// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_COMPILER_COMMON_OPERATOR_H_ #define V8_COMPILER_COMMON_OPERATOR_H_ #include "src/assembler.h" #include "src/base/compiler-specific.h" #include "src/compiler/frame-states.h" #include "src/deoptimize-reason.h" #include "src/globals.h" #include "src/machine-type.h" #include "src/zone/zone-containers.h" namespace v8 { namespace internal { namespace compiler { // Forward declarations. class CallDescriptor; struct CommonOperatorGlobalCache; class Operator; class Type; class Node; // Prediction hint for branches. enum class BranchHint : uint8_t { kNone, kTrue, kFalse }; inline BranchHint NegateBranchHint(BranchHint hint) { switch (hint) { case BranchHint::kNone: return hint; case BranchHint::kTrue: return BranchHint::kFalse; case BranchHint::kFalse: return BranchHint::kTrue; } UNREACHABLE(); return hint; } inline size_t hash_value(BranchHint hint) { return static_cast<size_t>(hint); } V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream&, BranchHint); V8_EXPORT_PRIVATE BranchHint BranchHintOf(const Operator* const); // Deoptimize reason for Deoptimize, DeoptimizeIf and DeoptimizeUnless. DeoptimizeReason DeoptimizeReasonOf(Operator const* const); // Helper function for return nodes, because returns have a hidden value input. int ValueInputCountOfReturn(Operator const* const op); // Deoptimize bailout kind. enum class DeoptimizeKind : uint8_t { kEager, kSoft }; size_t hash_value(DeoptimizeKind kind); std::ostream& operator<<(std::ostream&, DeoptimizeKind); // Parameters for the {Deoptimize} operator. class DeoptimizeParameters final { public: DeoptimizeParameters(DeoptimizeKind kind, DeoptimizeReason reason) : kind_(kind), reason_(reason) {} DeoptimizeKind kind() const { return kind_; } DeoptimizeReason reason() const { return reason_; } private: DeoptimizeKind const kind_; DeoptimizeReason const reason_; }; bool operator==(DeoptimizeParameters, DeoptimizeParameters); bool operator!=(DeoptimizeParameters, DeoptimizeParameters); size_t hast_value(DeoptimizeParameters p); std::ostream& operator<<(std::ostream&, DeoptimizeParameters p); DeoptimizeParameters const& DeoptimizeParametersOf(Operator const* const); class SelectParameters final { public: explicit SelectParameters(MachineRepresentation representation, BranchHint hint = BranchHint::kNone) : representation_(representation), hint_(hint) {} MachineRepresentation representation() const { return representation_; } BranchHint hint() const { return hint_; } private: const MachineRepresentation representation_; const BranchHint hint_; }; bool operator==(SelectParameters const&, SelectParameters const&); bool operator!=(SelectParameters const&, SelectParameters const&); size_t hash_value(SelectParameters const& p); std::ostream& operator<<(std::ostream&, SelectParameters const& p); V8_EXPORT_PRIVATE SelectParameters const& SelectParametersOf( const Operator* const); V8_EXPORT_PRIVATE CallDescriptor const* CallDescriptorOf(const Operator* const); V8_EXPORT_PRIVATE size_t ProjectionIndexOf(const Operator* const); V8_EXPORT_PRIVATE MachineRepresentation PhiRepresentationOf(const Operator* const); // The {IrOpcode::kParameter} opcode represents an incoming parameter to the // function. This class bundles the index and a debug name for such operators. class ParameterInfo final { public: ParameterInfo(int index, const char* debug_name) : index_(index), debug_name_(debug_name) {} int index() const { return index_; } const char* debug_name() const { return debug_name_; } private: int index_; const char* debug_name_; }; std::ostream& operator<<(std::ostream&, ParameterInfo const&); V8_EXPORT_PRIVATE int ParameterIndexOf(const Operator* const); const ParameterInfo& ParameterInfoOf(const Operator* const); class RelocatablePtrConstantInfo final { public: enum Type { kInt32, kInt64 }; RelocatablePtrConstantInfo(int32_t value, RelocInfo::Mode rmode) : value_(value), rmode_(rmode), type_(kInt32) {} RelocatablePtrConstantInfo(int64_t value, RelocInfo::Mode rmode) : value_(value), rmode_(rmode), type_(kInt64) {} intptr_t value() const { return value_; } RelocInfo::Mode rmode() const { return rmode_; } Type type() const { return type_; } private: intptr_t value_; RelocInfo::Mode rmode_; Type type_; }; bool operator==(RelocatablePtrConstantInfo const& lhs, RelocatablePtrConstantInfo const& rhs); bool operator!=(RelocatablePtrConstantInfo const& lhs, RelocatablePtrConstantInfo const& rhs); std::ostream& operator<<(std::ostream&, RelocatablePtrConstantInfo const&); size_t hash_value(RelocatablePtrConstantInfo const& p); // Used to define a sparse set of inputs. This can be used to efficiently encode // nodes that can have a lot of inputs, but where many inputs can have the same // value. class SparseInputMask final { public: typedef uint32_t BitMaskType; // The mask representing a dense input set. static const BitMaskType kDenseBitMask = 0x0; // The bits representing the end of a sparse input set. static const BitMaskType kEndMarker = 0x1; // The mask for accessing a sparse input entry in the bitmask. static const BitMaskType kEntryMask = 0x1; // The number of bits in the mask, minus one for the end marker. static const int kMaxSparseInputs = (sizeof(BitMaskType) * kBitsPerByte - 1); // An iterator over a node's sparse inputs. class InputIterator final { public: InputIterator() {} InputIterator(BitMaskType bit_mask, Node* parent); Node* parent() const { return parent_; } int real_index() const { return real_index_; } // Advance the iterator to the next sparse input. Only valid if the iterator // has not reached the end. void Advance(); // Get the current sparse input's real node value. Only valid if the // current sparse input is real. Node* GetReal() const; // Get the current sparse input, returning either a real input node if // the current sparse input is real, or the given {empty_value} if the // current sparse input is empty. Node* Get(Node* empty_value) const { return IsReal() ? GetReal() : empty_value; } // True if the current sparse input is a real input node. bool IsReal() const; // True if the current sparse input is an empty value. bool IsEmpty() const { return !IsReal(); } // True if the iterator has reached the end of the sparse inputs. bool IsEnd() const; private: BitMaskType bit_mask_; Node* parent_; int real_index_; }; explicit SparseInputMask(BitMaskType bit_mask) : bit_mask_(bit_mask) {} // Provides a SparseInputMask representing a dense input set. static SparseInputMask Dense() { return SparseInputMask(kDenseBitMask); } BitMaskType mask() const { return bit_mask_; } bool IsDense() const { return bit_mask_ == SparseInputMask::kDenseBitMask; } // Counts how many real values are in the sparse array. Only valid for // non-dense masks. int CountReal() const; // Returns an iterator over the sparse inputs of {node}. InputIterator IterateOverInputs(Node* node); private: // // The sparse input mask has a bitmask specifying if the node's inputs are // represented sparsely. If the bitmask value is 0, then the inputs are dense; // otherwise, they should be interpreted as follows: // // * The bitmask represents which values are real, with 1 for real values // and 0 for empty values. // * The inputs to the node are the real values, in the order of the 1s from // least- to most-significant. // * The top bit of the bitmask is a guard indicating the end of the values, // whether real or empty (and is not representative of a real input // itself). This is used so that we don't have to additionally store a // value count. // // So, for N 1s in the bitmask, there are N - 1 inputs into the node. BitMaskType bit_mask_; }; bool operator==(SparseInputMask const& lhs, SparseInputMask const& rhs); bool operator!=(SparseInputMask const& lhs, SparseInputMask const& rhs); class TypedStateValueInfo final { public: TypedStateValueInfo(ZoneVector<MachineType> const* machine_types, SparseInputMask sparse_input_mask) : machine_types_(machine_types), sparse_input_mask_(sparse_input_mask) {} ZoneVector<MachineType> const* machine_types() const { return machine_types_; } SparseInputMask sparse_input_mask() const { return sparse_input_mask_; } private: ZoneVector<MachineType> const* machine_types_; SparseInputMask sparse_input_mask_; }; bool operator==(TypedStateValueInfo const& lhs, TypedStateValueInfo const& rhs); bool operator!=(TypedStateValueInfo const& lhs, TypedStateValueInfo const& rhs); std::ostream& operator<<(std::ostream&, TypedStateValueInfo const&); size_t hash_value(TypedStateValueInfo const& p); // Used to mark a region (as identified by BeginRegion/FinishRegion) as either // JavaScript-observable or not (i.e. allocations are not JavaScript observable // themselves, but transitioning stores are). enum class RegionObservability : uint8_t { kObservable, kNotObservable }; size_t hash_value(RegionObservability); std::ostream& operator<<(std::ostream&, RegionObservability); RegionObservability RegionObservabilityOf(Operator const*) WARN_UNUSED_RESULT; std::ostream& operator<<(std::ostream& os, const ZoneVector<MachineType>* types); Type* TypeGuardTypeOf(Operator const*) WARN_UNUSED_RESULT; int OsrValueIndexOf(Operator const*); enum class OsrGuardType { kUninitialized, kSignedSmall, kAny }; size_t hash_value(OsrGuardType type); std::ostream& operator<<(std::ostream&, OsrGuardType); OsrGuardType OsrGuardTypeOf(Operator const*); SparseInputMask SparseInputMaskOf(Operator const*); ZoneVector<MachineType> const* MachineTypesOf(Operator const*) WARN_UNUSED_RESULT; // Interface for building common operators that can be used at any level of IR, // including JavaScript, mid-level, and low-level. class V8_EXPORT_PRIVATE CommonOperatorBuilder final : public NON_EXPORTED_BASE(ZoneObject) { public: explicit CommonOperatorBuilder(Zone* zone); const Operator* Dead(); const Operator* End(size_t control_input_count); const Operator* Branch(BranchHint = BranchHint::kNone); const Operator* IfTrue(); const Operator* IfFalse(); const Operator* IfSuccess(); const Operator* IfException(); const Operator* Switch(size_t control_output_count); const Operator* IfValue(int32_t value); const Operator* IfDefault(); const Operator* Throw(); const Operator* Deoptimize(DeoptimizeKind kind, DeoptimizeReason reason); const Operator* DeoptimizeIf(DeoptimizeReason reason); const Operator* DeoptimizeUnless(DeoptimizeReason reason); const Operator* TrapIf(int32_t trap_id); const Operator* TrapUnless(int32_t trap_id); const Operator* Return(int value_input_count = 1); const Operator* Terminate(); const Operator* Start(int value_output_count); const Operator* Loop(int control_input_count); const Operator* Merge(int control_input_count); const Operator* Parameter(int index, const char* debug_name = nullptr); const Operator* OsrNormalEntry(); const Operator* OsrLoopEntry(); const Operator* OsrValue(int index); const Operator* OsrGuard(OsrGuardType type); const Operator* Int32Constant(int32_t); const Operator* Int64Constant(int64_t); const Operator* Float32Constant(volatile float); const Operator* Float64Constant(volatile double); const Operator* ExternalConstant(const ExternalReference&); const Operator* NumberConstant(volatile double); const Operator* PointerConstant(intptr_t); const Operator* HeapConstant(const Handle<HeapObject>&); const Operator* RelocatableInt32Constant(int32_t value, RelocInfo::Mode rmode); const Operator* RelocatableInt64Constant(int64_t value, RelocInfo::Mode rmode); const Operator* Select(MachineRepresentation, BranchHint = BranchHint::kNone); const Operator* Phi(MachineRepresentation representation, int value_input_count); const Operator* EffectPhi(int effect_input_count); const Operator* InductionVariablePhi(int value_input_count); const Operator* LoopExit(); const Operator* LoopExitValue(); const Operator* LoopExitEffect(); const Operator* Checkpoint(); const Operator* BeginRegion(RegionObservability); const Operator* FinishRegion(); const Operator* StateValues(int arguments, SparseInputMask bitmask); const Operator* TypedStateValues(const ZoneVector<MachineType>* types, SparseInputMask bitmask); const Operator* ArgumentsObjectState(); const Operator* ObjectState(int pointer_slots); const Operator* TypedObjectState(const ZoneVector<MachineType>* types); const Operator* FrameState(BailoutId bailout_id, OutputFrameStateCombine state_combine, const FrameStateFunctionInfo* function_info); const Operator* Call(const CallDescriptor* descriptor); const Operator* TailCall(const CallDescriptor* descriptor); const Operator* Projection(size_t index); const Operator* Retain(); const Operator* TypeGuard(Type* type); // Constructs a new merge or phi operator with the same opcode as {op}, but // with {size} inputs. const Operator* ResizeMergeOrPhi(const Operator* op, int size); // Constructs function info for frame state construction. const FrameStateFunctionInfo* CreateFrameStateFunctionInfo( FrameStateType type, int parameter_count, int local_count, Handle<SharedFunctionInfo> shared_info); private: Zone* zone() const { return zone_; } const CommonOperatorGlobalCache& cache_; Zone* const zone_; DISALLOW_COPY_AND_ASSIGN(CommonOperatorBuilder); }; } // namespace compiler } // namespace internal } // namespace v8 #endif // V8_COMPILER_COMMON_OPERATOR_H_