// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/types.h" #include <iomanip> #include "src/handles/handles-inl.h" #include "src/objects/instance-type.h" #include "src/objects/objects-inl.h" #include "src/utils/ostreams.h" namespace v8 { namespace internal { namespace compiler { // ----------------------------------------------------------------------------- // Range-related helper functions. bool RangeType::Limits::IsEmpty() { return this->min > this->max; } RangeType::Limits RangeType::Limits::Intersect(Limits lhs, Limits rhs) { DisallowHeapAllocation no_allocation; Limits result(lhs); if (lhs.min < rhs.min) result.min = rhs.min; if (lhs.max > rhs.max) result.max = rhs.max; return result; } RangeType::Limits RangeType::Limits::Union(Limits lhs, Limits rhs) { DisallowHeapAllocation no_allocation; if (lhs.IsEmpty()) return rhs; if (rhs.IsEmpty()) return lhs; Limits result(lhs); if (lhs.min > rhs.min) result.min = rhs.min; if (lhs.max < rhs.max) result.max = rhs.max; return result; } bool Type::Overlap(const RangeType* lhs, const RangeType* rhs) { DisallowHeapAllocation no_allocation; return !RangeType::Limits::Intersect(RangeType::Limits(lhs), RangeType::Limits(rhs)) .IsEmpty(); } bool Type::Contains(const RangeType* lhs, const RangeType* rhs) { DisallowHeapAllocation no_allocation; return lhs->Min() <= rhs->Min() && rhs->Max() <= lhs->Max(); } // ----------------------------------------------------------------------------- // Min and Max computation. double Type::Min() const { DCHECK(this->Is(Number())); DCHECK(!this->Is(NaN())); if (this->IsBitset()) return BitsetType::Min(this->AsBitset()); if (this->IsUnion()) { double min = +V8_INFINITY; for (int i = 1, n = AsUnion()->Length(); i < n; ++i) { min = std::min(min, AsUnion()->Get(i).Min()); } Type bitset = AsUnion()->Get(0); if (!bitset.Is(NaN())) min = std::min(min, bitset.Min()); return min; } if (this->IsRange()) return this->AsRange()->Min(); DCHECK(this->IsOtherNumberConstant()); return this->AsOtherNumberConstant()->Value(); } double Type::Max() const { DCHECK(this->Is(Number())); DCHECK(!this->Is(NaN())); if (this->IsBitset()) return BitsetType::Max(this->AsBitset()); if (this->IsUnion()) { double max = -V8_INFINITY; for (int i = 1, n = this->AsUnion()->Length(); i < n; ++i) { max = std::max(max, this->AsUnion()->Get(i).Max()); } Type bitset = this->AsUnion()->Get(0); if (!bitset.Is(NaN())) max = std::max(max, bitset.Max()); return max; } if (this->IsRange()) return this->AsRange()->Max(); DCHECK(this->IsOtherNumberConstant()); return this->AsOtherNumberConstant()->Value(); } // ----------------------------------------------------------------------------- // Glb and lub computation. // The largest bitset subsumed by this type. Type::bitset Type::BitsetGlb() const { DisallowHeapAllocation no_allocation; // Fast case. if (IsBitset()) { return AsBitset(); } else if (IsUnion()) { SLOW_DCHECK(AsUnion()->Wellformed()); return AsUnion()->Get(0).BitsetGlb() | AsUnion()->Get(1).BitsetGlb(); // Shortcut. } else if (IsRange()) { bitset glb = BitsetType::Glb(AsRange()->Min(), AsRange()->Max()); return glb; } else { return BitsetType::kNone; } } // The smallest bitset subsuming this type, possibly not a proper one. Type::bitset Type::BitsetLub() const { DisallowHeapAllocation no_allocation; if (IsBitset()) return AsBitset(); if (IsUnion()) { // Take the representation from the first element, which is always // a bitset. int bitset = AsUnion()->Get(0).BitsetLub(); for (int i = 0, n = AsUnion()->Length(); i < n; ++i) { // Other elements only contribute their semantic part. bitset |= AsUnion()->Get(i).BitsetLub(); } return bitset; } if (IsHeapConstant()) return AsHeapConstant()->Lub(); if (IsOtherNumberConstant()) { return AsOtherNumberConstant()->Lub(); } if (IsRange()) return AsRange()->Lub(); if (IsTuple()) return BitsetType::kOtherInternal; UNREACHABLE(); } // TODO(neis): Once the broker mode kDisabled is gone, change the input type to // MapRef and get rid of the HeapObjectType class. template <typename MapRefLike> Type::bitset BitsetType::Lub(const MapRefLike& map) { switch (map.instance_type()) { case CONS_STRING_TYPE: case CONS_ONE_BYTE_STRING_TYPE: case THIN_STRING_TYPE: case THIN_ONE_BYTE_STRING_TYPE: case SLICED_STRING_TYPE: case SLICED_ONE_BYTE_STRING_TYPE: case EXTERNAL_STRING_TYPE: case EXTERNAL_ONE_BYTE_STRING_TYPE: case UNCACHED_EXTERNAL_STRING_TYPE: case UNCACHED_EXTERNAL_ONE_BYTE_STRING_TYPE: case STRING_TYPE: case ONE_BYTE_STRING_TYPE: return kString; case EXTERNAL_INTERNALIZED_STRING_TYPE: case EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE: case UNCACHED_EXTERNAL_INTERNALIZED_STRING_TYPE: case UNCACHED_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE: case INTERNALIZED_STRING_TYPE: case ONE_BYTE_INTERNALIZED_STRING_TYPE: return kInternalizedString; case SYMBOL_TYPE: return kSymbol; case BIGINT_TYPE: return kBigInt; case ODDBALL_TYPE: switch (map.oddball_type()) { case OddballType::kNone: break; case OddballType::kHole: return kHole; case OddballType::kBoolean: return kBoolean; case OddballType::kNull: return kNull; case OddballType::kUndefined: return kUndefined; case OddballType::kUninitialized: case OddballType::kOther: // TODO(neis): We should add a kOtherOddball type. return kOtherInternal; } UNREACHABLE(); case HEAP_NUMBER_TYPE: return kNumber; case JS_OBJECT_TYPE: case JS_ARGUMENTS_OBJECT_TYPE: case JS_ERROR_TYPE: case JS_GLOBAL_OBJECT_TYPE: case JS_GLOBAL_PROXY_TYPE: case JS_API_OBJECT_TYPE: case JS_SPECIAL_API_OBJECT_TYPE: if (map.is_undetectable()) { // Currently we assume that every undetectable receiver is also // callable, which is what we need to support document.all. We // could add another Type bit to support other use cases in the // future if necessary. DCHECK(map.is_callable()); return kOtherUndetectable; } if (map.is_callable()) { return kOtherCallable; } return kOtherObject; case JS_ARRAY_TYPE: return kArray; case JS_PRIMITIVE_WRAPPER_TYPE: case JS_MESSAGE_OBJECT_TYPE: case JS_DATE_TYPE: #ifdef V8_INTL_SUPPORT case JS_V8_BREAK_ITERATOR_TYPE: case JS_COLLATOR_TYPE: case JS_DATE_TIME_FORMAT_TYPE: case JS_DISPLAY_NAMES_TYPE: case JS_LIST_FORMAT_TYPE: case JS_LOCALE_TYPE: case JS_NUMBER_FORMAT_TYPE: case JS_PLURAL_RULES_TYPE: case JS_RELATIVE_TIME_FORMAT_TYPE: case JS_SEGMENT_ITERATOR_TYPE: case JS_SEGMENTER_TYPE: case JS_SEGMENTS_TYPE: #endif // V8_INTL_SUPPORT case JS_CONTEXT_EXTENSION_OBJECT_TYPE: case JS_GENERATOR_OBJECT_TYPE: case JS_ASYNC_FUNCTION_OBJECT_TYPE: case JS_ASYNC_GENERATOR_OBJECT_TYPE: case JS_MODULE_NAMESPACE_TYPE: case JS_ARRAY_BUFFER_TYPE: case JS_ARRAY_ITERATOR_TYPE: case JS_REG_EXP_TYPE: case JS_REG_EXP_STRING_ITERATOR_TYPE: case JS_TYPED_ARRAY_TYPE: case JS_DATA_VIEW_TYPE: case JS_SET_TYPE: case JS_MAP_TYPE: case JS_SET_KEY_VALUE_ITERATOR_TYPE: case JS_SET_VALUE_ITERATOR_TYPE: case JS_MAP_KEY_ITERATOR_TYPE: case JS_MAP_KEY_VALUE_ITERATOR_TYPE: case JS_MAP_VALUE_ITERATOR_TYPE: case JS_STRING_ITERATOR_TYPE: case JS_ASYNC_FROM_SYNC_ITERATOR_TYPE: case JS_FINALIZATION_REGISTRY_TYPE: case JS_WEAK_MAP_TYPE: case JS_WEAK_REF_TYPE: case JS_WEAK_SET_TYPE: case JS_PROMISE_TYPE: case WASM_ARRAY_TYPE: case WASM_EXCEPTION_OBJECT_TYPE: case WASM_GLOBAL_OBJECT_TYPE: case WASM_INSTANCE_OBJECT_TYPE: case WASM_MEMORY_OBJECT_TYPE: case WASM_MODULE_OBJECT_TYPE: case WASM_STRUCT_TYPE: case WASM_TABLE_OBJECT_TYPE: case WEAK_CELL_TYPE: DCHECK(!map.is_callable()); DCHECK(!map.is_undetectable()); return kOtherObject; case JS_BOUND_FUNCTION_TYPE: DCHECK(!map.is_undetectable()); return kBoundFunction; case JS_FUNCTION_TYPE: DCHECK(!map.is_undetectable()); return kFunction; case JS_PROXY_TYPE: DCHECK(!map.is_undetectable()); if (map.is_callable()) return kCallableProxy; return kOtherProxy; case MAP_TYPE: case ALLOCATION_SITE_TYPE: case ACCESSOR_INFO_TYPE: case SHARED_FUNCTION_INFO_TYPE: case FUNCTION_TEMPLATE_INFO_TYPE: case FUNCTION_TEMPLATE_RARE_DATA_TYPE: case ACCESSOR_PAIR_TYPE: case EMBEDDER_DATA_ARRAY_TYPE: case FIXED_ARRAY_TYPE: case PROPERTY_DESCRIPTOR_OBJECT_TYPE: case HASH_TABLE_TYPE: case ORDERED_HASH_MAP_TYPE: case ORDERED_HASH_SET_TYPE: case ORDERED_NAME_DICTIONARY_TYPE: case NAME_DICTIONARY_TYPE: case GLOBAL_DICTIONARY_TYPE: case NUMBER_DICTIONARY_TYPE: case SIMPLE_NUMBER_DICTIONARY_TYPE: case EPHEMERON_HASH_TABLE_TYPE: case WEAK_FIXED_ARRAY_TYPE: case WEAK_ARRAY_LIST_TYPE: case FIXED_DOUBLE_ARRAY_TYPE: case FEEDBACK_METADATA_TYPE: case BYTE_ARRAY_TYPE: case BYTECODE_ARRAY_TYPE: case OBJECT_BOILERPLATE_DESCRIPTION_TYPE: case ARRAY_BOILERPLATE_DESCRIPTION_TYPE: case DESCRIPTOR_ARRAY_TYPE: case TRANSITION_ARRAY_TYPE: case FEEDBACK_CELL_TYPE: case CLOSURE_FEEDBACK_CELL_ARRAY_TYPE: case FEEDBACK_VECTOR_TYPE: case PROPERTY_ARRAY_TYPE: case FOREIGN_TYPE: case SCOPE_INFO_TYPE: case SCRIPT_CONTEXT_TABLE_TYPE: case AWAIT_CONTEXT_TYPE: case BLOCK_CONTEXT_TYPE: case CATCH_CONTEXT_TYPE: case DEBUG_EVALUATE_CONTEXT_TYPE: case EVAL_CONTEXT_TYPE: case FUNCTION_CONTEXT_TYPE: case MODULE_CONTEXT_TYPE: case NATIVE_CONTEXT_TYPE: case SCRIPT_CONTEXT_TYPE: case WITH_CONTEXT_TYPE: case SCRIPT_TYPE: case CODE_TYPE: case PROPERTY_CELL_TYPE: case SOURCE_TEXT_MODULE_TYPE: case SOURCE_TEXT_MODULE_INFO_ENTRY_TYPE: case SYNTHETIC_MODULE_TYPE: case CELL_TYPE: case PREPARSE_DATA_TYPE: case UNCOMPILED_DATA_WITHOUT_PREPARSE_DATA_TYPE: case UNCOMPILED_DATA_WITH_PREPARSE_DATA_TYPE: case COVERAGE_INFO_TYPE: case WASM_TYPE_INFO_TYPE: return kOtherInternal; // Remaining instance types are unsupported for now. If any of them do // require bit set types, they should get kOtherInternal. case FREE_SPACE_TYPE: case FILLER_TYPE: case ACCESS_CHECK_INFO_TYPE: case ASM_WASM_DATA_TYPE: case CALL_HANDLER_INFO_TYPE: case INTERCEPTOR_INFO_TYPE: case OBJECT_TEMPLATE_INFO_TYPE: case ALLOCATION_MEMENTO_TYPE: case ALIASED_ARGUMENTS_ENTRY_TYPE: case PROMISE_CAPABILITY_TYPE: case PROMISE_REACTION_TYPE: case CLASS_POSITIONS_TYPE: case DEBUG_INFO_TYPE: case STACK_FRAME_INFO_TYPE: case STACK_TRACE_FRAME_TYPE: case SMALL_ORDERED_HASH_MAP_TYPE: case SMALL_ORDERED_HASH_SET_TYPE: case SMALL_ORDERED_NAME_DICTIONARY_TYPE: case PROTOTYPE_INFO_TYPE: case INTERPRETER_DATA_TYPE: case TEMPLATE_OBJECT_DESCRIPTION_TYPE: case TUPLE2_TYPE: case BREAK_POINT_TYPE: case BREAK_POINT_INFO_TYPE: case WASM_VALUE_TYPE: case CACHED_TEMPLATE_OBJECT_TYPE: case ENUM_CACHE_TYPE: case WASM_CAPI_FUNCTION_DATA_TYPE: case WASM_INDIRECT_FUNCTION_TABLE_TYPE: case WASM_EXCEPTION_TAG_TYPE: case WASM_EXPORTED_FUNCTION_DATA_TYPE: case WASM_JS_FUNCTION_DATA_TYPE: case LOAD_HANDLER_TYPE: case STORE_HANDLER_TYPE: case ASYNC_GENERATOR_REQUEST_TYPE: case CODE_DATA_CONTAINER_TYPE: case CALLBACK_TASK_TYPE: case CALLABLE_TASK_TYPE: case PROMISE_FULFILL_REACTION_JOB_TASK_TYPE: case PROMISE_REJECT_REACTION_JOB_TASK_TYPE: case PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE: #define MAKE_TORQUE_CLASS_TYPE(INSTANCE_TYPE, Name, name) case INSTANCE_TYPE: TORQUE_DEFINED_INSTANCE_TYPE_LIST(MAKE_TORQUE_CLASS_TYPE) #undef MAKE_TORQUE_CLASS_TYPE UNREACHABLE(); } UNREACHABLE(); } // Explicit instantiation. template Type::bitset BitsetType::Lub<MapRef>(const MapRef& map); Type::bitset BitsetType::Lub(double value) { DisallowHeapAllocation no_allocation; if (IsMinusZero(value)) return kMinusZero; if (std::isnan(value)) return kNaN; if (IsUint32Double(value) || IsInt32Double(value)) return Lub(value, value); return kOtherNumber; } // Minimum values of plain numeric bitsets. const BitsetType::Boundary BitsetType::BoundariesArray[] = { {kOtherNumber, kPlainNumber, -V8_INFINITY}, {kOtherSigned32, kNegative32, kMinInt}, {kNegative31, kNegative31, -0x40000000}, {kUnsigned30, kUnsigned30, 0}, {kOtherUnsigned31, kUnsigned31, 0x40000000}, {kOtherUnsigned32, kUnsigned32, 0x80000000}, {kOtherNumber, kPlainNumber, static_cast<double>(kMaxUInt32) + 1}}; const BitsetType::Boundary* BitsetType::Boundaries() { return BoundariesArray; } size_t BitsetType::BoundariesSize() { // Windows doesn't like arraysize here. // return arraysize(BoundariesArray); return 7; } Type::bitset BitsetType::ExpandInternals(Type::bitset bits) { DCHECK_IMPLIES(bits & kOtherString, (bits & kString) == kString); DisallowHeapAllocation no_allocation; if (!(bits & kPlainNumber)) return bits; // Shortcut. const Boundary* boundaries = Boundaries(); for (size_t i = 0; i < BoundariesSize(); ++i) { DCHECK(BitsetType::Is(boundaries[i].internal, boundaries[i].external)); if (bits & boundaries[i].internal) bits |= boundaries[i].external; } return bits; } Type::bitset BitsetType::Lub(double min, double max) { DisallowHeapAllocation no_allocation; int lub = kNone; const Boundary* mins = Boundaries(); for (size_t i = 1; i < BoundariesSize(); ++i) { if (min < mins[i].min) { lub |= mins[i - 1].internal; if (max < mins[i].min) return lub; } } return lub | mins[BoundariesSize() - 1].internal; } Type::bitset BitsetType::NumberBits(bitset bits) { return bits & kPlainNumber; } Type::bitset BitsetType::Glb(double min, double max) { DisallowHeapAllocation no_allocation; int glb = kNone; const Boundary* mins = Boundaries(); // If the range does not touch 0, the bound is empty. if (max < -1 || min > 0) return glb; for (size_t i = 1; i + 1 < BoundariesSize(); ++i) { if (min <= mins[i].min) { if (max + 1 < mins[i + 1].min) break; glb |= mins[i].external; } } // OtherNumber also contains float numbers, so it can never be // in the greatest lower bound. return glb & ~(kOtherNumber); } double BitsetType::Min(bitset bits) { DisallowHeapAllocation no_allocation; DCHECK(Is(bits, kNumber)); DCHECK(!Is(bits, kNaN)); const Boundary* mins = Boundaries(); bool mz = bits & kMinusZero; for (size_t i = 0; i < BoundariesSize(); ++i) { if (Is(mins[i].internal, bits)) { return mz ? std::min(0.0, mins[i].min) : mins[i].min; } } DCHECK(mz); return 0; } double BitsetType::Max(bitset bits) { DisallowHeapAllocation no_allocation; DCHECK(Is(bits, kNumber)); DCHECK(!Is(bits, kNaN)); const Boundary* mins = Boundaries(); bool mz = bits & kMinusZero; if (BitsetType::Is(mins[BoundariesSize() - 1].internal, bits)) { return +V8_INFINITY; } for (size_t i = BoundariesSize() - 1; i-- > 0;) { if (Is(mins[i].internal, bits)) { return mz ? std::max(0.0, mins[i + 1].min - 1) : mins[i + 1].min - 1; } } DCHECK(mz); return 0; } // static bool OtherNumberConstantType::IsOtherNumberConstant(double value) { // Not an integer, not NaN, and not -0. return !std::isnan(value) && !RangeType::IsInteger(value) && !IsMinusZero(value); } HeapConstantType::HeapConstantType(BitsetType::bitset bitset, const HeapObjectRef& heap_ref) : TypeBase(kHeapConstant), bitset_(bitset), heap_ref_(heap_ref) {} Handle<HeapObject> HeapConstantType::Value() const { return heap_ref_.object(); } // ----------------------------------------------------------------------------- // Predicates. bool Type::SimplyEquals(Type that) const { DisallowHeapAllocation no_allocation; if (this->IsHeapConstant()) { return that.IsHeapConstant() && this->AsHeapConstant()->Value().address() == that.AsHeapConstant()->Value().address(); } if (this->IsOtherNumberConstant()) { return that.IsOtherNumberConstant() && this->AsOtherNumberConstant()->Value() == that.AsOtherNumberConstant()->Value(); } if (this->IsRange()) { if (that.IsHeapConstant() || that.IsOtherNumberConstant()) return false; } if (this->IsTuple()) { if (!that.IsTuple()) return false; const TupleType* this_tuple = this->AsTuple(); const TupleType* that_tuple = that.AsTuple(); if (this_tuple->Arity() != that_tuple->Arity()) { return false; } for (int i = 0, n = this_tuple->Arity(); i < n; ++i) { if (!this_tuple->Element(i).Equals(that_tuple->Element(i))) return false; } return true; } UNREACHABLE(); } // Check if [this] <= [that]. bool Type::SlowIs(Type that) const { DisallowHeapAllocation no_allocation; // Fast bitset cases if (that.IsBitset()) { return BitsetType::Is(this->BitsetLub(), that.AsBitset()); } if (this->IsBitset()) { return BitsetType::Is(this->AsBitset(), that.BitsetGlb()); } // (T1 \/ ... \/ Tn) <= T if (T1 <= T) /\ ... /\ (Tn <= T) if (this->IsUnion()) { for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { if (!this->AsUnion()->Get(i).Is(that)) return false; } return true; } // T <= (T1 \/ ... \/ Tn) if (T <= T1) \/ ... \/ (T <= Tn) if (that.IsUnion()) { for (int i = 0, n = that.AsUnion()->Length(); i < n; ++i) { if (this->Is(that.AsUnion()->Get(i))) return true; if (i > 1 && this->IsRange()) return false; // Shortcut. } return false; } if (that.IsRange()) { return this->IsRange() && Contains(that.AsRange(), this->AsRange()); } if (this->IsRange()) return false; return this->SimplyEquals(that); } // Check if [this] and [that] overlap. bool Type::Maybe(Type that) const { DisallowHeapAllocation no_allocation; if (BitsetType::IsNone(this->BitsetLub() & that.BitsetLub())) return false; // (T1 \/ ... \/ Tn) overlaps T if (T1 overlaps T) \/ ... \/ (Tn overlaps T) if (this->IsUnion()) { for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { if (this->AsUnion()->Get(i).Maybe(that)) return true; } return false; } // T overlaps (T1 \/ ... \/ Tn) if (T overlaps T1) \/ ... \/ (T overlaps Tn) if (that.IsUnion()) { for (int i = 0, n = that.AsUnion()->Length(); i < n; ++i) { if (this->Maybe(that.AsUnion()->Get(i))) return true; } return false; } if (this->IsBitset() && that.IsBitset()) return true; if (this->IsRange()) { if (that.IsRange()) { return Overlap(this->AsRange(), that.AsRange()); } if (that.IsBitset()) { bitset number_bits = BitsetType::NumberBits(that.AsBitset()); if (number_bits == BitsetType::kNone) { return false; } double min = std::max(BitsetType::Min(number_bits), this->Min()); double max = std::min(BitsetType::Max(number_bits), this->Max()); return min <= max; } } if (that.IsRange()) { return that.Maybe(*this); // This case is handled above. } if (this->IsBitset() || that.IsBitset()) return true; return this->SimplyEquals(that); } // Return the range in [this], or [nullptr]. Type Type::GetRange() const { DisallowHeapAllocation no_allocation; if (this->IsRange()) return *this; if (this->IsUnion() && this->AsUnion()->Get(1).IsRange()) { return this->AsUnion()->Get(1); } return nullptr; } bool UnionType::Wellformed() const { DisallowHeapAllocation no_allocation; // This checks the invariants of the union representation: // 1. There are at least two elements. // 2. The first element is a bitset, no other element is a bitset. // 3. At most one element is a range, and it must be the second one. // 4. No element is itself a union. // 5. No element (except the bitset) is a subtype of any other. // 6. If there is a range, then the bitset type does not contain // plain number bits. DCHECK_LE(2, this->Length()); // (1) DCHECK(this->Get(0).IsBitset()); // (2a) for (int i = 0; i < this->Length(); ++i) { if (i != 0) DCHECK(!this->Get(i).IsBitset()); // (2b) if (i != 1) DCHECK(!this->Get(i).IsRange()); // (3) DCHECK(!this->Get(i).IsUnion()); // (4) for (int j = 0; j < this->Length(); ++j) { if (i != j && i != 0) DCHECK(!this->Get(i).Is(this->Get(j))); // (5) } } DCHECK(!this->Get(1).IsRange() || (BitsetType::NumberBits(this->Get(0).AsBitset()) == BitsetType::kNone)); // (6) return true; } // ----------------------------------------------------------------------------- // Union and intersection Type Type::Intersect(Type type1, Type type2, Zone* zone) { // Fast case: bit sets. if (type1.IsBitset() && type2.IsBitset()) { return NewBitset(type1.AsBitset() & type2.AsBitset()); } // Fast case: top or bottom types. if (type1.IsNone() || type2.IsAny()) return type1; // Shortcut. if (type2.IsNone() || type1.IsAny()) return type2; // Shortcut. // Semi-fast case. if (type1.Is(type2)) return type1; if (type2.Is(type1)) return type2; // Slow case: create union. // Semantic subtyping check - this is needed for consistency with the // semi-fast case above. if (type1.Is(type2)) { type2 = Any(); } else if (type2.Is(type1)) { type1 = Any(); } bitset bits = type1.BitsetGlb() & type2.BitsetGlb(); int size1 = type1.IsUnion() ? type1.AsUnion()->Length() : 1; int size2 = type2.IsUnion() ? type2.AsUnion()->Length() : 1; int size; if (base::bits::SignedAddOverflow32(size1, size2, &size)) return Any(); if (base::bits::SignedAddOverflow32(size, 2, &size)) return Any(); UnionType* result = UnionType::New(size, zone); size = 0; // Deal with bitsets. result->Set(size++, NewBitset(bits)); RangeType::Limits lims = RangeType::Limits::Empty(); size = IntersectAux(type1, type2, result, size, &lims, zone); // If the range is not empty, then insert it into the union and // remove the number bits from the bitset. if (!lims.IsEmpty()) { size = UpdateRange(Type::Range(lims, zone), result, size, zone); // Remove the number bits. bitset number_bits = BitsetType::NumberBits(bits); bits &= ~number_bits; result->Set(0, NewBitset(bits)); } return NormalizeUnion(result, size, zone); } int Type::UpdateRange(Type range, UnionType* result, int size, Zone* zone) { if (size == 1) { result->Set(size++, range); } else { // Make space for the range. result->Set(size++, result->Get(1)); result->Set(1, range); } // Remove any components that just got subsumed. for (int i = 2; i < size;) { if (result->Get(i).Is(range)) { result->Set(i, result->Get(--size)); } else { ++i; } } return size; } RangeType::Limits Type::ToLimits(bitset bits, Zone* zone) { bitset number_bits = BitsetType::NumberBits(bits); if (number_bits == BitsetType::kNone) { return RangeType::Limits::Empty(); } return RangeType::Limits(BitsetType::Min(number_bits), BitsetType::Max(number_bits)); } RangeType::Limits Type::IntersectRangeAndBitset(Type range, Type bitset, Zone* zone) { RangeType::Limits range_lims(range.AsRange()); RangeType::Limits bitset_lims = ToLimits(bitset.AsBitset(), zone); return RangeType::Limits::Intersect(range_lims, bitset_lims); } int Type::IntersectAux(Type lhs, Type rhs, UnionType* result, int size, RangeType::Limits* lims, Zone* zone) { if (lhs.IsUnion()) { for (int i = 0, n = lhs.AsUnion()->Length(); i < n; ++i) { size = IntersectAux(lhs.AsUnion()->Get(i), rhs, result, size, lims, zone); } return size; } if (rhs.IsUnion()) { for (int i = 0, n = rhs.AsUnion()->Length(); i < n; ++i) { size = IntersectAux(lhs, rhs.AsUnion()->Get(i), result, size, lims, zone); } return size; } if (BitsetType::IsNone(lhs.BitsetLub() & rhs.BitsetLub())) return size; if (lhs.IsRange()) { if (rhs.IsBitset()) { RangeType::Limits lim = IntersectRangeAndBitset(lhs, rhs, zone); if (!lim.IsEmpty()) { *lims = RangeType::Limits::Union(lim, *lims); } return size; } if (rhs.IsRange()) { RangeType::Limits lim = RangeType::Limits::Intersect( RangeType::Limits(lhs.AsRange()), RangeType::Limits(rhs.AsRange())); if (!lim.IsEmpty()) { *lims = RangeType::Limits::Union(lim, *lims); } } return size; } if (rhs.IsRange()) { // This case is handled symmetrically above. return IntersectAux(rhs, lhs, result, size, lims, zone); } if (lhs.IsBitset() || rhs.IsBitset()) { return AddToUnion(lhs.IsBitset() ? rhs : lhs, result, size, zone); } if (lhs.SimplyEquals(rhs)) { return AddToUnion(lhs, result, size, zone); } return size; } // Make sure that we produce a well-formed range and bitset: // If the range is non-empty, the number bits in the bitset should be // clear. Moreover, if we have a canonical range (such as Signed32), // we want to produce a bitset rather than a range. Type Type::NormalizeRangeAndBitset(Type range, bitset* bits, Zone* zone) { // Fast path: If the bitset does not mention numbers, we can just keep the // range. bitset number_bits = BitsetType::NumberBits(*bits); if (number_bits == 0) { return range; } // If the range is semantically contained within the bitset, return None and // leave the bitset untouched. bitset range_lub = range.BitsetLub(); if (BitsetType::Is(range_lub, *bits)) { return None(); } // Slow path: reconcile the bitset range and the range. double bitset_min = BitsetType::Min(number_bits); double bitset_max = BitsetType::Max(number_bits); double range_min = range.Min(); double range_max = range.Max(); // Remove the number bits from the bitset, they would just confuse us now. // NOTE: bits contains OtherNumber iff bits contains PlainNumber, in which // case we already returned after the subtype check above. *bits &= ~number_bits; if (range_min <= bitset_min && range_max >= bitset_max) { // Bitset is contained within the range, just return the range. return range; } if (bitset_min < range_min) { range_min = bitset_min; } if (bitset_max > range_max) { range_max = bitset_max; } return Type::Range(range_min, range_max, zone); } Type Type::Constant(double value, Zone* zone) { if (RangeType::IsInteger(value)) { return Range(value, value, zone); } else if (IsMinusZero(value)) { return Type::MinusZero(); } else if (std::isnan(value)) { return Type::NaN(); } DCHECK(OtherNumberConstantType::IsOtherNumberConstant(value)); return OtherNumberConstant(value, zone); } Type Type::Constant(JSHeapBroker* broker, Handle<i::Object> value, Zone* zone) { ObjectRef ref(broker, value); if (ref.IsSmi()) { return Constant(static_cast<double>(ref.AsSmi()), zone); } if (ref.IsHeapNumber()) { return Constant(ref.AsHeapNumber().value(), zone); } if (ref.IsString() && !ref.IsInternalizedString()) { return Type::String(); } return HeapConstant(ref.AsHeapObject(), zone); } Type Type::Union(Type type1, Type type2, Zone* zone) { // Fast case: bit sets. if (type1.IsBitset() && type2.IsBitset()) { return NewBitset(type1.AsBitset() | type2.AsBitset()); } // Fast case: top or bottom types. if (type1.IsAny() || type2.IsNone()) return type1; if (type2.IsAny() || type1.IsNone()) return type2; // Semi-fast case. if (type1.Is(type2)) return type2; if (type2.Is(type1)) return type1; // Slow case: create union. int size1 = type1.IsUnion() ? type1.AsUnion()->Length() : 1; int size2 = type2.IsUnion() ? type2.AsUnion()->Length() : 1; int size; if (base::bits::SignedAddOverflow32(size1, size2, &size)) return Any(); if (base::bits::SignedAddOverflow32(size, 2, &size)) return Any(); UnionType* result = UnionType::New(size, zone); size = 0; // Compute the new bitset. bitset new_bitset = type1.BitsetGlb() | type2.BitsetGlb(); // Deal with ranges. Type range = None(); Type range1 = type1.GetRange(); Type range2 = type2.GetRange(); if (range1 != nullptr && range2 != nullptr) { RangeType::Limits lims = RangeType::Limits::Union(RangeType::Limits(range1.AsRange()), RangeType::Limits(range2.AsRange())); Type union_range = Type::Range(lims, zone); range = NormalizeRangeAndBitset(union_range, &new_bitset, zone); } else if (range1 != nullptr) { range = NormalizeRangeAndBitset(range1, &new_bitset, zone); } else if (range2 != nullptr) { range = NormalizeRangeAndBitset(range2, &new_bitset, zone); } Type bits = NewBitset(new_bitset); result->Set(size++, bits); if (!range.IsNone()) result->Set(size++, range); size = AddToUnion(type1, result, size, zone); size = AddToUnion(type2, result, size, zone); return NormalizeUnion(result, size, zone); } // Add [type] to [result] unless [type] is bitset, range, or already subsumed. // Return new size of [result]. int Type::AddToUnion(Type type, UnionType* result, int size, Zone* zone) { if (type.IsBitset() || type.IsRange()) return size; if (type.IsUnion()) { for (int i = 0, n = type.AsUnion()->Length(); i < n; ++i) { size = AddToUnion(type.AsUnion()->Get(i), result, size, zone); } return size; } for (int i = 0; i < size; ++i) { if (type.Is(result->Get(i))) return size; } result->Set(size++, type); return size; } Type Type::NormalizeUnion(UnionType* unioned, int size, Zone* zone) { DCHECK_LE(1, size); DCHECK(unioned->Get(0).IsBitset()); // If the union has just one element, return it. if (size == 1) { return unioned->Get(0); } bitset bits = unioned->Get(0).AsBitset(); // If the union only consists of a range, we can get rid of the union. if (size == 2 && bits == BitsetType::kNone) { if (unioned->Get(1).IsRange()) { return Type::Range(unioned->Get(1).AsRange()->Min(), unioned->Get(1).AsRange()->Max(), zone); } } unioned->Shrink(size); SLOW_DCHECK(unioned->Wellformed()); return Type(unioned); } int Type::NumConstants() const { DisallowHeapAllocation no_allocation; if (this->IsHeapConstant() || this->IsOtherNumberConstant()) { return 1; } else if (this->IsUnion()) { int result = 0; for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { if (this->AsUnion()->Get(i).IsHeapConstant()) ++result; } return result; } else { return 0; } } // ----------------------------------------------------------------------------- // Printing. const char* BitsetType::Name(bitset bits) { switch (bits) { #define RETURN_NAMED_TYPE(type, value) \ case k##type: \ return #type; PROPER_BITSET_TYPE_LIST(RETURN_NAMED_TYPE) INTERNAL_BITSET_TYPE_LIST(RETURN_NAMED_TYPE) #undef RETURN_NAMED_TYPE default: return nullptr; } } void BitsetType::Print(std::ostream& os, // NOLINT bitset bits) { DisallowHeapAllocation no_allocation; const char* name = Name(bits); if (name != nullptr) { os << name; return; } // clang-format off static const bitset named_bitsets[] = { #define BITSET_CONSTANT(type, value) k##type, INTERNAL_BITSET_TYPE_LIST(BITSET_CONSTANT) PROPER_BITSET_TYPE_LIST(BITSET_CONSTANT) #undef BITSET_CONSTANT }; // clang-format on bool is_first = true; os << "("; for (int i(arraysize(named_bitsets) - 1); bits != 0 && i >= 0; --i) { bitset subset = named_bitsets[i]; if ((bits & subset) == subset) { if (!is_first) os << " | "; is_first = false; os << Name(subset); bits -= subset; } } DCHECK_EQ(0, bits); os << ")"; } void Type::PrintTo(std::ostream& os) const { DisallowHeapAllocation no_allocation; if (this->IsBitset()) { BitsetType::Print(os, this->AsBitset()); } else if (this->IsHeapConstant()) { os << "HeapConstant(" << this->AsHeapConstant()->Ref() << ")"; } else if (this->IsOtherNumberConstant()) { os << "OtherNumberConstant(" << this->AsOtherNumberConstant()->Value() << ")"; } else if (this->IsRange()) { std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed); std::streamsize saved_precision = os.precision(0); os << "Range(" << this->AsRange()->Min() << ", " << this->AsRange()->Max() << ")"; os.flags(saved_flags); os.precision(saved_precision); } else if (this->IsUnion()) { os << "("; for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { Type type_i = this->AsUnion()->Get(i); if (i > 0) os << " | "; os << type_i; } os << ")"; } else if (this->IsTuple()) { os << "<"; for (int i = 0, n = this->AsTuple()->Arity(); i < n; ++i) { Type type_i = this->AsTuple()->Element(i); if (i > 0) os << ", "; os << type_i; } os << ">"; } else { UNREACHABLE(); } } #ifdef DEBUG void Type::Print() const { StdoutStream os; PrintTo(os); os << std::endl; } void BitsetType::Print(bitset bits) { StdoutStream os; Print(os, bits); os << std::endl; } #endif BitsetType::bitset BitsetType::SignedSmall() { return SmiValuesAre31Bits() ? kSigned31 : kSigned32; } BitsetType::bitset BitsetType::UnsignedSmall() { return SmiValuesAre31Bits() ? kUnsigned30 : kUnsigned31; } // static Type Type::Tuple(Type first, Type second, Type third, Zone* zone) { TupleType* tuple = TupleType::New(3, zone); tuple->InitElement(0, first); tuple->InitElement(1, second); tuple->InitElement(2, third); return FromTypeBase(tuple); } // static Type Type::OtherNumberConstant(double value, Zone* zone) { return FromTypeBase(OtherNumberConstantType::New(value, zone)); } // static Type Type::HeapConstant(const HeapObjectRef& value, Zone* zone) { DCHECK(!value.IsHeapNumber()); DCHECK_IMPLIES(value.IsString(), value.IsInternalizedString()); BitsetType::bitset bitset = BitsetType::Lub(value.GetHeapObjectType()); if (Type(bitset).IsSingleton()) return Type(bitset); return HeapConstantType::New(value, bitset, zone); } // static Type Type::Range(double min, double max, Zone* zone) { return FromTypeBase(RangeType::New(min, max, zone)); } // static Type Type::Range(RangeType::Limits lims, Zone* zone) { return FromTypeBase(RangeType::New(lims, zone)); } const HeapConstantType* Type::AsHeapConstant() const { DCHECK(IsKind(TypeBase::kHeapConstant)); return static_cast<const HeapConstantType*>(ToTypeBase()); } const OtherNumberConstantType* Type::AsOtherNumberConstant() const { DCHECK(IsKind(TypeBase::kOtherNumberConstant)); return static_cast<const OtherNumberConstantType*>(ToTypeBase()); } const RangeType* Type::AsRange() const { DCHECK(IsKind(TypeBase::kRange)); return static_cast<const RangeType*>(ToTypeBase()); } const TupleType* Type::AsTuple() const { DCHECK(IsKind(TypeBase::kTuple)); return static_cast<const TupleType*>(ToTypeBase()); } const UnionType* Type::AsUnion() const { DCHECK(IsKind(TypeBase::kUnion)); return static_cast<const UnionType*>(ToTypeBase()); } std::ostream& operator<<(std::ostream& os, Type type) { type.PrintTo(os); return os; } } // namespace compiler } // namespace internal } // namespace v8