// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <stdint.h> #include <stdlib.h> #include <string.h> #include "src/api/api-inl.h" #include "src/base/overflowing-math.h" #include "src/base/platform/elapsed-timer.h" #include "src/codegen/assembler-inl.h" #include "src/utils/utils.h" #include "src/wasm/code-space-access.h" #include "src/wasm/wasm-opcodes-inl.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/value-helper.h" #include "test/cctest/wasm/wasm-run-utils.h" #include "test/common/wasm/test-signatures.h" #include "test/common/wasm/wasm-macro-gen.h" namespace v8 { namespace internal { namespace wasm { namespace test_run_wasm { // for even shorter tests. #define B1(a) WASM_BLOCK(a) #define B2(a, b) WASM_BLOCK(a, b) #define RET(x) x, kExprReturn #define RET_I8(x) WASM_I32V_2(x), kExprReturn WASM_EXEC_TEST(Int32Const) { WasmRunner<int32_t> r(execution_tier); const int32_t kExpectedValue = 0x11223344; // return(kExpectedValue) BUILD(r, WASM_I32V_5(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } WASM_EXEC_TEST(Int32Const_many) { FOR_INT32_INPUTS(i) { WasmRunner<int32_t> r(execution_tier); const int32_t kExpectedValue = i; // return(kExpectedValue) BUILD(r, WASM_I32V(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } } WASM_EXEC_TEST(GraphTrimming) { // This WebAssembly code requires graph trimming in the TurboFan compiler. WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, kExprLocalGet, 0, kExprLocalGet, 0, kExprLocalGet, 0, kExprI32RemS, kExprI32Eq, kExprLocalGet, 0, kExprI32DivS, kExprUnreachable); r.Call(1); } WASM_EXEC_TEST(Int32Param0) { WasmRunner<int32_t, int32_t> r(execution_tier); // return(local[0]) BUILD(r, WASM_LOCAL_GET(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Int32Param0_fallthru) { WasmRunner<int32_t, int32_t> r(execution_tier); // local[0] BUILD(r, WASM_LOCAL_GET(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Int32Param1) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); // local[1] BUILD(r, WASM_LOCAL_GET(1)); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(-111, i)); } } WASM_EXEC_TEST(Int32Add) { WasmRunner<int32_t> r(execution_tier); // 11 + 44 BUILD(r, WASM_I32_ADD(WASM_I32V_1(11), WASM_I32V_1(44))); CHECK_EQ(55, r.Call()); } WASM_EXEC_TEST(Int32Add_P) { WasmRunner<int32_t, int32_t> r(execution_tier); // p0 + 13 BUILD(r, WASM_I32_ADD(WASM_I32V_1(13), WASM_LOCAL_GET(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(base::AddWithWraparound(i, 13), r.Call(i)); } } WASM_EXEC_TEST(Int32Add_P_fallthru) { WasmRunner<int32_t, int32_t> r(execution_tier); // p0 + 13 BUILD(r, WASM_I32_ADD(WASM_I32V_1(13), WASM_LOCAL_GET(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(base::AddWithWraparound(i, 13), r.Call(i)); } } static void RunInt32AddTest(TestExecutionTier execution_tier, const byte* code, size_t size) { TestSignatures sigs; WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); r.builder().AddSignature(sigs.ii_v()); r.builder().AddSignature(sigs.iii_v()); r.Build(code, code + size); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(i) + static_cast<uint32_t>(j)); CHECK_EQ(expected, r.Call(i, j)); } } } WASM_EXEC_TEST(Int32Add_P2) { static const byte code[] = { WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))}; RunInt32AddTest(execution_tier, code, sizeof(code)); } WASM_EXEC_TEST(Int32Add_block1) { static const byte code[] = { WASM_BLOCK_X(1, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprI32Add}; RunInt32AddTest(execution_tier, code, sizeof(code)); } WASM_EXEC_TEST(Int32Add_block2) { static const byte code[] = { WASM_BLOCK_X(1, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), kExprBr, DEPTH_0), kExprI32Add}; RunInt32AddTest(execution_tier, code, sizeof(code)); } WASM_EXEC_TEST(Int32Add_multi_if) { static const byte code[] = { WASM_IF_ELSE_X(1, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))), kExprI32Add}; RunInt32AddTest(execution_tier, code, sizeof(code)); } WASM_EXEC_TEST(Float32Add) { WasmRunner<int32_t> r(execution_tier); // int(11.5f + 44.5f) BUILD(r, WASM_I32_SCONVERT_F32(WASM_F32_ADD(WASM_F32(11.5f), WASM_F32(44.5f)))); CHECK_EQ(56, r.Call()); } WASM_EXEC_TEST(Float64Add) { WasmRunner<int32_t> r(execution_tier); // return int(13.5d + 43.5d) BUILD(r, WASM_I32_SCONVERT_F64(WASM_F64_ADD(WASM_F64(13.5), WASM_F64(43.5)))); CHECK_EQ(57, r.Call()); } // clang-format messes up the FOR_INT32_INPUTS macros. // clang-format off template<typename ctype> static void TestInt32Binop(TestExecutionTier execution_tier, WasmOpcode opcode, ctype(*expected)(ctype, ctype)) { FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { WasmRunner<ctype> r(execution_tier); // Apply {opcode} on two constants. BUILD(r, WASM_BINOP(opcode, WASM_I32V(i), WASM_I32V(j))); CHECK_EQ(expected(i, j), r.Call()); } } { WasmRunner<ctype, ctype, ctype> r(execution_tier); // Apply {opcode} on two parameters. BUILD(r, WASM_BINOP(opcode, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { CHECK_EQ(expected(i, j), r.Call(i, j)); } } } FOR_INT32_INPUTS(i) { WasmRunner<ctype, ctype> r(execution_tier); // Apply {opcode} on constant and parameter. BUILD(r, WASM_BINOP(opcode, WASM_I32V(i), WASM_LOCAL_GET(0))); FOR_INT32_INPUTS(j) { CHECK_EQ(expected(i, j), r.Call(j)); } } FOR_INT32_INPUTS(j) { WasmRunner<ctype, ctype> r(execution_tier); // Apply {opcode} on parameter and constant. BUILD(r, WASM_BINOP(opcode, WASM_LOCAL_GET(0), WASM_I32V(j))); FOR_INT32_INPUTS(i) { CHECK_EQ(expected(i, j), r.Call(i)); } } auto to_bool = [](ctype value) -> ctype { return value == static_cast<ctype>(0xDEADBEEF) ? value : !!value; }; FOR_INT32_INPUTS(i) { WasmRunner<ctype, ctype> r(execution_tier); // Apply {opcode} on constant and parameter, followed by {if}. BUILD(r, WASM_IF(WASM_BINOP(opcode, WASM_I32V(i), WASM_LOCAL_GET(0)), WASM_RETURN(WASM_ONE)), WASM_ZERO); FOR_INT32_INPUTS(j) { CHECK_EQ(to_bool(expected(i, j)), r.Call(j)); } } FOR_INT32_INPUTS(j) { WasmRunner<ctype, ctype> r(execution_tier); // Apply {opcode} on parameter and constant, followed by {if}. BUILD(r, WASM_IF(WASM_BINOP(opcode, WASM_LOCAL_GET(0), WASM_I32V(j)), WASM_RETURN(WASM_ONE)), WASM_ZERO); FOR_INT32_INPUTS(i) { CHECK_EQ(to_bool(expected(i, j)), r.Call(i)); } } FOR_INT32_INPUTS(i) { WasmRunner<ctype, ctype> r(execution_tier); // Apply {opcode} on constant and parameter, followed by {br_if}. BUILD(r, WASM_BR_IFD(0, WASM_ONE, WASM_BINOP(opcode, WASM_I32V(i), WASM_LOCAL_GET(0))), WASM_ZERO); FOR_INT32_INPUTS(j) { CHECK_EQ(to_bool(expected(i, j)), r.Call(j)); } } FOR_INT32_INPUTS(j) { WasmRunner<ctype, ctype> r(execution_tier); // Apply {opcode} on parameter and constant, followed by {br_if}. BUILD(r, WASM_BR_IFD(0, WASM_ONE, WASM_BINOP(opcode, WASM_LOCAL_GET(0), WASM_I32V(j))), WASM_ZERO); FOR_INT32_INPUTS(i) { CHECK_EQ(to_bool(expected(i, j)), r.Call(i)); } } } // clang-format on #define WASM_I32_BINOP_TEST(expr, ctype, expected) \ WASM_EXEC_TEST(I32Binop_##expr) { \ TestInt32Binop<ctype>(execution_tier, kExprI32##expr, \ [](ctype a, ctype b) -> ctype { return expected; }); \ } WASM_I32_BINOP_TEST(Add, int32_t, base::AddWithWraparound(a, b)) WASM_I32_BINOP_TEST(Sub, int32_t, base::SubWithWraparound(a, b)) WASM_I32_BINOP_TEST(Mul, int32_t, base::MulWithWraparound(a, b)) WASM_I32_BINOP_TEST(DivS, int32_t, (a == kMinInt && b == -1) || b == 0 ? static_cast<int32_t>(0xDEADBEEF) : a / b) WASM_I32_BINOP_TEST(DivU, uint32_t, b == 0 ? 0xDEADBEEF : a / b) WASM_I32_BINOP_TEST(RemS, int32_t, b == 0 ? 0xDEADBEEF : b == -1 ? 0 : a % b) WASM_I32_BINOP_TEST(RemU, uint32_t, b == 0 ? 0xDEADBEEF : a % b) WASM_I32_BINOP_TEST(And, int32_t, a& b) WASM_I32_BINOP_TEST(Ior, int32_t, a | b) WASM_I32_BINOP_TEST(Xor, int32_t, a ^ b) WASM_I32_BINOP_TEST(Shl, int32_t, base::ShlWithWraparound(a, b)) WASM_I32_BINOP_TEST(ShrU, uint32_t, a >> (b & 0x1F)) WASM_I32_BINOP_TEST(ShrS, int32_t, a >> (b & 0x1F)) WASM_I32_BINOP_TEST(Ror, uint32_t, (a >> (b & 0x1F)) | (a << ((32 - b) & 0x1F))) WASM_I32_BINOP_TEST(Rol, uint32_t, (a << (b & 0x1F)) | (a >> ((32 - b) & 0x1F))) WASM_I32_BINOP_TEST(Eq, int32_t, a == b) WASM_I32_BINOP_TEST(Ne, int32_t, a != b) WASM_I32_BINOP_TEST(LtS, int32_t, a < b) WASM_I32_BINOP_TEST(LeS, int32_t, a <= b) WASM_I32_BINOP_TEST(LtU, uint32_t, a < b) WASM_I32_BINOP_TEST(LeU, uint32_t, a <= b) WASM_I32_BINOP_TEST(GtS, int32_t, a > b) WASM_I32_BINOP_TEST(GeS, int32_t, a >= b) WASM_I32_BINOP_TEST(GtU, uint32_t, a > b) WASM_I32_BINOP_TEST(GeU, uint32_t, a >= b) #undef WASM_I32_BINOP_TEST void TestInt32Unop(TestExecutionTier execution_tier, WasmOpcode opcode, int32_t expected, int32_t a) { { WasmRunner<int32_t> r(execution_tier); // return op K BUILD(r, WASM_UNOP(opcode, WASM_I32V(a))); CHECK_EQ(expected, r.Call()); } { WasmRunner<int32_t, int32_t> r(execution_tier); // return op a BUILD(r, WASM_UNOP(opcode, WASM_LOCAL_GET(0))); CHECK_EQ(expected, r.Call(a)); } } WASM_EXEC_TEST(Int32Clz) { TestInt32Unop(execution_tier, kExprI32Clz, 0, 0x80001000); TestInt32Unop(execution_tier, kExprI32Clz, 1, 0x40000500); TestInt32Unop(execution_tier, kExprI32Clz, 2, 0x20000300); TestInt32Unop(execution_tier, kExprI32Clz, 3, 0x10000003); TestInt32Unop(execution_tier, kExprI32Clz, 4, 0x08050000); TestInt32Unop(execution_tier, kExprI32Clz, 5, 0x04006000); TestInt32Unop(execution_tier, kExprI32Clz, 6, 0x02000000); TestInt32Unop(execution_tier, kExprI32Clz, 7, 0x010000A0); TestInt32Unop(execution_tier, kExprI32Clz, 8, 0x00800C00); TestInt32Unop(execution_tier, kExprI32Clz, 9, 0x00400000); TestInt32Unop(execution_tier, kExprI32Clz, 10, 0x0020000D); TestInt32Unop(execution_tier, kExprI32Clz, 11, 0x00100F00); TestInt32Unop(execution_tier, kExprI32Clz, 12, 0x00080000); TestInt32Unop(execution_tier, kExprI32Clz, 13, 0x00041000); TestInt32Unop(execution_tier, kExprI32Clz, 14, 0x00020020); TestInt32Unop(execution_tier, kExprI32Clz, 15, 0x00010300); TestInt32Unop(execution_tier, kExprI32Clz, 16, 0x00008040); TestInt32Unop(execution_tier, kExprI32Clz, 17, 0x00004005); TestInt32Unop(execution_tier, kExprI32Clz, 18, 0x00002050); TestInt32Unop(execution_tier, kExprI32Clz, 19, 0x00001700); TestInt32Unop(execution_tier, kExprI32Clz, 20, 0x00000870); TestInt32Unop(execution_tier, kExprI32Clz, 21, 0x00000405); TestInt32Unop(execution_tier, kExprI32Clz, 22, 0x00000203); TestInt32Unop(execution_tier, kExprI32Clz, 23, 0x00000101); TestInt32Unop(execution_tier, kExprI32Clz, 24, 0x00000089); TestInt32Unop(execution_tier, kExprI32Clz, 25, 0x00000041); TestInt32Unop(execution_tier, kExprI32Clz, 26, 0x00000022); TestInt32Unop(execution_tier, kExprI32Clz, 27, 0x00000013); TestInt32Unop(execution_tier, kExprI32Clz, 28, 0x00000008); TestInt32Unop(execution_tier, kExprI32Clz, 29, 0x00000004); TestInt32Unop(execution_tier, kExprI32Clz, 30, 0x00000002); TestInt32Unop(execution_tier, kExprI32Clz, 31, 0x00000001); TestInt32Unop(execution_tier, kExprI32Clz, 32, 0x00000000); } WASM_EXEC_TEST(Int32Ctz) { TestInt32Unop(execution_tier, kExprI32Ctz, 32, 0x00000000); TestInt32Unop(execution_tier, kExprI32Ctz, 31, 0x80000000); TestInt32Unop(execution_tier, kExprI32Ctz, 30, 0x40000000); TestInt32Unop(execution_tier, kExprI32Ctz, 29, 0x20000000); TestInt32Unop(execution_tier, kExprI32Ctz, 28, 0x10000000); TestInt32Unop(execution_tier, kExprI32Ctz, 27, 0xA8000000); TestInt32Unop(execution_tier, kExprI32Ctz, 26, 0xF4000000); TestInt32Unop(execution_tier, kExprI32Ctz, 25, 0x62000000); TestInt32Unop(execution_tier, kExprI32Ctz, 24, 0x91000000); TestInt32Unop(execution_tier, kExprI32Ctz, 23, 0xCD800000); TestInt32Unop(execution_tier, kExprI32Ctz, 22, 0x09400000); TestInt32Unop(execution_tier, kExprI32Ctz, 21, 0xAF200000); TestInt32Unop(execution_tier, kExprI32Ctz, 20, 0xAC100000); TestInt32Unop(execution_tier, kExprI32Ctz, 19, 0xE0B80000); TestInt32Unop(execution_tier, kExprI32Ctz, 18, 0x9CE40000); TestInt32Unop(execution_tier, kExprI32Ctz, 17, 0xC7920000); TestInt32Unop(execution_tier, kExprI32Ctz, 16, 0xB8F10000); TestInt32Unop(execution_tier, kExprI32Ctz, 15, 0x3B9F8000); TestInt32Unop(execution_tier, kExprI32Ctz, 14, 0xDB4C4000); TestInt32Unop(execution_tier, kExprI32Ctz, 13, 0xE9A32000); TestInt32Unop(execution_tier, kExprI32Ctz, 12, 0xFCA61000); TestInt32Unop(execution_tier, kExprI32Ctz, 11, 0x6C8A7800); TestInt32Unop(execution_tier, kExprI32Ctz, 10, 0x8CE5A400); TestInt32Unop(execution_tier, kExprI32Ctz, 9, 0xCB7D0200); TestInt32Unop(execution_tier, kExprI32Ctz, 8, 0xCB4DC100); TestInt32Unop(execution_tier, kExprI32Ctz, 7, 0xDFBEC580); TestInt32Unop(execution_tier, kExprI32Ctz, 6, 0x27A9DB40); TestInt32Unop(execution_tier, kExprI32Ctz, 5, 0xDE3BCB20); TestInt32Unop(execution_tier, kExprI32Ctz, 4, 0xD7E8A610); TestInt32Unop(execution_tier, kExprI32Ctz, 3, 0x9AFDBC88); TestInt32Unop(execution_tier, kExprI32Ctz, 2, 0x9AFDBC84); TestInt32Unop(execution_tier, kExprI32Ctz, 1, 0x9AFDBC82); TestInt32Unop(execution_tier, kExprI32Ctz, 0, 0x9AFDBC81); } WASM_EXEC_TEST(Int32Popcnt) { TestInt32Unop(execution_tier, kExprI32Popcnt, 32, 0xFFFFFFFF); TestInt32Unop(execution_tier, kExprI32Popcnt, 0, 0x00000000); TestInt32Unop(execution_tier, kExprI32Popcnt, 1, 0x00008000); TestInt32Unop(execution_tier, kExprI32Popcnt, 13, 0x12345678); TestInt32Unop(execution_tier, kExprI32Popcnt, 19, 0xFEDCBA09); } WASM_EXEC_TEST(I32Eqz) { TestInt32Unop(execution_tier, kExprI32Eqz, 0, 1); TestInt32Unop(execution_tier, kExprI32Eqz, 0, -1); TestInt32Unop(execution_tier, kExprI32Eqz, 0, -827343); TestInt32Unop(execution_tier, kExprI32Eqz, 0, 8888888); TestInt32Unop(execution_tier, kExprI32Eqz, 1, 0); } WASM_EXEC_TEST(Int32DivS_trap) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); BUILD(r, WASM_I32_DIVS(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); const int32_t kMin = std::numeric_limits<int32_t>::min(); CHECK_EQ(0, r.Call(0, 100)); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(kMin, -1)); CHECK_TRAP(r.Call(kMin, 0)); } WASM_EXEC_TEST(Int32RemS_trap) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); BUILD(r, WASM_I32_REMS(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); const int32_t kMin = std::numeric_limits<int32_t>::min(); CHECK_EQ(33, r.Call(133, 100)); CHECK_EQ(0, r.Call(kMin, -1)); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(kMin, 0)); } WASM_EXEC_TEST(Int32DivU_trap) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); BUILD(r, WASM_I32_DIVU(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); const int32_t kMin = std::numeric_limits<int32_t>::min(); CHECK_EQ(0, r.Call(0, 100)); CHECK_EQ(0, r.Call(kMin, -1)); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(kMin, 0)); } WASM_EXEC_TEST(Int32RemU_trap) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); BUILD(r, WASM_I32_REMU(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); CHECK_EQ(17, r.Call(217, 100)); const int32_t kMin = std::numeric_limits<int32_t>::min(); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(kMin, 0)); CHECK_EQ(kMin, r.Call(kMin, -1)); } WASM_EXEC_TEST(Int32DivS_byzero_const) { for (int8_t denom = -2; denom < 8; ++denom) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_I32_DIVS(WASM_LOCAL_GET(0), WASM_I32V_1(denom))); for (int32_t val = -7; val < 8; ++val) { if (denom == 0) { CHECK_TRAP(r.Call(val)); } else { CHECK_EQ(val / denom, r.Call(val)); } } } } WASM_EXEC_TEST(Int32DivU_byzero_const) { for (uint32_t denom = 0xFFFFFFFE; denom < 8; ++denom) { WasmRunner<uint32_t, uint32_t> r(execution_tier); BUILD(r, WASM_I32_DIVU(WASM_LOCAL_GET(0), WASM_I32V_1(denom))); for (uint32_t val = 0xFFFFFFF0; val < 8; ++val) { if (denom == 0) { CHECK_TRAP(r.Call(val)); } else { CHECK_EQ(val / denom, r.Call(val)); } } } } WASM_EXEC_TEST(Int32DivS_trap_effect) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); r.builder().AddMemory(kWasmPageSize); BUILD(r, WASM_IF_ELSE_I( WASM_LOCAL_GET(0), WASM_I32_DIVS( WASM_BLOCK_I(WASM_STORE_MEM(MachineType::Int8(), WASM_ZERO, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)), WASM_LOCAL_GET(1)), WASM_I32_DIVS( WASM_BLOCK_I(WASM_STORE_MEM(MachineType::Int8(), WASM_ZERO, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)), WASM_LOCAL_GET(1)))); CHECK_EQ(0, r.Call(0, 100)); CHECK_TRAP(r.Call(8, 0)); CHECK_TRAP(r.Call(4, 0)); CHECK_TRAP(r.Call(0, 0)); } void TestFloat32Binop(TestExecutionTier execution_tier, WasmOpcode opcode, int32_t expected, float a, float b) { { WasmRunner<int32_t> r(execution_tier); // return K op K BUILD(r, WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b))); CHECK_EQ(expected, r.Call()); } { WasmRunner<int32_t, float, float> r(execution_tier); // return a op b BUILD(r, WASM_BINOP(opcode, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); CHECK_EQ(expected, r.Call(a, b)); } } void TestFloat32BinopWithConvert(TestExecutionTier execution_tier, WasmOpcode opcode, int32_t expected, float a, float b) { { WasmRunner<int32_t> r(execution_tier); // return int(K op K) BUILD(r, WASM_I32_SCONVERT_F32(WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b)))); CHECK_EQ(expected, r.Call()); } { WasmRunner<int32_t, float, float> r(execution_tier); // return int(a op b) BUILD(r, WASM_I32_SCONVERT_F32( WASM_BINOP(opcode, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)))); CHECK_EQ(expected, r.Call(a, b)); } } void TestFloat32UnopWithConvert(TestExecutionTier execution_tier, WasmOpcode opcode, int32_t expected, float a) { { WasmRunner<int32_t> r(execution_tier); // return int(op(K)) BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_F32(a)))); CHECK_EQ(expected, r.Call()); } { WasmRunner<int32_t, float> r(execution_tier); // return int(op(a)) BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_LOCAL_GET(0)))); CHECK_EQ(expected, r.Call(a)); } } void TestFloat64Binop(TestExecutionTier execution_tier, WasmOpcode opcode, int32_t expected, double a, double b) { { WasmRunner<int32_t> r(execution_tier); // return K op K BUILD(r, WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b))); CHECK_EQ(expected, r.Call()); } { WasmRunner<int32_t, double, double> r(execution_tier); // return a op b BUILD(r, WASM_BINOP(opcode, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); CHECK_EQ(expected, r.Call(a, b)); } } void TestFloat64BinopWithConvert(TestExecutionTier execution_tier, WasmOpcode opcode, int32_t expected, double a, double b) { { WasmRunner<int32_t> r(execution_tier); // return int(K op K) BUILD(r, WASM_I32_SCONVERT_F64(WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b)))); CHECK_EQ(expected, r.Call()); } { WasmRunner<int32_t, double, double> r(execution_tier); BUILD(r, WASM_I32_SCONVERT_F64( WASM_BINOP(opcode, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)))); CHECK_EQ(expected, r.Call(a, b)); } } void TestFloat64UnopWithConvert(TestExecutionTier execution_tier, WasmOpcode opcode, int32_t expected, double a) { { WasmRunner<int32_t> r(execution_tier); // return int(op(K)) BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_F64(a)))); CHECK_EQ(expected, r.Call()); } { WasmRunner<int32_t, double> r(execution_tier); // return int(op(a)) BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_LOCAL_GET(0)))); CHECK_EQ(expected, r.Call(a)); } } WASM_EXEC_TEST(Float32Binops) { TestFloat32Binop(execution_tier, kExprF32Eq, 1, 8.125f, 8.125f); TestFloat32Binop(execution_tier, kExprF32Ne, 1, 8.125f, 8.127f); TestFloat32Binop(execution_tier, kExprF32Lt, 1, -9.5f, -9.0f); TestFloat32Binop(execution_tier, kExprF32Le, 1, -1111.0f, -1111.0f); TestFloat32Binop(execution_tier, kExprF32Gt, 1, -9.0f, -9.5f); TestFloat32Binop(execution_tier, kExprF32Ge, 1, -1111.0f, -1111.0f); TestFloat32BinopWithConvert(execution_tier, kExprF32Add, 10, 3.5f, 6.5f); TestFloat32BinopWithConvert(execution_tier, kExprF32Sub, 2, 44.5f, 42.5f); TestFloat32BinopWithConvert(execution_tier, kExprF32Mul, -66, -132.1f, 0.5f); TestFloat32BinopWithConvert(execution_tier, kExprF32Div, 11, 22.1f, 2.0f); } WASM_EXEC_TEST(Float32Unops) { TestFloat32UnopWithConvert(execution_tier, kExprF32Abs, 8, 8.125f); TestFloat32UnopWithConvert(execution_tier, kExprF32Abs, 9, -9.125f); TestFloat32UnopWithConvert(execution_tier, kExprF32Neg, -213, 213.125f); TestFloat32UnopWithConvert(execution_tier, kExprF32Sqrt, 12, 144.4f); } WASM_EXEC_TEST(Float64Binops) { TestFloat64Binop(execution_tier, kExprF64Eq, 1, 16.25, 16.25); TestFloat64Binop(execution_tier, kExprF64Ne, 1, 16.25, 16.15); TestFloat64Binop(execution_tier, kExprF64Lt, 1, -32.4, 11.7); TestFloat64Binop(execution_tier, kExprF64Le, 1, -88.9, -88.9); TestFloat64Binop(execution_tier, kExprF64Gt, 1, 11.7, -32.4); TestFloat64Binop(execution_tier, kExprF64Ge, 1, -88.9, -88.9); TestFloat64BinopWithConvert(execution_tier, kExprF64Add, 100, 43.5, 56.5); TestFloat64BinopWithConvert(execution_tier, kExprF64Sub, 200, 12200.1, 12000.1); TestFloat64BinopWithConvert(execution_tier, kExprF64Mul, -33, 134, -0.25); TestFloat64BinopWithConvert(execution_tier, kExprF64Div, -1111, -2222.3, 2); } WASM_EXEC_TEST(Float64Unops) { TestFloat64UnopWithConvert(execution_tier, kExprF64Abs, 108, 108.125); TestFloat64UnopWithConvert(execution_tier, kExprF64Abs, 209, -209.125); TestFloat64UnopWithConvert(execution_tier, kExprF64Neg, -209, 209.125); TestFloat64UnopWithConvert(execution_tier, kExprF64Sqrt, 13, 169.4); } WASM_EXEC_TEST(Float32Neg) { WasmRunner<float, float> r(execution_tier); BUILD(r, WASM_F32_NEG(WASM_LOCAL_GET(0))); FOR_FLOAT32_INPUTS(i) { CHECK_EQ(0x80000000, base::bit_cast<uint32_t>(i) ^ base::bit_cast<uint32_t>(r.Call(i))); } } WASM_EXEC_TEST(Float64Neg) { WasmRunner<double, double> r(execution_tier); BUILD(r, WASM_F64_NEG(WASM_LOCAL_GET(0))); FOR_FLOAT64_INPUTS(i) { CHECK_EQ(0x8000000000000000, base::bit_cast<uint64_t>(i) ^ base::bit_cast<uint64_t>(r.Call(i))); } } WASM_EXEC_TEST(IfElse_P) { WasmRunner<int32_t, int32_t> r(execution_tier); // if (p0) return 11; else return 22; BUILD(r, WASM_IF_ELSE_I(WASM_LOCAL_GET(0), // -- WASM_I32V_1(11), // -- WASM_I32V_1(22))); // -- FOR_INT32_INPUTS(i) { int32_t expected = i ? 11 : 22; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(If_empty1) { WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier); BUILD(r, WASM_LOCAL_GET(0), kExprIf, kVoidCode, kExprEnd, WASM_LOCAL_GET(1)); FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i - 9, i)); } } WASM_EXEC_TEST(IfElse_empty1) { WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier); BUILD(r, WASM_LOCAL_GET(0), kExprIf, kVoidCode, kExprElse, kExprEnd, WASM_LOCAL_GET(1)); FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i - 8, i)); } } WASM_EXEC_TEST(IfElse_empty2) { WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier); BUILD(r, WASM_LOCAL_GET(0), kExprIf, kVoidCode, WASM_NOP, kExprElse, kExprEnd, WASM_LOCAL_GET(1)); FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i - 7, i)); } } WASM_EXEC_TEST(IfElse_empty3) { WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier); BUILD(r, WASM_LOCAL_GET(0), kExprIf, kVoidCode, kExprElse, WASM_NOP, kExprEnd, WASM_LOCAL_GET(1)); FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i - 6, i)); } } WASM_EXEC_TEST(If_chain1) { WasmRunner<int32_t, int32_t> r(execution_tier); // if (p0) 13; if (p0) 14; 15 BUILD(r, WASM_IF(WASM_LOCAL_GET(0), WASM_NOP), WASM_IF(WASM_LOCAL_GET(0), WASM_NOP), WASM_I32V_1(15)); FOR_INT32_INPUTS(i) { CHECK_EQ(15, r.Call(i)); } } WASM_EXEC_TEST(If_chain_set) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); // if (p0) p1 = 73; if (p0) p1 = 74; p1 BUILD(r, WASM_IF(WASM_LOCAL_GET(0), WASM_LOCAL_SET(1, WASM_I32V_2(73))), WASM_IF(WASM_LOCAL_GET(0), WASM_LOCAL_SET(1, WASM_I32V_2(74))), WASM_LOCAL_GET(1)); FOR_INT32_INPUTS(i) { int32_t expected = i ? 74 : i; CHECK_EQ(expected, r.Call(i, i)); } } WASM_EXEC_TEST(IfElse_Unreachable1) { WasmRunner<int32_t> r(execution_tier); // 0 ? unreachable : 27 BUILD(r, WASM_IF_ELSE_I(WASM_ZERO, // -- WASM_UNREACHABLE, // -- WASM_I32V_1(27))); // -- CHECK_EQ(27, r.Call()); } WASM_EXEC_TEST(IfElse_Unreachable2) { WasmRunner<int32_t> r(execution_tier); // 1 ? 28 : unreachable BUILD(r, WASM_IF_ELSE_I(WASM_I32V_1(1), // -- WASM_I32V_1(28), // -- WASM_UNREACHABLE)); // -- CHECK_EQ(28, r.Call()); } WASM_EXEC_TEST(Return12) { WasmRunner<int32_t> r(execution_tier); BUILD(r, RET_I8(12)); CHECK_EQ(12, r.Call()); } WASM_EXEC_TEST(Return17) { WasmRunner<int32_t> r(execution_tier); BUILD(r, WASM_BLOCK(RET_I8(17)), WASM_ZERO); CHECK_EQ(17, r.Call()); } WASM_EXEC_TEST(Return_I32) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, RET(WASM_LOCAL_GET(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Return_F32) { WasmRunner<float, float> r(execution_tier); BUILD(r, RET(WASM_LOCAL_GET(0))); FOR_FLOAT32_INPUTS(i) { float expect = i; float result = r.Call(expect); if (std::isnan(expect)) { CHECK(std::isnan(result)); } else { CHECK_EQ(expect, result); } } } WASM_EXEC_TEST(Return_F64) { WasmRunner<double, double> r(execution_tier); BUILD(r, RET(WASM_LOCAL_GET(0))); FOR_FLOAT64_INPUTS(i) { double expect = i; double result = r.Call(expect); if (std::isnan(expect)) { CHECK(std::isnan(result)); } else { CHECK_EQ(expect, result); } } } WASM_EXEC_TEST(Select_float_parameters) { WasmRunner<float, float, float, int32_t> r(execution_tier); BUILD(r, WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOCAL_GET(2))); CHECK_FLOAT_EQ(2.0f, r.Call(2.0f, 1.0f, 1)); } WASM_EXEC_TEST(Select_s128_parameters) { WasmRunner<int32_t, int32_t> r(execution_tier); int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128); int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128); int32_t* output = r.builder().AddGlobal<int32_t>(kWasmS128); // select(v128(0, 1, 2, 3), v128(4, 5, 6, 7), 1) == v128(0, 1, 2, 3) for (int i = 0; i < 4; i++) { LANE(g0, i) = i; LANE(g1, i) = i + 4; } BUILD(r, WASM_GLOBAL_SET(2, WASM_SELECT(WASM_GLOBAL_GET(0), WASM_GLOBAL_GET(1), WASM_LOCAL_GET(0))), WASM_ONE); r.Call(1); for (int i = 0; i < 4; i++) { CHECK_EQ(i, LANE(output, i)); } } WASM_EXEC_TEST(SelectWithType_float_parameters) { WasmRunner<float, float, float, int32_t> r(execution_tier); BUILD(r, WASM_SELECT_F(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOCAL_GET(2))); CHECK_FLOAT_EQ(2.0f, r.Call(2.0f, 1.0f, 1)); } WASM_EXEC_TEST(Select) { WasmRunner<int32_t, int32_t> r(execution_tier); // return select(11, 22, a); BUILD(r, WASM_SELECT(WASM_I32V_1(11), WASM_I32V_1(22), WASM_LOCAL_GET(0))); FOR_INT32_INPUTS(i) { int32_t expected = i ? 11 : 22; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(SelectWithType) { WasmRunner<int32_t, int32_t> r(execution_tier); // return select(11, 22, a); BUILD(r, WASM_SELECT_I(WASM_I32V_1(11), WASM_I32V_1(22), WASM_LOCAL_GET(0))); FOR_INT32_INPUTS(i) { int32_t expected = i ? 11 : 22; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(Select_strict1) { WasmRunner<int32_t, int32_t> r(execution_tier); // select(a=0, a=1, a=2); return a BUILD(r, WASM_SELECT(WASM_LOCAL_TEE(0, WASM_ZERO), WASM_LOCAL_TEE(0, WASM_I32V_1(1)), WASM_LOCAL_TEE(0, WASM_I32V_1(2))), WASM_DROP, WASM_LOCAL_GET(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(2, r.Call(i)); } } WASM_EXEC_TEST(SelectWithType_strict1) { WasmRunner<int32_t, int32_t> r(execution_tier); // select(a=0, a=1, a=2); return a BUILD(r, WASM_SELECT_I(WASM_LOCAL_TEE(0, WASM_ZERO), WASM_LOCAL_TEE(0, WASM_I32V_1(1)), WASM_LOCAL_TEE(0, WASM_I32V_1(2))), WASM_DROP, WASM_LOCAL_GET(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(2, r.Call(i)); } } WASM_EXEC_TEST(Select_strict2) { WasmRunner<int32_t, int32_t> r(execution_tier); r.AllocateLocal(kWasmI32); r.AllocateLocal(kWasmI32); // select(b=5, c=6, a) BUILD(r, WASM_SELECT(WASM_LOCAL_TEE(1, WASM_I32V_1(5)), WASM_LOCAL_TEE(2, WASM_I32V_1(6)), WASM_LOCAL_GET(0))); FOR_INT32_INPUTS(i) { int32_t expected = i ? 5 : 6; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(SelectWithType_strict2) { WasmRunner<int32_t, int32_t> r(execution_tier); r.AllocateLocal(kWasmI32); r.AllocateLocal(kWasmI32); // select(b=5, c=6, a) BUILD(r, WASM_SELECT_I(WASM_LOCAL_TEE(1, WASM_I32V_1(5)), WASM_LOCAL_TEE(2, WASM_I32V_1(6)), WASM_LOCAL_GET(0))); FOR_INT32_INPUTS(i) { int32_t expected = i ? 5 : 6; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(Select_strict3) { WasmRunner<int32_t, int32_t> r(execution_tier); r.AllocateLocal(kWasmI32); r.AllocateLocal(kWasmI32); // select(b=5, c=6, a=b) BUILD(r, WASM_SELECT(WASM_LOCAL_TEE(1, WASM_I32V_1(5)), WASM_LOCAL_TEE(2, WASM_I32V_1(6)), WASM_LOCAL_TEE(0, WASM_LOCAL_GET(1)))); FOR_INT32_INPUTS(i) { int32_t expected = 5; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(SelectWithType_strict3) { WasmRunner<int32_t, int32_t> r(execution_tier); r.AllocateLocal(kWasmI32); r.AllocateLocal(kWasmI32); // select(b=5, c=6, a=b) BUILD(r, WASM_SELECT_I(WASM_LOCAL_TEE(1, WASM_I32V_1(5)), WASM_LOCAL_TEE(2, WASM_I32V_1(6)), WASM_LOCAL_TEE(0, WASM_LOCAL_GET(1)))); FOR_INT32_INPUTS(i) { int32_t expected = 5; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(BrIf_strict) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_BRV_IF(0, WASM_LOCAL_GET(0), WASM_LOCAL_TEE(0, WASM_I32V_2(99))))); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Br_height) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I( WASM_BLOCK(WASM_BRV_IFD(0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(0)), WASM_RETURN(WASM_I32V_1(9))), WASM_BRV(0, WASM_I32V_1(8)))); for (int32_t i = 0; i < 5; i++) { int32_t expected = i != 0 ? 8 : 9; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(Regression_660262) { WasmRunner<int32_t> r(execution_tier); r.builder().AddMemory(kWasmPageSize); BUILD(r, kExprI32Const, 0x00, kExprI32Const, 0x00, kExprI32LoadMem, 0x00, 0x0F, kExprBrTable, 0x00, 0x80, 0x00); // entries=0 r.Call(); } WASM_EXEC_TEST(BrTable0a) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, B1(B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 0, BR_TARGET(0)))), WASM_I32V_2(91)); FOR_INT32_INPUTS(i) { CHECK_EQ(91, r.Call(i)); } } WASM_EXEC_TEST(BrTable0b) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, B1(B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 1, BR_TARGET(0), BR_TARGET(0)))), WASM_I32V_2(92)); FOR_INT32_INPUTS(i) { CHECK_EQ(92, r.Call(i)); } } WASM_EXEC_TEST(BrTable0c) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD( r, B1(B2(B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 1, BR_TARGET(0), BR_TARGET(1))), RET_I8(76))), WASM_I32V_2(77)); FOR_INT32_INPUTS(i) { int32_t expected = i == 0 ? 76 : 77; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(BrTable1) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 0, BR_TARGET(0))), RET_I8(93)); FOR_INT32_INPUTS(i) { CHECK_EQ(93, r.Call(i)); } } WASM_EXEC_TEST(BrTable_loop) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, B2(B1(WASM_LOOP(WASM_BR_TABLE(WASM_INC_LOCAL_BYV(0, 1), 2, BR_TARGET(2), BR_TARGET(1), BR_TARGET(0)))), RET_I8(99)), WASM_I32V_2(98)); CHECK_EQ(99, r.Call(0)); CHECK_EQ(98, r.Call(-1)); CHECK_EQ(98, r.Call(-2)); CHECK_EQ(98, r.Call(-3)); CHECK_EQ(98, r.Call(-100)); } WASM_EXEC_TEST(BrTable_br) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, B2(B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 1, BR_TARGET(1), BR_TARGET(0))), RET_I8(91)), WASM_I32V_2(99)); CHECK_EQ(99, r.Call(0)); CHECK_EQ(91, r.Call(1)); CHECK_EQ(91, r.Call(2)); CHECK_EQ(91, r.Call(3)); } WASM_EXEC_TEST(BrTable_br2) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, B2(B2(B2(B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 3, BR_TARGET(1), BR_TARGET(2), BR_TARGET(3), BR_TARGET(0))), RET_I8(85)), RET_I8(86)), RET_I8(87)), WASM_I32V_2(88)); CHECK_EQ(86, r.Call(0)); CHECK_EQ(87, r.Call(1)); CHECK_EQ(88, r.Call(2)); CHECK_EQ(85, r.Call(3)); CHECK_EQ(85, r.Call(4)); CHECK_EQ(85, r.Call(5)); } WASM_EXEC_TEST(BrTable4) { for (int i = 0; i < 4; ++i) { for (int t = 0; t < 4; ++t) { uint32_t cases[] = {0, 1, 2, 3}; cases[i] = t; byte code[] = {B2(B2(B2(B2(B1(WASM_BR_TABLE( WASM_LOCAL_GET(0), 3, BR_TARGET(cases[0]), BR_TARGET(cases[1]), BR_TARGET(cases[2]), BR_TARGET(cases[3]))), RET_I8(70)), RET_I8(71)), RET_I8(72)), RET_I8(73)), WASM_I32V_2(75)}; WasmRunner<int32_t, int32_t> r(execution_tier); r.Build(code, code + arraysize(code)); for (int x = -3; x < 50; ++x) { int index = (x > 3 || x < 0) ? 3 : x; int32_t expected = 70 + cases[index]; CHECK_EQ(expected, r.Call(x)); } } } } WASM_EXEC_TEST(BrTable4x4) { for (byte a = 0; a < 4; ++a) { for (byte b = 0; b < 4; ++b) { for (byte c = 0; c < 4; ++c) { for (byte d = 0; d < 4; ++d) { for (int i = 0; i < 4; ++i) { uint32_t cases[] = {a, b, c, d}; byte code[] = { B2(B2(B2(B2(B1(WASM_BR_TABLE( WASM_LOCAL_GET(0), 3, BR_TARGET(cases[0]), BR_TARGET(cases[1]), BR_TARGET(cases[2]), BR_TARGET(cases[3]))), RET_I8(50)), RET_I8(51)), RET_I8(52)), RET_I8(53)), WASM_I32V_2(55)}; WasmRunner<int32_t, int32_t> r(execution_tier); r.Build(code, code + arraysize(code)); for (int x = -6; x < 47; ++x) { int index = (x > 3 || x < 0) ? 3 : x; int32_t expected = 50 + cases[index]; CHECK_EQ(expected, r.Call(x)); } } } } } } } WASM_EXEC_TEST(BrTable4_fallthru) { byte code[] = { B2(B2(B2(B2(B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 3, BR_TARGET(0), BR_TARGET(1), BR_TARGET(2), BR_TARGET(3))), WASM_INC_LOCAL_BY(1, 1)), WASM_INC_LOCAL_BY(1, 2)), WASM_INC_LOCAL_BY(1, 4)), WASM_INC_LOCAL_BY(1, 8)), WASM_LOCAL_GET(1)}; WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); r.Build(code, code + arraysize(code)); CHECK_EQ(15, r.Call(0, 0)); CHECK_EQ(14, r.Call(1, 0)); CHECK_EQ(12, r.Call(2, 0)); CHECK_EQ(8, r.Call(3, 0)); CHECK_EQ(8, r.Call(4, 0)); CHECK_EQ(115, r.Call(0, 100)); CHECK_EQ(114, r.Call(1, 100)); CHECK_EQ(112, r.Call(2, 100)); CHECK_EQ(108, r.Call(3, 100)); CHECK_EQ(108, r.Call(4, 100)); } WASM_EXEC_TEST(BrTable_loop_target) { byte code[] = { WASM_LOOP_I(WASM_BLOCK(WASM_BR_TABLE(WASM_LOCAL_GET(0), 2, BR_TARGET(0), BR_TARGET(1), BR_TARGET(1))), WASM_ONE)}; WasmRunner<int32_t, int32_t> r(execution_tier); r.Build(code, code + arraysize(code)); CHECK_EQ(1, r.Call(0)); } WASM_EXEC_TEST(I32ReinterpretF32) { WasmRunner<int32_t> r(execution_tier); float* memory = r.builder().AddMemoryElems<float>(kWasmPageSize / sizeof(float)); BUILD(r, WASM_I32_REINTERPRET_F32( WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO))); FOR_FLOAT32_INPUTS(i) { float input = i; int32_t expected = base::bit_cast<int32_t, float>(input); r.builder().WriteMemory(&memory[0], input); CHECK_EQ(expected, r.Call()); } } WASM_EXEC_TEST(F32ReinterpretI32) { WasmRunner<float> r(execution_tier); int32_t* memory = r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); BUILD(r, WASM_F32_REINTERPRET_I32( WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))); FOR_INT32_INPUTS(i) { int32_t input = i; float expected = base::bit_cast<float, int32_t>(input); r.builder().WriteMemory(&memory[0], input); float result = r.Call(); if (std::isnan(expected)) { CHECK(std::isnan(result)); CHECK(IsSameNan(expected, result)); } else { CHECK_EQ(expected, result); } } } // Do not run this test in a simulator because of signalling NaN issues on ia32. #ifndef USE_SIMULATOR WASM_EXEC_TEST(SignallingNanSurvivesI32ReinterpretF32) { WasmRunner<int32_t> r(execution_tier); BUILD(r, WASM_I32_REINTERPRET_F32( WASM_SEQ(kExprF32Const, 0x00, 0x00, 0xA0, 0x7F))); // This is a signalling nan. CHECK_EQ(0x7FA00000, r.Call()); } #endif WASM_EXEC_TEST(LoadMaxUint32Offset) { WasmRunner<int32_t> r(execution_tier); r.builder().AddMemory(kWasmPageSize); BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), // type U32V_5(0xFFFFFFFF), // offset WASM_ZERO)); // index CHECK_TRAP32(r.Call()); } WASM_EXEC_TEST(LoadStoreLoad) { WasmRunner<int32_t> r(execution_tier); int32_t* memory = r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); BUILD(r, WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)), WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)); FOR_INT32_INPUTS(i) { int32_t expected = i; r.builder().WriteMemory(&memory[0], expected); CHECK_EQ(expected, r.Call()); } } WASM_EXEC_TEST(UnalignedFloat32Load) { WasmRunner<float> r(execution_tier); r.builder().AddMemory(kWasmPageSize); BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Float32(), WASM_ONE, 2)); r.Call(); } WASM_EXEC_TEST(UnalignedFloat64Load) { WasmRunner<double> r(execution_tier); r.builder().AddMemory(kWasmPageSize); BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Float64(), WASM_ONE, 3)); r.Call(); } WASM_EXEC_TEST(UnalignedInt32Load) { WasmRunner<uint32_t> r(execution_tier); r.builder().AddMemory(kWasmPageSize); BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Int32(), WASM_ONE, 2)); r.Call(); } WASM_EXEC_TEST(UnalignedInt32Store) { WasmRunner<int32_t> r(execution_tier); r.builder().AddMemory(kWasmPageSize); BUILD(r, WASM_SEQ(WASM_STORE_MEM_ALIGNMENT(MachineType::Int32(), WASM_ONE, 2, WASM_I32V_1(1)), WASM_I32V_1(12))); r.Call(); } WASM_EXEC_TEST(UnalignedFloat32Store) { WasmRunner<int32_t> r(execution_tier); r.builder().AddMemory(kWasmPageSize); BUILD(r, WASM_SEQ(WASM_STORE_MEM_ALIGNMENT(MachineType::Float32(), WASM_ONE, 2, WASM_F32(1.0)), WASM_I32V_1(12))); r.Call(); } WASM_EXEC_TEST(UnalignedFloat64Store) { WasmRunner<int32_t> r(execution_tier); r.builder().AddMemory(kWasmPageSize); BUILD(r, WASM_SEQ(WASM_STORE_MEM_ALIGNMENT(MachineType::Float64(), WASM_ONE, 3, WASM_F64(1.0)), WASM_I32V_1(12))); r.Call(); } WASM_EXEC_TEST(VoidReturn1) { const int32_t kExpected = -414444; WasmRunner<int32_t> r(execution_tier); // Build the test function. WasmFunctionCompiler& test_func = r.NewFunction<void>(); BUILD(test_func, kExprNop); // Build the calling function. BUILD(r, WASM_CALL_FUNCTION0(test_func.function_index()), WASM_I32V_3(kExpected)); // Call and check. int32_t result = r.Call(); CHECK_EQ(kExpected, result); } WASM_EXEC_TEST(VoidReturn2) { const int32_t kExpected = -414444; WasmRunner<int32_t> r(execution_tier); // Build the test function. WasmFunctionCompiler& test_func = r.NewFunction<void>(); BUILD(test_func, WASM_RETURN0); // Build the calling function. BUILD(r, WASM_CALL_FUNCTION0(test_func.function_index()), WASM_I32V_3(kExpected)); // Call and check. int32_t result = r.Call(); CHECK_EQ(kExpected, result); } WASM_EXEC_TEST(BrEmpty) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BRV(0, WASM_LOCAL_GET(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(BrIfEmpty) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BRV_IF(0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Block_empty) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, kExprBlock, kVoidCode, kExprEnd, WASM_LOCAL_GET(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Block_empty_br1) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, B1(WASM_BR(0)), WASM_LOCAL_GET(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Block_empty_brif1) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK(WASM_BR_IF(0, WASM_ZERO)), WASM_LOCAL_GET(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Block_empty_brif2) { WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier); BUILD(r, WASM_BLOCK(WASM_BR_IF(0, WASM_LOCAL_GET(1))), WASM_LOCAL_GET(0)); FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i, i + 1)); } } WASM_EXEC_TEST(Block_i) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_LOCAL_GET(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Block_f) { WasmRunner<float, float> r(execution_tier); BUILD(r, WASM_BLOCK_F(WASM_LOCAL_GET(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Block_d) { WasmRunner<double, double> r(execution_tier); BUILD(r, WASM_BLOCK_D(WASM_LOCAL_GET(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Block_br2) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_BRV(0, WASM_LOCAL_GET(0)))); FOR_UINT32_INPUTS(i) { CHECK_EQ(i, static_cast<uint32_t>(r.Call(i))); } } WASM_EXEC_TEST(Block_If_P) { WasmRunner<int32_t, int32_t> r(execution_tier); // block { if (p0) break 51; 52; } BUILD(r, WASM_BLOCK_I( // -- WASM_IF(WASM_LOCAL_GET(0), // -- WASM_BRV(1, WASM_I32V_1(51))), // -- WASM_I32V_1(52))); // -- FOR_INT32_INPUTS(i) { int32_t expected = i ? 51 : 52; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(Loop_empty) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, kExprLoop, kVoidCode, kExprEnd, WASM_LOCAL_GET(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Loop_i) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_LOOP_I(WASM_LOCAL_GET(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Loop_f) { WasmRunner<float, float> r(execution_tier); BUILD(r, WASM_LOOP_F(WASM_LOCAL_GET(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Loop_d) { WasmRunner<double, double> r(execution_tier); BUILD(r, WASM_LOOP_D(WASM_LOCAL_GET(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Loop_empty_br1) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, B1(WASM_LOOP(WASM_BR(1))), WASM_LOCAL_GET(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Loop_empty_brif1) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, B1(WASM_LOOP(WASM_BR_IF(1, WASM_ZERO))), WASM_LOCAL_GET(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(i, r.Call(i)); } } WASM_EXEC_TEST(Loop_empty_brif2) { WasmRunner<uint32_t, uint32_t, uint32_t> r(execution_tier); BUILD(r, WASM_LOOP_I(WASM_BRV_IF(1, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)))); FOR_UINT32_INPUTS(i) { CHECK_EQ(i, r.Call(i, i + 1)); } } WASM_EXEC_TEST(Loop_empty_brif3) { WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier); BUILD(r, WASM_LOOP(WASM_BRV_IFD(1, WASM_LOCAL_GET(2), WASM_LOCAL_GET(0))), WASM_LOCAL_GET(1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { CHECK_EQ(i, r.Call(0, i, j)); CHECK_EQ(j, r.Call(1, i, j)); } } } WASM_EXEC_TEST(Block_BrIf_P) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_BRV_IFD(0, WASM_I32V_1(51), WASM_LOCAL_GET(0)), WASM_I32V_1(52))); FOR_INT32_INPUTS(i) { int32_t expected = i ? 51 : 52; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(Block_IfElse_P_assign) { WasmRunner<int32_t, int32_t> r(execution_tier); // { if (p0) p0 = 71; else p0 = 72; return p0; } BUILD(r, // -- WASM_IF_ELSE(WASM_LOCAL_GET(0), // -- WASM_LOCAL_SET(0, WASM_I32V_2(71)), // -- WASM_LOCAL_SET(0, WASM_I32V_2(72))), // -- WASM_LOCAL_GET(0)); FOR_INT32_INPUTS(i) { int32_t expected = i ? 71 : 72; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(Block_IfElse_P_return) { WasmRunner<int32_t, int32_t> r(execution_tier); // if (p0) return 81; else return 82; BUILD(r, // -- WASM_IF_ELSE(WASM_LOCAL_GET(0), // -- RET_I8(81), // -- RET_I8(82)), // -- WASM_ZERO); // -- FOR_INT32_INPUTS(i) { int32_t expected = i ? 81 : 82; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(Block_If_P_assign) { WasmRunner<int32_t, int32_t> r(execution_tier); // { if (p0) p0 = 61; p0; } BUILD(r, WASM_IF(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_I32V_1(61))), WASM_LOCAL_GET(0)); FOR_INT32_INPUTS(i) { int32_t expected = i ? 61 : i; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(DanglingAssign) { WasmRunner<int32_t, int32_t> r(execution_tier); // { return 0; p0 = 0; } BUILD(r, WASM_BLOCK_I(RET_I8(99), WASM_LOCAL_TEE(0, WASM_ZERO))); CHECK_EQ(99, r.Call(1)); } WASM_EXEC_TEST(ExprIf_P) { WasmRunner<int32_t, int32_t> r(execution_tier); // p0 ? 11 : 22; BUILD(r, WASM_IF_ELSE_I(WASM_LOCAL_GET(0), // -- WASM_I32V_1(11), // -- WASM_I32V_1(22))); // -- FOR_INT32_INPUTS(i) { int32_t expected = i ? 11 : 22; CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(CountDown) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_LOOP(WASM_IF( WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V_1(1))), WASM_BR(1))), WASM_LOCAL_GET(0)); CHECK_EQ(0, r.Call(1)); CHECK_EQ(0, r.Call(10)); CHECK_EQ(0, r.Call(100)); } WASM_EXEC_TEST(CountDown_fallthru) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD( r, WASM_LOOP( WASM_IF(WASM_NOT(WASM_LOCAL_GET(0)), WASM_BRV(2, WASM_LOCAL_GET(0))), WASM_LOCAL_SET(0, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V_1(1))), WASM_CONTINUE(0)), WASM_LOCAL_GET(0)); CHECK_EQ(0, r.Call(1)); CHECK_EQ(0, r.Call(10)); CHECK_EQ(0, r.Call(100)); } WASM_EXEC_TEST(WhileCountDown) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_WHILE( WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V_1(1)))), WASM_LOCAL_GET(0)); CHECK_EQ(0, r.Call(1)); CHECK_EQ(0, r.Call(10)); CHECK_EQ(0, r.Call(100)); } WASM_EXEC_TEST(Loop_if_break1) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); BUILD(r, WASM_LOOP(WASM_IF(WASM_LOCAL_GET(0), WASM_BRV(2, WASM_LOCAL_GET(1))), WASM_LOCAL_SET(0, WASM_I32V_2(99))), WASM_LOCAL_GET(0)); CHECK_EQ(99, r.Call(0, 11)); CHECK_EQ(65, r.Call(3, 65)); CHECK_EQ(10001, r.Call(10000, 10001)); CHECK_EQ(-29, r.Call(-28, -29)); } WASM_EXEC_TEST(Loop_if_break2) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); BUILD(r, WASM_LOOP(WASM_BRV_IF(1, WASM_LOCAL_GET(1), WASM_LOCAL_GET(0)), WASM_DROP, WASM_LOCAL_SET(0, WASM_I32V_2(99))), WASM_LOCAL_GET(0)); CHECK_EQ(99, r.Call(0, 33)); CHECK_EQ(3, r.Call(1, 3)); CHECK_EQ(10000, r.Call(99, 10000)); CHECK_EQ(-29, r.Call(-11, -29)); } WASM_EXEC_TEST(Loop_if_break_fallthru) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, B1(WASM_LOOP(WASM_IF(WASM_LOCAL_GET(0), WASM_BR(2)), WASM_LOCAL_SET(0, WASM_I32V_2(93)))), WASM_LOCAL_GET(0)); CHECK_EQ(93, r.Call(0)); CHECK_EQ(3, r.Call(3)); CHECK_EQ(10001, r.Call(10001)); CHECK_EQ(-22, r.Call(-22)); } WASM_EXEC_TEST(Loop_if_break_fallthru2) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, B1(B1(WASM_LOOP(WASM_IF(WASM_LOCAL_GET(0), WASM_BR(2)), WASM_LOCAL_SET(0, WASM_I32V_2(93))))), WASM_LOCAL_GET(0)); CHECK_EQ(93, r.Call(0)); CHECK_EQ(3, r.Call(3)); CHECK_EQ(10001, r.Call(10001)); CHECK_EQ(-22, r.Call(-22)); } WASM_EXEC_TEST(IfBreak1) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_IF(WASM_LOCAL_GET(0), WASM_SEQ(WASM_BR(0), WASM_UNREACHABLE)), WASM_I32V_2(91)); CHECK_EQ(91, r.Call(0)); CHECK_EQ(91, r.Call(1)); CHECK_EQ(91, r.Call(-8734)); } WASM_EXEC_TEST(IfBreak2) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_IF(WASM_LOCAL_GET(0), WASM_SEQ(WASM_BR(0), RET_I8(77))), WASM_I32V_2(81)); CHECK_EQ(81, r.Call(0)); CHECK_EQ(81, r.Call(1)); CHECK_EQ(81, r.Call(-8734)); } WASM_EXEC_TEST(LoadMemI32) { WasmRunner<int32_t, int32_t> r(execution_tier); int32_t* memory = r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); r.builder().RandomizeMemory(1111); BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)); r.builder().WriteMemory(&memory[0], 99999999); CHECK_EQ(99999999, r.Call(0)); r.builder().WriteMemory(&memory[0], 88888888); CHECK_EQ(88888888, r.Call(0)); r.builder().WriteMemory(&memory[0], 77777777); CHECK_EQ(77777777, r.Call(0)); } WASM_EXEC_TEST(LoadMemI32_alignment) { for (byte alignment = 0; alignment <= 2; ++alignment) { WasmRunner<int32_t, int32_t> r(execution_tier); int32_t* memory = r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); r.builder().RandomizeMemory(1111); BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Int32(), WASM_ZERO, alignment)); r.builder().WriteMemory(&memory[0], 0x1A2B3C4D); CHECK_EQ(0x1A2B3C4D, r.Call(0)); r.builder().WriteMemory(&memory[0], 0x5E6F7A8B); CHECK_EQ(0x5E6F7A8B, r.Call(0)); r.builder().WriteMemory(&memory[0], 0x7CA0B1C2); CHECK_EQ(0x7CA0B1C2, r.Call(0)); } } WASM_EXEC_TEST(LoadMemI32_oob) { WasmRunner<int32_t, uint32_t> r(execution_tier); int32_t* memory = r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); r.builder().RandomizeMemory(1111); BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_LOCAL_GET(0))); r.builder().WriteMemory(&memory[0], 88888888); CHECK_EQ(88888888, r.Call(0u)); for (uint32_t offset = kWasmPageSize - 3; offset < kWasmPageSize + 40; ++offset) { CHECK_TRAP(r.Call(offset)); } for (uint32_t offset = 0x80000000; offset < 0x80000010; ++offset) { CHECK_TRAP(r.Call(offset)); } } WASM_EXEC_TEST(LoadMem_offset_oob) { static const MachineType machineTypes[] = { MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(), MachineType::Float64()}; constexpr size_t num_bytes = kWasmPageSize; for (size_t m = 0; m < arraysize(machineTypes); ++m) { WasmRunner<int32_t, uint32_t> r(execution_tier); r.builder().AddMemoryElems<byte>(num_bytes); r.builder().RandomizeMemory(1116 + static_cast<int>(m)); constexpr byte kOffset = 8; uint32_t boundary = num_bytes - kOffset - machineTypes[m].MemSize(); BUILD(r, WASM_LOAD_MEM_OFFSET(machineTypes[m], kOffset, WASM_LOCAL_GET(0)), WASM_DROP, WASM_ZERO); CHECK_EQ(0, r.Call(boundary)); // in bounds. for (uint32_t offset = boundary + 1; offset < boundary + 19; ++offset) { CHECK_TRAP(r.Call(offset)); // out of bounds. } } } WASM_EXEC_TEST(LoadMemI32_offset) { WasmRunner<int32_t, int32_t> r(execution_tier); int32_t* memory = r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); r.builder().RandomizeMemory(1111); BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), 4, WASM_LOCAL_GET(0))); r.builder().WriteMemory(&memory[0], 66666666); r.builder().WriteMemory(&memory[1], 77777777); r.builder().WriteMemory(&memory[2], 88888888); r.builder().WriteMemory(&memory[3], 99999999); CHECK_EQ(77777777, r.Call(0)); CHECK_EQ(88888888, r.Call(4)); CHECK_EQ(99999999, r.Call(8)); r.builder().WriteMemory(&memory[0], 11111111); r.builder().WriteMemory(&memory[1], 22222222); r.builder().WriteMemory(&memory[2], 33333333); r.builder().WriteMemory(&memory[3], 44444444); CHECK_EQ(22222222, r.Call(0)); CHECK_EQ(33333333, r.Call(4)); CHECK_EQ(44444444, r.Call(8)); } WASM_EXEC_TEST(LoadMemI32_const_oob_misaligned) { // This test accesses memory starting at kRunwayLength bytes before the end of // the memory until a few bytes beyond. constexpr byte kRunwayLength = 12; // TODO(titzer): Fix misaligned accesses on MIPS and re-enable. for (byte offset = 0; offset < kRunwayLength + 5; ++offset) { for (uint32_t index = kWasmPageSize - kRunwayLength; index < kWasmPageSize + 5; ++index) { WasmRunner<int32_t> r(execution_tier); r.builder().AddMemoryElems<byte>(kWasmPageSize); r.builder().RandomizeMemory(); BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset, WASM_I32V_3(index))); if (offset + index + sizeof(int32_t) <= kWasmPageSize) { CHECK_EQ(r.builder().raw_val_at<int32_t>(offset + index), r.Call()); } else { CHECK_TRAP(r.Call()); } } } } WASM_EXEC_TEST(LoadMemI32_const_oob) { // This test accesses memory starting at kRunwayLength bytes before the end of // the memory until a few bytes beyond. constexpr byte kRunwayLength = 24; for (byte offset = 0; offset < kRunwayLength + 5; offset += 4) { for (uint32_t index = kWasmPageSize - kRunwayLength; index < kWasmPageSize + 5; index += 4) { WasmRunner<int32_t> r(execution_tier); r.builder().AddMemoryElems<byte>(kWasmPageSize); r.builder().RandomizeMemory(); BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset, WASM_I32V_3(index))); if (offset + index + sizeof(int32_t) <= kWasmPageSize) { CHECK_EQ(r.builder().raw_val_at<int32_t>(offset + index), r.Call()); } else { CHECK_TRAP(r.Call()); } } } } WASM_EXEC_TEST(StoreMemI32_alignment) { const int32_t kWritten = 0x12345678; for (byte i = 0; i <= 2; ++i) { WasmRunner<int32_t, int32_t> r(execution_tier); int32_t* memory = r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); BUILD(r, WASM_STORE_MEM_ALIGNMENT(MachineType::Int32(), WASM_ZERO, i, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)); r.builder().RandomizeMemory(1111); memory[0] = 0; CHECK_EQ(kWritten, r.Call(kWritten)); CHECK_EQ(kWritten, r.builder().ReadMemory(&memory[0])); } } WASM_EXEC_TEST(StoreMemI32_offset) { WasmRunner<int32_t, int32_t> r(execution_tier); int32_t* memory = r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); const int32_t kWritten = 0xAABBCCDD; BUILD(r, WASM_STORE_MEM_OFFSET(MachineType::Int32(), 4, WASM_LOCAL_GET(0), WASM_I32V_5(kWritten)), WASM_I32V_5(kWritten)); for (int i = 0; i < 2; ++i) { r.builder().RandomizeMemory(1111); r.builder().WriteMemory(&memory[0], 66666666); r.builder().WriteMemory(&memory[1], 77777777); r.builder().WriteMemory(&memory[2], 88888888); r.builder().WriteMemory(&memory[3], 99999999); CHECK_EQ(kWritten, r.Call(i * 4)); CHECK_EQ(66666666, r.builder().ReadMemory(&memory[0])); CHECK_EQ(i == 0 ? kWritten : 77777777, r.builder().ReadMemory(&memory[1])); CHECK_EQ(i == 1 ? kWritten : 88888888, r.builder().ReadMemory(&memory[2])); CHECK_EQ(i == 2 ? kWritten : 99999999, r.builder().ReadMemory(&memory[3])); } } WASM_EXEC_TEST(StoreMem_offset_oob) { // 64-bit cases are handled in test-run-wasm-64.cc static const MachineType machineTypes[] = { MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Float32(), MachineType::Float64()}; constexpr size_t num_bytes = kWasmPageSize; for (size_t m = 0; m < arraysize(machineTypes); ++m) { WasmRunner<int32_t, uint32_t> r(execution_tier); byte* memory = r.builder().AddMemoryElems<byte>(num_bytes); r.builder().RandomizeMemory(1119 + static_cast<int>(m)); BUILD(r, WASM_STORE_MEM_OFFSET(machineTypes[m], 8, WASM_LOCAL_GET(0), WASM_LOAD_MEM(machineTypes[m], WASM_ZERO)), WASM_ZERO); byte memsize = machineTypes[m].MemSize(); uint32_t boundary = num_bytes - 8 - memsize; CHECK_EQ(0, r.Call(boundary)); // in bounds. CHECK_EQ(0, memcmp(&memory[0], &memory[8 + boundary], memsize)); for (uint32_t offset = boundary + 1; offset < boundary + 19; ++offset) { CHECK_TRAP(r.Call(offset)); // out of bounds. } } } WASM_EXEC_TEST(Store_i32_narrowed) { constexpr byte kOpcodes[] = {kExprI32StoreMem8, kExprI32StoreMem16, kExprI32StoreMem}; int stored_size_in_bytes = 0; for (auto opcode : kOpcodes) { stored_size_in_bytes = std::max(1, stored_size_in_bytes * 2); constexpr int kBytes = 24; uint8_t expected_memory[kBytes] = {0}; WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); uint8_t* memory = r.builder().AddMemoryElems<uint8_t>(kWasmPageSize); constexpr uint32_t kPattern = 0x12345678; BUILD(r, WASM_LOCAL_GET(0), // index WASM_LOCAL_GET(1), // value opcode, ZERO_ALIGNMENT, ZERO_OFFSET, // store WASM_ZERO); // return value for (int i = 0; i <= kBytes - stored_size_in_bytes; ++i) { uint32_t pattern = base::bits::RotateLeft32(kPattern, i % 32); r.Call(i, pattern); for (int b = 0; b < stored_size_in_bytes; ++b) { expected_memory[i + b] = static_cast<uint8_t>(pattern >> (b * 8)); } for (int w = 0; w < kBytes; ++w) { CHECK_EQ(expected_memory[w], memory[w]); } } } } WASM_EXEC_TEST(LoadMemI32_P) { const int kNumElems = 8; WasmRunner<int32_t, int32_t> r(execution_tier); int32_t* memory = r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); r.builder().RandomizeMemory(2222); BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_LOCAL_GET(0))); for (int i = 0; i < kNumElems; ++i) { CHECK_EQ(r.builder().ReadMemory(&memory[i]), r.Call(i * 4)); } } WASM_EXEC_TEST(MemI32_Sum) { const int kNumElems = 20; WasmRunner<uint32_t, int32_t> r(execution_tier); uint32_t* memory = r.builder().AddMemoryElems<uint32_t>(kWasmPageSize / sizeof(int32_t)); const byte kSum = r.AllocateLocal(kWasmI32); BUILD( r, WASM_WHILE( WASM_LOCAL_GET(0), WASM_BLOCK(WASM_LOCAL_SET( kSum, WASM_I32_ADD(WASM_LOCAL_GET(kSum), WASM_LOAD_MEM(MachineType::Int32(), WASM_LOCAL_GET(0)))), WASM_LOCAL_SET( 0, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V_1(4))))), WASM_LOCAL_GET(1)); // Run 4 trials. for (int i = 0; i < 3; ++i) { r.builder().RandomizeMemory(i * 33); uint32_t expected = 0; for (size_t j = kNumElems - 1; j > 0; --j) { expected += r.builder().ReadMemory(&memory[j]); } uint32_t result = r.Call(4 * (kNumElems - 1)); CHECK_EQ(expected, result); } } WASM_EXEC_TEST(CheckMachIntsZero) { const int kNumElems = 55; WasmRunner<uint32_t, int32_t> r(execution_tier); r.builder().AddMemoryElems<uint32_t>(kWasmPageSize / sizeof(uint32_t)); BUILD(r, // -- /**/ kExprLoop, kVoidCode, // -- /* */ kExprLocalGet, 0, // -- /* */ kExprIf, kVoidCode, // -- /* */ kExprLocalGet, 0, // -- /* */ kExprI32LoadMem, 0, 0, // -- /* */ kExprIf, kVoidCode, // -- /* */ kExprI32Const, 127, // -- /* */ kExprReturn, // -- /* */ kExprEnd, // -- /* */ kExprLocalGet, 0, // -- /* */ kExprI32Const, 4, // -- /* */ kExprI32Sub, // -- /* */ kExprLocalTee, 0, // -- /* */ kExprBr, DEPTH_0, // -- /* */ kExprEnd, // -- /**/ kExprEnd, // -- /**/ kExprI32Const, 0); // -- r.builder().BlankMemory(); CHECK_EQ(0, r.Call((kNumElems - 1) * 4)); } WASM_EXEC_TEST(MemF32_Sum) { const int kSize = 5; WasmRunner<int32_t, int32_t> r(execution_tier); r.builder().AddMemoryElems<float>(kWasmPageSize / sizeof(float)); float* buffer = r.builder().raw_mem_start<float>(); r.builder().WriteMemory(&buffer[0], -99.25f); r.builder().WriteMemory(&buffer[1], -888.25f); r.builder().WriteMemory(&buffer[2], -77.25f); r.builder().WriteMemory(&buffer[3], 66666.25f); r.builder().WriteMemory(&buffer[4], 5555.25f); const byte kSum = r.AllocateLocal(kWasmF32); BUILD(r, WASM_WHILE( WASM_LOCAL_GET(0), WASM_BLOCK( WASM_LOCAL_SET( kSum, WASM_F32_ADD(WASM_LOCAL_GET(kSum), WASM_LOAD_MEM(MachineType::Float32(), WASM_LOCAL_GET(0)))), WASM_LOCAL_SET( 0, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V_1(4))))), WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO, WASM_LOCAL_GET(kSum)), WASM_LOCAL_GET(0)); CHECK_EQ(0, r.Call(4 * (kSize - 1))); CHECK_NE(-99.25f, r.builder().ReadMemory(&buffer[0])); CHECK_EQ(71256.0f, r.builder().ReadMemory(&buffer[0])); } template <typename T> T GenerateAndRunFold(TestExecutionTier execution_tier, WasmOpcode binop, T* buffer, uint32_t size, ValueType astType, MachineType memType) { WasmRunner<int32_t, int32_t> r(execution_tier); T* memory = r.builder().AddMemoryElems<T>(static_cast<uint32_t>( RoundUp(size * sizeof(T), kWasmPageSize) / sizeof(sizeof(T)))); for (uint32_t i = 0; i < size; ++i) { r.builder().WriteMemory(&memory[i], buffer[i]); } const byte kAccum = r.AllocateLocal(astType); BUILD( r, WASM_LOCAL_SET(kAccum, WASM_LOAD_MEM(memType, WASM_ZERO)), WASM_WHILE( WASM_LOCAL_GET(0), WASM_BLOCK(WASM_LOCAL_SET( kAccum, WASM_BINOP(binop, WASM_LOCAL_GET(kAccum), WASM_LOAD_MEM(memType, WASM_LOCAL_GET(0)))), WASM_LOCAL_SET(0, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V_1(sizeof(T)))))), WASM_STORE_MEM(memType, WASM_ZERO, WASM_LOCAL_GET(kAccum)), WASM_LOCAL_GET(0)); r.Call(static_cast<int>(sizeof(T) * (size - 1))); return r.builder().ReadMemory(&memory[0]); } WASM_EXEC_TEST(MemF64_Mul) { const size_t kSize = 6; double buffer[kSize] = {1, 2, 2, 2, 2, 2}; double result = GenerateAndRunFold<double>(execution_tier, kExprF64Mul, buffer, kSize, kWasmF64, MachineType::Float64()); CHECK_EQ(32, result); } WASM_EXEC_TEST(Build_Wasm_Infinite_Loop) { WasmRunner<int32_t, int32_t> r(execution_tier); // Only build the graph and compile, don't run. BUILD(r, WASM_INFINITE_LOOP, WASM_ZERO); } WASM_EXEC_TEST(Build_Wasm_Infinite_Loop_effect) { WasmRunner<int32_t, int32_t> r(execution_tier); r.builder().AddMemory(kWasmPageSize); // Only build the graph and compile, don't run. BUILD(r, WASM_LOOP(WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO), WASM_DROP), WASM_ZERO); } WASM_EXEC_TEST(Unreachable0a) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(9)), RET(WASM_LOCAL_GET(0)))); CHECK_EQ(9, r.Call(0)); CHECK_EQ(9, r.Call(1)); } WASM_EXEC_TEST(Unreachable0b) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(7)), WASM_UNREACHABLE)); CHECK_EQ(7, r.Call(0)); CHECK_EQ(7, r.Call(1)); } WASM_COMPILED_EXEC_TEST(Build_Wasm_Unreachable1) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_UNREACHABLE); } WASM_COMPILED_EXEC_TEST(Build_Wasm_Unreachable2) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE); } WASM_COMPILED_EXEC_TEST(Build_Wasm_Unreachable3) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE, WASM_UNREACHABLE); } WASM_COMPILED_EXEC_TEST(Build_Wasm_UnreachableIf1) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_UNREACHABLE, WASM_IF(WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_DROP)), WASM_ZERO); } WASM_COMPILED_EXEC_TEST(Build_Wasm_UnreachableIf2) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_UNREACHABLE, WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_UNREACHABLE)); } WASM_EXEC_TEST(Unreachable_Load) { WasmRunner<int32_t, int32_t> r(execution_tier); r.builder().AddMemory(kWasmPageSize); BUILD(r, WASM_BLOCK_I(WASM_BRV(0, WASM_LOCAL_GET(0)), WASM_LOAD_MEM(MachineType::Int8(), WASM_LOCAL_GET(0)))); CHECK_EQ(11, r.Call(11)); CHECK_EQ(21, r.Call(21)); } WASM_EXEC_TEST(BrV_Fallthrough) { WasmRunner<int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_BLOCK(WASM_BRV(1, WASM_I32V_1(42))), WASM_I32V_1(22))); CHECK_EQ(42, r.Call()); } WASM_EXEC_TEST(Infinite_Loop_not_taken1) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_IF(WASM_LOCAL_GET(0), WASM_INFINITE_LOOP), WASM_I32V_1(45)); // Run the code, but don't go into the infinite loop. CHECK_EQ(45, r.Call(0)); } WASM_EXEC_TEST(Infinite_Loop_not_taken2) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I( WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_BRV(1, WASM_I32V_1(45)), WASM_INFINITE_LOOP), WASM_ZERO)); // Run the code, but don't go into the infinite loop. CHECK_EQ(45, r.Call(1)); } WASM_EXEC_TEST(Infinite_Loop_not_taken2_brif) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_BRV_IF(0, WASM_I32V_1(45), WASM_LOCAL_GET(0)), WASM_INFINITE_LOOP)); // Run the code, but don't go into the infinite loop. CHECK_EQ(45, r.Call(1)); } static void TestBuildGraphForSimpleExpression(WasmOpcode opcode) { Isolate* isolate = CcTest::InitIsolateOnce(); Zone zone(isolate->allocator(), ZONE_NAME, kCompressGraphZone); HandleScope scope(isolate); // TODO(ahaas): Enable this test for externref opcodes when code generation // for them is implemented. if (WasmOpcodes::IsExternRefOpcode(opcode)) return; // Enable all optional operators. compiler::CommonOperatorBuilder common(&zone); compiler::MachineOperatorBuilder machine( &zone, MachineType::PointerRepresentation(), compiler::MachineOperatorBuilder::kAllOptionalOps); compiler::Graph graph(&zone); compiler::JSGraph jsgraph(isolate, &graph, &common, nullptr, nullptr, &machine); const FunctionSig* sig = WasmOpcodes::Signature(opcode); if (sig->parameter_count() == 1) { byte code[] = {WASM_NO_LOCALS, kExprLocalGet, 0, static_cast<byte>(opcode), WASM_END}; TestBuildingGraph(&zone, &jsgraph, nullptr, sig, nullptr, code, code + arraysize(code)); } else { CHECK_EQ(2, sig->parameter_count()); byte code[] = {WASM_NO_LOCALS, kExprLocalGet, 0, kExprLocalGet, 1, static_cast<byte>(opcode), WASM_END}; TestBuildingGraph(&zone, &jsgraph, nullptr, sig, nullptr, code, code + arraysize(code)); } } TEST(Build_Wasm_SimpleExprs) { // Test that the decoder can build a graph for all supported simple expressions. #define GRAPH_BUILD_TEST(name, opcode, sig) \ TestBuildGraphForSimpleExpression(kExpr##name); FOREACH_SIMPLE_OPCODE(GRAPH_BUILD_TEST); #undef GRAPH_BUILD_TEST } WASM_EXEC_TEST(Int32LoadInt8_signext) { WasmRunner<int32_t, int32_t> r(execution_tier); const int kNumElems = kWasmPageSize; int8_t* memory = r.builder().AddMemoryElems<int8_t>(kNumElems); r.builder().RandomizeMemory(); memory[0] = -1; BUILD(r, WASM_LOAD_MEM(MachineType::Int8(), WASM_LOCAL_GET(0))); for (int i = 0; i < kNumElems; ++i) { CHECK_EQ(memory[i], r.Call(i)); } } WASM_EXEC_TEST(Int32LoadInt8_zeroext) { WasmRunner<int32_t, int32_t> r(execution_tier); const int kNumElems = kWasmPageSize; byte* memory = r.builder().AddMemory(kNumElems); r.builder().RandomizeMemory(77); memory[0] = 255; BUILD(r, WASM_LOAD_MEM(MachineType::Uint8(), WASM_LOCAL_GET(0))); for (int i = 0; i < kNumElems; ++i) { CHECK_EQ(memory[i], r.Call(i)); } } WASM_EXEC_TEST(Int32LoadInt16_signext) { WasmRunner<int32_t, int32_t> r(execution_tier); const int kNumBytes = kWasmPageSize; byte* memory = r.builder().AddMemory(kNumBytes); r.builder().RandomizeMemory(888); memory[1] = 200; BUILD(r, WASM_LOAD_MEM(MachineType::Int16(), WASM_LOCAL_GET(0))); for (int i = 0; i < kNumBytes; i += 2) { int32_t expected = static_cast<int16_t>(memory[i] | (memory[i + 1] << 8)); CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(Int32LoadInt16_zeroext) { WasmRunner<int32_t, int32_t> r(execution_tier); const int kNumBytes = kWasmPageSize; byte* memory = r.builder().AddMemory(kNumBytes); r.builder().RandomizeMemory(9999); memory[1] = 204; BUILD(r, WASM_LOAD_MEM(MachineType::Uint16(), WASM_LOCAL_GET(0))); for (int i = 0; i < kNumBytes; i += 2) { int32_t expected = memory[i] | (memory[i + 1] << 8); CHECK_EQ(expected, r.Call(i)); } } WASM_EXEC_TEST(Int32Global) { WasmRunner<int32_t, int32_t> r(execution_tier); int32_t* global = r.builder().AddGlobal<int32_t>(); // global = global + p0 BUILD(r, WASM_GLOBAL_SET(0, WASM_I32_ADD(WASM_GLOBAL_GET(0), WASM_LOCAL_GET(0))), WASM_ZERO); *global = 116; for (int i = 9; i < 444444; i += 111111) { int32_t expected = *global + i; r.Call(i); CHECK_EQ(expected, *global); } } WASM_EXEC_TEST(Int32Globals_DontAlias) { const int kNumGlobals = 3; for (int g = 0; g < kNumGlobals; ++g) { // global = global + p0 WasmRunner<int32_t, int32_t> r(execution_tier); int32_t* globals[] = {r.builder().AddGlobal<int32_t>(), r.builder().AddGlobal<int32_t>(), r.builder().AddGlobal<int32_t>()}; BUILD( r, WASM_GLOBAL_SET(g, WASM_I32_ADD(WASM_GLOBAL_GET(g), WASM_LOCAL_GET(0))), WASM_GLOBAL_GET(g)); // Check that reading/writing global number {g} doesn't alter the others. *(globals[g]) = 116 * g; int32_t before[kNumGlobals]; for (int i = 9; i < 444444; i += 111113) { int32_t sum = *(globals[g]) + i; for (int j = 0; j < kNumGlobals; ++j) before[j] = *(globals[j]); int32_t result = r.Call(i); CHECK_EQ(sum, result); for (int j = 0; j < kNumGlobals; ++j) { int32_t expected = j == g ? sum : before[j]; CHECK_EQ(expected, *(globals[j])); } } } } WASM_EXEC_TEST(Float32Global) { WasmRunner<int32_t, int32_t> r(execution_tier); float* global = r.builder().AddGlobal<float>(); // global = global + p0 BUILD(r, WASM_GLOBAL_SET(0, WASM_F32_ADD(WASM_GLOBAL_GET(0), WASM_F32_SCONVERT_I32(WASM_LOCAL_GET(0)))), WASM_ZERO); *global = 1.25; for (int i = 9; i < 4444; i += 1111) { volatile float expected = *global + i; r.Call(i); CHECK_EQ(expected, *global); } } WASM_EXEC_TEST(Float64Global) { WasmRunner<int32_t, int32_t> r(execution_tier); double* global = r.builder().AddGlobal<double>(); // global = global + p0 BUILD(r, WASM_GLOBAL_SET(0, WASM_F64_ADD(WASM_GLOBAL_GET(0), WASM_F64_SCONVERT_I32(WASM_LOCAL_GET(0)))), WASM_ZERO); *global = 1.25; for (int i = 9; i < 4444; i += 1111) { volatile double expected = *global + i; r.Call(i); CHECK_EQ(expected, *global); } } WASM_EXEC_TEST(MixedGlobals) { WasmRunner<int32_t, int32_t> r(execution_tier); int32_t* unused = r.builder().AddGlobal<int32_t>(); byte* memory = r.builder().AddMemory(kWasmPageSize); int32_t* var_int32 = r.builder().AddGlobal<int32_t>(); uint32_t* var_uint32 = r.builder().AddGlobal<uint32_t>(); float* var_float = r.builder().AddGlobal<float>(); double* var_double = r.builder().AddGlobal<double>(); BUILD(r, WASM_GLOBAL_SET(1, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)), WASM_GLOBAL_SET(2, WASM_LOAD_MEM(MachineType::Uint32(), WASM_ZERO)), WASM_GLOBAL_SET(3, WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO)), WASM_GLOBAL_SET(4, WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO)), WASM_ZERO); memory[0] = 0xAA; memory[1] = 0xCC; memory[2] = 0x55; memory[3] = 0xEE; memory[4] = 0x33; memory[5] = 0x22; memory[6] = 0x11; memory[7] = 0x99; r.Call(1); CHECK_EQ(static_cast<int32_t>(0xEE55CCAA), *var_int32); CHECK_EQ(static_cast<uint32_t>(0xEE55CCAA), *var_uint32); CHECK_EQ(base::bit_cast<float>(0xEE55CCAA), *var_float); CHECK_EQ(base::bit_cast<double>(0x99112233EE55CCAAULL), *var_double); USE(unused); } WASM_EXEC_TEST(CallEmpty) { const int32_t kExpected = -414444; WasmRunner<int32_t> r(execution_tier); // Build the target function. WasmFunctionCompiler& target_func = r.NewFunction<int>(); BUILD(target_func, WASM_I32V_3(kExpected)); // Build the calling function. BUILD(r, WASM_CALL_FUNCTION0(target_func.function_index())); int32_t result = r.Call(); CHECK_EQ(kExpected, result); } WASM_EXEC_TEST(CallF32StackParameter) { WasmRunner<float> r(execution_tier); // Build the target function. ValueType param_types[20]; for (int i = 0; i < 20; ++i) param_types[i] = kWasmF32; FunctionSig sig(1, 19, param_types); WasmFunctionCompiler& t = r.NewFunction(&sig); BUILD(t, WASM_LOCAL_GET(17)); // Build the calling function. BUILD(r, WASM_CALL_FUNCTION( t.function_index(), WASM_F32(1.0f), WASM_F32(2.0f), WASM_F32(4.0f), WASM_F32(8.0f), WASM_F32(16.0f), WASM_F32(32.0f), WASM_F32(64.0f), WASM_F32(128.0f), WASM_F32(256.0f), WASM_F32(1.5f), WASM_F32(2.5f), WASM_F32(4.5f), WASM_F32(8.5f), WASM_F32(16.5f), WASM_F32(32.5f), WASM_F32(64.5f), WASM_F32(128.5f), WASM_F32(256.5f), WASM_F32(512.5f))); float result = r.Call(); CHECK_EQ(256.5f, result); } WASM_EXEC_TEST(CallF64StackParameter) { WasmRunner<double> r(execution_tier); // Build the target function. ValueType param_types[20]; for (int i = 0; i < 20; ++i) param_types[i] = kWasmF64; FunctionSig sig(1, 19, param_types); WasmFunctionCompiler& t = r.NewFunction(&sig); BUILD(t, WASM_LOCAL_GET(17)); // Build the calling function. BUILD(r, WASM_CALL_FUNCTION(t.function_index(), WASM_F64(1.0), WASM_F64(2.0), WASM_F64(4.0), WASM_F64(8.0), WASM_F64(16.0), WASM_F64(32.0), WASM_F64(64.0), WASM_F64(128.0), WASM_F64(256.0), WASM_F64(1.5), WASM_F64(2.5), WASM_F64(4.5), WASM_F64(8.5), WASM_F64(16.5), WASM_F64(32.5), WASM_F64(64.5), WASM_F64(128.5), WASM_F64(256.5), WASM_F64(512.5))); float result = r.Call(); CHECK_EQ(256.5, result); } WASM_EXEC_TEST(CallVoid) { WasmRunner<int32_t> r(execution_tier); const byte kMemOffset = 8; const int32_t kElemNum = kMemOffset / sizeof(int32_t); const int32_t kExpected = 414444; // Build the target function. TestSignatures sigs; int32_t* memory = r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); r.builder().RandomizeMemory(); WasmFunctionCompiler& t = r.NewFunction(sigs.v_v()); BUILD(t, WASM_STORE_MEM(MachineType::Int32(), WASM_I32V_1(kMemOffset), WASM_I32V_3(kExpected))); // Build the calling function. BUILD(r, WASM_CALL_FUNCTION0(t.function_index()), WASM_LOAD_MEM(MachineType::Int32(), WASM_I32V_1(kMemOffset))); int32_t result = r.Call(); CHECK_EQ(kExpected, result); CHECK_EQ(static_cast<int64_t>(kExpected), static_cast<int64_t>(r.builder().ReadMemory(&memory[kElemNum]))); } WASM_EXEC_TEST(Call_Int32Add) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); // Build the target function. WasmFunctionCompiler& t = r.NewFunction<int32_t, int32_t, int32_t>(); BUILD(t, WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); // Build the caller function. BUILD(r, WASM_CALL_FUNCTION(t.function_index(), WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(i) + static_cast<uint32_t>(j)); CHECK_EQ(expected, r.Call(i, j)); } } } WASM_EXEC_TEST(Call_Float32Sub) { WasmRunner<float, float, float> r(execution_tier); // Build the target function. WasmFunctionCompiler& target_func = r.NewFunction<float, float, float>(); BUILD(target_func, WASM_F32_SUB(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); // Build the caller function. BUILD(r, WASM_CALL_FUNCTION(target_func.function_index(), WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(i - j, r.Call(i, j)); } } } WASM_EXEC_TEST(Call_Float64Sub) { WasmRunner<int32_t> r(execution_tier); double* memory = r.builder().AddMemoryElems<double>(kWasmPageSize / sizeof(double)); BUILD(r, WASM_STORE_MEM( MachineType::Float64(), WASM_ZERO, WASM_F64_SUB( WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO), WASM_LOAD_MEM(MachineType::Float64(), WASM_I32V_1(8)))), WASM_I32V_2(107)); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { r.builder().WriteMemory(&memory[0], i); r.builder().WriteMemory(&memory[1], j); double expected = i - j; CHECK_EQ(107, r.Call()); if (expected != expected) { CHECK(r.builder().ReadMemory(&memory[0]) != r.builder().ReadMemory(&memory[0])); } else { CHECK_EQ(expected, r.builder().ReadMemory(&memory[0])); } } } } template <typename T> static T factorial(T v) { T expected = 1; for (T i = v; i > 1; i--) { expected *= i; } return expected; } template <typename T> static T sum_1_to_n(T v) { return v * (v + 1) / 2; } // We use unsigned arithmetic because of ubsan validation. WASM_EXEC_TEST(Regular_Factorial) { WasmRunner<uint32_t, uint32_t> r(execution_tier); WasmFunctionCompiler& fact_aux_fn = r.NewFunction<uint32_t, uint32_t, uint32_t>("fact_aux"); BUILD(r, WASM_CALL_FUNCTION(fact_aux_fn.function_index(), WASM_LOCAL_GET(0), WASM_I32V(1))); BUILD(fact_aux_fn, WASM_IF_ELSE_I( WASM_I32_LES(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_LOCAL_GET(1), WASM_CALL_FUNCTION( fact_aux_fn.function_index(), WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_I32_MUL(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))))); uint32_t test_values[] = {1, 2, 5, 10, 20}; for (uint32_t v : test_values) { CHECK_EQ(factorial(v), r.Call(v)); } } namespace { // TODO(cleanup): Define in cctest.h and re-use where appropriate. class IsolateScope { public: IsolateScope() { v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); isolate_ = v8::Isolate::New(create_params); isolate_->Enter(); } ~IsolateScope() { isolate_->Exit(); isolate_->Dispose(); } v8::Isolate* isolate() { return isolate_; } Isolate* i_isolate() { return reinterpret_cast<Isolate*>(isolate_); } private: v8::Isolate* isolate_; }; } // namespace // Tail-recursive variation on factorial: // fact(N) => f(N,1). // // f(N,X) where N=<1 => X // f(N,X) => f(N-1,X*N). UNINITIALIZED_WASM_EXEC_TEST(ReturnCall_Factorial) { EXPERIMENTAL_FLAG_SCOPE(return_call); // Run in bounded amount of stack - 8kb. FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8); IsolateScope isolate_scope; LocalContext current(isolate_scope.isolate()); WasmRunner<uint32_t, uint32_t> r(execution_tier, nullptr, "main", kRuntimeExceptionSupport, kMemory32, isolate_scope.i_isolate()); WasmFunctionCompiler& fact_aux_fn = r.NewFunction<uint32_t, uint32_t, uint32_t>("fact_aux"); BUILD(r, WASM_RETURN_CALL_FUNCTION(fact_aux_fn.function_index(), WASM_LOCAL_GET(0), WASM_I32V(1))); BUILD(fact_aux_fn, WASM_IF_ELSE_I( WASM_I32_LES(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_LOCAL_GET(1), WASM_RETURN_CALL_FUNCTION( fact_aux_fn.function_index(), WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_I32_MUL(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))))); uint32_t test_values[] = {1, 2, 5, 10, 20, 2000}; for (uint32_t v : test_values) { CHECK_EQ(factorial<uint32_t>(v), r.Call(v)); } } // Mutually recursive factorial mixing it up // f(0,X)=>X // f(N,X) => g(X*N,N-1) // g(X,0) => X. // g(X,N) => f(N-1,X*N). UNINITIALIZED_WASM_EXEC_TEST(ReturnCall_MutualFactorial) { EXPERIMENTAL_FLAG_SCOPE(return_call); // Run in bounded amount of stack - 8kb. FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8); IsolateScope isolate_scope; LocalContext current(isolate_scope.isolate()); WasmRunner<uint32_t, uint32_t> r(execution_tier, nullptr, "main", kRuntimeExceptionSupport, kMemory32, isolate_scope.i_isolate()); WasmFunctionCompiler& f_fn = r.NewFunction<uint32_t, uint32_t, uint32_t>("f"); WasmFunctionCompiler& g_fn = r.NewFunction<uint32_t, uint32_t, uint32_t>("g"); BUILD(r, WASM_RETURN_CALL_FUNCTION(f_fn.function_index(), WASM_LOCAL_GET(0), WASM_I32V(1))); BUILD(f_fn, WASM_IF_ELSE_I(WASM_I32_LES(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_LOCAL_GET(1), WASM_RETURN_CALL_FUNCTION( g_fn.function_index(), WASM_I32_MUL(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V(1))))); BUILD(g_fn, WASM_IF_ELSE_I( WASM_I32_LES(WASM_LOCAL_GET(1), WASM_I32V(1)), WASM_LOCAL_GET(0), WASM_RETURN_CALL_FUNCTION( f_fn.function_index(), WASM_I32_SUB(WASM_LOCAL_GET(1), WASM_I32V(1)), WASM_I32_MUL(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))))); uint32_t test_values[] = {1, 2, 5, 10, 20, 2000}; for (uint32_t v : test_values) { CHECK_EQ(factorial(v), r.Call(v)); } } // Indirect variant of factorial. Pass the function ID as an argument: // fact(N) => f(N,1,f). // // f(N,X,_) where N=<1 => X // f(N,X,F) => F(N-1,X*N,F). UNINITIALIZED_WASM_EXEC_TEST(ReturnCall_IndirectFactorial) { EXPERIMENTAL_FLAG_SCOPE(return_call); // Run in bounded amount of stack - 8kb. FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8); IsolateScope isolate_scope; LocalContext current(isolate_scope.isolate()); WasmRunner<uint32_t, uint32_t> r(execution_tier, nullptr, "main", kRuntimeExceptionSupport, kMemory32, isolate_scope.i_isolate()); TestSignatures sigs; WasmFunctionCompiler& f_ind_fn = r.NewFunction(sigs.i_iii(), "f_ind"); uint32_t sig_index = r.builder().AddSignature(sigs.i_iii()); f_ind_fn.SetSigIndex(sig_index); // Function table. uint16_t indirect_function_table[] = { static_cast<uint16_t>(f_ind_fn.function_index())}; const int f_ind_index = 0; r.builder().AddIndirectFunctionTable(indirect_function_table, arraysize(indirect_function_table)); BUILD(r, WASM_RETURN_CALL_FUNCTION(f_ind_fn.function_index(), WASM_LOCAL_GET(0), WASM_I32V(1), WASM_I32V(f_ind_index))); BUILD(f_ind_fn, WASM_IF_ELSE_I( WASM_I32_LES(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_LOCAL_GET(1), WASM_RETURN_CALL_INDIRECT( sig_index, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_I32_MUL(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_LOCAL_GET(2), WASM_LOCAL_GET(2)))); uint32_t test_values[] = {1, 2, 5, 10, 10000}; for (uint32_t v : test_values) { CHECK_EQ(factorial(v), r.Call(v)); } } // This is 'more stable' (does not degenerate so quickly) than factorial // sum(N,k) where N<1 =>k. // sum(N,k) => sum(N-1,k+N). UNINITIALIZED_WASM_EXEC_TEST(ReturnCall_Sum) { EXPERIMENTAL_FLAG_SCOPE(return_call); // Run in bounded amount of stack - 8kb. FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8); IsolateScope isolate_scope; LocalContext current(isolate_scope.isolate()); WasmRunner<int32_t, int32_t> r(execution_tier, nullptr, "main", kRuntimeExceptionSupport, kMemory32, isolate_scope.i_isolate()); TestSignatures sigs; WasmFunctionCompiler& sum_aux_fn = r.NewFunction(sigs.i_ii(), "sum_aux"); BUILD(r, WASM_RETURN_CALL_FUNCTION(sum_aux_fn.function_index(), WASM_LOCAL_GET(0), WASM_I32V(0))); BUILD(sum_aux_fn, WASM_IF_ELSE_I( WASM_I32_LTS(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_LOCAL_GET(1), WASM_RETURN_CALL_FUNCTION( sum_aux_fn.function_index(), WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))))); int32_t test_values[] = {1, 2, 5, 10, 1000}; for (int32_t v : test_values) { CHECK_EQ(sum_1_to_n(v), r.Call(v)); } } // 'Bouncing' mutual recursive sum with different #s of arguments // b1(N,k) where N<1 =>k. // b1(N,k) => b2(N-1,N,k+N). // b2(N,_,k) where N<1 =>k. // b2(N,l,k) => b3(N-1,N,l,k+N). // b3(N,_,_,k) where N<1 =>k. // b3(N,_,_,k) => b1(N-1,k+N). UNINITIALIZED_WASM_EXEC_TEST(ReturnCall_Bounce_Sum) { EXPERIMENTAL_FLAG_SCOPE(return_call); // Run in bounded amount of stack - 8kb. FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8); IsolateScope isolate_scope; LocalContext current(isolate_scope.isolate()); WasmRunner<int32_t, int32_t> r(execution_tier, nullptr, "main", kRuntimeExceptionSupport, kMemory32, isolate_scope.i_isolate()); TestSignatures sigs; WasmFunctionCompiler& b1_fn = r.NewFunction(sigs.i_ii(), "b1"); WasmFunctionCompiler& b2_fn = r.NewFunction(sigs.i_iii(), "b2"); WasmFunctionCompiler& b3_fn = r.NewFunction<int32_t, int32_t, int32_t, int32_t, int32_t>("b3"); BUILD(r, WASM_RETURN_CALL_FUNCTION(b1_fn.function_index(), WASM_LOCAL_GET(0), WASM_I32V(0))); BUILD( b1_fn, WASM_IF_ELSE_I( WASM_I32_LTS(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_LOCAL_GET(1), WASM_RETURN_CALL_FUNCTION( b2_fn.function_index(), WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_LOCAL_GET(0), WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))))); BUILD(b2_fn, WASM_IF_ELSE_I( WASM_I32_LTS(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_LOCAL_GET(2), WASM_RETURN_CALL_FUNCTION( b3_fn.function_index(), WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(2))))); BUILD(b3_fn, WASM_IF_ELSE_I( WASM_I32_LTS(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_LOCAL_GET(3), WASM_RETURN_CALL_FUNCTION( b1_fn.function_index(), WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V(1)), WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(3))))); int32_t test_values[] = {1, 2, 5, 10, 1000}; for (int32_t v : test_values) { CHECK_EQ(sum_1_to_n(v), r.Call(v)); } } static void Run_WasmMixedCall_N(TestExecutionTier execution_tier, int start) { const int kExpected = 6333; const int kElemSize = 8; TestSignatures sigs; // 64-bit cases handled in test-run-wasm-64.cc. static MachineType mixed[] = { MachineType::Int32(), MachineType::Float32(), MachineType::Float64(), MachineType::Float32(), MachineType::Int32(), MachineType::Float64(), MachineType::Float32(), MachineType::Float64(), MachineType::Int32(), MachineType::Int32(), MachineType::Int32()}; int num_params = static_cast<int>(arraysize(mixed)) - start; for (int which = 0; which < num_params; ++which) { v8::internal::AccountingAllocator allocator; Zone zone(&allocator, ZONE_NAME); WasmRunner<int32_t> r(execution_tier); r.builder().AddMemory(kWasmPageSize); MachineType* memtypes = &mixed[start]; MachineType result = memtypes[which]; // ========================================================================= // Build the selector function. // ========================================================================= FunctionSig::Builder b(&zone, 1, num_params); b.AddReturn(ValueType::For(result)); for (int i = 0; i < num_params; ++i) { b.AddParam(ValueType::For(memtypes[i])); } WasmFunctionCompiler& f = r.NewFunction(b.Build()); BUILD(f, WASM_LOCAL_GET(which)); // ========================================================================= // Build the calling function. // ========================================================================= std::vector<byte> code; // Load the arguments. for (int i = 0; i < num_params; ++i) { int offset = (i + 1) * kElemSize; ADD_CODE(code, WASM_LOAD_MEM(memtypes[i], WASM_I32V_2(offset))); } // Call the selector function. ADD_CODE(code, WASM_CALL_FUNCTION0(f.function_index())); // Store the result in a local. byte local_index = r.AllocateLocal(ValueType::For(result)); ADD_CODE(code, kExprLocalSet, local_index); // Store the result in memory. ADD_CODE(code, WASM_STORE_MEM(result, WASM_ZERO, WASM_LOCAL_GET(local_index))); // Return the expected value. ADD_CODE(code, WASM_I32V_2(kExpected)); r.Build(&code[0], &code[0] + code.size()); // Run the code. for (int t = 0; t < 10; ++t) { r.builder().RandomizeMemory(); CHECK_EQ(kExpected, r.Call()); int size = result.MemSize(); for (int i = 0; i < size; ++i) { int base = (which + 1) * kElemSize; byte expected = r.builder().raw_mem_at<byte>(base + i); byte actual = r.builder().raw_mem_at<byte>(i); CHECK_EQ(expected, actual); } } } } WASM_EXEC_TEST(MixedCall_0) { Run_WasmMixedCall_N(execution_tier, 0); } WASM_EXEC_TEST(MixedCall_1) { Run_WasmMixedCall_N(execution_tier, 1); } WASM_EXEC_TEST(MixedCall_2) { Run_WasmMixedCall_N(execution_tier, 2); } WASM_EXEC_TEST(MixedCall_3) { Run_WasmMixedCall_N(execution_tier, 3); } WASM_EXEC_TEST(AddCall) { WasmRunner<int32_t, int32_t> r(execution_tier); WasmFunctionCompiler& t1 = r.NewFunction<int32_t, int32_t, int32_t>(); BUILD(t1, WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); byte local = r.AllocateLocal(kWasmI32); BUILD(r, WASM_LOCAL_SET(local, WASM_I32V_2(99)), WASM_I32_ADD( WASM_CALL_FUNCTION(t1.function_index(), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0)), WASM_CALL_FUNCTION(t1.function_index(), WASM_LOCAL_GET(local), WASM_LOCAL_GET(local)))); CHECK_EQ(198, r.Call(0)); CHECK_EQ(200, r.Call(1)); CHECK_EQ(100, r.Call(-49)); } WASM_EXEC_TEST(MultiReturnSub) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); ValueType storage[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32}; FunctionSig sig_ii_ii(2, 2, storage); WasmFunctionCompiler& t1 = r.NewFunction(&sig_ii_ii); BUILD(t1, WASM_LOCAL_GET(1), WASM_LOCAL_GET(0)); BUILD(r, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_CALL_FUNCTION0(t1.function_index()), kExprI32Sub); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(j) - static_cast<uint32_t>(i)); CHECK_EQ(expected, r.Call(i, j)); } } } template <typename T> void RunMultiReturnSelect(TestExecutionTier execution_tier, const T* inputs) { ValueType type = ValueType::For(MachineTypeForC<T>()); ValueType storage[] = {type, type, type, type, type, type}; const size_t kNumReturns = 2; const size_t kNumParams = arraysize(storage) - kNumReturns; FunctionSig sig(kNumReturns, kNumParams, storage); for (size_t i = 0; i < kNumParams; i++) { for (size_t j = 0; j < kNumParams; j++) { for (int k = 0; k < 2; k++) { WasmRunner<T, T, T, T, T> r(execution_tier); WasmFunctionCompiler& r1 = r.NewFunction(&sig); BUILD(r1, WASM_LOCAL_GET(i), WASM_LOCAL_GET(j)); if (k == 0) { BUILD(r, WASM_CALL_FUNCTION(r1.function_index(), WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOCAL_GET(2), WASM_LOCAL_GET(3)), WASM_DROP); } else { BUILD(r, WASM_CALL_FUNCTION(r1.function_index(), WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOCAL_GET(2), WASM_LOCAL_GET(3)), kExprLocalSet, 0, WASM_DROP, WASM_LOCAL_GET(0)); } T expected = inputs[k == 0 ? i : j]; CHECK_EQ(expected, r.Call(inputs[0], inputs[1], inputs[2], inputs[3])); } } } } WASM_EXEC_TEST(MultiReturnSelect_i32) { static const int32_t inputs[] = {3333333, 4444444, -55555555, -7777777}; RunMultiReturnSelect<int32_t>(execution_tier, inputs); } WASM_EXEC_TEST(MultiReturnSelect_f32) { static const float inputs[] = {33.33333f, 444.4444f, -55555.555f, -77777.77f}; RunMultiReturnSelect<float>(execution_tier, inputs); } WASM_EXEC_TEST(MultiReturnSelect_i64) { #if !V8_TARGET_ARCH_32_BIT || V8_TARGET_ARCH_X64 // TODO(titzer): implement int64-lowering for multiple return values static const int64_t inputs[] = {33333338888, 44444446666, -555555553333, -77777771111}; RunMultiReturnSelect<int64_t>(execution_tier, inputs); #endif } WASM_EXEC_TEST(MultiReturnSelect_f64) { static const double inputs[] = {3.333333, 44444.44, -55.555555, -7777.777}; RunMultiReturnSelect<double>(execution_tier, inputs); } WASM_EXEC_TEST(ExprBlock2a) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_IF(WASM_LOCAL_GET(0), WASM_BRV(1, WASM_I32V_1(1))), WASM_I32V_1(1))); CHECK_EQ(1, r.Call(0)); CHECK_EQ(1, r.Call(1)); } WASM_EXEC_TEST(ExprBlock2b) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_IF(WASM_LOCAL_GET(0), WASM_BRV(1, WASM_I32V_1(1))), WASM_I32V_1(2))); CHECK_EQ(2, r.Call(0)); CHECK_EQ(1, r.Call(1)); } WASM_EXEC_TEST(ExprBlock2c) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_BRV_IFD(0, WASM_I32V_1(1), WASM_LOCAL_GET(0)), WASM_I32V_1(1))); CHECK_EQ(1, r.Call(0)); CHECK_EQ(1, r.Call(1)); } WASM_EXEC_TEST(ExprBlock2d) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_BRV_IFD(0, WASM_I32V_1(1), WASM_LOCAL_GET(0)), WASM_I32V_1(2))); CHECK_EQ(2, r.Call(0)); CHECK_EQ(1, r.Call(1)); } WASM_EXEC_TEST(ExprBlock_ManualSwitch) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(1)), WASM_BRV(1, WASM_I32V_1(11))), WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(2)), WASM_BRV(1, WASM_I32V_1(12))), WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(3)), WASM_BRV(1, WASM_I32V_1(13))), WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(4)), WASM_BRV(1, WASM_I32V_1(14))), WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(5)), WASM_BRV(1, WASM_I32V_1(15))), WASM_I32V_2(99))); CHECK_EQ(99, r.Call(0)); CHECK_EQ(11, r.Call(1)); CHECK_EQ(12, r.Call(2)); CHECK_EQ(13, r.Call(3)); CHECK_EQ(14, r.Call(4)); CHECK_EQ(15, r.Call(5)); CHECK_EQ(99, r.Call(6)); } WASM_EXEC_TEST(ExprBlock_ManualSwitch_brif) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I( WASM_BRV_IFD(0, WASM_I32V_1(11), WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(1))), WASM_BRV_IFD(0, WASM_I32V_1(12), WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(2))), WASM_BRV_IFD(0, WASM_I32V_1(13), WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(3))), WASM_BRV_IFD(0, WASM_I32V_1(14), WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(4))), WASM_BRV_IFD(0, WASM_I32V_1(15), WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(5))), WASM_I32V_2(99))); CHECK_EQ(99, r.Call(0)); CHECK_EQ(11, r.Call(1)); CHECK_EQ(12, r.Call(2)); CHECK_EQ(13, r.Call(3)); CHECK_EQ(14, r.Call(4)); CHECK_EQ(15, r.Call(5)); CHECK_EQ(99, r.Call(6)); } WASM_EXEC_TEST(If_nested) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); BUILD( r, WASM_IF_ELSE_I( WASM_LOCAL_GET(0), WASM_IF_ELSE_I(WASM_LOCAL_GET(1), WASM_I32V_1(11), WASM_I32V_1(12)), WASM_IF_ELSE_I(WASM_LOCAL_GET(1), WASM_I32V_1(13), WASM_I32V_1(14)))); CHECK_EQ(11, r.Call(1, 1)); CHECK_EQ(12, r.Call(1, 0)); CHECK_EQ(13, r.Call(0, 1)); CHECK_EQ(14, r.Call(0, 0)); } WASM_EXEC_TEST(ExprBlock_if) { WasmRunner<int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_BRV(0, WASM_I32V_1(11)), WASM_BRV(1, WASM_I32V_1(14))))); CHECK_EQ(11, r.Call(1)); CHECK_EQ(14, r.Call(0)); } WASM_EXEC_TEST(ExprBlock_nested_ifs) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I(WASM_IF_ELSE_I( WASM_LOCAL_GET(0), WASM_IF_ELSE_I(WASM_LOCAL_GET(1), WASM_BRV(0, WASM_I32V_1(11)), WASM_BRV(1, WASM_I32V_1(12))), WASM_IF_ELSE_I(WASM_LOCAL_GET(1), WASM_BRV(0, WASM_I32V_1(13)), WASM_BRV(1, WASM_I32V_1(14)))))); CHECK_EQ(11, r.Call(1, 1)); CHECK_EQ(12, r.Call(1, 0)); CHECK_EQ(13, r.Call(0, 1)); CHECK_EQ(14, r.Call(0, 0)); } WASM_EXEC_TEST(SimpleCallIndirect) { TestSignatures sigs; WasmRunner<int32_t, int32_t> r(execution_tier); WasmFunctionCompiler& t1 = r.NewFunction(sigs.i_ii()); BUILD(t1, WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); t1.SetSigIndex(1); WasmFunctionCompiler& t2 = r.NewFunction(sigs.i_ii()); BUILD(t2, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); t2.SetSigIndex(1); // Signature table. r.builder().AddSignature(sigs.f_ff()); r.builder().AddSignature(sigs.i_ii()); r.builder().AddSignature(sigs.d_dd()); // Function table. uint16_t indirect_function_table[] = { static_cast<uint16_t>(t1.function_index()), static_cast<uint16_t>(t2.function_index())}; r.builder().AddIndirectFunctionTable(indirect_function_table, arraysize(indirect_function_table)); // Build the caller function. BUILD(r, WASM_CALL_INDIRECT(1, WASM_I32V_2(66), WASM_I32V_1(22), WASM_LOCAL_GET(0))); CHECK_EQ(88, r.Call(0)); CHECK_EQ(44, r.Call(1)); CHECK_TRAP(r.Call(2)); } WASM_EXEC_TEST(MultipleCallIndirect) { TestSignatures sigs; WasmRunner<int32_t, int32_t, int32_t, int32_t> r(execution_tier); WasmFunctionCompiler& t1 = r.NewFunction(sigs.i_ii()); BUILD(t1, WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); t1.SetSigIndex(1); WasmFunctionCompiler& t2 = r.NewFunction(sigs.i_ii()); BUILD(t2, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); t2.SetSigIndex(1); // Signature table. r.builder().AddSignature(sigs.f_ff()); r.builder().AddSignature(sigs.i_ii()); r.builder().AddSignature(sigs.d_dd()); // Function table. uint16_t indirect_function_table[] = { static_cast<uint16_t>(t1.function_index()), static_cast<uint16_t>(t2.function_index())}; r.builder().AddIndirectFunctionTable(indirect_function_table, arraysize(indirect_function_table)); // Build the caller function. BUILD(r, WASM_I32_ADD(WASM_CALL_INDIRECT(1, WASM_LOCAL_GET(1), WASM_LOCAL_GET(2), WASM_LOCAL_GET(0)), WASM_CALL_INDIRECT(1, WASM_LOCAL_GET(2), WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)))); CHECK_EQ(5, r.Call(0, 1, 2)); CHECK_EQ(19, r.Call(0, 1, 9)); CHECK_EQ(1, r.Call(1, 0, 2)); CHECK_EQ(1, r.Call(1, 0, 9)); CHECK_TRAP(r.Call(0, 2, 1)); CHECK_TRAP(r.Call(1, 2, 0)); CHECK_TRAP(r.Call(2, 0, 1)); CHECK_TRAP(r.Call(2, 1, 0)); } WASM_EXEC_TEST(CallIndirect_EmptyTable) { TestSignatures sigs; WasmRunner<int32_t, int32_t> r(execution_tier); // One function. WasmFunctionCompiler& t1 = r.NewFunction(sigs.i_ii()); BUILD(t1, WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); t1.SetSigIndex(1); // Signature table. r.builder().AddSignature(sigs.f_ff()); r.builder().AddSignature(sigs.i_ii()); r.builder().AddIndirectFunctionTable(nullptr, 0); // Build the caller function. BUILD(r, WASM_CALL_INDIRECT(1, WASM_I32V_2(66), WASM_I32V_1(22), WASM_LOCAL_GET(0))); CHECK_TRAP(r.Call(0)); CHECK_TRAP(r.Call(1)); CHECK_TRAP(r.Call(2)); } WASM_EXEC_TEST(CallIndirect_canonical) { TestSignatures sigs; WasmRunner<int32_t, int32_t> r(execution_tier); WasmFunctionCompiler& t1 = r.NewFunction(sigs.i_ii()); BUILD(t1, WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); t1.SetSigIndex(0); WasmFunctionCompiler& t2 = r.NewFunction(sigs.i_ii()); BUILD(t2, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); t2.SetSigIndex(1); WasmFunctionCompiler& t3 = r.NewFunction(sigs.f_ff()); BUILD(t3, WASM_F32_SUB(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); t3.SetSigIndex(2); // Signature table. r.builder().AddSignature(sigs.i_ii()); r.builder().AddSignature(sigs.i_ii()); r.builder().AddSignature(sigs.f_ff()); // Function table. uint16_t i1 = static_cast<uint16_t>(t1.function_index()); uint16_t i2 = static_cast<uint16_t>(t2.function_index()); uint16_t i3 = static_cast<uint16_t>(t3.function_index()); uint16_t indirect_function_table[] = {i1, i2, i3, i1, i2}; r.builder().AddIndirectFunctionTable(indirect_function_table, arraysize(indirect_function_table)); // Build the caller function. BUILD(r, WASM_CALL_INDIRECT(1, WASM_I32V_2(77), WASM_I32V_1(11), WASM_LOCAL_GET(0))); CHECK_EQ(88, r.Call(0)); CHECK_EQ(66, r.Call(1)); CHECK_TRAP(r.Call(2)); CHECK_EQ(88, r.Call(3)); CHECK_EQ(66, r.Call(4)); CHECK_TRAP(r.Call(5)); } WASM_EXEC_TEST(Regress_PushReturns) { ValueType kSigTypes[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32}; FunctionSig sig(12, 0, kSigTypes); WasmRunner<int32_t> r(execution_tier); WasmFunctionCompiler& f1 = r.NewFunction(&sig); BUILD(f1, WASM_I32V(1), WASM_I32V(2), WASM_I32V(3), WASM_I32V(4), WASM_I32V(5), WASM_I32V(6), WASM_I32V(7), WASM_I32V(8), WASM_I32V(9), WASM_I32V(10), WASM_I32V(11), WASM_I32V(12)); BUILD(r, WASM_CALL_FUNCTION0(f1.function_index()), WASM_DROP, WASM_DROP, WASM_DROP, WASM_DROP, WASM_DROP, WASM_DROP, WASM_DROP, WASM_DROP, WASM_DROP, WASM_DROP, WASM_DROP); CHECK_EQ(1, r.Call()); } WASM_EXEC_TEST(Regress_EnsureArguments) { ValueType kSigTypes[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32}; FunctionSig sig(0, 12, kSigTypes); WasmRunner<int32_t> r(execution_tier); WasmFunctionCompiler& f2 = r.NewFunction(&sig); BUILD(f2, kExprReturn); BUILD(r, WASM_I32V(42), kExprReturn, WASM_CALL_FUNCTION(f2.function_index(), WASM_I32V(1))); CHECK_EQ(42, r.Call()); } WASM_EXEC_TEST(Regress_PushControl) { WasmRunner<int32_t> r(execution_tier); BUILD(r, WASM_I32V(42), WASM_IF(WASM_I32V(0), WASM_UNREACHABLE, kExprIf, kVoidCode, kExprEnd)); CHECK_EQ(42, r.Call()); } WASM_EXEC_TEST(F32Floor) { WasmRunner<float, float> r(execution_tier); BUILD(r, WASM_F32_FLOOR(WASM_LOCAL_GET(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(floorf(i), r.Call(i)); } } WASM_EXEC_TEST(F32Ceil) { WasmRunner<float, float> r(execution_tier); BUILD(r, WASM_F32_CEIL(WASM_LOCAL_GET(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(ceilf(i), r.Call(i)); } } WASM_EXEC_TEST(F32Trunc) { WasmRunner<float, float> r(execution_tier); BUILD(r, WASM_F32_TRUNC(WASM_LOCAL_GET(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(truncf(i), r.Call(i)); } } WASM_EXEC_TEST(F32NearestInt) { WasmRunner<float, float> r(execution_tier); BUILD(r, WASM_F32_NEARESTINT(WASM_LOCAL_GET(0))); FOR_FLOAT32_INPUTS(i) { float value = nearbyintf(i); #if V8_OS_AIX value = FpOpWorkaround<float>(i, value); #endif CHECK_FLOAT_EQ(value, r.Call(i)); } } WASM_EXEC_TEST(F64Floor) { WasmRunner<double, double> r(execution_tier); BUILD(r, WASM_F64_FLOOR(WASM_LOCAL_GET(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(floor(i), r.Call(i)); } } WASM_EXEC_TEST(F64Ceil) { WasmRunner<double, double> r(execution_tier); BUILD(r, WASM_F64_CEIL(WASM_LOCAL_GET(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(ceil(i), r.Call(i)); } } WASM_EXEC_TEST(F64Trunc) { WasmRunner<double, double> r(execution_tier); BUILD(r, WASM_F64_TRUNC(WASM_LOCAL_GET(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(trunc(i), r.Call(i)); } } WASM_EXEC_TEST(F64NearestInt) { WasmRunner<double, double> r(execution_tier); BUILD(r, WASM_F64_NEARESTINT(WASM_LOCAL_GET(0))); FOR_FLOAT64_INPUTS(i) { double value = nearbyint(i); #if V8_OS_AIX value = FpOpWorkaround<double>(i, value); #endif CHECK_DOUBLE_EQ(value, r.Call(i)); } } WASM_EXEC_TEST(F32Min) { WasmRunner<float, float, float> r(execution_tier); BUILD(r, WASM_F32_MIN(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_DOUBLE_EQ(JSMin(i, j), r.Call(i, j)); } } } WASM_EXEC_TEST(F32MinSameValue) { WasmRunner<float, float> r(execution_tier); BUILD(r, WASM_F32_MIN(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))); float result = r.Call(5.0f); CHECK_FLOAT_EQ(5.0f, result); } WASM_EXEC_TEST(F64Min) { WasmRunner<double, double, double> r(execution_tier); BUILD(r, WASM_F64_MIN(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(JSMin(i, j), r.Call(i, j)); } } } WASM_EXEC_TEST(F64MinSameValue) { WasmRunner<double, double> r(execution_tier); BUILD(r, WASM_F64_MIN(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))); double result = r.Call(5.0); CHECK_DOUBLE_EQ(5.0, result); } WASM_EXEC_TEST(F32Max) { WasmRunner<float, float, float> r(execution_tier); BUILD(r, WASM_F32_MAX(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(JSMax(i, j), r.Call(i, j)); } } } WASM_EXEC_TEST(F32MaxSameValue) { WasmRunner<float, float> r(execution_tier); BUILD(r, WASM_F32_MAX(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))); float result = r.Call(5.0f); CHECK_FLOAT_EQ(5.0f, result); } WASM_EXEC_TEST(F64Max) { WasmRunner<double, double, double> r(execution_tier); BUILD(r, WASM_F64_MAX(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { double result = r.Call(i, j); CHECK_DOUBLE_EQ(JSMax(i, j), result); } } } WASM_EXEC_TEST(F64MaxSameValue) { WasmRunner<double, double> r(execution_tier); BUILD(r, WASM_F64_MAX(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))); double result = r.Call(5.0); CHECK_DOUBLE_EQ(5.0, result); } WASM_EXEC_TEST(I32SConvertF32) { WasmRunner<int32_t, float> r(execution_tier); BUILD(r, WASM_I32_SCONVERT_F32(WASM_LOCAL_GET(0))); FOR_FLOAT32_INPUTS(i) { if (is_inbounds<int32_t>(i)) { CHECK_EQ(static_cast<int32_t>(i), r.Call(i)); } else { CHECK_TRAP32(r.Call(i)); } } } WASM_EXEC_TEST(I32SConvertSatF32) { WasmRunner<int32_t, float> r(execution_tier); BUILD(r, WASM_I32_SCONVERT_SAT_F32(WASM_LOCAL_GET(0))); FOR_FLOAT32_INPUTS(i) { int32_t expected = is_inbounds<int32_t>(i) ? static_cast<int32_t>(i) : std::isnan(i) ? 0 : i < 0.0 ? std::numeric_limits<int32_t>::min() : std::numeric_limits<int32_t>::max(); int32_t found = r.Call(i); CHECK_EQ(expected, found); } } WASM_EXEC_TEST(I32SConvertF64) { WasmRunner<int32_t, double> r(execution_tier); BUILD(r, WASM_I32_SCONVERT_F64(WASM_LOCAL_GET(0))); FOR_FLOAT64_INPUTS(i) { if (is_inbounds<int32_t>(i)) { CHECK_EQ(static_cast<int32_t>(i), r.Call(i)); } else { CHECK_TRAP32(r.Call(i)); } } } WASM_EXEC_TEST(I32SConvertSatF64) { WasmRunner<int32_t, double> r(execution_tier); BUILD(r, WASM_I32_SCONVERT_SAT_F64(WASM_LOCAL_GET(0))); FOR_FLOAT64_INPUTS(i) { int32_t expected = is_inbounds<int32_t>(i) ? static_cast<int32_t>(i) : std::isnan(i) ? 0 : i < 0.0 ? std::numeric_limits<int32_t>::min() : std::numeric_limits<int32_t>::max(); int32_t found = r.Call(i); CHECK_EQ(expected, found); } } WASM_EXEC_TEST(I32UConvertF32) { WasmRunner<uint32_t, float> r(execution_tier); BUILD(r, WASM_I32_UCONVERT_F32(WASM_LOCAL_GET(0))); FOR_FLOAT32_INPUTS(i) { if (is_inbounds<uint32_t>(i)) { CHECK_EQ(static_cast<uint32_t>(i), r.Call(i)); } else { CHECK_TRAP32(r.Call(i)); } } } WASM_EXEC_TEST(I32UConvertSatF32) { WasmRunner<uint32_t, float> r(execution_tier); BUILD(r, WASM_I32_UCONVERT_SAT_F32(WASM_LOCAL_GET(0))); FOR_FLOAT32_INPUTS(i) { int32_t expected = is_inbounds<uint32_t>(i) ? static_cast<uint32_t>(i) : std::isnan(i) ? 0 : i < 0.0 ? std::numeric_limits<uint32_t>::min() : std::numeric_limits<uint32_t>::max(); int32_t found = r.Call(i); CHECK_EQ(expected, found); } } WASM_EXEC_TEST(I32UConvertF64) { WasmRunner<uint32_t, double> r(execution_tier); BUILD(r, WASM_I32_UCONVERT_F64(WASM_LOCAL_GET(0))); FOR_FLOAT64_INPUTS(i) { if (is_inbounds<uint32_t>(i)) { CHECK_EQ(static_cast<uint32_t>(i), r.Call(i)); } else { CHECK_TRAP32(r.Call(i)); } } } WASM_EXEC_TEST(I32UConvertSatF64) { WasmRunner<uint32_t, double> r(execution_tier); BUILD(r, WASM_I32_UCONVERT_SAT_F64(WASM_LOCAL_GET(0))); FOR_FLOAT64_INPUTS(i) { int32_t expected = is_inbounds<uint32_t>(i) ? static_cast<uint32_t>(i) : std::isnan(i) ? 0 : i < 0.0 ? std::numeric_limits<uint32_t>::min() : std::numeric_limits<uint32_t>::max(); int32_t found = r.Call(i); CHECK_EQ(expected, found); } } WASM_EXEC_TEST(F64CopySign) { WasmRunner<double, double, double> r(execution_tier); BUILD(r, WASM_F64_COPYSIGN(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(copysign(i, j), r.Call(i, j)); } } } WASM_EXEC_TEST(F32CopySign) { WasmRunner<float, float, float> r(execution_tier); BUILD(r, WASM_F32_COPYSIGN(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(copysignf(i, j), r.Call(i, j)); } } } static void CompileCallIndirectMany(TestExecutionTier tier, ValueType param) { // Make sure we don't run out of registers when compiling indirect calls // with many many parameters. TestSignatures sigs; for (byte num_params = 0; num_params < 40; ++num_params) { WasmRunner<void> r(tier); FunctionSig* sig = sigs.many(r.zone(), kWasmVoid, param, num_params); r.builder().AddSignature(sig); r.builder().AddSignature(sig); r.builder().AddIndirectFunctionTable(nullptr, 0); WasmFunctionCompiler& t = r.NewFunction(sig); std::vector<byte> code; for (byte p = 0; p < num_params; ++p) { ADD_CODE(code, kExprLocalGet, p); } ADD_CODE(code, kExprI32Const, 0); ADD_CODE(code, kExprCallIndirect, 1, TABLE_ZERO); t.Build(&code[0], &code[0] + code.size()); } } WASM_COMPILED_EXEC_TEST(Compile_Wasm_CallIndirect_Many_i32) { CompileCallIndirectMany(execution_tier, kWasmI32); } WASM_COMPILED_EXEC_TEST(Compile_Wasm_CallIndirect_Many_f32) { CompileCallIndirectMany(execution_tier, kWasmF32); } WASM_COMPILED_EXEC_TEST(Compile_Wasm_CallIndirect_Many_f64) { CompileCallIndirectMany(execution_tier, kWasmF64); } WASM_EXEC_TEST(Int32RemS_dead) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); BUILD(r, WASM_I32_REMS(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_DROP, WASM_ZERO); const int32_t kMin = std::numeric_limits<int32_t>::min(); CHECK_EQ(0, r.Call(133, 100)); CHECK_EQ(0, r.Call(kMin, -1)); CHECK_EQ(0, r.Call(0, 1)); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(kMin, 0)); } WASM_EXEC_TEST(BrToLoopWithValue) { WasmRunner<int32_t, int32_t, int32_t> r(execution_tier); // Subtracts <1> times 3 from <0> and returns the result. BUILD(r, // loop i32 kExprLoop, kI32Code, // decrement <0> by 3. WASM_LOCAL_SET(0, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V_1(3))), // decrement <1> by 1. WASM_LOCAL_SET(1, WASM_I32_SUB(WASM_LOCAL_GET(1), WASM_ONE)), // load return value <0>, br_if will drop if if the branch is taken. WASM_LOCAL_GET(0), // continue loop if <1> is != 0. WASM_BR_IF(0, WASM_LOCAL_GET(1)), // end of loop, value loaded above is the return value. kExprEnd); CHECK_EQ(12, r.Call(27, 5)); } WASM_EXEC_TEST(BrToLoopWithoutValue) { // This was broken in the interpreter, see http://crbug.com/715454 WasmRunner<int32_t, int32_t> r(execution_tier); BUILD( r, kExprLoop, kI32Code, // loop i32 WASM_LOCAL_SET(0, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_ONE)), // dec <0> WASM_BR_IF(0, WASM_LOCAL_GET(0)), // br_if <0> != 0 kExprUnreachable, // unreachable kExprEnd); // end CHECK_TRAP32(r.Call(2)); } WASM_EXEC_TEST(LoopsWithValues) { WasmRunner<int32_t> r(execution_tier); BUILD(r, WASM_LOOP_I(WASM_LOOP_I(WASM_ONE), WASM_ONE, kExprI32Add)); CHECK_EQ(2, r.Call()); } WASM_EXEC_TEST(InvalidStackAfterUnreachable) { WasmRunner<int32_t> r(execution_tier); BUILD(r, kExprUnreachable, kExprI32Add); CHECK_TRAP32(r.Call()); } WASM_EXEC_TEST(InvalidStackAfterBr) { WasmRunner<int32_t> r(execution_tier); BUILD(r, WASM_BRV(0, WASM_I32V_1(27)), kExprI32Add); CHECK_EQ(27, r.Call()); } WASM_EXEC_TEST(InvalidStackAfterReturn) { WasmRunner<int32_t> r(execution_tier); BUILD(r, WASM_RETURN(WASM_I32V_1(17)), kExprI32Add); CHECK_EQ(17, r.Call()); } WASM_EXEC_TEST(BranchOverUnreachableCode) { WasmRunner<int32_t> r(execution_tier); BUILD(r, // Start a block which breaks in the middle (hence unreachable code // afterwards) and continue execution after this block. WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(17)), kExprI32Add), // Add one to the 17 returned from the block. WASM_ONE, kExprI32Add); CHECK_EQ(18, r.Call()); } WASM_EXEC_TEST(BranchOverUnreachableCodeInLoop0) { WasmRunner<int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I( // Start a loop which breaks in the middle (hence unreachable code // afterwards) and continue execution after this loop. // This should validate even though there is no value on the stack // at the end of the loop. WASM_LOOP_I(WASM_BRV(1, WASM_I32V_1(17)))), // Add one to the 17 returned from the block. WASM_ONE, kExprI32Add); CHECK_EQ(18, r.Call()); } WASM_EXEC_TEST(BranchOverUnreachableCodeInLoop1) { WasmRunner<int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I( // Start a loop which breaks in the middle (hence unreachable code // afterwards) and continue execution after this loop. // Even though unreachable, the loop leaves one value on the stack. WASM_LOOP_I(WASM_BRV(1, WASM_I32V_1(17)), WASM_ONE)), // Add one to the 17 returned from the block. WASM_ONE, kExprI32Add); CHECK_EQ(18, r.Call()); } WASM_EXEC_TEST(BranchOverUnreachableCodeInLoop2) { WasmRunner<int32_t> r(execution_tier); BUILD(r, WASM_BLOCK_I( // Start a loop which breaks in the middle (hence unreachable code // afterwards) and continue execution after this loop. // The unreachable code is allowed to pop non-existing values off // the stack and push back the result. WASM_LOOP_I(WASM_BRV(1, WASM_I32V_1(17)), kExprI32Add)), // Add one to the 17 returned from the block. WASM_ONE, kExprI32Add); CHECK_EQ(18, r.Call()); } WASM_EXEC_TEST(BlockInsideUnreachable) { WasmRunner<int32_t> r(execution_tier); BUILD(r, WASM_RETURN(WASM_I32V_1(17)), WASM_BLOCK(WASM_BR(0))); CHECK_EQ(17, r.Call()); } WASM_EXEC_TEST(IfInsideUnreachable) { WasmRunner<int32_t> r(execution_tier); BUILD(r, WASM_RETURN(WASM_I32V_1(17)), WASM_IF_ELSE_I(WASM_ONE, WASM_BRV(0, WASM_ONE), WASM_RETURN(WASM_ONE))); CHECK_EQ(17, r.Call()); } WASM_EXEC_TEST(IndirectNull) { WasmRunner<int32_t> r(execution_tier); FunctionSig sig(1, 0, &kWasmI32); byte sig_index = r.builder().AddSignature(&sig); r.builder().AddIndirectFunctionTable(nullptr, 1); BUILD(r, WASM_CALL_INDIRECT(sig_index, WASM_I32V(0))); CHECK_TRAP(r.Call()); } WASM_EXEC_TEST(IndirectNullTyped) { WasmRunner<int32_t> r(execution_tier); FunctionSig sig(1, 0, &kWasmI32); byte sig_index = r.builder().AddSignature(&sig); r.builder().AddIndirectFunctionTable(nullptr, 1, ValueType::Ref(sig_index, kNullable)); BUILD(r, WASM_CALL_INDIRECT(sig_index, WASM_I32V(0))); CHECK_TRAP(r.Call()); } // This test targets binops in Liftoff. // Initialize a number of local variables to force them into different // registers, then perform a binary operation on two of the locals. // Afterwards, write back all locals to memory, to check that their value was // not overwritten. template <typename ctype> void BinOpOnDifferentRegisters( TestExecutionTier execution_tier, ValueType type, base::Vector<const ctype> inputs, WasmOpcode opcode, std::function<ctype(ctype, ctype, bool*)> expect_fn) { static constexpr int kMaxNumLocals = 8; for (int num_locals = 1; num_locals < kMaxNumLocals; ++num_locals) { // {init_locals_code} is shared by all code generated in the loop below. std::vector<byte> init_locals_code; // Load from memory into the locals. for (int i = 0; i < num_locals; ++i) { ADD_CODE( init_locals_code, WASM_LOCAL_SET(i, WASM_LOAD_MEM(type.machine_type(), WASM_I32V_2(sizeof(ctype) * i)))); } // {write_locals_code} is shared by all code generated in the loop below. std::vector<byte> write_locals_code; // Write locals back into memory, shifted by one element to the right. for (int i = 0; i < num_locals; ++i) { ADD_CODE(write_locals_code, WASM_STORE_MEM(type.machine_type(), WASM_I32V_2(sizeof(ctype) * (i + 1)), WASM_LOCAL_GET(i))); } for (int lhs = 0; lhs < num_locals; ++lhs) { for (int rhs = 0; rhs < num_locals; ++rhs) { WasmRunner<int32_t> r(execution_tier); ctype* memory = r.builder().AddMemoryElems<ctype>(kWasmPageSize / sizeof(ctype)); for (int i = 0; i < num_locals; ++i) { r.AllocateLocal(type); } std::vector<byte> code(init_locals_code); ADD_CODE(code, // Store the result of the binary operation at memory[0]. WASM_STORE_MEM(type.machine_type(), WASM_ZERO, WASM_BINOP(opcode, WASM_LOCAL_GET(lhs), WASM_LOCAL_GET(rhs))), // Return 0. WASM_ZERO); code.insert(code.end(), write_locals_code.begin(), write_locals_code.end()); r.Build(code.data(), code.data() + code.size()); for (ctype lhs_value : inputs) { for (ctype rhs_value : inputs) { if (lhs == rhs) lhs_value = rhs_value; for (int i = 0; i < num_locals; ++i) { ctype value = i == lhs ? lhs_value : i == rhs ? rhs_value : static_cast<ctype>(i + 47); WriteLittleEndianValue<ctype>(&memory[i], value); } bool trap = false; int64_t expect = expect_fn(lhs_value, rhs_value, &trap); if (trap) { CHECK_TRAP(r.Call()); continue; } CHECK_EQ(0, r.Call()); CHECK_EQ(expect, ReadLittleEndianValue<ctype>(&memory[0])); for (int i = 0; i < num_locals; ++i) { ctype value = i == lhs ? lhs_value : i == rhs ? rhs_value : static_cast<ctype>(i + 47); CHECK_EQ(value, ReadLittleEndianValue<ctype>(&memory[i + 1])); } } } } } } } // Keep this list small, the BinOpOnDifferentRegisters test is running long // enough already. static constexpr int32_t kSome32BitInputs[] = { 0, 1, -1, 31, static_cast<int32_t>(0xff112233)}; static constexpr int64_t kSome64BitInputs[] = { 0, 1, -1, 31, 63, 0x100000000, static_cast<int64_t>(0xff11223344556677)}; WASM_EXEC_TEST(I32AddOnDifferentRegisters) { BinOpOnDifferentRegisters<int32_t>( execution_tier, kWasmI32, base::ArrayVector(kSome32BitInputs), kExprI32Add, [](int32_t lhs, int32_t rhs, bool* trap) { return lhs + rhs; }); } WASM_EXEC_TEST(I32SubOnDifferentRegisters) { BinOpOnDifferentRegisters<int32_t>( execution_tier, kWasmI32, base::ArrayVector(kSome32BitInputs), kExprI32Sub, [](int32_t lhs, int32_t rhs, bool* trap) { return lhs - rhs; }); } WASM_EXEC_TEST(I32MulOnDifferentRegisters) { BinOpOnDifferentRegisters<int32_t>( execution_tier, kWasmI32, base::ArrayVector(kSome32BitInputs), kExprI32Mul, [](int32_t lhs, int32_t rhs, bool* trap) { return base::MulWithWraparound(lhs, rhs); }); } WASM_EXEC_TEST(I32ShlOnDifferentRegisters) { BinOpOnDifferentRegisters<int32_t>( execution_tier, kWasmI32, base::ArrayVector(kSome32BitInputs), kExprI32Shl, [](int32_t lhs, int32_t rhs, bool* trap) { return base::ShlWithWraparound(lhs, rhs); }); } WASM_EXEC_TEST(I32ShrSOnDifferentRegisters) { BinOpOnDifferentRegisters<int32_t>( execution_tier, kWasmI32, base::ArrayVector(kSome32BitInputs), kExprI32ShrS, [](int32_t lhs, int32_t rhs, bool* trap) { return lhs >> (rhs & 31); }); } WASM_EXEC_TEST(I32ShrUOnDifferentRegisters) { BinOpOnDifferentRegisters<int32_t>( execution_tier, kWasmI32, base::ArrayVector(kSome32BitInputs), kExprI32ShrU, [](int32_t lhs, int32_t rhs, bool* trap) { return static_cast<uint32_t>(lhs) >> (rhs & 31); }); } WASM_EXEC_TEST(I32DivSOnDifferentRegisters) { BinOpOnDifferentRegisters<int32_t>( execution_tier, kWasmI32, base::ArrayVector(kSome32BitInputs), kExprI32DivS, [](int32_t lhs, int32_t rhs, bool* trap) { *trap = rhs == 0; return *trap ? 0 : lhs / rhs; }); } WASM_EXEC_TEST(I32DivUOnDifferentRegisters) { BinOpOnDifferentRegisters<int32_t>( execution_tier, kWasmI32, base::ArrayVector(kSome32BitInputs), kExprI32DivU, [](uint32_t lhs, uint32_t rhs, bool* trap) { *trap = rhs == 0; return *trap ? 0 : lhs / rhs; }); } WASM_EXEC_TEST(I32RemSOnDifferentRegisters) { BinOpOnDifferentRegisters<int32_t>( execution_tier, kWasmI32, base::ArrayVector(kSome32BitInputs), kExprI32RemS, [](int32_t lhs, int32_t rhs, bool* trap) { *trap = rhs == 0; return *trap || rhs == -1 ? 0 : lhs % rhs; }); } WASM_EXEC_TEST(I32RemUOnDifferentRegisters) { BinOpOnDifferentRegisters<int32_t>( execution_tier, kWasmI32, base::ArrayVector(kSome32BitInputs), kExprI32RemU, [](uint32_t lhs, uint32_t rhs, bool* trap) { *trap = rhs == 0; return *trap ? 0 : lhs % rhs; }); } WASM_EXEC_TEST(I64AddOnDifferentRegisters) { BinOpOnDifferentRegisters<int64_t>( execution_tier, kWasmI64, base::ArrayVector(kSome64BitInputs), kExprI64Add, [](int64_t lhs, int64_t rhs, bool* trap) { return lhs + rhs; }); } WASM_EXEC_TEST(I64SubOnDifferentRegisters) { BinOpOnDifferentRegisters<int64_t>( execution_tier, kWasmI64, base::ArrayVector(kSome64BitInputs), kExprI64Sub, [](int64_t lhs, int64_t rhs, bool* trap) { return lhs - rhs; }); } WASM_EXEC_TEST(I64MulOnDifferentRegisters) { BinOpOnDifferentRegisters<int64_t>( execution_tier, kWasmI64, base::ArrayVector(kSome64BitInputs), kExprI64Mul, [](int64_t lhs, int64_t rhs, bool* trap) { return base::MulWithWraparound(lhs, rhs); }); } WASM_EXEC_TEST(I64ShlOnDifferentRegisters) { BinOpOnDifferentRegisters<int64_t>( execution_tier, kWasmI64, base::ArrayVector(kSome64BitInputs), kExprI64Shl, [](int64_t lhs, int64_t rhs, bool* trap) { return base::ShlWithWraparound(lhs, rhs); }); } WASM_EXEC_TEST(I64ShrSOnDifferentRegisters) { BinOpOnDifferentRegisters<int64_t>( execution_tier, kWasmI64, base::ArrayVector(kSome64BitInputs), kExprI64ShrS, [](int64_t lhs, int64_t rhs, bool* trap) { return lhs >> (rhs & 63); }); } WASM_EXEC_TEST(I64ShrUOnDifferentRegisters) { BinOpOnDifferentRegisters<int64_t>( execution_tier, kWasmI64, base::ArrayVector(kSome64BitInputs), kExprI64ShrU, [](int64_t lhs, int64_t rhs, bool* trap) { return static_cast<uint64_t>(lhs) >> (rhs & 63); }); } WASM_EXEC_TEST(I64DivSOnDifferentRegisters) { BinOpOnDifferentRegisters<int64_t>( execution_tier, kWasmI64, base::ArrayVector(kSome64BitInputs), kExprI64DivS, [](int64_t lhs, int64_t rhs, bool* trap) { *trap = rhs == 0 || (rhs == -1 && lhs == std::numeric_limits<int64_t>::min()); return *trap ? 0 : lhs / rhs; }); } WASM_EXEC_TEST(I64DivUOnDifferentRegisters) { BinOpOnDifferentRegisters<int64_t>( execution_tier, kWasmI64, base::ArrayVector(kSome64BitInputs), kExprI64DivU, [](uint64_t lhs, uint64_t rhs, bool* trap) { *trap = rhs == 0; return *trap ? 0 : lhs / rhs; }); } WASM_EXEC_TEST(I64RemSOnDifferentRegisters) { BinOpOnDifferentRegisters<int64_t>( execution_tier, kWasmI64, base::ArrayVector(kSome64BitInputs), kExprI64RemS, [](int64_t lhs, int64_t rhs, bool* trap) { *trap = rhs == 0; return *trap || rhs == -1 ? 0 : lhs % rhs; }); } WASM_EXEC_TEST(I64RemUOnDifferentRegisters) { BinOpOnDifferentRegisters<int64_t>( execution_tier, kWasmI64, base::ArrayVector(kSome64BitInputs), kExprI64RemU, [](uint64_t lhs, uint64_t rhs, bool* trap) { *trap = rhs == 0; return *trap ? 0 : lhs % rhs; }); } TEST(Liftoff_tier_up) { WasmRunner<int32_t, int32_t, int32_t> r(TestExecutionTier::kLiftoff); WasmFunctionCompiler& add = r.NewFunction<int32_t, int32_t, int32_t>("add"); BUILD(add, WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); WasmFunctionCompiler& sub = r.NewFunction<int32_t, int32_t, int32_t>("sub"); BUILD(sub, WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); // Create the main function, which shall call {add}. BUILD(r, WASM_CALL_FUNCTION(add.function_index(), WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))); NativeModule* native_module = r.builder().instance_object()->module_object().native_module(); // This test only works if we managed to compile with Liftoff. if (!native_module->GetCode(add.function_index())->is_liftoff()) return; // First run should execute {add}. CHECK_EQ(18, r.Call(11, 7)); // Now make a copy of the {sub} function, and add it to the native module at // the index of {add}. CodeDesc desc; memset(&desc, 0, sizeof(CodeDesc)); WasmCode* sub_code = native_module->GetCode(sub.function_index()); size_t sub_size = sub_code->instructions().size(); std::unique_ptr<byte[]> buffer(new byte[sub_code->instructions().size()]); memcpy(buffer.get(), sub_code->instructions().begin(), sub_size); desc.buffer = buffer.get(); desc.instr_size = static_cast<int>(sub_size); { CodeSpaceWriteScope write_scope(native_module); std::unique_ptr<WasmCode> new_code = native_module->AddCode( add.function_index(), desc, 0, 0, {}, {}, WasmCode::kWasmFunction, ExecutionTier::kTurbofan, kNoDebugging); native_module->PublishCode(std::move(new_code)); } // Second run should now execute {sub}. CHECK_EQ(4, r.Call(11, 7)); } TEST(Regression_1085507) { WasmRunner<int32_t> r(TestExecutionTier::kInterpreter); TestSignatures sigs; uint32_t sig_v_i = r.builder().AddSignature(sigs.v_i()); BUILD(r, WASM_I32V_1(0), kExprIf, kVoidCode, WASM_UNREACHABLE, WASM_BLOCK_X(sig_v_i, kExprDrop), kExprElse, kExprEnd, WASM_I32V_1(0)); } TEST(Regression_1185323_1185492) { WasmRunner<int32_t> r(TestExecutionTier::kInterpreter); r.builder().AddIndirectFunctionTable(nullptr, 1); BUILD(r, WASM_I32V_1(0), // Use a long leb128 encoding of kExprTableSize instruction. // This exercises a bug in the interpreter which tries to read the // immediate at pc+2 (it should be pc+4). kNumericPrefix, 0x90, 0x80, 0x00, 0x00, // table.size 0. WASM_UNREACHABLE, kExprTableSet, 0x00); // Hits a DCHECK if reached. r.Call(); } #undef B1 #undef B2 #undef RET #undef RET_I8 } // namespace test_run_wasm } // namespace wasm } // namespace internal } // namespace v8