// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_COMPILER_TYPES_H_ #define V8_COMPILER_TYPES_H_ #include "src/base/compiler-specific.h" #include "src/common/globals.h" #include "src/compiler/heap-refs.h" #include "src/handles/handles.h" #include "src/numbers/conversions.h" #include "src/objects/objects.h" #include "src/utils/ostreams.h" namespace v8 { namespace internal { namespace compiler { // SUMMARY // // A simple type system for compiler-internal use. It is based entirely on // union types, and all subtyping hence amounts to set inclusion. Besides the // obvious primitive types and some predefined unions, the type language also // can express class types (a.k.a. specific maps) and singleton types (i.e., // concrete constants). // // The following equations and inequations hold: // // None <= T // T <= Any // // Number = Signed32 \/ Unsigned32 \/ Double // Smi <= Signed32 // Name = String \/ Symbol // UniqueName = InternalizedString \/ Symbol // InternalizedString < String // // Receiver = Object \/ Proxy // OtherUndetectable < Object // DetectableReceiver = Receiver - OtherUndetectable // // Constant(x) < T iff instance_type(map(x)) < T // // // RANGE TYPES // // A range type represents a continuous integer interval by its minimum and // maximum value. Either value may be an infinity, in which case that infinity // itself is also included in the range. A range never contains NaN or -0. // // If a value v happens to be an integer n, then Constant(v) is considered a // subtype of Range(n, n) (and therefore also a subtype of any larger range). // In order to avoid large unions, however, it is usually a good idea to use // Range rather than Constant. // // // PREDICATES // // There are two main functions for testing types: // // T1.Is(T2) -- tests whether T1 is included in T2 (i.e., T1 <= T2) // T1.Maybe(T2) -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0) // // Typically, the former is to be used to select representations (e.g., via // T.Is(SignedSmall())), and the latter to check whether a specific case needs // handling (e.g., via T.Maybe(Number())). // // There is no functionality to discover whether a type is a leaf in the // lattice. That is intentional. It should always be possible to refine the // lattice (e.g., splitting up number types further) without invalidating any // existing assumptions or tests. // Consequently, do not normally use Equals for type tests, always use Is! // // // PROPERTIES // // Various formal properties hold for constructors, operators, and predicates // over types. For example, constructors are injective and subtyping is a // complete partial order. // // See test/cctest/test-types.cc for a comprehensive executable specification, // especially with respect to the properties of the more exotic 'temporal' // constructors and predicates (those prefixed 'Now'). // // // IMPLEMENTATION // // Internally, all 'primitive' types, and their unions, are represented as // bitsets. Bit 0 is reserved for tagging. Only structured types require // allocation. // ----------------------------------------------------------------------------- // Values for bitset types // clang-format off #define INTERNAL_BITSET_TYPE_LIST(V) \ V(OtherUnsigned31, uint64_t{1} << 1) \ V(OtherUnsigned32, uint64_t{1} << 2) \ V(OtherSigned32, uint64_t{1} << 3) \ V(OtherNumber, uint64_t{1} << 4) \ V(OtherString, uint64_t{1} << 5) \ #define PROPER_ATOMIC_BITSET_TYPE_LOW_LIST(V) \ V(Negative31, uint64_t{1} << 6) \ V(Null, uint64_t{1} << 7) \ V(Undefined, uint64_t{1} << 8) \ V(Boolean, uint64_t{1} << 9) \ V(Unsigned30, uint64_t{1} << 10) \ V(MinusZero, uint64_t{1} << 11) \ V(NaN, uint64_t{1} << 12) \ V(Symbol, uint64_t{1} << 13) \ V(InternalizedString, uint64_t{1} << 14) \ V(OtherCallable, uint64_t{1} << 15) \ V(OtherObject, uint64_t{1} << 16) \ V(OtherUndetectable, uint64_t{1} << 17) \ V(CallableProxy, uint64_t{1} << 18) \ V(OtherProxy, uint64_t{1} << 19) \ V(CallableFunction, uint64_t{1} << 20) \ V(ClassConstructor, uint64_t{1} << 21) \ V(BoundFunction, uint64_t{1} << 22) \ V(Hole, uint64_t{1} << 23) \ V(OtherInternal, uint64_t{1} << 24) \ V(ExternalPointer, uint64_t{1} << 25) \ V(Array, uint64_t{1} << 26) \ V(UnsignedBigInt63, uint64_t{1} << 27) \ V(OtherUnsignedBigInt64, uint64_t{1} << 28) \ V(NegativeBigInt63, uint64_t{1} << 29) \ V(OtherBigInt, uint64_t{1} << 30) \ V(WasmObject, uint64_t{1} << 31) // We split the macro list into two parts because the Torque equivalent in // turbofan-types.tq uses two 32bit bitfield structs. #define PROPER_ATOMIC_BITSET_TYPE_HIGH_LIST(V) \ V(SandboxedPointer, uint64_t{1} << 32) #define PROPER_BITSET_TYPE_LIST(V) \ V(None, uint64_t{0}) \ PROPER_ATOMIC_BITSET_TYPE_LOW_LIST(V) \ PROPER_ATOMIC_BITSET_TYPE_HIGH_LIST(V) \ V(Signed31, kUnsigned30 | kNegative31) \ V(Signed32, kSigned31 | kOtherUnsigned31 | \ kOtherSigned32) \ V(Signed32OrMinusZero, kSigned32 | kMinusZero) \ V(Signed32OrMinusZeroOrNaN, kSigned32 | kMinusZero | kNaN) \ V(Negative32, kNegative31 | kOtherSigned32) \ V(Unsigned31, kUnsigned30 | kOtherUnsigned31) \ V(Unsigned32, kUnsigned30 | kOtherUnsigned31 | \ kOtherUnsigned32) \ V(Unsigned32OrMinusZero, kUnsigned32 | kMinusZero) \ V(Unsigned32OrMinusZeroOrNaN, kUnsigned32 | kMinusZero | kNaN) \ V(Integral32, kSigned32 | kUnsigned32) \ V(Integral32OrMinusZero, kIntegral32 | kMinusZero) \ V(Integral32OrMinusZeroOrNaN, kIntegral32OrMinusZero | kNaN) \ V(PlainNumber, kIntegral32 | kOtherNumber) \ V(OrderedNumber, kPlainNumber | kMinusZero) \ V(MinusZeroOrNaN, kMinusZero | kNaN) \ V(Number, kOrderedNumber | kNaN) \ V(SignedBigInt64, kUnsignedBigInt63 | kNegativeBigInt63) \ V(UnsignedBigInt64, kUnsignedBigInt63 | kOtherUnsignedBigInt64) \ V(BigInt, kSignedBigInt64 | kOtherUnsignedBigInt64 | \ kOtherBigInt) \ V(Numeric, kNumber | kBigInt) \ V(String, kInternalizedString | kOtherString) \ V(UniqueName, kSymbol | kInternalizedString) \ V(Name, kSymbol | kString) \ V(InternalizedStringOrNull, kInternalizedString | kNull) \ V(BooleanOrNumber, kBoolean | kNumber) \ V(BooleanOrNullOrNumber, kBooleanOrNumber | kNull) \ V(BooleanOrNullOrUndefined, kBoolean | kNull | kUndefined) \ V(Oddball, kBooleanOrNullOrUndefined | kHole) \ V(NullOrNumber, kNull | kNumber) \ V(NullOrUndefined, kNull | kUndefined) \ V(Undetectable, kNullOrUndefined | kOtherUndetectable) \ V(NumberOrHole, kNumber | kHole) \ V(NumberOrOddball, kNumber | kNullOrUndefined | kBoolean | \ kHole) \ V(NumericOrString, kNumeric | kString) \ V(NumberOrUndefined, kNumber | kUndefined) \ V(NumberOrUndefinedOrNullOrBoolean, \ kNumber | kNullOrUndefined | kBoolean) \ V(PlainPrimitive, kNumber | kString | kBoolean | \ kNullOrUndefined) \ V(NonBigIntPrimitive, kSymbol | kPlainPrimitive) \ V(Primitive, kBigInt | kNonBigIntPrimitive) \ V(OtherUndetectableOrUndefined, kOtherUndetectable | kUndefined) \ V(Proxy, kCallableProxy | kOtherProxy) \ V(ArrayOrOtherObject, kArray | kOtherObject) \ V(ArrayOrProxy, kArray | kProxy) \ V(Function, kCallableFunction | kClassConstructor) \ V(DetectableCallable, kFunction | kBoundFunction | \ kOtherCallable | kCallableProxy) \ V(Callable, kDetectableCallable | kOtherUndetectable) \ V(NonCallable, kArray | kOtherObject | kOtherProxy) \ V(NonCallableOrNull, kNonCallable | kNull) \ V(DetectableObject, kArray | kFunction | kBoundFunction | \ kOtherCallable | kOtherObject) \ V(DetectableReceiver, kDetectableObject | kProxy) \ V(DetectableReceiverOrNull, kDetectableReceiver | kNull) \ V(Object, kDetectableObject | kOtherUndetectable) \ V(Receiver, kObject | kProxy | kWasmObject) \ V(ReceiverOrUndefined, kReceiver | kUndefined) \ V(ReceiverOrNullOrUndefined, kReceiver | kNull | kUndefined) \ V(SymbolOrReceiver, kSymbol | kReceiver) \ V(StringOrReceiver, kString | kReceiver) \ V(Unique, kBoolean | kUniqueName | kNull | \ kUndefined | kHole | kReceiver) \ V(Internal, kHole | kExternalPointer | \ kSandboxedPointer | kOtherInternal) \ V(NonInternal, kPrimitive | kReceiver) \ V(NonBigInt, kNonBigIntPrimitive | kReceiver) \ V(NonNumber, kBigInt | kUnique | kString | kInternal) \ V(Any, uint64_t{0xfffffffffffffffe}) // clang-format on /* * The following diagrams show how integers (in the mathematical sense) are * divided among the different atomic numerical types. * * ON OS32 N31 U30 OU31 OU32 ON * ______[_______[_______[_______[_______[_______[_______ * -2^31 -2^30 0 2^30 2^31 2^32 * * E.g., OtherUnsigned32 (OU32) covers all integers from 2^31 to 2^32-1. * * Some of the atomic numerical bitsets are internal only (see * INTERNAL_BITSET_TYPE_LIST). To a types user, they should only occur in * union with certain other bitsets. For instance, OtherNumber should only * occur as part of PlainNumber. */ #define BITSET_TYPE_LIST(V) \ INTERNAL_BITSET_TYPE_LIST(V) \ PROPER_BITSET_TYPE_LIST(V) class JSHeapBroker; class HeapConstantType; class OtherNumberConstantType; class TupleType; class Type; class UnionType; // ----------------------------------------------------------------------------- // Bitset types (internal). class V8_EXPORT_PRIVATE BitsetType { public: using bitset = uint64_t; // Internal enum : bitset { #define DECLARE_TYPE(type, value) k##type = (value), BITSET_TYPE_LIST(DECLARE_TYPE) #undef DECLARE_TYPE kUnusedEOL = 0 }; static bitset SignedSmall(); static bitset UnsignedSmall(); static bool IsNone(bitset bits) { return bits == kNone; } static bool Is(bitset bits1, bitset bits2) { return (bits1 | bits2) == bits2; } static double Min(bitset); static double Max(bitset); static bitset Glb(double min, double max); static bitset Lub(HeapObjectType const& type) { return Lub<HeapObjectType>(type); } static bitset Lub(MapRef const& map) { return Lub<MapRef>(map); } static bitset Lub(double value); static bitset Lub(double min, double max); static bitset ExpandInternals(bitset bits); static const char* Name(bitset); static void Print(std::ostream& os, bitset); #ifdef DEBUG static void Print(bitset); #endif static bitset NumberBits(bitset bits); private: struct Boundary { bitset internal; bitset external; double min; }; static const Boundary BoundariesArray[]; static inline const Boundary* Boundaries(); static inline size_t BoundariesSize(); template <typename MapRefLike> static bitset Lub(MapRefLike const& map); }; // ----------------------------------------------------------------------------- // Superclass for non-bitset types (internal). class TypeBase { protected: friend class Type; enum Kind { kHeapConstant, kOtherNumberConstant, kTuple, kUnion, kRange }; Kind kind() const { return kind_; } explicit TypeBase(Kind kind) : kind_(kind) {} static bool IsKind(Type type, Kind kind); private: Kind kind_; }; // ----------------------------------------------------------------------------- // Range types. class RangeType : public TypeBase { public: struct Limits { double min; double max; Limits(double min, double max) : min(min), max(max) {} explicit Limits(const RangeType* range) : min(range->Min()), max(range->Max()) {} bool IsEmpty(); static Limits Empty() { return Limits(1, 0); } static Limits Intersect(Limits lhs, Limits rhs); static Limits Union(Limits lhs, Limits rhs); }; double Min() const { return limits_.min; } double Max() const { return limits_.max; } static bool IsInteger(double x) { return nearbyint(x) == x && !IsMinusZero(x); // Allows for infinities. } private: friend class Type; friend class BitsetType; friend class UnionType; friend Zone; static RangeType* New(double min, double max, Zone* zone) { return New(Limits(min, max), zone); } static RangeType* New(Limits lim, Zone* zone) { DCHECK(IsInteger(lim.min) && IsInteger(lim.max)); DCHECK(lim.min <= lim.max); BitsetType::bitset bits = BitsetType::Lub(lim.min, lim.max); return zone->New<RangeType>(bits, lim); } RangeType(BitsetType::bitset bitset, Limits limits) : TypeBase(kRange), bitset_(bitset), limits_(limits) {} BitsetType::bitset Lub() const { return bitset_; } BitsetType::bitset bitset_; Limits limits_; }; // ----------------------------------------------------------------------------- // The actual type. class V8_EXPORT_PRIVATE Type { public: using bitset = BitsetType::bitset; // Internal // Constructors. #define DEFINE_TYPE_CONSTRUCTOR(type, value) \ static Type type() { return NewBitset(BitsetType::k##type); } PROPER_BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR) #undef DEFINE_TYPE_CONSTRUCTOR Type() : payload_(uint64_t{0}) {} static Type SignedSmall() { return NewBitset(BitsetType::SignedSmall()); } static Type UnsignedSmall() { return NewBitset(BitsetType::UnsignedSmall()); } static Type Constant(JSHeapBroker* broker, Handle<i::Object> value, Zone* zone); static Type Constant(double value, Zone* zone); static Type Range(double min, double max, Zone* zone); static Type Tuple(Type first, Type second, Type third, Zone* zone); static Type Union(Type type1, Type type2, Zone* zone); static Type Intersect(Type type1, Type type2, Zone* zone); static Type For(MapRef const& type) { return NewBitset(BitsetType::ExpandInternals(BitsetType::Lub(type))); } // Predicates. bool IsNone() const { return payload_ == None().payload_; } bool IsInvalid() const { return payload_ == uint64_t{0}; } bool Is(Type that) const { return payload_ == that.payload_ || this->SlowIs(that); } bool Maybe(Type that) const; bool Equals(Type that) const { return this->Is(that) && that.Is(*this); } // Inspection. bool IsBitset() const { return payload_ & uint64_t{1}; } bool IsRange() const { return IsKind(TypeBase::kRange); } bool IsHeapConstant() const { return IsKind(TypeBase::kHeapConstant); } bool IsOtherNumberConstant() const { return IsKind(TypeBase::kOtherNumberConstant); } bool IsTuple() const { return IsKind(TypeBase::kTuple); } bool IsSingleton() const { if (IsNone()) return false; return Is(Type::Null()) || Is(Type::Undefined()) || Is(Type::MinusZero()) || Is(Type::NaN()) || Is(Type::Hole()) || IsHeapConstant() || (Is(Type::PlainNumber()) && Min() == Max()); } bool CanBeAsserted() const { return Is(Type::NonInternal()); } Handle<TurbofanType> AllocateOnHeap(Factory* factory); const HeapConstantType* AsHeapConstant() const; const OtherNumberConstantType* AsOtherNumberConstant() const; const RangeType* AsRange() const; const TupleType* AsTuple() const; // Minimum and maximum of a numeric type. // These functions do not distinguish between -0 and +0. NaN is ignored. // Only call them on subtypes of Number whose intersection with OrderedNumber // is not empty. double Min() const; double Max() const; // Extracts a range from the type: if the type is a range or a union // containing a range, that range is returned; otherwise, nullptr is returned. Type GetRange() const; int NumConstants() const; static Type Invalid() { return Type(); } bool operator==(Type other) const { return payload_ == other.payload_; } bool operator!=(Type other) const { return payload_ != other.payload_; } // Printing. void PrintTo(std::ostream& os) const; #ifdef DEBUG void Print() const; #endif // Helpers for testing. bool IsUnionForTesting() { return IsUnion(); } bitset AsBitsetForTesting() { return AsBitset(); } const UnionType* AsUnionForTesting() { return AsUnion(); } Type BitsetGlbForTesting() { return NewBitset(BitsetGlb()); } Type BitsetLubForTesting() { return NewBitset(BitsetLub()); } private: // Friends. template <class> friend class Iterator; friend BitsetType; friend UnionType; friend size_t hash_value(Type type); explicit Type(bitset bits) : payload_(bits | uint64_t{1}) {} Type(TypeBase* type_base) // NOLINT(runtime/explicit) : payload_(reinterpret_cast<uint64_t>(type_base)) {} // Internal inspection. bool IsKind(TypeBase::Kind kind) const { if (IsBitset()) return false; const TypeBase* base = ToTypeBase(); return base->kind() == kind; } const TypeBase* ToTypeBase() const { return reinterpret_cast<TypeBase*>(payload_); } static Type FromTypeBase(TypeBase* type) { return Type(type); } bool IsAny() const { return payload_ == Any().payload_; } bool IsUnion() const { return IsKind(TypeBase::kUnion); } bitset AsBitset() const { DCHECK(IsBitset()); return static_cast<bitset>(payload_) ^ uint64_t { 1 }; } const UnionType* AsUnion() const; bitset BitsetGlb() const; // greatest lower bound that's a bitset bitset BitsetLub() const; // least upper bound that's a bitset bool SlowIs(Type that) const; static Type NewBitset(bitset bits) { return Type(bits); } static Type Range(RangeType::Limits lims, Zone* zone); static Type OtherNumberConstant(double value, Zone* zone); static Type HeapConstant(const HeapObjectRef& value, Zone* zone); static bool Overlap(const RangeType* lhs, const RangeType* rhs); static bool Contains(const RangeType* lhs, const RangeType* rhs); static int UpdateRange(Type type, UnionType* result, int size, Zone* zone); static RangeType::Limits IntersectRangeAndBitset(Type range, Type bits, Zone* zone); static RangeType::Limits ToLimits(bitset bits, Zone* zone); bool SimplyEquals(Type that) const; static int AddToUnion(Type type, UnionType* result, int size, Zone* zone); static int IntersectAux(Type type, Type other, UnionType* result, int size, RangeType::Limits* limits, Zone* zone); static Type NormalizeUnion(UnionType* unioned, int size, Zone* zone); static Type NormalizeRangeAndBitset(Type range, bitset* bits, Zone* zone); // If LSB is set, the payload is a bitset; if LSB is clear, the payload is // a pointer to a subtype of the TypeBase class. uint64_t payload_; }; inline size_t hash_value(Type type) { return type.payload_; } V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, Type type); // ----------------------------------------------------------------------------- // Constant types. class OtherNumberConstantType : public TypeBase { public: double Value() const { return value_; } static bool IsOtherNumberConstant(double value); private: friend class Type; friend class BitsetType; friend Zone; static OtherNumberConstantType* New(double value, Zone* zone) { return zone->New<OtherNumberConstantType>(value); } explicit OtherNumberConstantType(double value) : TypeBase(kOtherNumberConstant), value_(value) { CHECK(IsOtherNumberConstant(value)); } BitsetType::bitset Lub() const { return BitsetType::kOtherNumber; } double value_; }; class V8_EXPORT_PRIVATE HeapConstantType : public NON_EXPORTED_BASE(TypeBase) { public: Handle<HeapObject> Value() const; const HeapObjectRef& Ref() const { return heap_ref_; } private: friend class Type; friend class BitsetType; friend Zone; static HeapConstantType* New(const HeapObjectRef& heap_ref, BitsetType::bitset bitset, Zone* zone) { return zone->New<HeapConstantType>(bitset, heap_ref); } HeapConstantType(BitsetType::bitset bitset, const HeapObjectRef& heap_ref); BitsetType::bitset Lub() const { return bitset_; } BitsetType::bitset bitset_; HeapObjectRef heap_ref_; }; // ----------------------------------------------------------------------------- // Superclass for types with variable number of type fields. class StructuralType : public TypeBase { public: int LengthForTesting() const { return Length(); } protected: friend class Type; int Length() const { return length_; } Type Get(int i) const { DCHECK(0 <= i && i < this->Length()); return elements_[i]; } void Set(int i, Type type) { DCHECK(0 <= i && i < this->Length()); elements_[i] = type; } void Shrink(int length) { DCHECK(2 <= length && length <= this->Length()); length_ = length; } StructuralType(Kind kind, int length, Zone* zone) : TypeBase(kind), length_(length) { elements_ = zone->NewArray<Type>(length); } private: int length_; Type* elements_; }; // ----------------------------------------------------------------------------- // Tuple types. class TupleType : public StructuralType { public: int Arity() const { return this->Length(); } Type Element(int i) const { return this->Get(i); } void InitElement(int i, Type type) { this->Set(i, type); } private: friend Type; friend Zone; TupleType(int length, Zone* zone) : StructuralType(kTuple, length, zone) {} static TupleType* New(int length, Zone* zone) { return zone->New<TupleType>(length, zone); } }; // ----------------------------------------------------------------------------- // Union types (internal). // A union is a structured type with the following invariants: // - its length is at least 2 // - at most one field is a bitset, and it must go into index 0 // - no field is a union // - no field is a subtype of any other field class UnionType : public StructuralType { private: friend Type; friend BitsetType; friend Zone; UnionType(int length, Zone* zone) : StructuralType(kUnion, length, zone) {} static UnionType* New(int length, Zone* zone) { return zone->New<UnionType>(length, zone); } bool Wellformed() const; }; } // namespace compiler } // namespace internal } // namespace v8 #endif // V8_COMPILER_TYPES_H_