// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/x87/codegen-x87.h" #if V8_TARGET_ARCH_X87 #include "src/codegen.h" #include "src/heap/heap.h" #include "src/macro-assembler.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // Platform-specific RuntimeCallHelper functions. void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { masm->EnterFrame(StackFrame::INTERNAL); DCHECK(!masm->has_frame()); masm->set_has_frame(true); } void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { masm->LeaveFrame(StackFrame::INTERNAL); DCHECK(masm->has_frame()); masm->set_has_frame(false); } #define __ masm. UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) { size_t actual_size; // Allocate buffer in executable space. byte* buffer = static_cast(base::OS::Allocate(1 * KB, &actual_size, true)); if (buffer == nullptr) return nullptr; MacroAssembler masm(isolate, buffer, static_cast(actual_size), CodeObjectRequired::kNo); // Load double input into registers. __ fld_d(MemOperand(esp, 4)); __ X87SetFPUCW(0x027F); __ fsqrt(); __ X87SetFPUCW(0x037F); __ Ret(); CodeDesc desc; masm.GetCode(&desc); DCHECK(!RelocInfo::RequiresRelocation(isolate, desc)); Assembler::FlushICache(isolate, buffer, actual_size); base::OS::ProtectCode(buffer, actual_size); return FUNCTION_CAST(buffer); } // Helper functions for CreateMemMoveFunction. #undef __ #define __ ACCESS_MASM(masm) enum Direction { FORWARD, BACKWARD }; enum Alignment { MOVE_ALIGNED, MOVE_UNALIGNED }; void MemMoveEmitPopAndReturn(MacroAssembler* masm) { __ pop(esi); __ pop(edi); __ ret(0); } #undef __ #define __ masm. class LabelConverter { public: explicit LabelConverter(byte* buffer) : buffer_(buffer) {} int32_t address(Label* l) const { return reinterpret_cast(buffer_) + l->pos(); } private: byte* buffer_; }; MemMoveFunction CreateMemMoveFunction(Isolate* isolate) { size_t actual_size; // Allocate buffer in executable space. byte* buffer = static_cast(base::OS::Allocate(1 * KB, &actual_size, true)); if (buffer == nullptr) return nullptr; MacroAssembler masm(isolate, buffer, static_cast(actual_size), CodeObjectRequired::kNo); LabelConverter conv(buffer); // Generated code is put into a fixed, unmovable buffer, and not into // the V8 heap. We can't, and don't, refer to any relocatable addresses // (e.g. the JavaScript nan-object). // 32-bit C declaration function calls pass arguments on stack. // Stack layout: // esp[12]: Third argument, size. // esp[8]: Second argument, source pointer. // esp[4]: First argument, destination pointer. // esp[0]: return address const int kDestinationOffset = 1 * kPointerSize; const int kSourceOffset = 2 * kPointerSize; const int kSizeOffset = 3 * kPointerSize; int stack_offset = 0; // Update if we change the stack height. Label backward, backward_much_overlap; Label forward_much_overlap, small_size, medium_size, pop_and_return; __ push(edi); __ push(esi); stack_offset += 2 * kPointerSize; Register dst = edi; Register src = esi; Register count = ecx; __ mov(dst, Operand(esp, stack_offset + kDestinationOffset)); __ mov(src, Operand(esp, stack_offset + kSourceOffset)); __ mov(count, Operand(esp, stack_offset + kSizeOffset)); __ cmp(dst, src); __ j(equal, &pop_and_return); // No SSE2. Label forward; __ cmp(count, 0); __ j(equal, &pop_and_return); __ cmp(dst, src); __ j(above, &backward); __ jmp(&forward); { // Simple forward copier. Label forward_loop_1byte, forward_loop_4byte; __ bind(&forward_loop_4byte); __ mov(eax, Operand(src, 0)); __ sub(count, Immediate(4)); __ add(src, Immediate(4)); __ mov(Operand(dst, 0), eax); __ add(dst, Immediate(4)); __ bind(&forward); // Entry point. __ cmp(count, 3); __ j(above, &forward_loop_4byte); __ bind(&forward_loop_1byte); __ cmp(count, 0); __ j(below_equal, &pop_and_return); __ mov_b(eax, Operand(src, 0)); __ dec(count); __ inc(src); __ mov_b(Operand(dst, 0), eax); __ inc(dst); __ jmp(&forward_loop_1byte); } { // Simple backward copier. Label backward_loop_1byte, backward_loop_4byte, entry_shortcut; __ bind(&backward); __ add(src, count); __ add(dst, count); __ cmp(count, 3); __ j(below_equal, &entry_shortcut); __ bind(&backward_loop_4byte); __ sub(src, Immediate(4)); __ sub(count, Immediate(4)); __ mov(eax, Operand(src, 0)); __ sub(dst, Immediate(4)); __ mov(Operand(dst, 0), eax); __ cmp(count, 3); __ j(above, &backward_loop_4byte); __ bind(&backward_loop_1byte); __ cmp(count, 0); __ j(below_equal, &pop_and_return); __ bind(&entry_shortcut); __ dec(src); __ dec(count); __ mov_b(eax, Operand(src, 0)); __ dec(dst); __ mov_b(Operand(dst, 0), eax); __ jmp(&backward_loop_1byte); } __ bind(&pop_and_return); MemMoveEmitPopAndReturn(&masm); CodeDesc desc; masm.GetCode(&desc); DCHECK(!RelocInfo::RequiresRelocation(isolate, desc)); Assembler::FlushICache(isolate, buffer, actual_size); base::OS::ProtectCode(buffer, actual_size); // TODO(jkummerow): It would be nice to register this code creation event // with the PROFILE / GDBJIT system. return FUNCTION_CAST(buffer); } #undef __ // ------------------------------------------------------------------------- // Code generators #define __ ACCESS_MASM(masm) void StringCharLoadGenerator::Generate(MacroAssembler* masm, Factory* factory, Register string, Register index, Register result, Label* call_runtime) { Label indirect_string_loaded; __ bind(&indirect_string_loaded); // Fetch the instance type of the receiver into result register. __ mov(result, FieldOperand(string, HeapObject::kMapOffset)); __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset)); // We need special handling for indirect strings. Label check_sequential; __ test(result, Immediate(kIsIndirectStringMask)); __ j(zero, &check_sequential, Label::kNear); // Dispatch on the indirect string shape: slice or cons. Label cons_string, thin_string; __ and_(result, Immediate(kStringRepresentationMask)); __ cmp(result, Immediate(kConsStringTag)); __ j(equal, &cons_string, Label::kNear); __ cmp(result, Immediate(kThinStringTag)); __ j(equal, &thin_string, Label::kNear); // Handle slices. __ mov(result, FieldOperand(string, SlicedString::kOffsetOffset)); __ SmiUntag(result); __ add(index, result); __ mov(string, FieldOperand(string, SlicedString::kParentOffset)); __ jmp(&indirect_string_loaded); // Handle thin strings. __ bind(&thin_string); __ mov(string, FieldOperand(string, ThinString::kActualOffset)); __ jmp(&indirect_string_loaded); // Handle cons strings. // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we would rather go to the runtime system now to flatten // the string. __ bind(&cons_string); __ cmp(FieldOperand(string, ConsString::kSecondOffset), Immediate(factory->empty_string())); __ j(not_equal, call_runtime); __ mov(string, FieldOperand(string, ConsString::kFirstOffset)); __ jmp(&indirect_string_loaded); // Distinguish sequential and external strings. Only these two string // representations can reach here (slices and flat cons strings have been // reduced to the underlying sequential or external string). Label seq_string; __ bind(&check_sequential); STATIC_ASSERT(kSeqStringTag == 0); __ test(result, Immediate(kStringRepresentationMask)); __ j(zero, &seq_string, Label::kNear); // Handle external strings. Label one_byte_external, done; if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ test(result, Immediate(kIsIndirectStringMask)); __ Assert(zero, kExternalStringExpectedButNotFound); } // Rule out short external strings. STATIC_ASSERT(kShortExternalStringTag != 0); __ test_b(result, Immediate(kShortExternalStringMask)); __ j(not_zero, call_runtime); // Check encoding. STATIC_ASSERT(kTwoByteStringTag == 0); __ test_b(result, Immediate(kStringEncodingMask)); __ mov(result, FieldOperand(string, ExternalString::kResourceDataOffset)); __ j(not_equal, &one_byte_external, Label::kNear); // Two-byte string. __ movzx_w(result, Operand(result, index, times_2, 0)); __ jmp(&done, Label::kNear); __ bind(&one_byte_external); // One-byte string. __ movzx_b(result, Operand(result, index, times_1, 0)); __ jmp(&done, Label::kNear); // Dispatch on the encoding: one-byte or two-byte. Label one_byte; __ bind(&seq_string); STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ test(result, Immediate(kStringEncodingMask)); __ j(not_zero, &one_byte, Label::kNear); // Two-byte string. // Load the two-byte character code into the result register. __ movzx_w(result, FieldOperand(string, index, times_2, SeqTwoByteString::kHeaderSize)); __ jmp(&done, Label::kNear); // One-byte string. // Load the byte into the result register. __ bind(&one_byte); __ movzx_b(result, FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize)); __ bind(&done); } #undef __ CodeAgingHelper::CodeAgingHelper(Isolate* isolate) { USE(isolate); DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength); CodePatcher patcher(isolate, young_sequence_.start(), young_sequence_.length()); patcher.masm()->push(ebp); patcher.masm()->mov(ebp, esp); patcher.masm()->push(esi); patcher.masm()->push(edi); } #ifdef DEBUG bool CodeAgingHelper::IsOld(byte* candidate) const { return *candidate == kCallOpcode; } #endif bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) { bool result = isolate->code_aging_helper()->IsYoung(sequence); DCHECK(result || isolate->code_aging_helper()->IsOld(sequence)); return result; } Code::Age Code::GetCodeAge(Isolate* isolate, byte* sequence) { if (IsYoungSequence(isolate, sequence)) return kNoAgeCodeAge; sequence++; // Skip the kCallOpcode byte Address target_address = sequence + *reinterpret_cast(sequence) + Assembler::kCallTargetAddressOffset; Code* stub = GetCodeFromTargetAddress(target_address); return GetAgeOfCodeAgeStub(stub); } void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Code::Age age) { uint32_t young_length = isolate->code_aging_helper()->young_sequence_length(); if (age == kNoAgeCodeAge) { isolate->code_aging_helper()->CopyYoungSequenceTo(sequence); Assembler::FlushICache(isolate, sequence, young_length); } else { Code* stub = GetCodeAgeStub(isolate, age); CodePatcher patcher(isolate, sequence, young_length); patcher.masm()->call(stub->instruction_start(), RelocInfo::NONE32); } } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X87