFunction()) { auto func = i::Handle<i::JSBoundFunction>::cast(self); return Utils::ToLocal(handle(func->name(), func->GetIsolate())); } if (self->IsJSFunction()) { auto func = i::Handle<i::JSFunction>::cast(self); return Utils::ToLocal(handle(func->shared()->name(), func->GetIsolate())); } return ToApiHandle<Primitive>( self->GetIsolate()->factory()->undefined_value()); } Local<Value> Function::GetInferredName() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return ToApiHandle<Primitive>( self->GetIsolate()->factory()->undefined_value()); } auto func = i::Handle<i::JSFunction>::cast(self); return Utils::ToLocal(i::Handle<i::Object>(func->shared()->inferred_name(), func->GetIsolate())); } Local<Value> Function::GetDebugName() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return ToApiHandle<Primitive>( self->GetIsolate()->factory()->undefined_value()); } auto func = i::Handle<i::JSFunction>::cast(self); i::Handle<i::String> name = i::JSFunction::GetDebugName(func); return Utils::ToLocal(i::Handle<i::Object>(*name, name->GetIsolate())); } Local<Value> Function::GetDisplayName() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return ToApiHandle<Primitive>(isolate->factory()->undefined_value()); } auto func = i::Handle<i::JSFunction>::cast(self); i::Handle<i::String> property_name = isolate->factory()->NewStringFromStaticChars("displayName"); i::Handle<i::Object> value = i::JSReceiver::GetDataProperty(func, property_name); if (value->IsString()) { i::Handle<i::String> name = i::Handle<i::String>::cast(value); if (name->length() > 0) return Utils::ToLocal(name); } return ToApiHandle<Primitive>(isolate->factory()->undefined_value()); } ScriptOrigin Function::GetScriptOrigin() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return v8::ScriptOrigin(Local<Value>()); } auto func = i::Handle<i::JSFunction>::cast(self); if (func->shared()->script()->IsScript()) { i::Handle<i::Script> script(i::Script::cast(func->shared()->script())); return GetScriptOriginForScript(func->GetIsolate(), script); } return v8::ScriptOrigin(Local<Value>()); } const int Function::kLineOffsetNotFound = -1; int Function::GetScriptLineNumber() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return kLineOffsetNotFound; } auto func = i::Handle<i::JSFunction>::cast(self); if (func->shared()->script()->IsScript()) { i::Handle<i::Script> script(i::Script::cast(func->shared()->script())); return i::Script::GetLineNumber(script, func->shared()->start_position()); } return kLineOffsetNotFound; } int Function::GetScriptColumnNumber() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return kLineOffsetNotFound; } auto func = i::Handle<i::JSFunction>::cast(self); if (func->shared()->script()->IsScript()) { i::Handle<i::Script> script(i::Script::cast(func->shared()->script())); return i::Script::GetColumnNumber(script, func->shared()->start_position()); } return kLineOffsetNotFound; } bool Function::IsBuiltin() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return false; } auto func = i::Handle<i::JSFunction>::cast(self); return func->shared()->IsBuiltin(); } int Function::ScriptId() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return v8::UnboundScript::kNoScriptId; } auto func = i::Handle<i::JSFunction>::cast(self); if (!func->shared()->script()->IsScript()) { return v8::UnboundScript::kNoScriptId; } i::Handle<i::Script> script(i::Script::cast(func->shared()->script())); return script->id(); } Local<v8::Value> Function::GetBoundFunction() const { auto self = Utils::OpenHandle(this); if (self->IsJSBoundFunction()) { auto bound_function = i::Handle<i::JSBoundFunction>::cast(self); auto bound_target_function = i::handle( bound_function->bound_target_function(), bound_function->GetIsolate()); return Utils::CallableToLocal(bound_target_function); } return v8::Undefined(reinterpret_cast<v8::Isolate*>(self->GetIsolate())); } int Name::GetIdentityHash() { auto self = Utils::OpenHandle(this); return static_cast<int>(self->Hash()); } int String::Length() const { i::Handle<i::String> str = Utils::OpenHandle(this); return str->length(); } bool String::IsOneByte() const { i::Handle<i::String> str = Utils::OpenHandle(this); return str->HasOnlyOneByteChars(); } // Helpers for ContainsOnlyOneByteHelper template<size_t size> struct OneByteMask; template<> struct OneByteMask<4> { static const uint32_t value = 0xFF00FF00; }; template<> struct OneByteMask<8> { static const uint64_t value = V8_2PART_UINT64_C(0xFF00FF00, FF00FF00); }; static const uintptr_t kOneByteMask = OneByteMask<sizeof(uintptr_t)>::value; static const uintptr_t kAlignmentMask = sizeof(uintptr_t) - 1; static inline bool Unaligned(const uint16_t* chars) { return reinterpret_cast<const uintptr_t>(chars) & kAlignmentMask; } static inline const uint16_t* Align(const uint16_t* chars) { return reinterpret_cast<uint16_t*>( reinterpret_cast<uintptr_t>(chars) & ~kAlignmentMask); } class ContainsOnlyOneByteHelper { public: ContainsOnlyOneByteHelper() : is_one_byte_(true) {} bool Check(i::String* string) { i::ConsString* cons_string = i::String::VisitFlat(this, string, 0); if (cons_string == NULL) return is_one_byte_; return CheckCons(cons_string); } void VisitOneByteString(const uint8_t* chars, int length) { // Nothing to do. } void VisitTwoByteString(const uint16_t* chars, int length) { // Accumulated bits. uintptr_t acc = 0; // Align to uintptr_t. const uint16_t* end = chars + length; while (Unaligned(chars) && chars != end) { acc |= *chars++; } // Read word aligned in blocks, // checking the return value at the end of each block. const uint16_t* aligned_end = Align(end); const int increment = sizeof(uintptr_t)/sizeof(uint16_t); const int inner_loops = 16; while (chars + inner_loops*increment < aligned_end) { for (int i = 0; i < inner_loops; i++) { acc |= *reinterpret_cast<const uintptr_t*>(chars); chars += increment; } // Check for early return. if ((acc & kOneByteMask) != 0) { is_one_byte_ = false; return; } } // Read the rest. while (chars != end) { acc |= *chars++; } // Check result. if ((acc & kOneByteMask) != 0) is_one_byte_ = false; } private: bool CheckCons(i::ConsString* cons_string) { while (true) { // Check left side if flat. i::String* left = cons_string->first(); i::ConsString* left_as_cons = i::String::VisitFlat(this, left, 0); if (!is_one_byte_) return false; // Check right side if flat. i::String* right = cons_string->second(); i::ConsString* right_as_cons = i::String::VisitFlat(this, right, 0); if (!is_one_byte_) return false; // Standard recurse/iterate trick. if (left_as_cons != NULL && right_as_cons != NULL) { if (left->length() < right->length()) { CheckCons(left_as_cons); cons_string = right_as_cons; } else { CheckCons(right_as_cons); cons_string = left_as_cons; } // Check fast return. if (!is_one_byte_) return false; continue; } // Descend left in place. if (left_as_cons != NULL) { cons_string = left_as_cons; continue; } // Descend right in place. if (right_as_cons != NULL) { cons_string = right_as_cons; continue; } // Terminate. break; } return is_one_byte_; } bool is_one_byte_; DISALLOW_COPY_AND_ASSIGN(ContainsOnlyOneByteHelper); }; bool String::ContainsOnlyOneByte() const { i::Handle<i::String> str = Utils::OpenHandle(this); if (str->HasOnlyOneByteChars()) return true; ContainsOnlyOneByteHelper helper; return helper.Check(*str); } class Utf8LengthHelper : public i::AllStatic { public: enum State { kEndsWithLeadingSurrogate = 1 << 0, kStartsWithTrailingSurrogate = 1 << 1, kLeftmostEdgeIsCalculated = 1 << 2, kRightmostEdgeIsCalculated = 1 << 3, kLeftmostEdgeIsSurrogate = 1 << 4, kRightmostEdgeIsSurrogate = 1 << 5 }; static const uint8_t kInitialState = 0; static inline bool EndsWithSurrogate(uint8_t state) { return state & kEndsWithLeadingSurrogate; } static inline bool StartsWithSurrogate(uint8_t state) { return state & kStartsWithTrailingSurrogate; } class Visitor { public: Visitor() : utf8_length_(0), state_(kInitialState) {} void VisitOneByteString(const uint8_t* chars, int length) { int utf8_length = 0; // Add in length 1 for each non-Latin1 character. for (int i = 0; i < length; i++) { utf8_length += *chars++ >> 7; } // Add in length 1 for each character. utf8_length_ = utf8_length + length; state_ = kInitialState; } void VisitTwoByteString(const uint16_t* chars, int length) { int utf8_length = 0; int last_character = unibrow::Utf16::kNoPreviousCharacter; for (int i = 0; i < length; i++) { uint16_t c = chars[i]; utf8_length += unibrow::Utf8::Length(c, last_character); last_character = c; } utf8_length_ = utf8_length; uint8_t state = 0; if (unibrow::Utf16::IsTrailSurrogate(chars[0])) { state |= kStartsWithTrailingSurrogate; } if (unibrow::Utf16::IsLeadSurrogate(chars[length-1])) { state |= kEndsWithLeadingSurrogate; } state_ = state; } static i::ConsString* VisitFlat(i::String* string, int* length, uint8_t* state) { Visitor visitor; i::ConsString* cons_string = i::String::VisitFlat(&visitor, string); *length = visitor.utf8_length_; *state = visitor.state_; return cons_string; } private: int utf8_length_; uint8_t state_; DISALLOW_COPY_AND_ASSIGN(Visitor); }; static inline void MergeLeafLeft(int* length, uint8_t* state, uint8_t leaf_state) { bool edge_surrogate = StartsWithSurrogate(leaf_state); if (!(*state & kLeftmostEdgeIsCalculated)) { DCHECK(!(*state & kLeftmostEdgeIsSurrogate)); *state |= kLeftmostEdgeIsCalculated | (edge_surrogate ? kLeftmostEdgeIsSurrogate : 0); } else if (EndsWithSurrogate(*state) && edge_surrogate) { *length -= unibrow::Utf8::kBytesSavedByCombiningSurrogates; } if (EndsWithSurrogate(leaf_state)) { *state |= kEndsWithLeadingSurrogate; } else { *state &= ~kEndsWithLeadingSurrogate; } } static inline void MergeLeafRight(int* length, uint8_t* state, uint8_t leaf_state) { bool edge_surrogate = EndsWithSurrogate(leaf_state); if (!(*state & kRightmostEdgeIsCalculated)) { DCHECK(!(*state & kRightmostEdgeIsSurrogate)); *state |= (kRightmostEdgeIsCalculated | (edge_surrogate ? kRightmostEdgeIsSurrogate : 0)); } else if (edge_surrogate && StartsWithSurrogate(*state)) { *length -= unibrow::Utf8::kBytesSavedByCombiningSurrogates; } if (StartsWithSurrogate(leaf_state)) { *state |= kStartsWithTrailingSurrogate; } else { *state &= ~kStartsWithTrailingSurrogate; } } static inline void MergeTerminal(int* length, uint8_t state, uint8_t* state_out) { DCHECK((state & kLeftmostEdgeIsCalculated) && (state & kRightmostEdgeIsCalculated)); if (EndsWithSurrogate(state) && StartsWithSurrogate(state)) { *length -= unibrow::Utf8::kBytesSavedByCombiningSurrogates; } *state_out = kInitialState | (state & kLeftmostEdgeIsSurrogate ? kStartsWithTrailingSurrogate : 0) | (state & kRightmostEdgeIsSurrogate ? kEndsWithLeadingSurrogate : 0); } static int Calculate(i::ConsString* current, uint8_t* state_out) { using internal::ConsString; int total_length = 0; uint8_t state = kInitialState; while (true) { i::String* left = current->first(); i::String* right = current->second(); uint8_t right_leaf_state; uint8_t left_leaf_state; int leaf_length; ConsString* left_as_cons = Visitor::VisitFlat(left, &leaf_length, &left_leaf_state); if (left_as_cons == NULL) { total_length += leaf_length; MergeLeafLeft(&total_length, &state, left_leaf_state); } ConsString* right_as_cons = Visitor::VisitFlat(right, &leaf_length, &right_leaf_state); if (right_as_cons == NULL) { total_length += leaf_length; MergeLeafRight(&total_length, &state, right_leaf_state); if (left_as_cons != NULL) { // 1 Leaf node. Descend in place. current = left_as_cons; continue; } else { // Terminal node. MergeTerminal(&total_length, state, state_out); return total_length; } } else if (left_as_cons == NULL) { // 1 Leaf node. Descend in place. current = right_as_cons; continue; } // Both strings are ConsStrings. // Recurse on smallest. if (left->length() < right->length()) { total_length += Calculate(left_as_cons, &left_leaf_state); MergeLeafLeft(&total_length, &state, left_leaf_state); current = right_as_cons; } else { total_length += Calculate(right_as_cons, &right_leaf_state); MergeLeafRight(&total_length, &state, right_leaf_state); current = left_as_cons; } } UNREACHABLE(); return 0; } static inline int Calculate(i::ConsString* current) { uint8_t state = kInitialState; return Calculate(current, &state); } private: DISALLOW_IMPLICIT_CONSTRUCTORS(Utf8LengthHelper); }; static int Utf8Length(i::String* str, i::Isolate* isolate) { int length = str->length(); if (length == 0) return 0; uint8_t state; i::ConsString* cons_string = Utf8LengthHelper::Visitor::VisitFlat(str, &length, &state); if (cons_string == NULL) return length; return Utf8LengthHelper::Calculate(cons_string); } int String::Utf8Length() const { i::Handle<i::String> str = Utils::OpenHandle(this); i::Isolate* isolate = str->GetIsolate(); return v8::Utf8Length(*str, isolate); } class Utf8WriterVisitor { public: Utf8WriterVisitor( char* buffer, int capacity, bool skip_capacity_check, bool replace_invalid_utf8) : early_termination_(false), last_character_(unibrow::Utf16::kNoPreviousCharacter), buffer_(buffer), start_(buffer), capacity_(capacity), skip_capacity_check_(capacity == -1 || skip_capacity_check), replace_invalid_utf8_(replace_invalid_utf8), utf16_chars_read_(0) { } static int WriteEndCharacter(uint16_t character, int last_character, int remaining, char* const buffer, bool replace_invalid_utf8) { DCHECK_GT(remaining, 0); // We can't use a local buffer here because Encode needs to modify // previous characters in the stream. We know, however, that // exactly one character will be advanced. if (unibrow::Utf16::IsSurrogatePair(last_character, character)) { int written = unibrow::Utf8::Encode(buffer, character, last_character, replace_invalid_utf8); DCHECK_EQ(written, 1); return written; } // Use a scratch buffer to check the required characters. char temp_buffer[unibrow::Utf8::kMaxEncodedSize]; // Can't encode using last_character as gcc has array bounds issues. int written = unibrow::Utf8::Encode(temp_buffer, character, unibrow::Utf16::kNoPreviousCharacter, replace_invalid_utf8); // Won't fit. if (written > remaining) return 0; // Copy over the character from temp_buffer. for (int j = 0; j < written; j++) { buffer[j] = temp_buffer[j]; } return written; } // Visit writes out a group of code units (chars) of a v8::String to the // internal buffer_. This is done in two phases. The first phase calculates a // pesimistic estimate (writable_length) on how many code units can be safely // written without exceeding the buffer capacity and without writing the last // code unit (it could be a lead surrogate). The estimated number of code // units is then written out in one go, and the reported byte usage is used // to correct the estimate. This is repeated until the estimate becomes <= 0 // or all code units have been written out. The second phase writes out code // units until the buffer capacity is reached, would be exceeded by the next // unit, or all units have been written out. template<typename Char> void Visit(const Char* chars, const int length) { DCHECK(!early_termination_); if (length == 0) return; // Copy state to stack. char* buffer = buffer_; int last_character = sizeof(Char) == 1 ? unibrow::Utf16::kNoPreviousCharacter : last_character_; int i = 0; // Do a fast loop where there is no exit capacity check. while (true) { int fast_length; if (skip_capacity_check_) { fast_length = length; } else { int remaining_capacity = capacity_ - static_cast<int>(buffer - start_); // Need enough space to write everything but one character. STATIC_ASSERT(unibrow::Utf16::kMaxExtraUtf8BytesForOneUtf16CodeUnit == 3); int max_size_per_char = sizeof(Char) == 1 ? 2 : 3; int writable_length = (remaining_capacity - max_size_per_char)/max_size_per_char; // Need to drop into slow loop. if (writable_length <= 0) break; fast_length = i + writable_length; if (fast_length > length) fast_length = length; } // Write the characters to the stream. if (sizeof(Char) == 1) { for (; i < fast_length; i++) { buffer += unibrow::Utf8::EncodeOneByte( buffer, static_cast<uint8_t>(*chars++)); DCHECK(capacity_ == -1 || (buffer - start_) <= capacity_); } } else { for (; i < fast_length; i++) { uint16_t character = *chars++; buffer += unibrow::Utf8::Encode(buffer, character, last_character, replace_invalid_utf8_); last_character = character; DCHECK(capacity_ == -1 || (buffer - start_) <= capacity_); } } // Array is fully written. Exit. if (fast_length == length) { // Write state back out to object. last_character_ = last_character; buffer_ = buffer; utf16_chars_read_ += length; return; } } DCHECK(!skip_capacity_check_); // Slow loop. Must check capacity on each iteration. int remaining_capacity = capacity_ - static_cast<int>(buffer - start_); DCHECK_GE(remaining_capacity, 0); for (; i < length && remaining_capacity > 0; i++) { uint16_t character = *chars++; // remaining_capacity is <= 3 bytes at this point, so we do not write out // an umatched lead surrogate. if (replace_invalid_utf8_ && unibrow::Utf16::IsLeadSurrogate(character)) { early_termination_ = true; break; } int written = WriteEndCharacter(character, last_character, remaining_capacity, buffer, replace_invalid_utf8_); if (written == 0) { early_termination_ = true; break; } buffer += written; remaining_capacity -= written; last_character = character; } // Write state back out to object. last_character_ = last_character; buffer_ = buffer; utf16_chars_read_ += i; } inline bool IsDone() { return early_termination_; } inline void VisitOneByteString(const uint8_t* chars, int length) { Visit(chars, length); } inline void VisitTwoByteString(const uint16_t* chars, int length) { Visit(chars, length); } int CompleteWrite(bool write_null, int* utf16_chars_read_out) { // Write out number of utf16 characters written to the stream. if (utf16_chars_read_out != NULL) { *utf16_chars_read_out = utf16_chars_read_; } // Only null terminate if all of the string was written and there's space. if (write_null && !early_termination_ && (capacity_ == -1 || (buffer_ - start_) < capacity_)) { *buffer_++ = '\0'; } return static_cast<int>(buffer_ - start_); } private: bool early_termination_; int last_character_; char* buffer_; char* const start_; int capacity_; bool const skip_capacity_check_; bool const replace_invalid_utf8_; int utf16_chars_read_; DISALLOW_IMPLICIT_CONSTRUCTORS(Utf8WriterVisitor); }; static bool RecursivelySerializeToUtf8(i::String* current, Utf8WriterVisitor* writer, int recursion_budget) { while (!writer->IsDone()) { i::ConsString* cons_string = i::String::VisitFlat(writer, current); if (cons_string == NULL) return true; // Leaf node. if (recursion_budget <= 0) return false; // Must write the left branch first. i::String* first = cons_string->first(); bool success = RecursivelySerializeToUtf8(first, writer, recursion_budget - 1); if (!success) return false; // Inline tail recurse for right branch. current = cons_string->second(); } return true; } int String::WriteUtf8(char* buffer, int capacity, int* nchars_ref, int options) const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); LOG_API(isolate, "String::WriteUtf8"); ENTER_V8(isolate); i::Handle<i::String> str = Utils::OpenHandle(this); if (options & HINT_MANY_WRITES_EXPECTED) { str = i::String::Flatten(str); // Flatten the string for efficiency. } const int string_length = str->length(); bool write_null = !(options & NO_NULL_TERMINATION); bool replace_invalid_utf8 = (options & REPLACE_INVALID_UTF8); int max16BitCodeUnitSize = unibrow::Utf8::kMax16BitCodeUnitSize; // First check if we can just write the string without checking capacity. if (capacity == -1 || capacity / max16BitCodeUnitSize >= string_length) { Utf8WriterVisitor writer(buffer, capacity, true, replace_invalid_utf8); const int kMaxRecursion = 100; bool success = RecursivelySerializeToUtf8(*str, &writer, kMaxRecursion); if (success) return writer.CompleteWrite(write_null, nchars_ref); } else if (capacity >= string_length) { // First check that the buffer is large enough. int utf8_bytes = v8::Utf8Length(*str, str->GetIsolate()); if (utf8_bytes <= capacity) { // one-byte fast path. if (utf8_bytes == string_length) { WriteOneByte(reinterpret_cast<uint8_t*>(buffer), 0, capacity, options); if (nchars_ref != NULL) *nchars_ref = string_length; if (write_null && (utf8_bytes+1 <= capacity)) { return string_length + 1; } return string_length; } if (write_null && (utf8_bytes+1 > capacity)) { options |= NO_NULL_TERMINATION; } // Recurse once without a capacity limit. // This will get into the first branch above. // TODO(dcarney) Check max left rec. in Utf8Length and fall through. return WriteUtf8(buffer, -1, nchars_ref, options); } } // Recursive slow path can potentially be unreasonable slow. Flatten. str = i::String::Flatten(str); Utf8WriterVisitor writer(buffer, capacity, false, replace_invalid_utf8); i::String::VisitFlat(&writer, *str); return writer.CompleteWrite(write_null, nchars_ref); } template<typename CharType> static inline int WriteHelper(const String* string, CharType* buffer, int start, int length, int options) { i::Isolate* isolate = Utils::OpenHandle(string)->GetIsolate(); LOG_API(isolate, "String::Write"); ENTER_V8(isolate); DCHECK(start >= 0 && length >= -1); i::Handle<i::String> str = Utils::OpenHandle(string); if (options & String::HINT_MANY_WRITES_EXPECTED) { // Flatten the string for efficiency. This applies whether we are // using StringCharacterStream or Get(i) to access the characters. str = i::String::Flatten(str); } int end = start + length; if ((length == -1) || (length > str->length() - start) ) end = str->length(); if (end < 0) return 0; i::String::WriteToFlat(*str, buffer, start, end); if (!(options & String::NO_NULL_TERMINATION) && (length == -1 || end - start < length)) { buffer[end - start] = '\0'; } return end - start; } int String::WriteOneByte(uint8_t* buffer, int start, int length, int options) const { return WriteHelper(this, buffer, start, length, options); } int String::Write(uint16_t* buffer, int start, int length, int options) const { return WriteHelper(this, buffer, start, length, options); } bool v8::String::IsExternal() const { i::Handle<i::String> str = Utils::OpenHandle(this); return i::StringShape(*str).IsExternalTwoByte(); } bool v8::String::IsExternalOneByte() const { i::Handle<i::String> str = Utils::OpenHandle(this); return i::StringShape(*str).IsExternalOneByte(); } void v8::String::VerifyExternalStringResource( v8::String::ExternalStringResource* value) const { i::Handle<i::String> str = Utils::OpenHandle(this); const v8::String::ExternalStringResource* expected; if (i::StringShape(*str).IsExternalTwoByte()) { const void* resource = i::Handle<i::ExternalTwoByteString>::cast(str)->resource(); expected = reinterpret_cast<const ExternalStringResource*>(resource); } else { expected = NULL; } CHECK_EQ(expected, value); } void v8::String::VerifyExternalStringResourceBase( v8::String::ExternalStringResourceBase* value, Encoding encoding) const { i::Handle<i::String> str = Utils::OpenHandle(this); const v8::String::ExternalStringResourceBase* expected; Encoding expectedEncoding; if (i::StringShape(*str).IsExternalOneByte()) { const void* resource = i::Handle<i::ExternalOneByteString>::cast(str)->resource(); expected = reinterpret_cast<const ExternalStringResourceBase*>(resource); expectedEncoding = ONE_BYTE_ENCODING; } else if (i::StringShape(*str).IsExternalTwoByte()) { const void* resource = i::Handle<i::ExternalTwoByteString>::cast(str)->resource(); expected = reinterpret_cast<const ExternalStringResourceBase*>(resource); expectedEncoding = TWO_BYTE_ENCODING; } else { expected = NULL; expectedEncoding = str->IsOneByteRepresentation() ? ONE_BYTE_ENCODING : TWO_BYTE_ENCODING; } CHECK_EQ(expected, value); CHECK_EQ(expectedEncoding, encoding); } const v8::String::ExternalOneByteStringResource* v8::String::GetExternalOneByteStringResource() const { i::Handle<i::String> str = Utils::OpenHandle(this); if (i::StringShape(*str).IsExternalOneByte()) { const void* resource = i::Handle<i::ExternalOneByteString>::cast(str)->resource(); return reinterpret_cast<const ExternalOneByteStringResource*>(resource); } else { return NULL; } } Local<Value> Symbol::Name() const { i::Handle<i::Symbol> sym = Utils::OpenHandle(this); i::Handle<i::Object> name(sym->name(), sym->GetIsolate()); return Utils::ToLocal(name); } Local<Value> Private::Name() const { return reinterpret_cast<const Symbol*>(this)->Name(); } double Number::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->Number(); } bool Boolean::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->IsTrue(); } int64_t Integer::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) { return i::Smi::cast(*obj)->value(); } else { return static_cast<int64_t>(obj->Number()); } } int32_t Int32::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) { return i::Smi::cast(*obj)->value(); } else { return static_cast<int32_t>(obj->Number()); } } uint32_t Uint32::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) { return i::Smi::cast(*obj)->value(); } else { return static_cast<uint32_t>(obj->Number()); } } int v8::Object::InternalFieldCount() { i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); if (!self->IsJSObject()) return 0; return i::Handle<i::JSObject>::cast(self)->GetInternalFieldCount(); } static bool InternalFieldOK(i::Handle<i::JSReceiver> obj, int index, const char* location) { return Utils::ApiCheck( obj->IsJSObject() && (index < i::Handle<i::JSObject>::cast(obj)->GetInternalFieldCount()), location, "Internal field out of bounds"); } Local<Value> v8::Object::SlowGetInternalField(int index) { i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this); const char* location = "v8::Object::GetInternalField()"; if (!InternalFieldOK(obj, index, location)) return Local<Value>(); i::Handle<i::Object> value( i::Handle<i::JSObject>::cast(obj)->GetInternalField(index), obj->GetIsolate()); return Utils::ToLocal(value); } void v8::Object::SetInternalField(int index, v8::Local<Value> value) { i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this); const char* location = "v8::Object::SetInternalField()"; if (!InternalFieldOK(obj, index, location)) return; i::Handle<i::Object> val = Utils::OpenHandle(*value); i::Handle<i::JSObject>::cast(obj)->SetInternalField(index, *val); } void* v8::Object::SlowGetAlignedPointerFromInternalField(int index) { i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this); const char* location = "v8::Object::GetAlignedPointerFromInternalField()"; if (!InternalFieldOK(obj, index, location)) return NULL; return DecodeSmiToAligned( i::Handle<i::JSObject>::cast(obj)->GetInternalField(index), location); } void v8::Object::SetAlignedPointerInInternalField(int index, void* value) { i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this); const char* location = "v8::Object::SetAlignedPointerInInternalField()"; if (!InternalFieldOK(obj, index, location)) return; i::Handle<i::JSObject>::cast(obj) ->SetInternalField(index, EncodeAlignedAsSmi(value, location)); DCHECK_EQ(value, GetAlignedPointerFromInternalField(index)); } static void* ExternalValue(i::Object* obj) { // Obscure semantics for undefined, but somehow checked in our unit tests... if (obj->IsUndefined()) return NULL; i::Object* foreign = i::JSObject::cast(obj)->GetInternalField(0); return i::Foreign::cast(foreign)->foreign_address(); } // --- E n v i r o n m e n t --- void v8::V8::InitializePlatform(Platform* platform) { i::V8::InitializePlatform(platform); } void v8::V8::ShutdownPlatform() { i::V8::ShutdownPlatform(); } bool v8::V8::Initialize() { i::V8::Initialize(); #ifdef V8_USE_EXTERNAL_STARTUP_DATA i::ReadNatives(); #endif return true; } void v8::V8::SetEntropySource(EntropySource entropy_source) { base::RandomNumberGenerator::SetEntropySource(entropy_source); } void v8::V8::SetReturnAddressLocationResolver( ReturnAddressLocationResolver return_address_resolver) { i::StackFrame::SetReturnAddressLocationResolver(return_address_resolver); } bool v8::V8::Dispose() { i::V8::TearDown(); #ifdef V8_USE_EXTERNAL_STARTUP_DATA i::DisposeNatives(); #endif return true; } HeapStatistics::HeapStatistics(): total_heap_size_(0), total_heap_size_executable_(0), total_physical_size_(0), used_heap_size_(0), heap_size_limit_(0) { } HeapSpaceStatistics::HeapSpaceStatistics(): space_name_(0), space_size_(0), space_used_size_(0), space_available_size_(0), physical_space_size_(0) { } HeapObjectStatistics::HeapObjectStatistics() : object_type_(nullptr), object_sub_type_(nullptr), object_count_(0), object_size_(0) {} bool v8::V8::InitializeICU(const char* icu_data_file) { return i::InitializeICU(icu_data_file); } void v8::V8::InitializeExternalStartupData(const char* directory_path) { i::InitializeExternalStartupData(directory_path); } void v8::V8::InitializeExternalStartupData(const char* natives_blob, const char* snapshot_blob) { i::InitializeExternalStartupData(natives_blob, snapshot_blob); } const char* v8::V8::GetVersion() { return i::Version::GetVersion(); } static i::Handle<i::Context> CreateEnvironment( i::Isolate* isolate, v8::ExtensionConfiguration* extensions, v8::Local<ObjectTemplate> global_template, v8::Local<Value> maybe_global_proxy) { i::Handle<i::Context> env; // Enter V8 via an ENTER_V8 scope. { ENTER_V8(isolate); v8::Local<ObjectTemplate> proxy_template = global_template; i::Handle<i::FunctionTemplateInfo> proxy_constructor; i::Handle<i::FunctionTemplateInfo> global_constructor; if (!global_template.IsEmpty()) { // Make sure that the global_template has a constructor. global_constructor = EnsureConstructor(isolate, *global_template); // Create a fresh template for the global proxy object. proxy_template = ObjectTemplate::New( reinterpret_cast<v8::Isolate*>(isolate)); proxy_constructor = EnsureConstructor(isolate, *proxy_template); // Set the global template to be the prototype template of // global proxy template. proxy_constructor->set_prototype_template( *Utils::OpenHandle(*global_template)); // Migrate security handlers from global_template to // proxy_template. Temporarily removing access check // information from the global template. if (!global_constructor->access_check_info()->IsUndefined()) { proxy_constructor->set_access_check_info( global_constructor->access_check_info()); proxy_constructor->set_needs_access_check( global_constructor->needs_access_check()); global_constructor->set_needs_access_check(false); global_constructor->set_access_check_info( isolate->heap()->undefined_value()); } } i::Handle<i::Object> proxy = Utils::OpenHandle(*maybe_global_proxy, true); i::MaybeHandle<i::JSGlobalProxy> maybe_proxy; if (!proxy.is_null()) { maybe_proxy = i::Handle<i::JSGlobalProxy>::cast(proxy); } // Create the environment. env = isolate->bootstrapper()->CreateEnvironment( maybe_proxy, proxy_template, extensions); // Restore the access check info on the global template. if (!global_template.IsEmpty()) { DCHECK(!global_constructor.is_null()); DCHECK(!proxy_constructor.is_null()); global_constructor->set_access_check_info( proxy_constructor->access_check_info()); global_constructor->set_needs_access_check( proxy_constructor->needs_access_check()); } } // Leave V8. return env; } Local<Context> v8::Context::New(v8::Isolate* external_isolate, v8::ExtensionConfiguration* extensions, v8::Local<ObjectTemplate> global_template, v8::Local<Value> global_object) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate); LOG_API(isolate, "Context::New"); i::HandleScope scope(isolate); ExtensionConfiguration no_extensions; if (extensions == NULL) extensions = &no_extensions; i::Handle<i::Context> env = CreateEnvironment(isolate, extensions, global_template, global_object); if (env.is_null()) { if (isolate->has_pending_exception()) { isolate->OptionalRescheduleException(true); } return Local<Context>(); } return Utils::ToLocal(scope.CloseAndEscape(env)); } void v8::Context::SetSecurityToken(Local<Value> token) { i::Handle<i::Context> env = Utils::OpenHandle(this); i::Handle<i::Object> token_handle = Utils::OpenHandle(*token); env->set_security_token(*token_handle); } void v8::Context::UseDefaultSecurityToken() { i::Handle<i::Context> env = Utils::OpenHandle(this); env->set_security_token(env->global_object()); } Local<Value> v8::Context::GetSecurityToken() { i::Handle<i::Context> env = Utils::OpenHandle(this); i::Isolate* isolate = env->GetIsolate(); i::Object* security_token = env->security_token(); i::Handle<i::Object> token_handle(security_token, isolate); return Utils::ToLocal(token_handle); } v8::Isolate* Context::GetIsolate() { i::Handle<i::Context> env = Utils::OpenHandle(this); return reinterpret_cast<Isolate*>(env->GetIsolate()); } v8::Local<v8::Object> Context::Global() { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); i::Handle<i::Object> global(context->global_proxy(), isolate); // TODO(dcarney): This should always return the global proxy // but can't presently as calls to GetProtoype will return the wrong result. if (i::Handle<i::JSGlobalProxy>::cast( global)->IsDetachedFrom(context->global_object())) { global = i::Handle<i::Object>(context->global_object(), isolate); } return Utils::ToLocal(i::Handle<i::JSObject>::cast(global)); } void Context::DetachGlobal() { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); ENTER_V8(isolate); isolate->bootstrapper()->DetachGlobal(context); } Local<v8::Object> Context::GetExtrasBindingObject() { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); i::Handle<i::JSObject> binding(context->extras_binding_object(), isolate); return Utils::ToLocal(binding); } void Context::AllowCodeGenerationFromStrings(bool allow) { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); ENTER_V8(isolate); context->set_allow_code_gen_from_strings( allow ? isolate->heap()->true_value() : isolate->heap()->false_value()); } bool Context::IsCodeGenerationFromStringsAllowed() { i::Handle<i::Context> context = Utils::OpenHandle(this); return !context->allow_code_gen_from_strings()->IsFalse(); } void Context::SetErrorMessageForCodeGenerationFromStrings(Local<String> error) { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Handle<i::String> error_handle = Utils::OpenHandle(*error); context->set_error_message_for_code_gen_from_strings(*error_handle); } size_t Context::EstimatedSize() { return static_cast<size_t>( i::ContextMeasure(*Utils::OpenHandle(this)).Size()); } MaybeLocal<v8::Object> ObjectTemplate::NewInstance(Local<Context> context) { PREPARE_FOR_EXECUTION(context, "v8::ObjectTemplate::NewInstance()", Object); auto self = Utils::OpenHandle(this); Local<Object> result; has_pending_exception = !ToLocal<Object>(i::ApiNatives::InstantiateObject(self), &result); RETURN_ON_FAILED_EXECUTION(Object); RETURN_ESCAPED(result); } Local<v8::Object> ObjectTemplate::NewInstance() { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(NewInstance(context), Object); } MaybeLocal<v8::Function> FunctionTemplate::GetFunction(Local<Context> context) { PREPARE_FOR_EXECUTION(context, "v8::FunctionTemplate::GetFunction()", Function); auto self = Utils::OpenHandle(this); Local<Function> result; has_pending_exception = !ToLocal<Function>(i::ApiNatives::InstantiateFunction(self), &result); RETURN_ON_FAILED_EXECUTION(Function); RETURN_ESCAPED(result); } Local<v8::Function> FunctionTemplate::GetFunction() { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(GetFunction(context), Function); } bool FunctionTemplate::HasInstance(v8::Local<v8::Value> value) { auto self = Utils::OpenHandle(this); auto obj = Utils::OpenHandle(*value); return self->IsTemplateFor(*obj); } Local<External> v8::External::New(Isolate* isolate, void* value) { STATIC_ASSERT(sizeof(value) == sizeof(i::Address)); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "External::New"); ENTER_V8(i_isolate); i::Handle<i::JSObject> external = i_isolate->factory()->NewExternal(value); return Utils::ExternalToLocal(external); } void* External::Value() const { return ExternalValue(*Utils::OpenHandle(this)); } // anonymous namespace for string creation helper functions namespace { inline int StringLength(const char* string) { return i::StrLength(string); } inline int StringLength(const uint8_t* string) { return i::StrLength(reinterpret_cast<const char*>(string)); } inline int StringLength(const uint16_t* string) { int length = 0; while (string[length] != '\0') length++; return length; } MUST_USE_RESULT inline i::MaybeHandle<i::String> NewString(i::Factory* factory, v8::NewStringType type, i::Vector<const char> string) { if (type == v8::NewStringType::kInternalized) { return factory->InternalizeUtf8String(string); } return factory->NewStringFromUtf8(string); } MUST_USE_RESULT inline i::MaybeHandle<i::String> NewString(i::Factory* factory, v8::NewStringType type, i::Vector<const uint8_t> string) { if (type == v8::NewStringType::kInternalized) { return factory->InternalizeOneByteString(string); } return factory->NewStringFromOneByte(string); } MUST_USE_RESULT inline i::MaybeHandle<i::String> NewString(i::Factory* factory, v8::NewStringType type, i::Vector<const uint16_t> string) { if (type == v8::NewStringType::kInternalized) { return factory->InternalizeTwoByteString(string); } return factory->NewStringFromTwoByte(string); } STATIC_ASSERT(v8::String::kMaxLength == i::String::kMaxLength); template <typename Char> inline MaybeLocal<String> NewString(Isolate* v8_isolate, const char* location, const char* env, const Char* data, v8::NewStringType type, int length) { i::Isolate* isolate = reinterpret_cast<internal::Isolate*>(v8_isolate); if (length == 0) return String::Empty(v8_isolate); // TODO(dcarney): throw a context free exception. if (length > i::String::kMaxLength) return MaybeLocal<String>(); ENTER_V8(isolate); LOG_API(isolate, env); if (length < 0) length = StringLength(data); i::Handle<i::String> result = NewString(isolate->factory(), type, i::Vector<const Char>(data, length)) .ToHandleChecked(); return Utils::ToLocal(result); } } // anonymous namespace Local<String> String::NewFromUtf8(Isolate* isolate, const char* data, NewStringType type, int length) { RETURN_TO_LOCAL_UNCHECKED( NewString(isolate, "v8::String::NewFromUtf8()", "String::NewFromUtf8", data, static_cast<v8::NewStringType>(type), length), String); } MaybeLocal<String> String::NewFromUtf8(Isolate* isolate, const char* data, v8::NewStringType type, int length) { return NewString(isolate, "v8::String::NewFromUtf8()", "String::NewFromUtf8", data, type, length); } Local<String> String::NewFromOneByte(Isolate* isolate, const uint8_t* data, NewStringType type, int length) { RETURN_TO_LOCAL_UNCHECKED( NewString(isolate, "v8::String::NewFromOneByte()", "String::NewFromOneByte", data, static_cast<v8::NewStringType>(type), length), String); } MaybeLocal<String> String::NewFromOneByte(Isolate* isolate, const uint8_t* data, v8::NewStringType type, int length) { return NewString(isolate, "v8::String::NewFromOneByte()", "String::NewFromOneByte", data, type, length); } Local<String> String::NewFromTwoByte(Isolate* isolate, const uint16_t* data, NewStringType type, int length) { RETURN_TO_LOCAL_UNCHECKED( NewString(isolate, "v8::String::NewFromTwoByte()", "String::NewFromTwoByte", data, static_cast<v8::NewStringType>(type), length), String); } MaybeLocal<String> String::NewFromTwoByte(Isolate* isolate, const uint16_t* data, v8::NewStringType type, int length) { return NewString(isolate, "v8::String::NewFromTwoByte()", "String::NewFromTwoByte", data, type, length); } Local<String> v8::String::Concat(Local<String> left, Local<String> right) { i::Handle<i::String> left_string = Utils::OpenHandle(*left); i::Isolate* isolate = left_string->GetIsolate(); ENTER_V8(isolate); LOG_API(isolate, "v8::String::Concat"); i::Handle<i::String> right_string = Utils::OpenHandle(*right); // If we are steering towards a range error, do not wait for the error to be // thrown, and return the null handle instead. if (left_string->length() + right_string->length() > i::String::kMaxLength) { return Local<String>(); } i::Handle<i::String> result = isolate->factory()->NewConsString( left_string, right_string).ToHandleChecked(); return Utils::ToLocal(result); } MaybeLocal<String> v8::String::NewExternalTwoByte( Isolate* isolate, v8::String::ExternalStringResource* resource) { CHECK(resource && resource->data()); // TODO(dcarney): throw a context free exception. if (resource->length() > static_cast<size_t>(i::String::kMaxLength)) { return MaybeLocal<String>(); } i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8(i_isolate); LOG_API(i_isolate, "String::NewExternalTwoByte"); i::Handle<i::String> string = i_isolate->factory() ->NewExternalStringFromTwoByte(resource) .ToHandleChecked(); i_isolate->heap()->RegisterExternalString(*string); return Utils::ToLocal(string); } Local<String> v8::String::NewExternal( Isolate* isolate, v8::String::ExternalStringResource* resource) { RETURN_TO_LOCAL_UNCHECKED(NewExternalTwoByte(isolate, resource), String); } MaybeLocal<String> v8::String::NewExternalOneByte( Isolate* isolate, v8::String::ExternalOneByteStringResource* resource) { CHECK(resource && resource->data()); // TODO(dcarney): throw a context free exception. if (resource->length() > static_cast<size_t>(i::String::kMaxLength)) { return MaybeLocal<String>(); } i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8(i_isolate); LOG_API(i_isolate, "String::NewExternalOneByte"); i::Handle<i::String> string = i_isolate->factory() ->NewExternalStringFromOneByte(resource) .ToHandleChecked(); i_isolate->heap()->RegisterExternalString(*string); return Utils::ToLocal(string); } Local<String> v8::String::NewExternal( Isolate* isolate, v8::String::ExternalOneByteStringResource* resource) { RETURN_TO_LOCAL_UNCHECKED(NewExternalOneByte(isolate, resource), String); } bool v8::String::MakeExternal(v8::String::ExternalStringResource* resource) { i::Handle<i::String> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); if (i::StringShape(*obj).IsExternal()) { return false; // Already an external string. } ENTER_V8(isolate); if (isolate->heap()->IsInGCPostProcessing()) { return false; } CHECK(resource && resource->data()); bool result = obj->MakeExternal(resource); // Assert that if CanMakeExternal(), then externalizing actually succeeds. DCHECK(!CanMakeExternal() || result); if (result) { DCHECK(obj->IsExternalString()); isolate->heap()->RegisterExternalString(*obj); } return result; } bool v8::String::MakeExternal( v8::String::ExternalOneByteStringResource* resource) { i::Handle<i::String> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); if (i::StringShape(*obj).IsExternal()) { return false; // Already an external string. } ENTER_V8(isolate); if (isolate->heap()->IsInGCPostProcessing()) { return false; } CHECK(resource && resource->data()); bool result = obj->MakeExternal(resource); // Assert that if CanMakeExternal(), then externalizing actually succeeds. DCHECK(!CanMakeExternal() || result); if (result) { DCHECK(obj->IsExternalString()); isolate->heap()->RegisterExternalString(*obj); } return result; } bool v8::String::CanMakeExternal() { i::Handle<i::String> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); // Old space strings should be externalized. if (!isolate->heap()->new_space()->Contains(*obj)) return true; int size = obj->Size(); // Byte size of the original string. if (size <= i::ExternalString::kShortSize) return false; i::StringShape shape(*obj); return !shape.IsExternal(); } Isolate* v8::Object::GetIsolate() { i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate(); return reinterpret_cast<Isolate*>(i_isolate); } Local<v8::Object> v8::Object::New(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Object::New"); ENTER_V8(i_isolate); i::Handle<i::JSObject> obj = i_isolate->factory()->NewJSObject(i_isolate->object_function()); return Utils::ToLocal(obj); } Local<v8::Value> v8::NumberObject::New(Isolate* isolate, double value) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "NumberObject::New"); ENTER_V8(i_isolate); i::Handle<i::Object> number = i_isolate->factory()->NewNumber(value); i::Handle<i::Object> obj = i::Object::ToObject(i_isolate, number).ToHandleChecked(); return Utils::ToLocal(obj); } double v8::NumberObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj); i::Isolate* isolate = jsvalue->GetIsolate(); LOG_API(isolate, "NumberObject::NumberValue"); return jsvalue->value()->Number(); } Local<v8::Value> v8::BooleanObject::New(Isolate* isolate, bool value) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "BooleanObject::New"); ENTER_V8(i_isolate); i::Handle<i::Object> boolean(value ? i_isolate->heap()->true_value() : i_isolate->heap()->false_value(), i_isolate); i::Handle<i::Object> obj = i::Object::ToObject(i_isolate, boolean).ToHandleChecked(); return Utils::ToLocal(obj); } Local<v8::Value> v8::BooleanObject::New(bool value) { return New(Isolate::GetCurrent(), value); } bool v8::BooleanObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj); i::Isolate* isolate = jsvalue->GetIsolate(); LOG_API(isolate, "BooleanObject::BooleanValue"); return jsvalue->value()->IsTrue(); } Local<v8::Value> v8::StringObject::New(Local<String> value) { i::Handle<i::String> string = Utils::OpenHandle(*value); i::Isolate* isolate = string->GetIsolate(); LOG_API(isolate, "StringObject::New"); ENTER_V8(isolate); i::Handle<i::Object> obj = i::Object::ToObject(isolate, string).ToHandleChecked(); return Utils::ToLocal(obj); } Local<v8::String> v8::StringObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj); i::Isolate* isolate = jsvalue->GetIsolate(); LOG_API(isolate, "StringObject::StringValue"); return Utils::ToLocal( i::Handle<i::String>(i::String::cast(jsvalue->value()))); } Local<v8::Value> v8::SymbolObject::New(Isolate* isolate, Local<Symbol> value) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "SymbolObject::New"); ENTER_V8(i_isolate); i::Handle<i::Object> obj = i::Object::ToObject( i_isolate, Utils::OpenHandle(*value)).ToHandleChecked(); return Utils::ToLocal(obj); } Local<v8::Symbol> v8::SymbolObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj); i::Isolate* isolate = jsvalue->GetIsolate(); LOG_API(isolate, "SymbolObject::SymbolValue"); return Utils::ToLocal( i::Handle<i::Symbol>(i::Symbol::cast(jsvalue->value()))); } MaybeLocal<v8::Value> v8::Date::New(Local<Context> context, double time) { if (std::isnan(time)) { // Introduce only canonical NaN value into the VM, to avoid signaling NaNs. time = std::numeric_limits<double>::quiet_NaN(); } PREPARE_FOR_EXECUTION(context, "Date::New", Value); Local<Value> result; has_pending_exception = !ToLocal<Value>( i::JSDate::New(isolate->date_function(), isolate->date_function(), time), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } Local<v8::Value> v8::Date::New(Isolate* isolate, double time) { auto context = isolate->GetCurrentContext(); RETURN_TO_LOCAL_UNCHECKED(New(context, time), Value); } double v8::Date::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSDate> jsdate = i::Handle<i::JSDate>::cast(obj); i::Isolate* isolate = jsdate->GetIsolate(); LOG_API(isolate, "Date::NumberValue"); return jsdate->value()->Number(); } void v8::Date::DateTimeConfigurationChangeNotification(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Date::DateTimeConfigurationChangeNotification"); ENTER_V8(i_isolate); i_isolate->date_cache()->ResetDateCache(); if (!i_isolate->eternal_handles()->Exists( i::EternalHandles::DATE_CACHE_VERSION)) { return; } i::Handle<i::FixedArray> date_cache_version = i::Handle<i::FixedArray>::cast(i_isolate->eternal_handles()->GetSingleton( i::EternalHandles::DATE_CACHE_VERSION)); DCHECK_EQ(1, date_cache_version->length()); CHECK(date_cache_version->get(0)->IsSmi()); date_cache_version->set( 0, i::Smi::FromInt(i::Smi::cast(date_cache_version->get(0))->value() + 1)); } MaybeLocal<v8::RegExp> v8::RegExp::New(Local<Context> context, Local<String> pattern, Flags flags) { PREPARE_FOR_EXECUTION(context, "RegExp::New", RegExp); Local<v8::RegExp> result; has_pending_exception = !ToLocal<RegExp>(i::JSRegExp::New(Utils::OpenHandle(*pattern), static_cast<i::JSRegExp::Flags>(flags)), &result); RETURN_ON_FAILED_EXECUTION(RegExp); RETURN_ESCAPED(result); } Local<v8::RegExp> v8::RegExp::New(Local<String> pattern, Flags flags) { auto isolate = reinterpret_cast<Isolate*>(Utils::OpenHandle(*pattern)->GetIsolate()); auto context = isolate->GetCurrentContext(); RETURN_TO_LOCAL_UNCHECKED(New(context, pattern, flags), RegExp); } Local<v8::String> v8::RegExp::GetSource() const { i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this); return Utils::ToLocal(i::Handle<i::String>(obj->Pattern())); } // Assert that the static flags cast in GetFlags is valid. #define REGEXP_FLAG_ASSERT_EQ(flag) \ STATIC_ASSERT(static_cast<int>(v8::RegExp::flag) == \ static_cast<int>(i::JSRegExp::flag)) REGEXP_FLAG_ASSERT_EQ(kNone); REGEXP_FLAG_ASSERT_EQ(kGlobal); REGEXP_FLAG_ASSERT_EQ(kIgnoreCase); REGEXP_FLAG_ASSERT_EQ(kMultiline); REGEXP_FLAG_ASSERT_EQ(kSticky); REGEXP_FLAG_ASSERT_EQ(kUnicode); #undef REGEXP_FLAG_ASSERT_EQ v8::RegExp::Flags v8::RegExp::GetFlags() const { i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this); return RegExp::Flags(static_cast<int>(obj->GetFlags())); } Local<v8::Array> v8::Array::New(Isolate* isolate, int length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Array::New"); ENTER_V8(i_isolate); int real_length = length > 0 ? length : 0; i::Handle<i::JSArray> obj = i_isolate->factory()->NewJSArray(real_length); i::Handle<i::Object> length_obj = i_isolate->factory()->NewNumberFromInt(real_length); obj->set_length(*length_obj); return Utils::ToLocal(obj); } uint32_t v8::Array::Length() const { i::Handle<i::JSArray> obj = Utils::OpenHandle(this); i::Object* length = obj->length(); if (length->IsSmi()) { return i::Smi::cast(length)->value(); } else { return static_cast<uint32_t>(length->Number()); } } MaybeLocal<Object> Array::CloneElementAt(Local<Context> context, uint32_t index) { PREPARE_FOR_EXECUTION(context, "v8::Array::CloneElementAt()", Object); auto self = Utils::OpenHandle(this); if (!self->HasFastObjectElements()) return Local<Object>(); i::FixedArray* elms = i::FixedArray::cast(self->elements()); i::Object* paragon = elms->get(index); if (!paragon->IsJSObject()) return Local<Object>(); i::Handle<i::JSObject> paragon_handle(i::JSObject::cast(paragon)); Local<Object> result; has_pending_exception = !ToLocal<Object>(isolate->factory()->CopyJSObject(paragon_handle), &result); RETURN_ON_FAILED_EXECUTION(Object); RETURN_ESCAPED(result); } Local<Object> Array::CloneElementAt(uint32_t index) { return Local<Object>(); } Local<v8::Map> v8::Map::New(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Map::New"); ENTER_V8(i_isolate); i::Handle<i::JSMap> obj = i_isolate->factory()->NewJSMap(); return Utils::ToLocal(obj); } size_t v8::Map::Size() const { i::Handle<i::JSMap> obj = Utils::OpenHandle(this); return i::OrderedHashMap::cast(obj->table())->NumberOfElements(); } void Map::Clear() { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); LOG_API(isolate, "Map::Clear"); ENTER_V8(isolate); i::JSMap::Clear(self); } MaybeLocal<Value> Map::Get(Local<Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION(context, "Map::Get", Value); auto self = Utils::OpenHandle(this); Local<Value> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !ToLocal<Value>(i::Execution::Call(isolate, isolate->map_get(), self, arraysize(argv), argv), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } MaybeLocal<Map> Map::Set(Local<Context> context, Local<Value> key, Local<Value> value) { PREPARE_FOR_EXECUTION(context, "Map::Set", Map); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key), Utils::OpenHandle(*value)}; has_pending_exception = !i::Execution::Call(isolate, isolate->map_set(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Map); RETURN_ESCAPED(Local<Map>::Cast(Utils::ToLocal(result))); } Maybe<bool> Map::Has(Local<Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Map::Has", bool); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !i::Execution::Call(isolate, isolate->map_has(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(result->IsTrue()); } Maybe<bool> Map::Delete(Local<Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Map::Delete", bool); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !i::Execution::Call(isolate, isolate->map_delete(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(result->IsTrue()); } Local<Array> Map::AsArray() const { i::Handle<i::JSMap> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); i::Factory* factory = isolate->factory(); LOG_API(isolate, "Map::AsArray"); ENTER_V8(isolate); i::Handle<i::OrderedHashMap> table(i::OrderedHashMap::cast(obj->table())); int size = table->NumberOfElements(); int length = size * 2; i::Handle<i::FixedArray> result = factory->NewFixedArray(length); for (int i = 0; i < size; ++i) { if (table->KeyAt(i)->IsTheHole()) continue; result->set(i * 2, table->KeyAt(i)); result->set(i * 2 + 1, table->ValueAt(i)); } i::Handle<i::JSArray> result_array = factory->NewJSArrayWithElements(result, i::FAST_ELEMENTS, length); return Utils::ToLocal(result_array); } Local<v8::Set> v8::Set::New(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Set::New"); ENTER_V8(i_isolate); i::Handle<i::JSSet> obj = i_isolate->factory()->NewJSSet(); return Utils::ToLocal(obj); } size_t v8::Set::Size() const { i::Handle<i::JSSet> obj = Utils::OpenHandle(this); return i::OrderedHashSet::cast(obj->table())->NumberOfElements(); } void Set::Clear() { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); LOG_API(isolate, "Set::Clear"); ENTER_V8(isolate); i::JSSet::Clear(self); } MaybeLocal<Set> Set::Add(Local<Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION(context, "Set::Add", Set); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !i::Execution::Call(isolate, isolate->set_add(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Set); RETURN_ESCAPED(Local<Set>::Cast(Utils::ToLocal(result))); } Maybe<bool> Set::Has(Local<Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Set::Has", bool); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !i::Execution::Call(isolate, isolate->set_has(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(result->IsTrue()); } Maybe<bool> Set::Delete(Local<Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Set::Delete", bool); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !i::Execution::Call(isolate, isolate->set_delete(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(result->IsTrue()); } Local<Array> Set::AsArray() const { i::Handle<i::JSSet> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); i::Factory* factory = isolate->factory(); LOG_API(isolate, "Set::AsArray"); ENTER_V8(isolate); i::Handle<i::OrderedHashSet> table(i::OrderedHashSet::cast(obj->table())); int length = table->NumberOfElements(); i::Handle<i::FixedArray> result = factory->NewFixedArray(length); for (int i = 0; i < length; ++i) { i::Object* key = table->KeyAt(i); if (!key->IsTheHole()) { result->set(i, key); } } i::Handle<i::JSArray> result_array = factory->NewJSArrayWithElements(result, i::FAST_ELEMENTS, length); return Utils::ToLocal(result_array); } MaybeLocal<Promise::Resolver> Promise::Resolver::New(Local<Context> context) { PREPARE_FOR_EXECUTION(context, "Promise::Resolver::New", Resolver); i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call(isolate, isolate->promise_create(), isolate->factory()->undefined_value(), 0, NULL) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Promise::Resolver); RETURN_ESCAPED(Local<Promise::Resolver>::Cast(Utils::ToLocal(result))); } Local<Promise::Resolver> Promise::Resolver::New(Isolate* isolate) { RETURN_TO_LOCAL_UNCHECKED(New(isolate->GetCurrentContext()), Promise::Resolver); } Local<Promise> Promise::Resolver::GetPromise() { i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this); return Local<Promise>::Cast(Utils::ToLocal(promise)); } Maybe<bool> Promise::Resolver::Resolve(Local<Context> context, Local<Value> value) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Promise::Resolver::Resolve", bool); auto self = Utils::OpenHandle(this); i::Handle<i::Object> argv[] = {self, Utils::OpenHandle(*value)}; has_pending_exception = i::Execution::Call(isolate, isolate->promise_resolve(), isolate->factory()->undefined_value(), arraysize(argv), argv) .is_null(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } void Promise::Resolver::Resolve(Local<Value> value) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); USE(Resolve(context, value)); } Maybe<bool> Promise::Resolver::Reject(Local<Context> context, Local<Value> value) { PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Promise::Resolver::Resolve", bool); auto self = Utils::OpenHandle(this); i::Handle<i::Object> argv[] = {self, Utils::OpenHandle(*value)}; has_pending_exception = i::Execution::Call(isolate, isolate->promise_reject(), isolate->factory()->undefined_value(), arraysize(argv), argv) .is_null(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } void Promise::Resolver::Reject(Local<Value> value) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); USE(Reject(context, value)); } namespace { MaybeLocal<Promise> DoChain(Value* value, Local<Context> context, Local<Function> handler) { PREPARE_FOR_EXECUTION(context, "Promise::Chain", Promise); auto self = Utils::OpenHandle(value); i::Handle<i::Object> argv[] = {Utils::OpenHandle(*handler)}; i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call(isolate, isolate->promise_chain(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Promise); RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result))); } } // namespace MaybeLocal<Promise> Promise::Chain(Local<Context> context, Local<Function> handler) { return DoChain(this, context, handler); } Local<Promise> Promise::Chain(Local<Function> handler) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(DoChain(this, context, handler), Promise); } MaybeLocal<Promise> Promise::Catch(Local<Context> context, Local<Function> handler) { PREPARE_FOR_EXECUTION(context, "Promise::Catch", Promise); auto self = Utils::OpenHandle(this); i::Handle<i::Object> argv[] = { Utils::OpenHandle(*handler) }; i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call(isolate, isolate->promise_catch(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Promise); RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result))); } Local<Promise> Promise::Catch(Local<Function> handler) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(Catch(context, handler), Promise); } MaybeLocal<Promise> Promise::Then(Local<Context> context, Local<Function> handler) { PREPARE_FOR_EXECUTION(context, "Promise::Then", Promise); auto self = Utils::OpenHandle(this); i::Handle<i::Object> argv[] = { Utils::OpenHandle(*handler) }; i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call(isolate, isolate->promise_then(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Promise); RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result))); } Local<Promise> Promise::Then(Local<Function> handler) { auto context = ContextFromHeapObject(Utils::OpenHandle(this)); RETURN_TO_LOCAL_UNCHECKED(Then(context, handler), Promise); } bool Promise::HasHandler() { i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this); i::Isolate* isolate = promise->GetIsolate(); LOG_API(isolate, "Promise::HasRejectHandler"); ENTER_V8(isolate); i::Handle<i::Symbol> key = isolate->factory()->promise_has_handler_symbol(); return i::JSReceiver::GetDataProperty(promise, key)->IsTrue(); } Local<Object> Proxy::GetTarget() { i::Handle<i::JSProxy> self = Utils::OpenHandle(this); i::Handle<i::JSReceiver> target(self->target()); return Utils::ToLocal(target); } Local<Value> Proxy::GetHandler() { i::Handle<i::JSProxy> self = Utils::OpenHandle(this); i::Handle<i::Object> handler(self->handler(), self->GetIsolate()); return Utils::ToLocal(handler); } bool Proxy::IsRevoked() { i::Handle<i::JSProxy> self = Utils::OpenHandle(this); return self->IsRevoked(); } void Proxy::Revoke() { i::Handle<i::JSProxy> self = Utils::OpenHandle(this); i::JSProxy::Revoke(self); } MaybeLocal<Proxy> Proxy::New(Local<Context> context, Local<Object> local_target, Local<Object> local_handler) { PREPARE_FOR_EXECUTION(context, "Proxy::New", Proxy); i::Handle<i::JSReceiver> target = Utils::OpenHandle(*local_target); i::Handle<i::JSReceiver> handler = Utils::OpenHandle(*local_handler); Local<Proxy> result; has_pending_exception = !ToLocal<Proxy>(i::JSProxy::New(isolate, target, handler), &result); RETURN_ON_FAILED_EXECUTION(Proxy); RETURN_ESCAPED(result); } bool v8::ArrayBuffer::IsExternal() const { return Utils::OpenHandle(this)->is_external(); } bool v8::ArrayBuffer::IsNeuterable() const { return Utils::OpenHandle(this)->is_neuterable(); } v8::ArrayBuffer::Contents v8::ArrayBuffer::Externalize() { i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); Utils::ApiCheck(!self->is_external(), "v8::ArrayBuffer::Externalize", "ArrayBuffer already externalized"); self->set_is_external(true); isolate->heap()->UnregisterArrayBuffer(*self); return GetContents(); } v8::ArrayBuffer::Contents v8::ArrayBuffer::GetContents() { i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this); size_t byte_length = static_cast<size_t>(self->byte_length()->Number()); Contents contents; contents.data_ = self->backing_store(); contents.byte_length_ = byte_length; return contents; } void v8::ArrayBuffer::Neuter() { i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); Utils::ApiCheck(obj->is_external(), "v8::ArrayBuffer::Neuter", "Only externalized ArrayBuffers can be neutered"); Utils::ApiCheck(obj->is_neuterable(), "v8::ArrayBuffer::Neuter", "Only neuterable ArrayBuffers can be neutered"); LOG_API(obj->GetIsolate(), "v8::ArrayBuffer::Neuter()"); ENTER_V8(isolate); obj->Neuter(); } size_t v8::ArrayBuffer::ByteLength() const { i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this); return static_cast<size_t>(obj->byte_length()->Number()); } Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, size_t byte_length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "v8::ArrayBuffer::New(size_t)"); ENTER_V8(i_isolate); i::Handle<i::JSArrayBuffer> obj = i_isolate->factory()->NewJSArrayBuffer(i::SharedFlag::kNotShared); i::JSArrayBuffer::SetupAllocatingData(obj, i_isolate, byte_length); return Utils::ToLocal(obj); } Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, void* data, size_t byte_length, ArrayBufferCreationMode mode) { // Embedders must guarantee that the external backing store is valid. CHECK(byte_length == 0 || data != NULL); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "v8::ArrayBuffer::New(void*, size_t)"); ENTER_V8(i_isolate); i::Handle<i::JSArrayBuffer> obj = i_isolate->factory()->NewJSArrayBuffer(i::SharedFlag::kNotShared); i::JSArrayBuffer::Setup(obj, i_isolate, mode == ArrayBufferCreationMode::kExternalized, data, byte_length); return Utils::ToLocal(obj); } Local<ArrayBuffer> v8::ArrayBufferView::Buffer() { i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this); i::Handle<i::JSArrayBuffer> buffer; if (obj->IsJSDataView()) { i::Handle<i::JSDataView> data_view(i::JSDataView::cast(*obj)); DCHECK(data_view->buffer()->IsJSArrayBuffer()); buffer = i::handle(i::JSArrayBuffer::cast(data_view->buffer())); } else { DCHECK(obj->IsJSTypedArray()); buffer = i::JSTypedArray::cast(*obj)->GetBuffer(); } return Utils::ToLocal(buffer); } size_t v8::ArrayBufferView::CopyContents(void* dest, size_t byte_length) { i::Handle<i::JSArrayBufferView> self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); size_t byte_offset = i::NumberToSize(isolate, self->byte_offset()); size_t bytes_to_copy = i::Min(byte_length, i::NumberToSize(isolate, self->byte_length())); if (bytes_to_copy) { i::DisallowHeapAllocation no_gc; i::Handle<i::JSArrayBuffer> buffer(i::JSArrayBuffer::cast(self->buffer())); const char* source = reinterpret_cast<char*>(buffer->backing_store()); if (source == nullptr) { DCHECK(self->IsJSTypedArray()); i::Handle<i::JSTypedArray> typed_array(i::JSTypedArray::cast(*self)); i::Handle<i::FixedTypedArrayBase> fixed_array( i::FixedTypedArrayBase::cast(typed_array->elements())); source = reinterpret_cast<char*>(fixed_array->DataPtr()); } memcpy(dest, source + byte_offset, bytes_to_copy); } return bytes_to_copy; } bool v8::ArrayBufferView::HasBuffer() const { i::Handle<i::JSArrayBufferView> self = Utils::OpenHandle(this); i::Handle<i::JSArrayBuffer> buffer(i::JSArrayBuffer::cast(self->buffer())); return buffer->backing_store() != nullptr; } size_t v8::ArrayBufferView::ByteOffset() { i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this); return static_cast<size_t>(obj->byte_offset()->Number()); } size_t v8::ArrayBufferView::ByteLength() { i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this); return static_cast<size_t>(obj->byte_length()->Number()); } size_t v8::TypedArray::Length() { i::Handle<i::JSTypedArray> obj = Utils::OpenHandle(this); return static_cast<size_t>(obj->length_value()); } #define TYPED_ARRAY_NEW(Type, type, TYPE, ctype, size) \ Local<Type##Array> Type##Array::New(Local<ArrayBuffer> array_buffer, \ size_t byte_offset, size_t length) { \ i::Isolate* isolate = Utils::OpenHandle(*array_buffer)->GetIsolate(); \ LOG_API(isolate, \ "v8::" #Type "Array::New(Local<ArrayBuffer>, size_t, size_t)"); \ ENTER_V8(isolate); \ if (!Utils::ApiCheck(length <= static_cast<size_t>(i::Smi::kMaxValue), \ "v8::" #Type \ "Array::New(Local<ArrayBuffer>, size_t, size_t)", \ "length exceeds max allowed value")) { \ return Local<Type##Array>(); \ } \ i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer); \ i::Handle<i::JSTypedArray> obj = isolate->factory()->NewJSTypedArray( \ i::kExternal##Type##Array, buffer, byte_offset, length); \ return Utils::ToLocal##Type##Array(obj); \ } \ Local<Type##Array> Type##Array::New( \ Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, \ size_t length) { \ CHECK(i::FLAG_harmony_sharedarraybuffer); \ i::Isolate* isolate = \ Utils::OpenHandle(*shared_array_buffer)->GetIsolate(); \ LOG_API(isolate, "v8::" #Type \ "Array::New(Local<SharedArrayBuffer>, size_t, size_t)"); \ ENTER_V8(isolate); \ if (!Utils::ApiCheck( \ length <= static_cast<size_t>(i::Smi::kMaxValue), \ "v8::" #Type \ "Array::New(Local<SharedArrayBuffer>, size_t, size_t)", \ "length exceeds max allowed value")) { \ return Local<Type##Array>(); \ } \ i::Handle<i::JSArrayBuffer> buffer = \ Utils::OpenHandle(*shared_array_buffer); \ i::Handle<i::JSTypedArray> obj = isolate->factory()->NewJSTypedArray( \ i::kExternal##Type##Array, buffer, byte_offset, length); \ return Utils::ToLocal##Type##Array(obj); \ } TYPED_ARRAYS(TYPED_ARRAY_NEW) #undef TYPED_ARRAY_NEW Local<DataView> DataView::New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t byte_length) { i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer); i::Isolate* isolate = buffer->GetIsolate(); LOG_API(isolate, "v8::DataView::New(Local<ArrayBuffer>, size_t, size_t)"); ENTER_V8(isolate); i::Handle<i::JSDataView> obj = isolate->factory()->NewJSDataView(buffer, byte_offset, byte_length); return Utils::ToLocal(obj); } Local<DataView> DataView::New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t byte_length) { CHECK(i::FLAG_harmony_sharedarraybuffer); i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*shared_array_buffer); i::Isolate* isolate = buffer->GetIsolate(); LOG_API(isolate, "v8::DataView::New(Local<SharedArrayBuffer>, size_t, size_t)"); ENTER_V8(isolate); i::Handle<i::JSDataView> obj = isolate->factory()->NewJSDataView(buffer, byte_offset, byte_length); return Utils::ToLocal(obj); } bool v8::SharedArrayBuffer::IsExternal() const { return Utils::OpenHandle(this)->is_external(); } v8::SharedArrayBuffer::Contents v8::SharedArrayBuffer::Externalize() { i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); Utils::ApiCheck(!self->is_external(), "v8::SharedArrayBuffer::Externalize", "SharedArrayBuffer already externalized"); self->set_is_external(true); isolate->heap()->UnregisterArrayBuffer(*self); return GetContents(); } v8::SharedArrayBuffer::Contents v8::SharedArrayBuffer::GetContents() { i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this); size_t byte_length = static_cast<size_t>(self->byte_length()->Number()); Contents contents; contents.data_ = self->backing_store(); contents.byte_length_ = byte_length; return contents; } size_t v8::SharedArrayBuffer::ByteLength() const { i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this); return static_cast<size_t>(obj->byte_length()->Number()); } Local<SharedArrayBuffer> v8::SharedArrayBuffer::New(Isolate* isolate, size_t byte_length) { CHECK(i::FLAG_harmony_sharedarraybuffer); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "v8::SharedArrayBuffer::New(size_t)"); ENTER_V8(i_isolate); i::Handle<i::JSArrayBuffer> obj = i_isolate->factory()->NewJSArrayBuffer(i::SharedFlag::kShared); i::JSArrayBuffer::SetupAllocatingData(obj, i_isolate, byte_length, true, i::SharedFlag::kShared); return Utils::ToLocalShared(obj); } Local<SharedArrayBuffer> v8::SharedArrayBuffer::New( Isolate* isolate, void* data, size_t byte_length, ArrayBufferCreationMode mode) { CHECK(i::FLAG_harmony_sharedarraybuffer); // Embedders must guarantee that the external backing store is valid. CHECK(byte_length == 0 || data != NULL); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "v8::SharedArrayBuffer::New(void*, size_t)"); ENTER_V8(i_isolate); i::Handle<i::JSArrayBuffer> obj = i_isolate->factory()->NewJSArrayBuffer(i::SharedFlag::kShared); i::JSArrayBuffer::Setup(obj, i_isolate, mode == ArrayBufferCreationMode::kExternalized, data, byte_length, i::SharedFlag::kShared); return Utils::ToLocalShared(obj); } Local<Symbol> v8::Symbol::New(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Symbol::New()"); ENTER_V8(i_isolate); i::Handle<i::Symbol> result = i_isolate->factory()->NewSymbol(); if (!name.IsEmpty()) result->set_name(*Utils::OpenHandle(*name)); return Utils::ToLocal(result); } static i::Handle<i::Symbol> SymbolFor(i::Isolate* isolate, i::Handle<i::String> name, i::Handle<i::String> part, bool private_symbol) { i::Handle<i::JSObject> registry = isolate->GetSymbolRegistry(); i::Handle<i::JSObject> symbols = i::Handle<i::JSObject>::cast( i::Object::GetPropertyOrElement(registry, part).ToHandleChecked()); i::Handle<i::Object> symbol = i::Object::GetPropertyOrElement(symbols, name).ToHandleChecked(); if (!symbol->IsSymbol()) { DCHECK(symbol->IsUndefined()); if (private_symbol) symbol = isolate->factory()->NewPrivateSymbol(); else symbol = isolate->factory()->NewSymbol(); i::Handle<i::Symbol>::cast(symbol)->set_name(*name); i::JSObject::SetProperty(symbols, name, symbol, i::STRICT).Assert(); } return i::Handle<i::Symbol>::cast(symbol); } Local<Symbol> v8::Symbol::For(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::String> i_name = Utils::OpenHandle(*name); i::Handle<i::String> part = i_isolate->factory()->for_string(); return Utils::ToLocal(SymbolFor(i_isolate, i_name, part, false)); } Local<Symbol> v8::Symbol::ForApi(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::String> i_name = Utils::OpenHandle(*name); i::Handle<i::String> part = i_isolate->factory()->for_api_string(); return Utils::ToLocal(SymbolFor(i_isolate, i_name, part, false)); } Local<Symbol> v8::Symbol::GetIterator(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); return Utils::ToLocal(i_isolate->factory()->iterator_symbol()); } Local<Symbol> v8::Symbol::GetUnscopables(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); return Utils::ToLocal(i_isolate->factory()->unscopables_symbol()); } Local<Symbol> v8::Symbol::GetToStringTag(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); return Utils::ToLocal(i_isolate->factory()->to_string_tag_symbol()); } Local<Symbol> v8::Symbol::GetIsConcatSpreadable(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); return Utils::ToLocal(i_isolate->factory()->is_concat_spreadable_symbol()); } Local<Private> v8::Private::New(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Private::New()"); ENTER_V8(i_isolate); i::Handle<i::Symbol> symbol = i_isolate->factory()->NewPrivateSymbol(); if (!name.IsEmpty()) symbol->set_name(*Utils::OpenHandle(*name)); Local<Symbol> result = Utils::ToLocal(symbol); return v8::Local<Private>(reinterpret_cast<Private*>(*result)); } Local<Private> v8::Private::ForApi(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::String> i_name = Utils::OpenHandle(*name); i::Handle<i::String> part = i_isolate->factory()->private_api_string(); Local<Symbol> result = Utils::ToLocal(SymbolFor(i_isolate, i_name, part, true)); return v8::Local<Private>(reinterpret_cast<Private*>(*result)); } Local<Number> v8::Number::New(Isolate* isolate, double value) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); if (std::isnan(value)) { // Introduce only canonical NaN value into the VM, to avoid signaling NaNs. value = std::numeric_limits<double>::quiet_NaN(); } ENTER_V8(internal_isolate); i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value); return Utils::NumberToLocal(result); } Local<Integer> v8::Integer::New(Isolate* isolate, int32_t value) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); if (i::Smi::IsValid(value)) { return Utils::IntegerToLocal(i::Handle<i::Object>(i::Smi::FromInt(value), internal_isolate)); } ENTER_V8(internal_isolate); i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value); return Utils::IntegerToLocal(result); } Local<Integer> v8::Integer::NewFromUnsigned(Isolate* isolate, uint32_t value) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); bool fits_into_int32_t = (value & (1 << 31)) == 0; if (fits_into_int32_t) { return Integer::New(isolate, static_cast<int32_t>(value)); } ENTER_V8(internal_isolate); i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value); return Utils::IntegerToLocal(result); } void Isolate::ReportExternalAllocationLimitReached() { i::Heap* heap = reinterpret_cast<i::Isolate*>(this)->heap(); if (heap->gc_state() != i::Heap::NOT_IN_GC) return; heap->ReportExternalMemoryPressure( "external memory allocation limit reached."); } HeapProfiler* Isolate::GetHeapProfiler() { i::HeapProfiler* heap_profiler = reinterpret_cast<i::Isolate*>(this)->heap_profiler(); return reinterpret_cast<HeapProfiler*>(heap_profiler); } CpuProfiler* Isolate::GetCpuProfiler() { i::CpuProfiler* cpu_profiler = reinterpret_cast<i::Isolate*>(this)->cpu_profiler(); return reinterpret_cast<CpuProfiler*>(cpu_profiler); } bool Isolate::InContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->context() != NULL; } v8::Local<v8::Context> Isolate::GetCurrentContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Context* context = isolate->context(); if (context == NULL) return Local<Context>(); i::Context* native_context = context->native_context(); if (native_context == NULL) return Local<Context>(); return Utils::ToLocal(i::Handle<i::Context>(native_context)); } v8::Local<v8::Context> Isolate::GetCallingContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Handle<i::Object> calling = isolate->GetCallingNativeContext(); if (calling.is_null()) return Local<Context>(); return Utils::ToLocal(i::Handle<i::Context>::cast(calling)); } v8::Local<v8::Context> Isolate::GetEnteredContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Handle<i::Object> last = isolate->handle_scope_implementer()->LastEnteredContext(); if (last.is_null()) return Local<Context>(); return Utils::ToLocal(i::Handle<i::Context>::cast(last)); } v8::Local<Value> Isolate::ThrowException(v8::Local<v8::Value> value) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); ENTER_V8(isolate); // If we're passed an empty handle, we throw an undefined exception // to deal more gracefully with out of memory situations. if (value.IsEmpty()) { isolate->ScheduleThrow(isolate->heap()->undefined_value()); } else { isolate->ScheduleThrow(*Utils::OpenHandle(*value)); } return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } void Isolate::SetObjectGroupId(internal::Object** object, UniqueId id) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(this); internal_isolate->global_handles()->SetObjectGroupId( v8::internal::Handle<v8::internal::Object>(object).location(), id); } void Isolate::SetReferenceFromGroup(UniqueId id, internal::Object** object) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(this); internal_isolate->global_handles()->SetReferenceFromGroup( id, v8::internal::Handle<v8::internal::Object>(object).location()); } void Isolate::SetReference(internal::Object** parent, internal::Object** child) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(this); i::Object** parent_location = v8::internal::Handle<v8::internal::Object>(parent).location(); internal_isolate->global_handles()->SetReference( reinterpret_cast<i::HeapObject**>(parent_location), v8::internal::Handle<v8::internal::Object>(child).location()); } void Isolate::AddGCPrologueCallback(GCCallback callback, GCType gc_type) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->AddGCPrologueCallback(callback, gc_type); } void Isolate::RemoveGCPrologueCallback(GCCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->RemoveGCPrologueCallback(callback); } void Isolate::AddGCEpilogueCallback(GCCallback callback, GCType gc_type) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->AddGCEpilogueCallback(callback, gc_type); } void Isolate::RemoveGCEpilogueCallback(GCCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->RemoveGCEpilogueCallback(callback); } void V8::AddGCPrologueCallback(GCCallback callback, GCType gc_type) { i::Isolate* isolate = i::Isolate::Current(); isolate->heap()->AddGCPrologueCallback( reinterpret_cast<v8::Isolate::GCCallback>(callback), gc_type, false); } void V8::AddGCEpilogueCallback(GCCallback callback, GCType gc_type) { i::Isolate* isolate = i::Isolate::Current(); isolate->heap()->AddGCEpilogueCallback( reinterpret_cast<v8::Isolate::GCCallback>(callback), gc_type, false); } void Isolate::AddMemoryAllocationCallback(MemoryAllocationCallback callback, ObjectSpace space, AllocationAction action) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->memory_allocator()->AddMemoryAllocationCallback( callback, space, action); } void Isolate::RemoveMemoryAllocationCallback( MemoryAllocationCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->memory_allocator()->RemoveMemoryAllocationCallback( callback); } void Isolate::TerminateExecution() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->stack_guard()->RequestTerminateExecution(); } bool Isolate::IsExecutionTerminating() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return IsExecutionTerminatingCheck(isolate); } void Isolate::CancelTerminateExecution() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->stack_guard()->ClearTerminateExecution(); isolate->CancelTerminateExecution(); } void Isolate::RequestInterrupt(InterruptCallback callback, void* data) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->RequestInterrupt(callback, data); } void Isolate::RequestGarbageCollectionForTesting(GarbageCollectionType type) { CHECK(i::FLAG_expose_gc); if (type == kMinorGarbageCollection) { reinterpret_cast<i::Isolate*>(this)->heap()->CollectGarbage( i::NEW_SPACE, "Isolate::RequestGarbageCollection", kGCCallbackFlagForced); } else { DCHECK_EQ(kFullGarbageCollection, type); reinterpret_cast<i::Isolate*>(this)->heap()->CollectAllGarbage( i::Heap::kAbortIncrementalMarkingMask, "Isolate::RequestGarbageCollection", kGCCallbackFlagForced); } } Isolate* Isolate::GetCurrent() { i::Isolate* isolate = i::Isolate::Current(); return reinterpret_cast<Isolate*>(isolate); } Isolate* Isolate::New(const Isolate::CreateParams& params) { i::Isolate* isolate = new i::Isolate(false); Isolate* v8_isolate = reinterpret_cast<Isolate*>(isolate); CHECK(params.array_buffer_allocator != NULL); isolate->set_array_buffer_allocator(params.array_buffer_allocator); if (params.snapshot_blob != NULL) { isolate->set_snapshot_blob(params.snapshot_blob); } else { isolate->set_snapshot_blob(i::Snapshot::DefaultSnapshotBlob()); } if (params.entry_hook) { isolate->set_function_entry_hook(params.entry_hook); } auto code_event_handler = params.code_event_handler; #ifdef ENABLE_GDB_JIT_INTERFACE if (code_event_handler == nullptr && i::FLAG_gdbjit) { code_event_handler = i::GDBJITInterface::EventHandler; } #endif // ENABLE_GDB_JIT_INTERFACE if (code_event_handler) { isolate->InitializeLoggingAndCounters(); isolate->logger()->SetCodeEventHandler(kJitCodeEventDefault, code_event_handler); } if (params.counter_lookup_callback) { v8_isolate->SetCounterFunction(params.counter_lookup_callback); } if (params.create_histogram_callback) { v8_isolate->SetCreateHistogramFunction(params.create_histogram_callback); } if (params.add_histogram_sample_callback) { v8_isolate->SetAddHistogramSampleFunction( params.add_histogram_sample_callback); } SetResourceConstraints(isolate, params.constraints); // TODO(jochen): Once we got rid of Isolate::Current(), we can remove this. Isolate::Scope isolate_scope(v8_isolate); if (params.entry_hook || !i::Snapshot::Initialize(isolate)) { // If the isolate has a function entry hook, it needs to re-build all its // code stubs with entry hooks embedded, so don't deserialize a snapshot. if (i::Snapshot::EmbedsScript(isolate)) { // If the snapshot embeds a script, we cannot initialize the isolate // without the snapshot as a fallback. This is unlikely to happen though. V8_Fatal(__FILE__, __LINE__, "Initializing isolate from custom startup snapshot failed"); } isolate->Init(NULL); } return v8_isolate; } void Isolate::Dispose() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); if (!Utils::ApiCheck(!isolate->IsInUse(), "v8::Isolate::Dispose()", "Disposing the isolate that is entered by a thread.")) { return; } isolate->TearDown(); } void Isolate::DiscardThreadSpecificMetadata() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->DiscardPerThreadDataForThisThread(); } void Isolate::Enter() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->Enter(); } void Isolate::Exit() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->Exit(); } void Isolate::SetAbortOnUncaughtExceptionCallback( AbortOnUncaughtExceptionCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetAbortOnUncaughtExceptionCallback(callback); } Isolate::DisallowJavascriptExecutionScope::DisallowJavascriptExecutionScope( Isolate* isolate, Isolate::DisallowJavascriptExecutionScope::OnFailure on_failure) : on_failure_(on_failure) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); if (on_failure_ == CRASH_ON_FAILURE) { internal_ = reinterpret_cast<void*>( new i::DisallowJavascriptExecution(i_isolate)); } else { DCHECK_EQ(THROW_ON_FAILURE, on_failure); internal_ = reinterpret_cast<void*>( new i::ThrowOnJavascriptExecution(i_isolate)); } } Isolate::DisallowJavascriptExecutionScope::~DisallowJavascriptExecutionScope() { if (on_failure_ == CRASH_ON_FAILURE) { delete reinterpret_cast<i::DisallowJavascriptExecution*>(internal_); } else { delete reinterpret_cast<i::ThrowOnJavascriptExecution*>(internal_); } } Isolate::AllowJavascriptExecutionScope::AllowJavascriptExecutionScope( Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_assert_ = reinterpret_cast<void*>( new i::AllowJavascriptExecution(i_isolate)); internal_throws_ = reinterpret_cast<void*>( new i::NoThrowOnJavascriptExecution(i_isolate)); } Isolate::AllowJavascriptExecutionScope::~AllowJavascriptExecutionScope() { delete reinterpret_cast<i::AllowJavascriptExecution*>(internal_assert_); delete reinterpret_cast<i::NoThrowOnJavascriptExecution*>(internal_throws_); } Isolate::SuppressMicrotaskExecutionScope::SuppressMicrotaskExecutionScope( Isolate* isolate) : isolate_(reinterpret_cast<i::Isolate*>(isolate)) { isolate_->handle_scope_implementer()->IncrementCallDepth(); isolate_->handle_scope_implementer()->IncrementMicrotasksSuppressions(); } Isolate::SuppressMicrotaskExecutionScope::~SuppressMicrotaskExecutionScope() { isolate_->handle_scope_implementer()->DecrementMicrotasksSuppressions(); isolate_->handle_scope_implementer()->DecrementCallDepth(); } void Isolate::GetHeapStatistics(HeapStatistics* heap_statistics) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Heap* heap = isolate->heap(); heap_statistics->total_heap_size_ = heap->CommittedMemory(); heap_statistics->total_heap_size_executable_ = heap->CommittedMemoryExecutable(); heap_statistics->total_physical_size_ = heap->CommittedPhysicalMemory(); heap_statistics->total_available_size_ = heap->Available(); heap_statistics->used_heap_size_ = heap->SizeOfObjects(); heap_statistics->heap_size_limit_ = heap->MaxReserved(); heap_statistics->does_zap_garbage_ = heap->ShouldZapGarbage(); } size_t Isolate::NumberOfHeapSpaces() { return i::LAST_SPACE - i::FIRST_SPACE + 1; } bool Isolate::GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics, size_t index) { if (!space_statistics) return false; if (!i::Heap::IsValidAllocationSpace(static_cast<i::AllocationSpace>(index))) return false; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Heap* heap = isolate->heap(); i::Space* space = heap->space(static_cast<int>(index)); space_statistics->space_name_ = heap->GetSpaceName(static_cast<int>(index)); space_statistics->space_size_ = space->CommittedMemory(); space_statistics->space_used_size_ = space->SizeOfObjects(); space_statistics->space_available_size_ = space->Available(); space_statistics->physical_space_size_ = space->CommittedPhysicalMemory(); return true; } size_t Isolate::NumberOfTrackedHeapObjectTypes() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Heap* heap = isolate->heap(); return heap->NumberOfTrackedHeapObjectTypes(); } bool Isolate::GetHeapObjectStatisticsAtLastGC( HeapObjectStatistics* object_statistics, size_t type_index) { if (!object_statistics) return false; if (!i::FLAG_track_gc_object_stats) return false; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Heap* heap = isolate->heap(); if (type_index >= heap->NumberOfTrackedHeapObjectTypes()) return false; const char* object_type; const char* object_sub_type; size_t object_count = heap->ObjectCountAtLastGC(type_index); size_t object_size = heap->ObjectSizeAtLastGC(type_index); if (!heap->GetObjectTypeName(type_index, &object_type, &object_sub_type)) { // There should be no objects counted when the type is unknown. DCHECK_EQ(object_count, 0U); DCHECK_EQ(object_size, 0U); return false; } object_statistics->object_type_ = object_type; object_statistics->object_sub_type_ = object_sub_type; object_statistics->object_count_ = object_count; object_statistics->object_size_ = object_size; return true; } void Isolate::GetStackSample(const RegisterState& state, void** frames, size_t frames_limit, SampleInfo* sample_info) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::TickSample::GetStackSample(isolate, state, i::TickSample::kSkipCEntryFrame, frames, frames_limit, sample_info); } void Isolate::SetEventLogger(LogEventCallback that) { // Do not overwrite the event logger if we want to log explicitly. if (i::FLAG_log_internal_timer_events) return; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->set_event_logger(that); } void Isolate::AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback) { if (callback == NULL) return; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->AddBeforeCallEnteredCallback(callback); } void Isolate::RemoveBeforeCallEnteredCallback( BeforeCallEnteredCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->RemoveBeforeCallEnteredCallback(callback); } void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) { if (callback == NULL) return; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->AddCallCompletedCallback(callback); } void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->RemoveCallCompletedCallback(callback); } void Isolate::AddCallCompletedCallback( DeprecatedCallCompletedCallback callback) { AddCallCompletedCallback(reinterpret_cast<CallCompletedCallback>(callback)); } void Isolate::RemoveCallCompletedCallback( DeprecatedCallCompletedCallback callback) { RemoveCallCompletedCallback( reinterpret_cast<CallCompletedCallback>(callback)); } void Isolate::SetPromiseRejectCallback(PromiseRejectCallback callback) { if (callback == NULL) return; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetPromiseRejectCallback(callback); } void Isolate::RunMicrotasks() { DCHECK(MicrotasksPolicy::kScoped != GetMicrotasksPolicy()); reinterpret_cast<i::Isolate*>(this)->RunMicrotasks(); } void Isolate::EnqueueMicrotask(Local<Function> microtask) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->EnqueueMicrotask(Utils::OpenHandle(*microtask)); } void Isolate::EnqueueMicrotask(MicrotaskCallback microtask, void* data) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::HandleScope scope(isolate); i::Handle<i::CallHandlerInfo> callback_info = i::Handle<i::CallHandlerInfo>::cast( isolate->factory()->NewStruct(i::CALL_HANDLER_INFO_TYPE)); SET_FIELD_WRAPPED(callback_info, set_callback, microtask); SET_FIELD_WRAPPED(callback_info, set_data, data); isolate->EnqueueMicrotask(callback_info); } void Isolate::SetAutorunMicrotasks(bool autorun) { SetMicrotasksPolicy( autorun ? MicrotasksPolicy::kAuto : MicrotasksPolicy::kExplicit); } bool Isolate::WillAutorunMicrotasks() const { return GetMicrotasksPolicy() == MicrotasksPolicy::kAuto; } void Isolate::SetMicrotasksPolicy(MicrotasksPolicy policy) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->handle_scope_implementer()->set_microtasks_policy(policy); } MicrotasksPolicy Isolate::GetMicrotasksPolicy() const { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(const_cast<Isolate*>(this)); return isolate->handle_scope_implementer()->microtasks_policy(); } void Isolate::AddMicrotasksCompletedCallback( MicrotasksCompletedCallback callback) { DCHECK(callback); i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->AddMicrotasksCompletedCallback(callback); } void Isolate::RemoveMicrotasksCompletedCallback( MicrotasksCompletedCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->RemoveMicrotasksCompletedCallback(callback); } void Isolate::SetUseCounterCallback(UseCounterCallback callback) { reinterpret_cast<i::Isolate*>(this)->SetUseCounterCallback(callback); } void Isolate::SetCounterFunction(CounterLookupCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->stats_table()->SetCounterFunction(callback); isolate->InitializeLoggingAndCounters(); isolate->counters()->ResetCounters(); } void Isolate::SetCreateHistogramFunction(CreateHistogramCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->stats_table()->SetCreateHistogramFunction(callback); isolate->InitializeLoggingAndCounters(); isolate->counters()->ResetHistograms(); } void Isolate::SetAddHistogramSampleFunction( AddHistogramSampleCallback callback) { reinterpret_cast<i::Isolate*>(this) ->stats_table() ->SetAddHistogramSampleFunction(callback); } bool Isolate::IdleNotification(int idle_time_in_ms) { // Returning true tells the caller that it need not // continue to call IdleNotification. i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); if (!i::FLAG_use_idle_notification) return true; return isolate->heap()->IdleNotification(idle_time_in_ms); } bool Isolate::IdleNotificationDeadline(double deadline_in_seconds) { // Returning true tells the caller that it need not // continue to call IdleNotification. i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); if (!i::FLAG_use_idle_notification) return true; return isolate->heap()->IdleNotification(deadline_in_seconds); } void Isolate::LowMemoryNotification() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); { i::HistogramTimerScope idle_notification_scope( isolate->counters()->gc_low_memory_notification()); TRACE_EVENT0("v8", "V8.GCLowMemoryNotification"); isolate->heap()->CollectAllAvailableGarbage("low memory notification"); } } int Isolate::ContextDisposedNotification(bool dependant_context) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->heap()->NotifyContextDisposed(dependant_context); } void Isolate::IsolateInForegroundNotification() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->heap()->SetOptimizeForLatency(); } void Isolate::IsolateInBackgroundNotification() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->heap()->SetOptimizeForMemoryUsage(); } void Isolate::MemoryPressureNotification(MemoryPressureLevel level) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->heap()->MemoryPressureNotification(level, Locker::IsLocked(this)); } void Isolate::SetJitCodeEventHandler(JitCodeEventOptions options, JitCodeEventHandler event_handler) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); // Ensure that logging is initialized for our isolate. isolate->InitializeLoggingAndCounters(); isolate->logger()->SetCodeEventHandler(options, event_handler); } void Isolate::SetStackLimit(uintptr_t stack_limit) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); CHECK(stack_limit); isolate->stack_guard()->SetStackLimit(stack_limit); } void Isolate::GetCodeRange(void** start, size_t* length_in_bytes) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); if (isolate->code_range()->valid()) { *start = isolate->code_range()->start(); *length_in_bytes = isolate->code_range()->size(); } else { *start = NULL; *length_in_bytes = 0; } } void Isolate::SetFatalErrorHandler(FatalErrorCallback that) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->set_exception_behavior(that); } void Isolate::SetAllowCodeGenerationFromStringsCallback( AllowCodeGenerationFromStringsCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->set_allow_code_gen_callback(callback); } bool Isolate::IsDead() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->IsDead(); } bool Isolate::AddMessageListener(MessageCallback that, Local<Value> data) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); ENTER_V8(isolate); i::HandleScope scope(isolate); NeanderArray listeners(isolate->factory()->message_listeners()); NeanderObject obj(isolate, 2); obj.set(0, *isolate->factory()->NewForeign(FUNCTION_ADDR(that))); obj.set(1, data.IsEmpty() ? isolate->heap()->undefined_value() : *Utils::OpenHandle(*data)); listeners.add(isolate, obj.value()); return true; } void Isolate::RemoveMessageListeners(MessageCallback that) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); ENTER_V8(isolate); i::HandleScope scope(isolate); NeanderArray listeners(isolate->factory()->message_listeners()); for (int i = 0; i < listeners.length(); i++) { if (listeners.get(i)->IsUndefined()) continue; // skip deleted ones NeanderObject listener(i::JSObject::cast(listeners.get(i))); i::Handle<i::Foreign> callback_obj(i::Foreign::cast(listener.get(0))); if (callback_obj->foreign_address() == FUNCTION_ADDR(that)) { listeners.set(i, isolate->heap()->undefined_value()); } } } void Isolate::SetFailedAccessCheckCallbackFunction( FailedAccessCheckCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetFailedAccessCheckCallback(callback); } void Isolate::SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit, StackTrace::StackTraceOptions options) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit, options); } void Isolate::VisitExternalResources(ExternalResourceVisitor* visitor) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->VisitExternalResources(visitor); } class VisitorAdapter : public i::ObjectVisitor { public: explicit VisitorAdapter(PersistentHandleVisitor* visitor) : visitor_(visitor) {} void VisitPointers(i::Object** start, i::Object** end) override { UNREACHABLE(); } void VisitEmbedderReference(i::Object** p, uint16_t class_id) override { Value* value = ToApi<Value>(i::Handle<i::Object>(p)); visitor_->VisitPersistentHandle( reinterpret_cast<Persistent<Value>*>(&value), class_id); } private: PersistentHandleVisitor* visitor_; }; void Isolate::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::DisallowHeapAllocation no_allocation; VisitorAdapter visitor_adapter(visitor); isolate->global_handles()->IterateAllRootsWithClassIds(&visitor_adapter); } void Isolate::VisitHandlesForPartialDependence( PersistentHandleVisitor* visitor) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::DisallowHeapAllocation no_allocation; VisitorAdapter visitor_adapter(visitor); isolate->global_handles()->IterateAllRootsInNewSpaceWithClassIds( &visitor_adapter); } void Isolate::VisitWeakHandles(PersistentHandleVisitor* visitor) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::DisallowHeapAllocation no_allocation; VisitorAdapter visitor_adapter(visitor); isolate->global_handles()->IterateWeakRootsInNewSpaceWithClassIds( &visitor_adapter); } MicrotasksScope::MicrotasksScope(Isolate* isolate, MicrotasksScope::Type type) : isolate_(reinterpret_cast<i::Isolate*>(isolate)), run_(type == MicrotasksScope::kRunMicrotasks) { auto handle_scope_implementer = isolate_->handle_scope_implementer(); if (run_) handle_scope_implementer->IncrementMicrotasksScopeDepth(); #ifdef DEBUG if (!run_) handle_scope_implementer->IncrementDebugMicrotasksScopeDepth(); #endif } MicrotasksScope::~MicrotasksScope() { auto handle_scope_implementer = isolate_->handle_scope_implementer(); if (run_) { handle_scope_implementer->DecrementMicrotasksScopeDepth(); if (MicrotasksPolicy::kScoped == handle_scope_implementer->microtasks_policy()) { PerformCheckpoint(reinterpret_cast<Isolate*>(isolate_)); } } #ifdef DEBUG if (!run_) handle_scope_implementer->DecrementDebugMicrotasksScopeDepth(); #endif } void MicrotasksScope::PerformCheckpoint(Isolate* v8Isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8Isolate); if (IsExecutionTerminatingCheck(isolate)) return; auto handle_scope_implementer = isolate->handle_scope_implementer(); if (!handle_scope_implementer->GetMicrotasksScopeDepth() && !handle_scope_implementer->HasMicrotasksSuppressions()) { isolate->RunMicrotasks(); } } int MicrotasksScope::GetCurrentDepth(Isolate* v8Isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8Isolate); return isolate->handle_scope_implementer()->GetMicrotasksScopeDepth(); } String::Utf8Value::Utf8Value(v8::Local<v8::Value> obj) : str_(NULL), length_(0) { if (obj.IsEmpty()) return; i::Isolate* isolate = i::Isolate::Current(); Isolate* v8_isolate = reinterpret_cast<Isolate*>(isolate); ENTER_V8(isolate); i::HandleScope scope(isolate); Local<Context> context = v8_isolate->GetCurrentContext(); TryCatch try_catch(v8_isolate); Local<String> str; if (!obj->ToString(context).ToLocal(&str)) return; i::Handle<i::String> i_str = Utils::OpenHandle(*str); length_ = v8::Utf8Length(*i_str, isolate); str_ = i::NewArray<char>(length_ + 1); str->WriteUtf8(str_); } String::Utf8Value::~Utf8Value() { i::DeleteArray(str_); } String::Value::Value(v8::Local<v8::Value> obj) : str_(NULL), length_(0) { if (obj.IsEmpty()) return; i::Isolate* isolate = i::Isolate::Current(); Isolate* v8_isolate = reinterpret_cast<Isolate*>(isolate); ENTER_V8(isolate); i::HandleScope scope(isolate); Local<Context> context = v8_isolate->GetCurrentContext(); TryCatch try_catch(v8_isolate); Local<String> str; if (!obj->ToString(context).ToLocal(&str)) return; length_ = str->Length(); str_ = i::NewArray<uint16_t>(length_ + 1); str->Write(str_); } String::Value::~Value() { i::DeleteArray(str_); } #define DEFINE_ERROR(NAME, name) \ Local<Value> Exception::NAME(v8::Local<v8::String> raw_message) { \ i::Isolate* isolate = i::Isolate::Current(); \ LOG_API(isolate, #NAME); \ ENTER_V8(isolate); \ i::Object* error; \ { \ i::HandleScope scope(isolate); \ i::Handle<i::String> message = Utils::OpenHandle(*raw_message); \ i::Handle<i::JSFunction> constructor = isolate->name##_function(); \ error = *isolate->factory()->NewError(constructor, message); \ } \ i::Handle<i::Object> result(error, isolate); \ return Utils::ToLocal(result); \ } DEFINE_ERROR(RangeError, range_error) DEFINE_ERROR(ReferenceError, reference_error) DEFINE_ERROR(SyntaxError, syntax_error) DEFINE_ERROR(TypeError, type_error) DEFINE_ERROR(Error, error) #undef DEFINE_ERROR Local<Message> Exception::CreateMessage(Isolate* isolate, Local<Value> exception) { i::Handle<i::Object> obj = Utils::OpenHandle(*exception); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8(i_isolate); i::HandleScope scope(i_isolate); return Utils::MessageToLocal( scope.CloseAndEscape(i_isolate->CreateMessage(obj, NULL))); } Local<Message> Exception::CreateMessage(Local<Value> exception) { i::Handle<i::Object> obj = Utils::OpenHandle(*exception); if (!obj->IsHeapObject()) return Local<Message>(); i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); return CreateMessage(reinterpret_cast<Isolate*>(isolate), exception); } Local<StackTrace> Exception::GetStackTrace(Local<Value> exception) { i::Handle<i::Object> obj = Utils::OpenHandle(*exception); if (!obj->IsJSObject()) return Local<StackTrace>(); i::Handle<i::JSObject> js_obj = i::Handle<i::JSObject>::cast(obj); i::Isolate* isolate = js_obj->GetIsolate(); ENTER_V8(isolate); return Utils::StackTraceToLocal(isolate->GetDetailedStackTrace(js_obj)); } // --- D e b u g S u p p o r t --- bool Debug::SetDebugEventListener(Isolate* isolate, EventCallback that, Local<Value> data) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8(i_isolate); i::HandleScope scope(i_isolate); i::Handle<i::Object> foreign = i_isolate->factory()->undefined_value(); if (that != NULL) { foreign = i_isolate->factory()->NewForeign(FUNCTION_ADDR(that)); } i_isolate->debug()->SetEventListener(foreign, Utils::OpenHandle(*data, true)); return true; } bool Debug::SetDebugEventListener(EventCallback that, Local<Value> data) { return SetDebugEventListener( reinterpret_cast<Isolate*>(i::Isolate::Current()), that, data); } void Debug::DebugBreak(Isolate* isolate) { reinterpret_cast<i::Isolate*>(isolate)->stack_guard()->RequestDebugBreak(); } void Debug::CancelDebugBreak(Isolate* isolate) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_isolate->stack_guard()->ClearDebugBreak(); } bool Debug::CheckDebugBreak(Isolate* isolate) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); return internal_isolate->stack_guard()->CheckDebugBreak(); } void Debug::SetMessageHandler(Isolate* isolate, v8::Debug::MessageHandler handler) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8(i_isolate); i_isolate->debug()->SetMessageHandler(handler); } void Debug::SetMessageHandler(v8::Debug::MessageHandler handler) { SetMessageHandler(reinterpret_cast<Isolate*>(i::Isolate::Current()), handler); } void Debug::SendCommand(Isolate* isolate, const uint16_t* command, int length, ClientData* client_data) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_isolate->debug()->EnqueueCommandMessage( i::Vector<const uint16_t>(command, length), client_data); } MaybeLocal<Value> Debug::Call(Local<Context> context, v8::Local<v8::Function> fun, v8::Local<v8::Value> data) { PREPARE_FOR_EXECUTION(context, "v8::Debug::Call()", Value); i::Handle<i::Object> data_obj; if (data.IsEmpty()) { data_obj = isolate->factory()->undefined_value(); } else { data_obj = Utils::OpenHandle(*data); } Local<Value> result; has_pending_exception = !ToLocal<Value>(isolate->debug()->Call(Utils::OpenHandle(*fun), data_obj), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } Local<Value> Debug::Call(v8::Local<v8::Function> fun, v8::Local<v8::Value> data) { auto context = ContextFromHeapObject(Utils::OpenHandle(*fun)); RETURN_TO_LOCAL_UNCHECKED(Call(context, fun, data), Value); } MaybeLocal<Value> Debug::GetMirror(Local<Context> context, v8::Local<v8::Value> obj) { PREPARE_FOR_EXECUTION(context, "v8::Debug::GetMirror()", Value); i::Debug* isolate_debug = isolate->debug(); has_pending_exception = !isolate_debug->Load(); RETURN_ON_FAILED_EXECUTION(Value); i::Handle<i::JSObject> debug(isolate_debug->debug_context()->global_object()); auto name = isolate->factory()->NewStringFromStaticChars("MakeMirror"); auto fun_obj = i::JSReceiver::GetProperty(debug, name).ToHandleChecked(); auto v8_fun = Utils::CallableToLocal(i::Handle<i::JSFunction>::cast(fun_obj)); const int kArgc = 1; v8::Local<v8::Value> argv[kArgc] = {obj}; Local<Value> result; has_pending_exception = !v8_fun->Call(context, Utils::ToLocal(debug), kArgc, argv) .ToLocal(&result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } Local<Value> Debug::GetMirror(v8::Local<v8::Value> obj) { RETURN_TO_LOCAL_UNCHECKED(GetMirror(Local<Context>(), obj), Value); } void Debug::ProcessDebugMessages(Isolate* isolate) { reinterpret_cast<i::Isolate*>(isolate)->debug()->ProcessDebugMessages(true); } void Debug::ProcessDebugMessages() { ProcessDebugMessages(reinterpret_cast<Isolate*>(i::Isolate::Current())); } Local<Context> Debug::GetDebugContext(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8(i_isolate); return Utils::ToLocal(i_isolate->debug()->GetDebugContext()); } Local<Context> Debug::GetDebugContext() { return GetDebugContext(reinterpret_cast<Isolate*>(i::Isolate::Current())); } void Debug::SetLiveEditEnabled(Isolate* isolate, bool enable) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_isolate->debug()->set_live_edit_enabled(enable); } bool Debug::IsTailCallEliminationEnabled(Isolate* isolate) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); return internal_isolate->is_tail_call_elimination_enabled(); } void Debug::SetTailCallEliminationEnabled(Isolate* isolate, bool enabled) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_isolate->SetTailCallEliminationEnabled(enabled); } MaybeLocal<Array> Debug::GetInternalProperties(Isolate* v8_isolate, Local<Value> value) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8(isolate); i::Handle<i::Object> val = Utils::OpenHandle(*value); i::Handle<i::JSArray> result; if (!i::Runtime::GetInternalProperties(isolate, val).ToHandle(&result)) return MaybeLocal<Array>(); return Utils::ToLocal(result); } Local<String> CpuProfileNode::GetFunctionName() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); i::Isolate* isolate = node->isolate(); const i::CodeEntry* entry = node->entry(); i::Handle<i::String> name = isolate->factory()->InternalizeUtf8String(entry->name()); if (!entry->has_name_prefix()) { return ToApiHandle<String>(name); } else { // We do not expect this to fail. Change this if it does. i::Handle<i::String> cons = isolate->factory()->NewConsString( isolate->factory()->InternalizeUtf8String(entry->name_prefix()), name).ToHandleChecked(); return ToApiHandle<String>(cons); } } int CpuProfileNode::GetScriptId() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); const i::CodeEntry* entry = node->entry(); return entry->script_id(); } Local<String> CpuProfileNode::GetScriptResourceName() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); i::Isolate* isolate = node->isolate(); return ToApiHandle<String>(isolate->factory()->InternalizeUtf8String( node->entry()->resource_name())); } int CpuProfileNode::GetLineNumber() const { return reinterpret_cast<const i::ProfileNode*>(this)->entry()->line_number(); } int CpuProfileNode::GetColumnNumber() const { return reinterpret_cast<const i::ProfileNode*>(this)-> entry()->column_number(); } unsigned int CpuProfileNode::GetHitLineCount() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return node->GetHitLineCount(); } bool CpuProfileNode::GetLineTicks(LineTick* entries, unsigned int length) const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return node->GetLineTicks(entries, length); } const char* CpuProfileNode::GetBailoutReason() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return node->entry()->bailout_reason(); } unsigned CpuProfileNode::GetHitCount() const { return reinterpret_cast<const i::ProfileNode*>(this)->self_ticks(); } unsigned CpuProfileNode::GetCallUid() const { return reinterpret_cast<const i::ProfileNode*>(this)->function_id(); } unsigned CpuProfileNode::GetNodeId() const { return reinterpret_cast<const i::ProfileNode*>(this)->id(); } int CpuProfileNode::GetChildrenCount() const { return reinterpret_cast<const i::ProfileNode*>(this)->children()->length(); } const CpuProfileNode* CpuProfileNode::GetChild(int index) const { const i::ProfileNode* child = reinterpret_cast<const i::ProfileNode*>(this)->children()->at(index); return reinterpret_cast<const CpuProfileNode*>(child); } const std::vector<CpuProfileDeoptInfo>& CpuProfileNode::GetDeoptInfos() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return node->deopt_infos(); } void CpuProfile::Delete() { i::CpuProfile* profile = reinterpret_cast<i::CpuProfile*>(this); i::Isolate* isolate = profile->top_down()->isolate(); i::CpuProfiler* profiler = isolate->cpu_profiler(); DCHECK(profiler != NULL); profiler->DeleteProfile(profile); } Local<String> CpuProfile::GetTitle() const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); i::Isolate* isolate = profile->top_down()->isolate(); return ToApiHandle<String>(isolate->factory()->InternalizeUtf8String( profile->title())); } const CpuProfileNode* CpuProfile::GetTopDownRoot() const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return reinterpret_cast<const CpuProfileNode*>(profile->top_down()->root()); } const CpuProfileNode* CpuProfile::GetSample(int index) const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return reinterpret_cast<const CpuProfileNode*>(profile->sample(index)); } int64_t CpuProfile::GetSampleTimestamp(int index) const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return (profile->sample_timestamp(index) - base::TimeTicks()) .InMicroseconds(); } int64_t CpuProfile::GetStartTime() const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return (profile->start_time() - base::TimeTicks()).InMicroseconds(); } int64_t CpuProfile::GetEndTime() const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return (profile->end_time() - base::TimeTicks()).InMicroseconds(); } int CpuProfile::GetSamplesCount() const { return reinterpret_cast<const i::CpuProfile*>(this)->samples_count(); } void CpuProfiler::SetSamplingInterval(int us) { DCHECK_GE(us, 0); return reinterpret_cast<i::CpuProfiler*>(this)->set_sampling_interval( base::TimeDelta::FromMicroseconds(us)); } void CpuProfiler::CollectSample() { reinterpret_cast<i::CpuProfiler*>(this)->CollectSample(); } void CpuProfiler::StartProfiling(Local<String> title, bool record_samples) { reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling( *Utils::OpenHandle(*title), record_samples); } CpuProfile* CpuProfiler::StopProfiling(Local<String> title) { return reinterpret_cast<CpuProfile*>( reinterpret_cast<i::CpuProfiler*>(this)->StopProfiling( *Utils::OpenHandle(*title))); } void CpuProfiler::SetIdle(bool is_idle) { i::Isolate* isolate = reinterpret_cast<i::CpuProfiler*>(this)->isolate(); v8::StateTag state = isolate->current_vm_state(); DCHECK(state == v8::EXTERNAL || state == v8::IDLE); if (isolate->js_entry_sp() != NULL) return; if (is_idle) { isolate->set_current_vm_state(v8::IDLE); } else if (state == v8::IDLE) { isolate->set_current_vm_state(v8::EXTERNAL); } } static i::HeapGraphEdge* ToInternal(const HeapGraphEdge* edge) { return const_cast<i::HeapGraphEdge*>( reinterpret_cast<const i::HeapGraphEdge*>(edge)); } HeapGraphEdge::Type HeapGraphEdge::GetType() const { return static_cast<HeapGraphEdge::Type>(ToInternal(this)->type()); } Local<Value> HeapGraphEdge::GetName() const { i::HeapGraphEdge* edge = ToInternal(this); i::Isolate* isolate = edge->isolate(); switch (edge->type()) { case i::HeapGraphEdge::kContextVariable: case i::HeapGraphEdge::kInternal: case i::HeapGraphEdge::kProperty: case i::HeapGraphEdge::kShortcut: case i::HeapGraphEdge::kWeak: return ToApiHandle<String>( isolate->factory()->InternalizeUtf8String(edge->name())); case i::HeapGraphEdge::kElement: case i::HeapGraphEdge::kHidden: return ToApiHandle<Number>( isolate->factory()->NewNumberFromInt(edge->index())); default: UNREACHABLE(); } return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } const HeapGraphNode* HeapGraphEdge::GetFromNode() const { const i::HeapEntry* from = ToInternal(this)->from(); return reinterpret_cast<const HeapGraphNode*>(from); } const HeapGraphNode* HeapGraphEdge::GetToNode() const { const i::HeapEntry* to = ToInternal(this)->to(); return reinterpret_cast<const HeapGraphNode*>(to); } static i::HeapEntry* ToInternal(const HeapGraphNode* entry) { return const_cast<i::HeapEntry*>( reinterpret_cast<const i::HeapEntry*>(entry)); } HeapGraphNode::Type HeapGraphNode::GetType() const { return static_cast<HeapGraphNode::Type>(ToInternal(this)->type()); } Local<String> HeapGraphNode::GetName() const { i::Isolate* isolate = ToInternal(this)->isolate(); return ToApiHandle<String>( isolate->factory()->InternalizeUtf8String(ToInternal(this)->name())); } SnapshotObjectId HeapGraphNode::GetId() const { return ToInternal(this)->id(); } size_t HeapGraphNode::GetShallowSize() const { return ToInternal(this)->self_size(); } int HeapGraphNode::GetChildrenCount() const { return ToInternal(this)->children().length(); } const HeapGraphEdge* HeapGraphNode::GetChild(int index) const { return reinterpret_cast<const HeapGraphEdge*>( ToInternal(this)->children()[index]); } static i::HeapSnapshot* ToInternal(const HeapSnapshot* snapshot) { return const_cast<i::HeapSnapshot*>( reinterpret_cast<const i::HeapSnapshot*>(snapshot)); } void HeapSnapshot::Delete() { i::Isolate* isolate = ToInternal(this)->profiler()->isolate(); if (isolate->heap_profiler()->GetSnapshotsCount() > 1) { ToInternal(this)->Delete(); } else { // If this is the last snapshot, clean up all accessory data as well. isolate->heap_profiler()->DeleteAllSnapshots(); } } const HeapGraphNode* HeapSnapshot::GetRoot() const { return reinterpret_cast<const HeapGraphNode*>(ToInternal(this)->root()); } const HeapGraphNode* HeapSnapshot::GetNodeById(SnapshotObjectId id) const { return reinterpret_cast<const HeapGraphNode*>( ToInternal(this)->GetEntryById(id)); } int HeapSnapshot::GetNodesCount() const { return ToInternal(this)->entries().length(); } const HeapGraphNode* HeapSnapshot::GetNode(int index) const { return reinterpret_cast<const HeapGraphNode*>( &ToInternal(this)->entries().at(index)); } SnapshotObjectId HeapSnapshot::GetMaxSnapshotJSObjectId() const { return ToInternal(this)->max_snapshot_js_object_id(); } void HeapSnapshot::Serialize(OutputStream* stream, HeapSnapshot::SerializationFormat format) const { Utils::ApiCheck(format == kJSON, "v8::HeapSnapshot::Serialize", "Unknown serialization format"); Utils::ApiCheck(stream->GetChunkSize() > 0, "v8::HeapSnapshot::Serialize", "Invalid stream chunk size"); i::HeapSnapshotJSONSerializer serializer(ToInternal(this)); serializer.Serialize(stream); } // static STATIC_CONST_MEMBER_DEFINITION const SnapshotObjectId HeapProfiler::kUnknownObjectId; int HeapProfiler::GetSnapshotCount() { return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotsCount(); } const HeapSnapshot* HeapProfiler::GetHeapSnapshot(int index) { return reinterpret_cast<const HeapSnapshot*>( reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshot(index)); } SnapshotObjectId HeapProfiler::GetObjectId(Local<Value> value) { i::Handle<i::Object> obj = Utils::OpenHandle(*value); return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotObjectId(obj); } Local<Value> HeapProfiler::FindObjectById(SnapshotObjectId id) { i::Handle<i::Object> obj = reinterpret_cast<i::HeapProfiler*>(this)->FindHeapObjectById(id); if (obj.is_null()) return Local<Value>(); return Utils::ToLocal(obj); } void HeapProfiler::ClearObjectIds() { reinterpret_cast<i::HeapProfiler*>(this)->ClearHeapObjectMap(); } const HeapSnapshot* HeapProfiler::TakeHeapSnapshot( ActivityControl* control, ObjectNameResolver* resolver) { return reinterpret_cast<const HeapSnapshot*>( reinterpret_cast<i::HeapProfiler*>(this) ->TakeSnapshot(control, resolver)); } void HeapProfiler::StartTrackingHeapObjects(bool track_allocations) { reinterpret_cast<i::HeapProfiler*>(this)->StartHeapObjectsTracking( track_allocations); } void HeapProfiler::StopTrackingHeapObjects() { reinterpret_cast<i::HeapProfiler*>(this)->StopHeapObjectsTracking(); } SnapshotObjectId HeapProfiler::GetHeapStats(OutputStream* stream, int64_t* timestamp_us) { i::HeapProfiler* heap_profiler = reinterpret_cast<i::HeapProfiler*>(this); return heap_profiler->PushHeapObjectsStats(stream, timestamp_us); } bool HeapProfiler::StartSamplingHeapProfiler(uint64_t sample_interval, int stack_depth) { return reinterpret_cast<i::HeapProfiler*>(this) ->StartSamplingHeapProfiler(sample_interval, stack_depth); } void HeapProfiler::StopSamplingHeapProfiler() { reinterpret_cast<i::HeapProfiler*>(this)->StopSamplingHeapProfiler(); } AllocationProfile* HeapProfiler::GetAllocationProfile() { return reinterpret_cast<i::HeapProfiler*>(this)->GetAllocationProfile(); } void HeapProfiler::DeleteAllHeapSnapshots() { reinterpret_cast<i::HeapProfiler*>(this)->DeleteAllSnapshots(); } void HeapProfiler::SetWrapperClassInfoProvider(uint16_t class_id, WrapperInfoCallback callback) { reinterpret_cast<i::HeapProfiler*>(this)->DefineWrapperClass(class_id, callback); } size_t HeapProfiler::GetProfilerMemorySize() { return reinterpret_cast<i::HeapProfiler*>(this)-> GetMemorySizeUsedByProfiler(); } void HeapProfiler::SetRetainedObjectInfo(UniqueId id, RetainedObjectInfo* info) { reinterpret_cast<i::HeapProfiler*>(this)->SetRetainedObjectInfo(id, info); } v8::Testing::StressType internal::Testing::stress_type_ = v8::Testing::kStressTypeOpt; void Testing::SetStressRunType(Testing::StressType type) { internal::Testing::set_stress_type(type); } int Testing::GetStressRuns() { if (internal::FLAG_stress_runs != 0) return internal::FLAG_stress_runs; #ifdef DEBUG // In debug mode the code runs much slower so stressing will only make two // runs. return 2; #else return 5; #endif } static void SetFlagsFromString(const char* flags) { V8::SetFlagsFromString(flags, i::StrLength(flags)); } void Testing::PrepareStressRun(int run) { static const char* kLazyOptimizations = "--prepare-always-opt " "--max-inlined-source-size=999999 " "--max-inlined-nodes=999999 " "--max-inlined-nodes-cumulative=999999 " "--noalways-opt"; static const char* kForcedOptimizations = "--always-opt"; // If deoptimization stressed turn on frequent deoptimization. If no value // is spefified through --deopt-every-n-times use a default default value. static const char* kDeoptEvery13Times = "--deopt-every-n-times=13"; if (internal::Testing::stress_type() == Testing::kStressTypeDeopt && internal::FLAG_deopt_every_n_times == 0) { SetFlagsFromString(kDeoptEvery13Times); } #ifdef DEBUG // As stressing in debug mode only make two runs skip the deopt stressing // here. if (run == GetStressRuns() - 1) { SetFlagsFromString(kForcedOptimizations); } else { SetFlagsFromString(kLazyOptimizations); } #else if (run == GetStressRuns() - 1) { SetFlagsFromString(kForcedOptimizations); } else if (run != GetStressRuns() - 2) { SetFlagsFromString(kLazyOptimizations); } #endif } void Testing::DeoptimizeAll(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::HandleScope scope(i_isolate); internal::Deoptimizer::DeoptimizeAll(i_isolate); } namespace internal { void HandleScopeImplementer::FreeThreadResources() { Free(); } char* HandleScopeImplementer::ArchiveThread(char* storage) { HandleScopeData* current = isolate_->handle_scope_data(); handle_scope_data_ = *current; MemCopy(storage, this, sizeof(*this)); ResetAfterArchive(); current->Initialize(); return storage + ArchiveSpacePerThread(); } int HandleScopeImplementer::ArchiveSpacePerThread() { return sizeof(HandleScopeImplementer); } char* HandleScopeImplementer::RestoreThread(char* storage) { MemCopy(this, storage, sizeof(*this)); *isolate_->handle_scope_data() = handle_scope_data_; return storage + ArchiveSpacePerThread(); } void HandleScopeImplementer::IterateThis(ObjectVisitor* v) { #ifdef DEBUG bool found_block_before_deferred = false; #endif // Iterate over all handles in the blocks except for the last. for (int i = blocks()->length() - 2; i >= 0; --i) { Object** block = blocks()->at(i); if (last_handle_before_deferred_block_ != NULL && (last_handle_before_deferred_block_ <= &block[kHandleBlockSize]) && (last_handle_before_deferred_block_ >= block)) { v->VisitPointers(block, last_handle_before_deferred_block_); DCHECK(!found_block_before_deferred); #ifdef DEBUG found_block_before_deferred = true; #endif } else { v->VisitPointers(block, &block[kHandleBlockSize]); } } DCHECK(last_handle_before_deferred_block_ == NULL || found_block_before_deferred); // Iterate over live handles in the last block (if any). if (!blocks()->is_empty()) { v->VisitPointers(blocks()->last(), handle_scope_data_.next); } List<Context*>* context_lists[2] = { &saved_contexts_, &entered_contexts_}; for (unsigned i = 0; i < arraysize(context_lists); i++) { if (context_lists[i]->is_empty()) continue; Object** start = reinterpret_cast<Object**>(&context_lists[i]->first()); v->VisitPointers(start, start + context_lists[i]->length()); } } void HandleScopeImplementer::Iterate(ObjectVisitor* v) { HandleScopeData* current = isolate_->handle_scope_data(); handle_scope_data_ = *current; IterateThis(v); } char* HandleScopeImplementer::Iterate(ObjectVisitor* v, char* storage) { HandleScopeImplementer* scope_implementer = reinterpret_cast<HandleScopeImplementer*>(storage); scope_implementer->IterateThis(v); return storage + ArchiveSpacePerThread(); } DeferredHandles* HandleScopeImplementer::Detach(Object** prev_limit) { DeferredHandles* deferred = new DeferredHandles(isolate()->handle_scope_data()->next, isolate()); while (!blocks_.is_empty()) { Object** block_start = blocks_.last(); Object** block_limit = &block_start[kHandleBlockSize]; // We should not need to check for SealHandleScope here. Assert this. DCHECK(prev_limit == block_limit || !(block_start <= prev_limit && prev_limit <= block_limit)); if (prev_limit == block_limit) break; deferred->blocks_.Add(blocks_.last()); blocks_.RemoveLast(); } // deferred->blocks_ now contains the blocks installed on the // HandleScope stack since BeginDeferredScope was called, but in // reverse order. DCHECK(prev_limit == NULL || !blocks_.is_empty()); DCHECK(!blocks_.is_empty() && prev_limit != NULL); DCHECK(last_handle_before_deferred_block_ != NULL); last_handle_before_deferred_block_ = NULL; return deferred; } void HandleScopeImplementer::BeginDeferredScope() { DCHECK(last_handle_before_deferred_block_ == NULL); last_handle_before_deferred_block_ = isolate()->handle_scope_data()->next; } DeferredHandles::~DeferredHandles() { isolate_->UnlinkDeferredHandles(this); for (int i = 0; i < blocks_.length(); i++) { #ifdef ENABLE_HANDLE_ZAPPING HandleScope::ZapRange(blocks_[i], &blocks_[i][kHandleBlockSize]); #endif isolate_->handle_scope_implementer()->ReturnBlock(blocks_[i]); } } void DeferredHandles::Iterate(ObjectVisitor* v) { DCHECK(!blocks_.is_empty()); DCHECK((first_block_limit_ >= blocks_.first()) && (first_block_limit_ <= &(blocks_.first())[kHandleBlockSize])); v->VisitPointers(blocks_.first(), first_block_limit_); for (int i = 1; i < blocks_.length(); i++) { v->VisitPointers(blocks_[i], &blocks_[i][kHandleBlockSize]); } } void InvokeAccessorGetterCallback( v8::Local<v8::Name> property, const v8::PropertyCallbackInfo<v8::Value>& info, v8::AccessorNameGetterCallback getter) { // Leaving JavaScript. Isolate* isolate = reinterpret_cast<Isolate*>(info.GetIsolate()); Address getter_address = reinterpret_cast<Address>(reinterpret_cast<intptr_t>( getter)); VMState<EXTERNAL> state(isolate); ExternalCallbackScope call_scope(isolate, getter_address); getter(property, info); } void InvokeFunctionCallback(const v8::FunctionCallbackInfo<v8::Value>& info, v8::FunctionCallback callback) { Isolate* isolate = reinterpret_cast<Isolate*>(info.GetIsolate()); Address callback_address = reinterpret_cast<Address>(reinterpret_cast<intptr_t>(callback)); VMState<EXTERNAL> state(isolate); ExternalCallbackScope call_scope(isolate, callback_address); callback(info); } } // namespace internal } // namespace v8