// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/code-stub-assembler.h" #include "src/code-factory.h" #include "src/counters.h" #include "src/frames-inl.h" #include "src/frames.h" #include "src/objects/api-callbacks.h" #include "src/objects/descriptor-array.h" #include "src/objects/ordered-hash-table-inl.h" #include "src/wasm/wasm-objects.h" namespace v8 { namespace internal { using compiler::Node; template <class T> using TNode = compiler::TNode<T>; template <class T> using SloppyTNode = compiler::SloppyTNode<T>; CodeStubAssembler::CodeStubAssembler(compiler::CodeAssemblerState* state) : compiler::CodeAssembler(state), BaseBuiltinsFromDSLAssembler(state) { if (DEBUG_BOOL && FLAG_csa_trap_on_node != nullptr) { HandleBreakOnNode(); } } void CodeStubAssembler::HandleBreakOnNode() { // FLAG_csa_trap_on_node should be in a form "STUB,NODE" where STUB is a // string specifying the name of a stub and NODE is number specifying node id. const char* name = state()->name(); size_t name_length = strlen(name); if (strncmp(FLAG_csa_trap_on_node, name, name_length) != 0) { // Different name. return; } size_t option_length = strlen(FLAG_csa_trap_on_node); if (option_length < name_length + 2 || FLAG_csa_trap_on_node[name_length] != ',') { // Option is too short. return; } const char* start = &FLAG_csa_trap_on_node[name_length + 1]; char* end; int node_id = static_cast<int>(strtol(start, &end, 10)); if (start == end) { // Bad node id. return; } BreakOnNode(node_id); } void CodeStubAssembler::Assert(const BranchGenerator& branch, const char* message, const char* file, int line, Node* extra_node1, const char* extra_node1_name, Node* extra_node2, const char* extra_node2_name, Node* extra_node3, const char* extra_node3_name, Node* extra_node4, const char* extra_node4_name, Node* extra_node5, const char* extra_node5_name) { #if defined(DEBUG) if (FLAG_debug_code) { Check(branch, message, file, line, extra_node1, extra_node1_name, extra_node2, extra_node2_name, extra_node3, extra_node3_name, extra_node4, extra_node4_name, extra_node5, extra_node5_name); } #endif } void CodeStubAssembler::Assert(const NodeGenerator& condition_body, const char* message, const char* file, int line, Node* extra_node1, const char* extra_node1_name, Node* extra_node2, const char* extra_node2_name, Node* extra_node3, const char* extra_node3_name, Node* extra_node4, const char* extra_node4_name, Node* extra_node5, const char* extra_node5_name) { #if defined(DEBUG) if (FLAG_debug_code) { Check(condition_body, message, file, line, extra_node1, extra_node1_name, extra_node2, extra_node2_name, extra_node3, extra_node3_name, extra_node4, extra_node4_name, extra_node5, extra_node5_name); } #endif } #ifdef DEBUG namespace { void MaybePrintNodeWithName(CodeStubAssembler* csa, Node* node, const char* node_name) { if (node != nullptr) { csa->CallRuntime(Runtime::kPrintWithNameForAssert, csa->SmiConstant(0), csa->StringConstant(node_name), node); } } } // namespace #endif void CodeStubAssembler::Check(const BranchGenerator& branch, const char* message, const char* file, int line, Node* extra_node1, const char* extra_node1_name, Node* extra_node2, const char* extra_node2_name, Node* extra_node3, const char* extra_node3_name, Node* extra_node4, const char* extra_node4_name, Node* extra_node5, const char* extra_node5_name) { Label ok(this); Label not_ok(this, Label::kDeferred); if (message != nullptr && FLAG_code_comments) { Comment("[ Assert: %s", message); } else { Comment("[ Assert"); } branch(&ok, ¬_ok); BIND(¬_ok); FailAssert(message, file, line, extra_node1, extra_node1_name, extra_node2, extra_node2_name, extra_node3, extra_node3_name, extra_node4, extra_node4_name, extra_node5, extra_node5_name); BIND(&ok); Comment("] Assert"); } void CodeStubAssembler::Check(const NodeGenerator& condition_body, const char* message, const char* file, int line, Node* extra_node1, const char* extra_node1_name, Node* extra_node2, const char* extra_node2_name, Node* extra_node3, const char* extra_node3_name, Node* extra_node4, const char* extra_node4_name, Node* extra_node5, const char* extra_node5_name) { BranchGenerator branch = [=](Label* ok, Label* not_ok) { Node* condition = condition_body(); DCHECK_NOT_NULL(condition); Branch(condition, ok, not_ok); }; Check(branch, message, file, line, extra_node1, extra_node1_name, extra_node2, extra_node2_name, extra_node3, extra_node3_name, extra_node4, extra_node4_name, extra_node5, extra_node5_name); } void CodeStubAssembler::FastCheck(TNode<BoolT> condition) { Label ok(this); GotoIf(condition, &ok); DebugBreak(); Goto(&ok); BIND(&ok); } void CodeStubAssembler::FailAssert( const char* message, const char* file, int line, Node* extra_node1, const char* extra_node1_name, Node* extra_node2, const char* extra_node2_name, Node* extra_node3, const char* extra_node3_name, Node* extra_node4, const char* extra_node4_name, Node* extra_node5, const char* extra_node5_name) { DCHECK_NOT_NULL(message); char chars[1024]; Vector<char> buffer(chars); if (file != nullptr) { SNPrintF(buffer, "CSA_ASSERT failed: %s [%s:%d]\n", message, file, line); } else { SNPrintF(buffer, "CSA_ASSERT failed: %s\n", message); } Node* message_node = StringConstant(&(buffer[0])); #ifdef DEBUG // Only print the extra nodes in debug builds. MaybePrintNodeWithName(this, extra_node1, extra_node1_name); MaybePrintNodeWithName(this, extra_node2, extra_node2_name); MaybePrintNodeWithName(this, extra_node3, extra_node3_name); MaybePrintNodeWithName(this, extra_node4, extra_node4_name); MaybePrintNodeWithName(this, extra_node5, extra_node5_name); #endif DebugAbort(message_node); Unreachable(); } Node* CodeStubAssembler::SelectImpl(TNode<BoolT> condition, const NodeGenerator& true_body, const NodeGenerator& false_body, MachineRepresentation rep) { VARIABLE(value, rep); Label vtrue(this), vfalse(this), end(this); Branch(condition, &vtrue, &vfalse); BIND(&vtrue); { value.Bind(true_body()); Goto(&end); } BIND(&vfalse); { value.Bind(false_body()); Goto(&end); } BIND(&end); return value.value(); } TNode<Int32T> CodeStubAssembler::SelectInt32Constant( SloppyTNode<BoolT> condition, int true_value, int false_value) { return SelectConstant<Int32T>(condition, Int32Constant(true_value), Int32Constant(false_value)); } TNode<IntPtrT> CodeStubAssembler::SelectIntPtrConstant( SloppyTNode<BoolT> condition, int true_value, int false_value) { return SelectConstant<IntPtrT>(condition, IntPtrConstant(true_value), IntPtrConstant(false_value)); } TNode<Oddball> CodeStubAssembler::SelectBooleanConstant( SloppyTNode<BoolT> condition) { return SelectConstant<Oddball>(condition, TrueConstant(), FalseConstant()); } TNode<Smi> CodeStubAssembler::SelectSmiConstant(SloppyTNode<BoolT> condition, Smi true_value, Smi false_value) { return SelectConstant<Smi>(condition, SmiConstant(true_value), SmiConstant(false_value)); } TNode<Object> CodeStubAssembler::NoContextConstant() { return SmiConstant(Context::kNoContext); } #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \ compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \ std::declval<Heap>().rootAccessorName())>::type>::type> \ CodeStubAssembler::name##Constant() { \ return UncheckedCast<std::remove_pointer<std::remove_reference<decltype( \ std::declval<Heap>().rootAccessorName())>::type>::type>( \ LoadRoot(RootIndex::k##rootIndexName)); \ } HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR); #undef HEAP_CONSTANT_ACCESSOR #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \ compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \ std::declval<ReadOnlyRoots>().rootAccessorName())>::type>::type> \ CodeStubAssembler::name##Constant() { \ return UncheckedCast<std::remove_pointer<std::remove_reference<decltype( \ std::declval<ReadOnlyRoots>().rootAccessorName())>::type>::type>( \ LoadRoot(RootIndex::k##rootIndexName)); \ } HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR); #undef HEAP_CONSTANT_ACCESSOR #define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \ compiler::TNode<BoolT> CodeStubAssembler::Is##name( \ SloppyTNode<Object> value) { \ return WordEqual(value, name##Constant()); \ } \ compiler::TNode<BoolT> CodeStubAssembler::IsNot##name( \ SloppyTNode<Object> value) { \ return WordNotEqual(value, name##Constant()); \ } HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST); #undef HEAP_CONSTANT_TEST Node* CodeStubAssembler::IntPtrOrSmiConstant(int value, ParameterMode mode) { if (mode == SMI_PARAMETERS) { return SmiConstant(value); } else { DCHECK_EQ(INTPTR_PARAMETERS, mode); return IntPtrConstant(value); } } bool CodeStubAssembler::IsIntPtrOrSmiConstantZero(Node* test, ParameterMode mode) { int32_t constant_test; Smi smi_test; if (mode == INTPTR_PARAMETERS) { if (ToInt32Constant(test, constant_test) && constant_test == 0) { return true; } } else { DCHECK_EQ(mode, SMI_PARAMETERS); if (ToSmiConstant(test, &smi_test) && smi_test->value() == 0) { return true; } } return false; } bool CodeStubAssembler::TryGetIntPtrOrSmiConstantValue(Node* maybe_constant, int* value, ParameterMode mode) { int32_t int32_constant; if (mode == INTPTR_PARAMETERS) { if (ToInt32Constant(maybe_constant, int32_constant)) { *value = int32_constant; return true; } } else { DCHECK_EQ(mode, SMI_PARAMETERS); Smi smi_constant; if (ToSmiConstant(maybe_constant, &smi_constant)) { *value = Smi::ToInt(smi_constant); return true; } } return false; } TNode<IntPtrT> CodeStubAssembler::IntPtrRoundUpToPowerOfTwo32( TNode<IntPtrT> value) { Comment("IntPtrRoundUpToPowerOfTwo32"); CSA_ASSERT(this, UintPtrLessThanOrEqual(value, IntPtrConstant(0x80000000u))); value = Signed(IntPtrSub(value, IntPtrConstant(1))); for (int i = 1; i <= 16; i *= 2) { value = Signed(WordOr(value, WordShr(value, IntPtrConstant(i)))); } return Signed(IntPtrAdd(value, IntPtrConstant(1))); } Node* CodeStubAssembler::MatchesParameterMode(Node* value, ParameterMode mode) { if (mode == SMI_PARAMETERS) { return TaggedIsSmi(value); } else { return Int32Constant(1); } } TNode<BoolT> CodeStubAssembler::WordIsPowerOfTwo(SloppyTNode<IntPtrT> value) { // value && !(value & (value - 1)) return WordEqual( Select<IntPtrT>( WordEqual(value, IntPtrConstant(0)), [=] { return IntPtrConstant(1); }, [=] { return WordAnd(value, IntPtrSub(value, IntPtrConstant(1))); }), IntPtrConstant(0)); } TNode<Float64T> CodeStubAssembler::Float64Round(SloppyTNode<Float64T> x) { Node* one = Float64Constant(1.0); Node* one_half = Float64Constant(0.5); Label return_x(this); // Round up {x} towards Infinity. VARIABLE(var_x, MachineRepresentation::kFloat64, Float64Ceil(x)); GotoIf(Float64LessThanOrEqual(Float64Sub(var_x.value(), one_half), x), &return_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_x); BIND(&return_x); return TNode<Float64T>::UncheckedCast(var_x.value()); } TNode<Float64T> CodeStubAssembler::Float64Ceil(SloppyTNode<Float64T> x) { if (IsFloat64RoundUpSupported()) { return Float64RoundUp(x); } Node* one = Float64Constant(1.0); Node* zero = Float64Constant(0.0); Node* two_52 = Float64Constant(4503599627370496.0E0); Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); VARIABLE(var_x, MachineRepresentation::kFloat64, x); Label return_x(this), return_minus_x(this); // Check if {x} is greater than zero. Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, &if_xnotgreaterthanzero); BIND(&if_xgreaterthanzero); { // Just return {x} unless it's in the range ]0,2^52[. GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); // Round positive {x} towards Infinity. var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); GotoIfNot(Float64LessThan(var_x.value(), x), &return_x); var_x.Bind(Float64Add(var_x.value(), one)); Goto(&return_x); } BIND(&if_xnotgreaterthanzero); { // Just return {x} unless it's in the range ]-2^52,0[ GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); GotoIfNot(Float64LessThan(x, zero), &return_x); // Round negated {x} towards Infinity and return the result negated. Node* minus_x = Float64Neg(x); var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); GotoIfNot(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_minus_x); } BIND(&return_minus_x); var_x.Bind(Float64Neg(var_x.value())); Goto(&return_x); BIND(&return_x); return TNode<Float64T>::UncheckedCast(var_x.value()); } TNode<Float64T> CodeStubAssembler::Float64Floor(SloppyTNode<Float64T> x) { if (IsFloat64RoundDownSupported()) { return Float64RoundDown(x); } Node* one = Float64Constant(1.0); Node* zero = Float64Constant(0.0); Node* two_52 = Float64Constant(4503599627370496.0E0); Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); VARIABLE(var_x, MachineRepresentation::kFloat64, x); Label return_x(this), return_minus_x(this); // Check if {x} is greater than zero. Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, &if_xnotgreaterthanzero); BIND(&if_xgreaterthanzero); { // Just return {x} unless it's in the range ]0,2^52[. GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); // Round positive {x} towards -Infinity. var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); GotoIfNot(Float64GreaterThan(var_x.value(), x), &return_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_x); } BIND(&if_xnotgreaterthanzero); { // Just return {x} unless it's in the range ]-2^52,0[ GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); GotoIfNot(Float64LessThan(x, zero), &return_x); // Round negated {x} towards -Infinity and return the result negated. Node* minus_x = Float64Neg(x); var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); GotoIfNot(Float64LessThan(var_x.value(), minus_x), &return_minus_x); var_x.Bind(Float64Add(var_x.value(), one)); Goto(&return_minus_x); } BIND(&return_minus_x); var_x.Bind(Float64Neg(var_x.value())); Goto(&return_x); BIND(&return_x); return TNode<Float64T>::UncheckedCast(var_x.value()); } TNode<Float64T> CodeStubAssembler::Float64RoundToEven(SloppyTNode<Float64T> x) { if (IsFloat64RoundTiesEvenSupported()) { return Float64RoundTiesEven(x); } // See ES#sec-touint8clamp for details. Node* f = Float64Floor(x); Node* f_and_half = Float64Add(f, Float64Constant(0.5)); VARIABLE(var_result, MachineRepresentation::kFloat64); Label return_f(this), return_f_plus_one(this), done(this); GotoIf(Float64LessThan(f_and_half, x), &return_f_plus_one); GotoIf(Float64LessThan(x, f_and_half), &return_f); { Node* f_mod_2 = Float64Mod(f, Float64Constant(2.0)); Branch(Float64Equal(f_mod_2, Float64Constant(0.0)), &return_f, &return_f_plus_one); } BIND(&return_f); var_result.Bind(f); Goto(&done); BIND(&return_f_plus_one); var_result.Bind(Float64Add(f, Float64Constant(1.0))); Goto(&done); BIND(&done); return TNode<Float64T>::UncheckedCast(var_result.value()); } TNode<Float64T> CodeStubAssembler::Float64Trunc(SloppyTNode<Float64T> x) { if (IsFloat64RoundTruncateSupported()) { return Float64RoundTruncate(x); } Node* one = Float64Constant(1.0); Node* zero = Float64Constant(0.0); Node* two_52 = Float64Constant(4503599627370496.0E0); Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); VARIABLE(var_x, MachineRepresentation::kFloat64, x); Label return_x(this), return_minus_x(this); // Check if {x} is greater than 0. Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, &if_xnotgreaterthanzero); BIND(&if_xgreaterthanzero); { if (IsFloat64RoundDownSupported()) { var_x.Bind(Float64RoundDown(x)); } else { // Just return {x} unless it's in the range ]0,2^52[. GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); // Round positive {x} towards -Infinity. var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); GotoIfNot(Float64GreaterThan(var_x.value(), x), &return_x); var_x.Bind(Float64Sub(var_x.value(), one)); } Goto(&return_x); } BIND(&if_xnotgreaterthanzero); { if (IsFloat64RoundUpSupported()) { var_x.Bind(Float64RoundUp(x)); Goto(&return_x); } else { // Just return {x} unless its in the range ]-2^52,0[. GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); GotoIfNot(Float64LessThan(x, zero), &return_x); // Round negated {x} towards -Infinity and return result negated. Node* minus_x = Float64Neg(x); var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); GotoIfNot(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_minus_x); } } BIND(&return_minus_x); var_x.Bind(Float64Neg(var_x.value())); Goto(&return_x); BIND(&return_x); return TNode<Float64T>::UncheckedCast(var_x.value()); } TNode<BoolT> CodeStubAssembler::IsValidSmi(TNode<Smi> smi) { if (SmiValuesAre31Bits() && kPointerSize == kInt64Size) { // Check that the Smi value is properly sign-extended. TNode<IntPtrT> value = Signed(BitcastTaggedToWord(smi)); return WordEqual(value, ChangeInt32ToIntPtr(TruncateIntPtrToInt32(value))); } return Int32TrueConstant(); } Node* CodeStubAssembler::SmiShiftBitsConstant() { return IntPtrConstant(kSmiShiftSize + kSmiTagSize); } TNode<Smi> CodeStubAssembler::SmiFromInt32(SloppyTNode<Int32T> value) { TNode<IntPtrT> value_intptr = ChangeInt32ToIntPtr(value); TNode<Smi> smi = BitcastWordToTaggedSigned(WordShl(value_intptr, SmiShiftBitsConstant())); return smi; } TNode<BoolT> CodeStubAssembler::IsValidPositiveSmi(TNode<IntPtrT> value) { intptr_t constant_value; if (ToIntPtrConstant(value, constant_value)) { return (static_cast<uintptr_t>(constant_value) <= static_cast<uintptr_t>(Smi::kMaxValue)) ? Int32TrueConstant() : Int32FalseConstant(); } return UintPtrLessThanOrEqual(value, IntPtrConstant(Smi::kMaxValue)); } TNode<Smi> CodeStubAssembler::SmiTag(SloppyTNode<IntPtrT> value) { int32_t constant_value; if (ToInt32Constant(value, constant_value) && Smi::IsValid(constant_value)) { return SmiConstant(constant_value); } TNode<Smi> smi = BitcastWordToTaggedSigned(WordShl(value, SmiShiftBitsConstant())); return smi; } TNode<IntPtrT> CodeStubAssembler::SmiUntag(SloppyTNode<Smi> value) { intptr_t constant_value; if (ToIntPtrConstant(value, constant_value)) { return IntPtrConstant(constant_value >> (kSmiShiftSize + kSmiTagSize)); } return Signed(WordSar(BitcastTaggedToWord(value), SmiShiftBitsConstant())); } TNode<Int32T> CodeStubAssembler::SmiToInt32(SloppyTNode<Smi> value) { TNode<IntPtrT> result = SmiUntag(value); return TruncateIntPtrToInt32(result); } TNode<Float64T> CodeStubAssembler::SmiToFloat64(SloppyTNode<Smi> value) { return ChangeInt32ToFloat64(SmiToInt32(value)); } TNode<Smi> CodeStubAssembler::SmiMax(TNode<Smi> a, TNode<Smi> b) { return SelectConstant<Smi>(SmiLessThan(a, b), b, a); } TNode<Smi> CodeStubAssembler::SmiMin(TNode<Smi> a, TNode<Smi> b) { return SelectConstant<Smi>(SmiLessThan(a, b), a, b); } TNode<IntPtrT> CodeStubAssembler::TryIntPtrAdd(TNode<IntPtrT> a, TNode<IntPtrT> b, Label* if_overflow) { TNode<PairT<IntPtrT, BoolT>> pair = IntPtrAddWithOverflow(a, b); TNode<BoolT> overflow = Projection<1>(pair); GotoIf(overflow, if_overflow); return Projection<0>(pair); } TNode<Smi> CodeStubAssembler::TrySmiAdd(TNode<Smi> lhs, TNode<Smi> rhs, Label* if_overflow) { if (SmiValuesAre32Bits()) { return BitcastWordToTaggedSigned(TryIntPtrAdd( BitcastTaggedToWord(lhs), BitcastTaggedToWord(rhs), if_overflow)); } else { DCHECK(SmiValuesAre31Bits()); TNode<PairT<Int32T, BoolT>> pair = Int32AddWithOverflow(TruncateIntPtrToInt32(BitcastTaggedToWord(lhs)), TruncateIntPtrToInt32(BitcastTaggedToWord(rhs))); TNode<BoolT> overflow = Projection<1>(pair); GotoIf(overflow, if_overflow); TNode<Int32T> result = Projection<0>(pair); return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(result)); } } TNode<Smi> CodeStubAssembler::TrySmiSub(TNode<Smi> lhs, TNode<Smi> rhs, Label* if_overflow) { if (SmiValuesAre32Bits()) { TNode<PairT<IntPtrT, BoolT>> pair = IntPtrSubWithOverflow( BitcastTaggedToWord(lhs), BitcastTaggedToWord(rhs)); TNode<BoolT> overflow = Projection<1>(pair); GotoIf(overflow, if_overflow); TNode<IntPtrT> result = Projection<0>(pair); return BitcastWordToTaggedSigned(result); } else { DCHECK(SmiValuesAre31Bits()); TNode<PairT<Int32T, BoolT>> pair = Int32SubWithOverflow(TruncateIntPtrToInt32(BitcastTaggedToWord(lhs)), TruncateIntPtrToInt32(BitcastTaggedToWord(rhs))); TNode<BoolT> overflow = Projection<1>(pair); GotoIf(overflow, if_overflow); TNode<Int32T> result = Projection<0>(pair); return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(result)); } } TNode<Number> CodeStubAssembler::NumberMax(SloppyTNode<Number> a, SloppyTNode<Number> b) { // TODO(danno): This could be optimized by specifically handling smi cases. TVARIABLE(Number, result); Label done(this), greater_than_equal_a(this), greater_than_equal_b(this); GotoIfNumberGreaterThanOrEqual(a, b, &greater_than_equal_a); GotoIfNumberGreaterThanOrEqual(b, a, &greater_than_equal_b); result = NanConstant(); Goto(&done); BIND(&greater_than_equal_a); result = a; Goto(&done); BIND(&greater_than_equal_b); result = b; Goto(&done); BIND(&done); return result.value(); } TNode<Number> CodeStubAssembler::NumberMin(SloppyTNode<Number> a, SloppyTNode<Number> b) { // TODO(danno): This could be optimized by specifically handling smi cases. TVARIABLE(Number, result); Label done(this), greater_than_equal_a(this), greater_than_equal_b(this); GotoIfNumberGreaterThanOrEqual(a, b, &greater_than_equal_a); GotoIfNumberGreaterThanOrEqual(b, a, &greater_than_equal_b); result = NanConstant(); Goto(&done); BIND(&greater_than_equal_a); result = b; Goto(&done); BIND(&greater_than_equal_b); result = a; Goto(&done); BIND(&done); return result.value(); } TNode<IntPtrT> CodeStubAssembler::ConvertToRelativeIndex( TNode<Context> context, TNode<Object> index, TNode<IntPtrT> length) { TVARIABLE(IntPtrT, result); TNode<Number> const index_int = ToInteger_Inline(context, index, CodeStubAssembler::kTruncateMinusZero); TNode<IntPtrT> zero = IntPtrConstant(0); Label done(this); Label if_issmi(this), if_isheapnumber(this, Label::kDeferred); Branch(TaggedIsSmi(index_int), &if_issmi, &if_isheapnumber); BIND(&if_issmi); { TNode<Smi> const index_smi = CAST(index_int); result = Select<IntPtrT>( IntPtrLessThan(SmiUntag(index_smi), zero), [=] { return IntPtrMax(IntPtrAdd(length, SmiUntag(index_smi)), zero); }, [=] { return IntPtrMin(SmiUntag(index_smi), length); }); Goto(&done); } BIND(&if_isheapnumber); { // If {index} is a heap number, it is definitely out of bounds. If it is // negative, {index} = max({length} + {index}),0) = 0'. If it is positive, // set {index} to {length}. TNode<HeapNumber> const index_hn = CAST(index_int); TNode<Float64T> const float_zero = Float64Constant(0.); TNode<Float64T> const index_float = LoadHeapNumberValue(index_hn); result = SelectConstant<IntPtrT>(Float64LessThan(index_float, float_zero), zero, length); Goto(&done); } BIND(&done); return result.value(); } TNode<Number> CodeStubAssembler::SmiMod(TNode<Smi> a, TNode<Smi> b) { TVARIABLE(Number, var_result); Label return_result(this, &var_result), return_minuszero(this, Label::kDeferred), return_nan(this, Label::kDeferred); // Untag {a} and {b}. TNode<Int32T> int_a = SmiToInt32(a); TNode<Int32T> int_b = SmiToInt32(b); // Return NaN if {b} is zero. GotoIf(Word32Equal(int_b, Int32Constant(0)), &return_nan); // Check if {a} is non-negative. Label if_aisnotnegative(this), if_aisnegative(this, Label::kDeferred); Branch(Int32LessThanOrEqual(Int32Constant(0), int_a), &if_aisnotnegative, &if_aisnegative); BIND(&if_aisnotnegative); { // Fast case, don't need to check any other edge cases. TNode<Int32T> r = Int32Mod(int_a, int_b); var_result = SmiFromInt32(r); Goto(&return_result); } BIND(&if_aisnegative); { if (SmiValuesAre32Bits()) { // Check if {a} is kMinInt and {b} is -1 (only relevant if the // kMinInt is actually representable as a Smi). Label join(this); GotoIfNot(Word32Equal(int_a, Int32Constant(kMinInt)), &join); GotoIf(Word32Equal(int_b, Int32Constant(-1)), &return_minuszero); Goto(&join); BIND(&join); } // Perform the integer modulus operation. TNode<Int32T> r = Int32Mod(int_a, int_b); // Check if {r} is zero, and if so return -0, because we have to // take the sign of the left hand side {a}, which is negative. GotoIf(Word32Equal(r, Int32Constant(0)), &return_minuszero); // The remainder {r} can be outside the valid Smi range on 32bit // architectures, so we cannot just say SmiFromInt32(r) here. var_result = ChangeInt32ToTagged(r); Goto(&return_result); } BIND(&return_minuszero); var_result = MinusZeroConstant(); Goto(&return_result); BIND(&return_nan); var_result = NanConstant(); Goto(&return_result); BIND(&return_result); return var_result.value(); } TNode<Number> CodeStubAssembler::SmiMul(TNode<Smi> a, TNode<Smi> b) { TVARIABLE(Number, var_result); VARIABLE(var_lhs_float64, MachineRepresentation::kFloat64); VARIABLE(var_rhs_float64, MachineRepresentation::kFloat64); Label return_result(this, &var_result); // Both {a} and {b} are Smis. Convert them to integers and multiply. Node* lhs32 = SmiToInt32(a); Node* rhs32 = SmiToInt32(b); Node* pair = Int32MulWithOverflow(lhs32, rhs32); Node* overflow = Projection(1, pair); // Check if the multiplication overflowed. Label if_overflow(this, Label::kDeferred), if_notoverflow(this); Branch(overflow, &if_overflow, &if_notoverflow); BIND(&if_notoverflow); { // If the answer is zero, we may need to return -0.0, depending on the // input. Label answer_zero(this), answer_not_zero(this); Node* answer = Projection(0, pair); Node* zero = Int32Constant(0); Branch(Word32Equal(answer, zero), &answer_zero, &answer_not_zero); BIND(&answer_not_zero); { var_result = ChangeInt32ToTagged(answer); Goto(&return_result); } BIND(&answer_zero); { Node* or_result = Word32Or(lhs32, rhs32); Label if_should_be_negative_zero(this), if_should_be_zero(this); Branch(Int32LessThan(or_result, zero), &if_should_be_negative_zero, &if_should_be_zero); BIND(&if_should_be_negative_zero); { var_result = MinusZeroConstant(); Goto(&return_result); } BIND(&if_should_be_zero); { var_result = SmiConstant(0); Goto(&return_result); } } } BIND(&if_overflow); { var_lhs_float64.Bind(SmiToFloat64(a)); var_rhs_float64.Bind(SmiToFloat64(b)); Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value()); var_result = AllocateHeapNumberWithValue(value); Goto(&return_result); } BIND(&return_result); return var_result.value(); } TNode<Smi> CodeStubAssembler::TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor, Label* bailout) { // Both {a} and {b} are Smis. Bailout to floating point division if {divisor} // is zero. GotoIf(WordEqual(divisor, SmiConstant(0)), bailout); // Do floating point division if {dividend} is zero and {divisor} is // negative. Label dividend_is_zero(this), dividend_is_not_zero(this); Branch(WordEqual(dividend, SmiConstant(0)), ÷nd_is_zero, ÷nd_is_not_zero); BIND(÷nd_is_zero); { GotoIf(SmiLessThan(divisor, SmiConstant(0)), bailout); Goto(÷nd_is_not_zero); } BIND(÷nd_is_not_zero); TNode<Int32T> untagged_divisor = SmiToInt32(divisor); TNode<Int32T> untagged_dividend = SmiToInt32(dividend); // Do floating point division if {dividend} is kMinInt (or kMinInt - 1 // if the Smi size is 31) and {divisor} is -1. Label divisor_is_minus_one(this), divisor_is_not_minus_one(this); Branch(Word32Equal(untagged_divisor, Int32Constant(-1)), &divisor_is_minus_one, &divisor_is_not_minus_one); BIND(&divisor_is_minus_one); { GotoIf(Word32Equal( untagged_dividend, Int32Constant(kSmiValueSize == 32 ? kMinInt : (kMinInt >> 1))), bailout); Goto(&divisor_is_not_minus_one); } BIND(&divisor_is_not_minus_one); TNode<Int32T> untagged_result = Int32Div(untagged_dividend, untagged_divisor); TNode<Int32T> truncated = Signed(Int32Mul(untagged_result, untagged_divisor)); // Do floating point division if the remainder is not 0. GotoIf(Word32NotEqual(untagged_dividend, truncated), bailout); return SmiFromInt32(untagged_result); } TNode<Smi> CodeStubAssembler::SmiLexicographicCompare(TNode<Smi> x, TNode<Smi> y) { TNode<ExternalReference> smi_lexicographic_compare = ExternalConstant(ExternalReference::smi_lexicographic_compare_function()); TNode<ExternalReference> isolate_ptr = ExternalConstant(ExternalReference::isolate_address(isolate())); return CAST(CallCFunction3(MachineType::AnyTagged(), MachineType::Pointer(), MachineType::AnyTagged(), MachineType::AnyTagged(), smi_lexicographic_compare, isolate_ptr, x, y)); } TNode<Int32T> CodeStubAssembler::TruncateIntPtrToInt32( SloppyTNode<IntPtrT> value) { if (Is64()) { return TruncateInt64ToInt32(ReinterpretCast<Int64T>(value)); } return ReinterpretCast<Int32T>(value); } TNode<BoolT> CodeStubAssembler::TaggedIsSmi(SloppyTNode<Object> a) { return WordEqual(WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)), IntPtrConstant(0)); } TNode<BoolT> CodeStubAssembler::TaggedIsSmi(TNode<MaybeObject> a) { return WordEqual( WordAnd(BitcastMaybeObjectToWord(a), IntPtrConstant(kSmiTagMask)), IntPtrConstant(0)); } TNode<BoolT> CodeStubAssembler::TaggedIsNotSmi(SloppyTNode<Object> a) { return WordNotEqual( WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)), IntPtrConstant(0)); } TNode<BoolT> CodeStubAssembler::TaggedIsPositiveSmi(SloppyTNode<Object> a) { return WordEqual(WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask | kSmiSignMask)), IntPtrConstant(0)); } TNode<BoolT> CodeStubAssembler::WordIsWordAligned(SloppyTNode<WordT> word) { return WordEqual(IntPtrConstant(0), WordAnd(word, IntPtrConstant(kPointerSize - 1))); } #if DEBUG void CodeStubAssembler::Bind(Label* label, AssemblerDebugInfo debug_info) { CodeAssembler::Bind(label, debug_info); } #endif // DEBUG void CodeStubAssembler::Bind(Label* label) { CodeAssembler::Bind(label); } TNode<Float64T> CodeStubAssembler::LoadDoubleWithHoleCheck( TNode<FixedDoubleArray> array, TNode<Smi> index, Label* if_hole) { return LoadFixedDoubleArrayElement(array, index, MachineType::Float64(), 0, SMI_PARAMETERS, if_hole); } TNode<Float64T> CodeStubAssembler::LoadDoubleWithHoleCheck( TNode<FixedDoubleArray> array, TNode<IntPtrT> index, Label* if_hole) { return LoadFixedDoubleArrayElement(array, index, MachineType::Float64(), 0, INTPTR_PARAMETERS, if_hole); } void CodeStubAssembler::BranchIfPrototypesHaveNoElements( Node* receiver_map, Label* definitely_no_elements, Label* possibly_elements) { CSA_SLOW_ASSERT(this, IsMap(receiver_map)); VARIABLE(var_map, MachineRepresentation::kTagged, receiver_map); Label loop_body(this, &var_map); Node* empty_fixed_array = LoadRoot(RootIndex::kEmptyFixedArray); Node* empty_slow_element_dictionary = LoadRoot(RootIndex::kEmptySlowElementDictionary); Goto(&loop_body); BIND(&loop_body); { Node* map = var_map.value(); Node* prototype = LoadMapPrototype(map); GotoIf(IsNull(prototype), definitely_no_elements); Node* prototype_map = LoadMap(prototype); TNode<Int32T> prototype_instance_type = LoadMapInstanceType(prototype_map); // Pessimistically assume elements if a Proxy, Special API Object, // or JSValue wrapper is found on the prototype chain. After this // instance type check, it's not necessary to check for interceptors or // access checks. Label if_custom(this, Label::kDeferred), if_notcustom(this); Branch(IsCustomElementsReceiverInstanceType(prototype_instance_type), &if_custom, &if_notcustom); BIND(&if_custom); { // For string JSValue wrappers we still support the checks as long // as they wrap the empty string. GotoIfNot(InstanceTypeEqual(prototype_instance_type, JS_VALUE_TYPE), possibly_elements); Node* prototype_value = LoadJSValueValue(prototype); Branch(IsEmptyString(prototype_value), &if_notcustom, possibly_elements); } BIND(&if_notcustom); { Node* prototype_elements = LoadElements(prototype); var_map.Bind(prototype_map); GotoIf(WordEqual(prototype_elements, empty_fixed_array), &loop_body); Branch(WordEqual(prototype_elements, empty_slow_element_dictionary), &loop_body, possibly_elements); } } } void CodeStubAssembler::BranchIfJSReceiver(Node* object, Label* if_true, Label* if_false) { GotoIf(TaggedIsSmi(object), if_false); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); Branch(IsJSReceiver(object), if_true, if_false); } TNode<BoolT> CodeStubAssembler::IsFastJSArray(SloppyTNode<Object> object, SloppyTNode<Context> context) { Label if_true(this), if_false(this, Label::kDeferred), exit(this); BranchIfFastJSArray(object, context, &if_true, &if_false); TVARIABLE(BoolT, var_result); BIND(&if_true); { var_result = Int32TrueConstant(); Goto(&exit); } BIND(&if_false); { var_result = Int32FalseConstant(); Goto(&exit); } BIND(&exit); return var_result.value(); } TNode<BoolT> CodeStubAssembler::IsFastJSArrayWithNoCustomIteration( TNode<Object> object, TNode<Context> context) { Label if_false(this, Label::kDeferred), if_fast(this), exit(this); TVARIABLE(BoolT, var_result); BranchIfFastJSArray(object, context, &if_fast, &if_false, true); BIND(&if_fast); { // Check that the Array.prototype hasn't been modified in a way that would // affect iteration. Node* protector_cell = LoadRoot(RootIndex::kArrayIteratorProtector); DCHECK(isolate()->heap()->array_iterator_protector()->IsPropertyCell()); var_result = WordEqual(LoadObjectField(protector_cell, PropertyCell::kValueOffset), SmiConstant(Isolate::kProtectorValid)); Goto(&exit); } BIND(&if_false); { var_result = Int32FalseConstant(); Goto(&exit); } BIND(&exit); return var_result.value(); } void CodeStubAssembler::BranchIfFastJSArray(Node* object, Node* context, Label* if_true, Label* if_false, bool iteration_only) { GotoIfForceSlowPath(if_false); // Bailout if receiver is a Smi. GotoIf(TaggedIsSmi(object), if_false); Node* map = LoadMap(object); GotoIfNot(IsJSArrayMap(map), if_false); // Bailout if receiver has slow elements. Node* elements_kind = LoadMapElementsKind(map); GotoIfNot(IsFastElementsKind(elements_kind), if_false); // Verify that our prototype is the initial array prototype. GotoIfNot(IsPrototypeInitialArrayPrototype(context, map), if_false); if (iteration_only) { // If we are only iterating over the array, there is no need to check // the NoElements protector if the array is not holey. GotoIfNot(IsHoleyFastElementsKind(elements_kind), if_true); } Branch(IsNoElementsProtectorCellInvalid(), if_false, if_true); } void CodeStubAssembler::BranchIfFastJSArrayForCopy(Node* object, Node* context, Label* if_true, Label* if_false) { GotoIf(IsArraySpeciesProtectorCellInvalid(), if_false); BranchIfFastJSArray(object, context, if_true, if_false); } void CodeStubAssembler::GotoIfForceSlowPath(Label* if_true) { #ifdef V8_ENABLE_FORCE_SLOW_PATH Node* const force_slow_path_addr = ExternalConstant(ExternalReference::force_slow_path(isolate())); Node* const force_slow = Load(MachineType::Uint8(), force_slow_path_addr); GotoIf(force_slow, if_true); #endif } void CodeStubAssembler::GotoIfDebugExecutionModeChecksSideEffects( Label* if_true) { STATIC_ASSERT(sizeof(DebugInfo::ExecutionMode) >= sizeof(int32_t)); TNode<ExternalReference> execution_mode_address = ExternalConstant( ExternalReference::debug_execution_mode_address(isolate())); TNode<Int32T> execution_mode = UncheckedCast<Int32T>(Load(MachineType::Int32(), execution_mode_address)); GotoIf(Word32Equal(execution_mode, Int32Constant(DebugInfo::kSideEffects)), if_true); } TNode<HeapObject> CodeStubAssembler::AllocateRaw(TNode<IntPtrT> size_in_bytes, AllocationFlags flags, TNode<RawPtrT> top_address, TNode<RawPtrT> limit_address) { // TODO(jgruber, chromium:848672): Call FatalProcessOutOfMemory if this fails. { intptr_t constant_value; if (ToIntPtrConstant(size_in_bytes, constant_value)) { CHECK(Internals::IsValidSmi(constant_value)); CHECK_GT(constant_value, 0); } else { CSA_CHECK(this, IsValidPositiveSmi(size_in_bytes)); } } TNode<RawPtrT> top = UncheckedCast<RawPtrT>(Load(MachineType::Pointer(), top_address)); TNode<RawPtrT> limit = UncheckedCast<RawPtrT>(Load(MachineType::Pointer(), limit_address)); // If there's not enough space, call the runtime. TVARIABLE(Object, result); Label runtime_call(this, Label::kDeferred), no_runtime_call(this), out(this); bool needs_double_alignment = flags & kDoubleAlignment; if (flags & kAllowLargeObjectAllocation) { Label next(this); GotoIf(IsRegularHeapObjectSize(size_in_bytes), &next); TNode<Smi> runtime_flags = SmiConstant( Smi::FromInt(AllocateDoubleAlignFlag::encode(needs_double_alignment) | AllocateTargetSpace::encode(AllocationSpace::LO_SPACE))); result = CallRuntime(Runtime::kAllocateInTargetSpace, NoContextConstant(), SmiTag(size_in_bytes), runtime_flags); Goto(&out); BIND(&next); } TVARIABLE(IntPtrT, adjusted_size, size_in_bytes); if (needs_double_alignment) { Label next(this); GotoIfNot(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)), &next); adjusted_size = IntPtrAdd(size_in_bytes, IntPtrConstant(4)); Goto(&next); BIND(&next); } TNode<IntPtrT> new_top = IntPtrAdd(UncheckedCast<IntPtrT>(top), adjusted_size.value()); Branch(UintPtrGreaterThanOrEqual(new_top, limit), &runtime_call, &no_runtime_call); BIND(&runtime_call); { if (flags & kPretenured) { TNode<Smi> runtime_flags = SmiConstant(Smi::FromInt( AllocateDoubleAlignFlag::encode(needs_double_alignment) | AllocateTargetSpace::encode(AllocationSpace::OLD_SPACE))); result = CallRuntime(Runtime::kAllocateInTargetSpace, NoContextConstant(), SmiTag(size_in_bytes), runtime_flags); } else { result = CallRuntime(Runtime::kAllocateInNewSpace, NoContextConstant(), SmiTag(size_in_bytes)); } Goto(&out); } // When there is enough space, return `top' and bump it up. BIND(&no_runtime_call); { StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address, new_top); TVARIABLE(IntPtrT, address, UncheckedCast<IntPtrT>(top)); if (needs_double_alignment) { Label next(this); GotoIf(IntPtrEqual(adjusted_size.value(), size_in_bytes), &next); // Store a filler and increase the address by kPointerSize. StoreNoWriteBarrier(MachineRepresentation::kTagged, top, LoadRoot(RootIndex::kOnePointerFillerMap)); address = IntPtrAdd(UncheckedCast<IntPtrT>(top), IntPtrConstant(4)); Goto(&next); BIND(&next); } result = BitcastWordToTagged( IntPtrAdd(address.value(), IntPtrConstant(kHeapObjectTag))); Goto(&out); } BIND(&out); return UncheckedCast<HeapObject>(result.value()); } TNode<HeapObject> CodeStubAssembler::AllocateRawUnaligned( TNode<IntPtrT> size_in_bytes, AllocationFlags flags, TNode<RawPtrT> top_address, TNode<RawPtrT> limit_address) { DCHECK_EQ(flags & kDoubleAlignment, 0); return AllocateRaw(size_in_bytes, flags, top_address, limit_address); } TNode<HeapObject> CodeStubAssembler::AllocateRawDoubleAligned( TNode<IntPtrT> size_in_bytes, AllocationFlags flags, TNode<RawPtrT> top_address, TNode<RawPtrT> limit_address) { #if defined(V8_HOST_ARCH_32_BIT) return AllocateRaw(size_in_bytes, flags | kDoubleAlignment, top_address, limit_address); #elif defined(V8_HOST_ARCH_64_BIT) // Allocation on 64 bit machine is naturally double aligned return AllocateRaw(size_in_bytes, flags & ~kDoubleAlignment, top_address, limit_address); #else #error Architecture not supported #endif } TNode<HeapObject> CodeStubAssembler::AllocateInNewSpace( TNode<IntPtrT> size_in_bytes, AllocationFlags flags) { DCHECK(flags == kNone || flags == kDoubleAlignment); CSA_ASSERT(this, IsRegularHeapObjectSize(size_in_bytes)); return Allocate(size_in_bytes, flags); } TNode<HeapObject> CodeStubAssembler::Allocate(TNode<IntPtrT> size_in_bytes, AllocationFlags flags) { Comment("Allocate"); bool const new_space = !(flags & kPretenured); TNode<ExternalReference> top_address = ExternalConstant( new_space ? ExternalReference::new_space_allocation_top_address(isolate()) : ExternalReference::old_space_allocation_top_address(isolate())); DCHECK_EQ(kPointerSize, ExternalReference::new_space_allocation_limit_address(isolate()) .address() - ExternalReference::new_space_allocation_top_address(isolate()) .address()); DCHECK_EQ(kPointerSize, ExternalReference::old_space_allocation_limit_address(isolate()) .address() - ExternalReference::old_space_allocation_top_address(isolate()) .address()); TNode<IntPtrT> limit_address = IntPtrAdd( ReinterpretCast<IntPtrT>(top_address), IntPtrConstant(kPointerSize)); if (flags & kDoubleAlignment) { return AllocateRawDoubleAligned(size_in_bytes, flags, ReinterpretCast<RawPtrT>(top_address), ReinterpretCast<RawPtrT>(limit_address)); } else { return AllocateRawUnaligned(size_in_bytes, flags, ReinterpretCast<RawPtrT>(top_address), ReinterpretCast<RawPtrT>(limit_address)); } } TNode<HeapObject> CodeStubAssembler::AllocateInNewSpace(int size_in_bytes, AllocationFlags flags) { CHECK(flags == kNone || flags == kDoubleAlignment); DCHECK_LE(size_in_bytes, kMaxRegularHeapObjectSize); return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags); } TNode<HeapObject> CodeStubAssembler::Allocate(int size_in_bytes, AllocationFlags flags) { return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags); } TNode<HeapObject> CodeStubAssembler::InnerAllocate(TNode<HeapObject> previous, TNode<IntPtrT> offset) { return UncheckedCast<HeapObject>( BitcastWordToTagged(IntPtrAdd(BitcastTaggedToWord(previous), offset))); } TNode<HeapObject> CodeStubAssembler::InnerAllocate(TNode<HeapObject> previous, int offset) { return InnerAllocate(previous, IntPtrConstant(offset)); } TNode<BoolT> CodeStubAssembler::IsRegularHeapObjectSize(TNode<IntPtrT> size) { return UintPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)); } void CodeStubAssembler::BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false) { Label if_smi(this), if_notsmi(this), if_heapnumber(this, Label::kDeferred), if_bigint(this, Label::kDeferred); // Rule out false {value}. GotoIf(WordEqual(value, FalseConstant()), if_false); // Check if {value} is a Smi or a HeapObject. Branch(TaggedIsSmi(value), &if_smi, &if_notsmi); BIND(&if_smi); { // The {value} is a Smi, only need to check against zero. BranchIfSmiEqual(CAST(value), SmiConstant(0), if_false, if_true); } BIND(&if_notsmi); { // Check if {value} is the empty string. GotoIf(IsEmptyString(value), if_false); // The {value} is a HeapObject, load its map. Node* value_map = LoadMap(value); // Only null, undefined and document.all have the undetectable bit set, // so we can return false immediately when that bit is set. GotoIf(IsUndetectableMap(value_map), if_false); // We still need to handle numbers specially, but all other {value}s // that make it here yield true. GotoIf(IsHeapNumberMap(value_map), &if_heapnumber); Branch(IsBigInt(value), &if_bigint, if_true); BIND(&if_heapnumber); { // Load the floating point value of {value}. Node* value_value = LoadObjectField(value, HeapNumber::kValueOffset, MachineType::Float64()); // Check if the floating point {value} is neither 0.0, -0.0 nor NaN. Branch(Float64LessThan(Float64Constant(0.0), Float64Abs(value_value)), if_true, if_false); } BIND(&if_bigint); { Node* result = CallRuntime(Runtime::kBigIntToBoolean, NoContextConstant(), value); CSA_ASSERT(this, IsBoolean(result)); Branch(WordEqual(result, TrueConstant()), if_true, if_false); } } } Node* CodeStubAssembler::LoadFromFrame(int offset, MachineType rep) { Node* frame_pointer = LoadFramePointer(); return Load(rep, frame_pointer, IntPtrConstant(offset)); } Node* CodeStubAssembler::LoadFromParentFrame(int offset, MachineType rep) { Node* frame_pointer = LoadParentFramePointer(); return Load(rep, frame_pointer, IntPtrConstant(offset)); } TNode<JSFunction> CodeStubAssembler::LoadTargetFromFrame() { DCHECK(IsJSFunctionCall()); return CAST(LoadFromFrame(StandardFrameConstants::kFunctionOffset, MachineType::TaggedPointer())); } Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset, MachineType rep) { return Load(rep, buffer, IntPtrConstant(offset)); } Node* CodeStubAssembler::LoadObjectField(SloppyTNode<HeapObject> object, int offset, MachineType rep) { CSA_ASSERT(this, IsStrong(object)); return Load(rep, object, IntPtrConstant(offset - kHeapObjectTag)); } Node* CodeStubAssembler::LoadObjectField(SloppyTNode<HeapObject> object, SloppyTNode<IntPtrT> offset, MachineType rep) { CSA_ASSERT(this, IsStrong(object)); return Load(rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag))); } TNode<IntPtrT> CodeStubAssembler::LoadAndUntagObjectField( SloppyTNode<HeapObject> object, int offset) { if (SmiValuesAre32Bits()) { #if V8_TARGET_LITTLE_ENDIAN offset += kPointerSize / 2; #endif return ChangeInt32ToIntPtr( LoadObjectField(object, offset, MachineType::Int32())); } else { return SmiToIntPtr( LoadObjectField(object, offset, MachineType::AnyTagged())); } } TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32ObjectField(Node* object, int offset) { if (SmiValuesAre32Bits()) { #if V8_TARGET_LITTLE_ENDIAN offset += kPointerSize / 2; #endif return UncheckedCast<Int32T>( LoadObjectField(object, offset, MachineType::Int32())); } else { return SmiToInt32( LoadObjectField(object, offset, MachineType::AnyTagged())); } } TNode<IntPtrT> CodeStubAssembler::LoadAndUntagSmi(Node* base, int index) { if (SmiValuesAre32Bits()) { #if V8_TARGET_LITTLE_ENDIAN index += kPointerSize / 2; #endif return ChangeInt32ToIntPtr( Load(MachineType::Int32(), base, IntPtrConstant(index))); } else { return SmiToIntPtr( Load(MachineType::AnyTagged(), base, IntPtrConstant(index))); } } TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32Root( RootIndex root_index) { Node* isolate_root = ExternalConstant(ExternalReference::isolate_root(isolate())); int offset = IsolateData::root_slot_offset(root_index); if (SmiValuesAre32Bits()) { #if V8_TARGET_LITTLE_ENDIAN offset += kPointerSize / 2; #endif return UncheckedCast<Int32T>( Load(MachineType::Int32(), isolate_root, IntPtrConstant(offset))); } else { return SmiToInt32( Load(MachineType::AnyTagged(), isolate_root, IntPtrConstant(offset))); } } Node* CodeStubAssembler::StoreAndTagSmi(Node* base, int offset, Node* value) { if (SmiValuesAre32Bits()) { int zero_offset = offset + kPointerSize / 2; int payload_offset = offset; #if V8_TARGET_LITTLE_ENDIAN std::swap(zero_offset, payload_offset); #endif StoreNoWriteBarrier(MachineRepresentation::kWord32, base, IntPtrConstant(zero_offset), Int32Constant(0)); return StoreNoWriteBarrier(MachineRepresentation::kWord32, base, IntPtrConstant(payload_offset), TruncateInt64ToInt32(value)); } else { return StoreNoWriteBarrier(MachineRepresentation::kTaggedSigned, base, IntPtrConstant(offset), SmiTag(value)); } } TNode<Float64T> CodeStubAssembler::LoadHeapNumberValue( SloppyTNode<HeapNumber> object) { return TNode<Float64T>::UncheckedCast(LoadObjectField( object, HeapNumber::kValueOffset, MachineType::Float64())); } TNode<Map> CodeStubAssembler::LoadMap(SloppyTNode<HeapObject> object) { return UncheckedCast<Map>(LoadObjectField(object, HeapObject::kMapOffset)); } TNode<Int32T> CodeStubAssembler::LoadInstanceType( SloppyTNode<HeapObject> object) { return LoadMapInstanceType(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::HasInstanceType(SloppyTNode<HeapObject> object, InstanceType instance_type) { return InstanceTypeEqual(LoadInstanceType(object), instance_type); } TNode<BoolT> CodeStubAssembler::DoesntHaveInstanceType( SloppyTNode<HeapObject> object, InstanceType instance_type) { return Word32NotEqual(LoadInstanceType(object), Int32Constant(instance_type)); } TNode<BoolT> CodeStubAssembler::TaggedDoesntHaveInstanceType( SloppyTNode<HeapObject> any_tagged, InstanceType type) { /* return Phi <TaggedIsSmi(val), DoesntHaveInstanceType(val, type)> */ TNode<BoolT> tagged_is_smi = TaggedIsSmi(any_tagged); return Select<BoolT>( tagged_is_smi, [=]() { return tagged_is_smi; }, [=]() { return DoesntHaveInstanceType(any_tagged, type); }); } TNode<HeapObject> CodeStubAssembler::LoadFastProperties( SloppyTNode<JSObject> object) { CSA_SLOW_ASSERT(this, Word32BinaryNot(IsDictionaryMap(LoadMap(object)))); TNode<Object> properties = LoadObjectField(object, JSObject::kPropertiesOrHashOffset); return Select<HeapObject>(TaggedIsSmi(properties), [=] { return EmptyFixedArrayConstant(); }, [=] { return CAST(properties); }); } TNode<HeapObject> CodeStubAssembler::LoadSlowProperties( SloppyTNode<JSObject> object) { CSA_SLOW_ASSERT(this, IsDictionaryMap(LoadMap(object))); TNode<Object> properties = LoadObjectField(object, JSObject::kPropertiesOrHashOffset); return Select<HeapObject>(TaggedIsSmi(properties), [=] { return EmptyPropertyDictionaryConstant(); }, [=] { return CAST(properties); }); } TNode<FixedArrayBase> CodeStubAssembler::LoadElements( SloppyTNode<JSObject> object) { return CAST(LoadObjectField(object, JSObject::kElementsOffset)); } TNode<Number> CodeStubAssembler::LoadJSArrayLength(SloppyTNode<JSArray> array) { CSA_ASSERT(this, IsJSArray(array)); return CAST(LoadObjectField(array, JSArray::kLengthOffset)); } TNode<Object> CodeStubAssembler::LoadJSArgumentsObjectWithLength( SloppyTNode<JSArgumentsObjectWithLength> array) { return LoadObjectField(array, JSArgumentsObjectWithLength::kLengthOffset); } TNode<Smi> CodeStubAssembler::LoadFastJSArrayLength( SloppyTNode<JSArray> array) { TNode<Object> length = LoadJSArrayLength(array); CSA_ASSERT(this, IsFastElementsKind(LoadElementsKind(array))); // JSArray length is always a positive Smi for fast arrays. CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length)); return UncheckedCast<Smi>(length); } TNode<Smi> CodeStubAssembler::LoadFixedArrayBaseLength( SloppyTNode<FixedArrayBase> array) { CSA_SLOW_ASSERT(this, IsNotWeakFixedArraySubclass(array)); return CAST(LoadObjectField(array, FixedArrayBase::kLengthOffset)); } TNode<IntPtrT> CodeStubAssembler::LoadAndUntagFixedArrayBaseLength( SloppyTNode<FixedArrayBase> array) { return LoadAndUntagObjectField(array, FixedArrayBase::kLengthOffset); } TNode<IntPtrT> CodeStubAssembler::LoadFeedbackVectorLength( TNode<FeedbackVector> vector) { return ChangeInt32ToIntPtr( LoadObjectField<Int32T>(vector, FeedbackVector::kLengthOffset)); } TNode<Smi> CodeStubAssembler::LoadWeakFixedArrayLength( TNode<WeakFixedArray> array) { return CAST(LoadObjectField(array, WeakFixedArray::kLengthOffset)); } TNode<IntPtrT> CodeStubAssembler::LoadAndUntagWeakFixedArrayLength( SloppyTNode<WeakFixedArray> array) { return LoadAndUntagObjectField(array, WeakFixedArray::kLengthOffset); } TNode<Int32T> CodeStubAssembler::LoadMapBitField(SloppyTNode<Map> map) { CSA_SLOW_ASSERT(this, IsMap(map)); return UncheckedCast<Int32T>( LoadObjectField(map, Map::kBitFieldOffset, MachineType::Uint8())); } TNode<Int32T> CodeStubAssembler::LoadMapBitField2(SloppyTNode<Map> map) { CSA_SLOW_ASSERT(this, IsMap(map)); return UncheckedCast<Int32T>( LoadObjectField(map, Map::kBitField2Offset, MachineType::Uint8())); } TNode<Uint32T> CodeStubAssembler::LoadMapBitField3(SloppyTNode<Map> map) { CSA_SLOW_ASSERT(this, IsMap(map)); return UncheckedCast<Uint32T>( LoadObjectField(map, Map::kBitField3Offset, MachineType::Uint32())); } TNode<Int32T> CodeStubAssembler::LoadMapInstanceType(SloppyTNode<Map> map) { return UncheckedCast<Int32T>( LoadObjectField(map, Map::kInstanceTypeOffset, MachineType::Uint16())); } TNode<Int32T> CodeStubAssembler::LoadMapElementsKind(SloppyTNode<Map> map) { CSA_SLOW_ASSERT(this, IsMap(map)); Node* bit_field2 = LoadMapBitField2(map); return Signed(DecodeWord32<Map::ElementsKindBits>(bit_field2)); } TNode<Int32T> CodeStubAssembler::LoadElementsKind( SloppyTNode<HeapObject> object) { return LoadMapElementsKind(LoadMap(object)); } TNode<DescriptorArray> CodeStubAssembler::LoadMapDescriptors( SloppyTNode<Map> map) { CSA_SLOW_ASSERT(this, IsMap(map)); return CAST(LoadObjectField(map, Map::kDescriptorsOffset)); } TNode<HeapObject> CodeStubAssembler::LoadMapPrototype(SloppyTNode<Map> map) { CSA_SLOW_ASSERT(this, IsMap(map)); return CAST(LoadObjectField(map, Map::kPrototypeOffset)); } TNode<PrototypeInfo> CodeStubAssembler::LoadMapPrototypeInfo( SloppyTNode<Map> map, Label* if_no_proto_info) { Label if_strong_heap_object(this); CSA_ASSERT(this, IsMap(map)); TNode<MaybeObject> maybe_prototype_info = LoadMaybeWeakObjectField(map, Map::kTransitionsOrPrototypeInfoOffset); TVARIABLE(Object, prototype_info); DispatchMaybeObject(maybe_prototype_info, if_no_proto_info, if_no_proto_info, if_no_proto_info, &if_strong_heap_object, &prototype_info); BIND(&if_strong_heap_object); GotoIfNot(WordEqual(LoadMap(CAST(prototype_info.value())), LoadRoot(RootIndex::kPrototypeInfoMap)), if_no_proto_info); return CAST(prototype_info.value()); } TNode<IntPtrT> CodeStubAssembler::LoadMapInstanceSizeInWords( SloppyTNode<Map> map) { CSA_SLOW_ASSERT(this, IsMap(map)); return ChangeInt32ToIntPtr(LoadObjectField( map, Map::kInstanceSizeInWordsOffset, MachineType::Uint8())); } TNode<IntPtrT> CodeStubAssembler::LoadMapInobjectPropertiesStartInWords( SloppyTNode<Map> map) { CSA_SLOW_ASSERT(this, IsMap(map)); // See Map::GetInObjectPropertiesStartInWords() for details. CSA_ASSERT(this, IsJSObjectMap(map)); return ChangeInt32ToIntPtr(LoadObjectField( map, Map::kInObjectPropertiesStartOrConstructorFunctionIndexOffset, MachineType::Uint8())); } TNode<IntPtrT> CodeStubAssembler::LoadMapConstructorFunctionIndex( SloppyTNode<Map> map) { CSA_SLOW_ASSERT(this, IsMap(map)); // See Map::GetConstructorFunctionIndex() for details. CSA_ASSERT(this, IsPrimitiveInstanceType(LoadMapInstanceType(map))); return ChangeInt32ToIntPtr(LoadObjectField( map, Map::kInObjectPropertiesStartOrConstructorFunctionIndexOffset, MachineType::Uint8())); } TNode<Object> CodeStubAssembler::LoadMapConstructor(SloppyTNode<Map> map) { CSA_SLOW_ASSERT(this, IsMap(map)); TVARIABLE(Object, result, LoadObjectField(map, Map::kConstructorOrBackPointerOffset)); Label done(this), loop(this, &result); Goto(&loop); BIND(&loop); { GotoIf(TaggedIsSmi(result.value()), &done); Node* is_map_type = InstanceTypeEqual(LoadInstanceType(CAST(result.value())), MAP_TYPE); GotoIfNot(is_map_type, &done); result = LoadObjectField(CAST(result.value()), Map::kConstructorOrBackPointerOffset); Goto(&loop); } BIND(&done); return result.value(); } Node* CodeStubAssembler::LoadMapEnumLength(SloppyTNode<Map> map) { CSA_SLOW_ASSERT(this, IsMap(map)); Node* bit_field3 = LoadMapBitField3(map); return DecodeWordFromWord32<Map::EnumLengthBits>(bit_field3); } TNode<Object> CodeStubAssembler::LoadMapBackPointer(SloppyTNode<Map> map) { TNode<HeapObject> object = CAST(LoadObjectField(map, Map::kConstructorOrBackPointerOffset)); return Select<Object>(IsMap(object), [=] { return object; }, [=] { return UndefinedConstant(); }); } TNode<Uint32T> CodeStubAssembler::EnsureOnlyHasSimpleProperties( TNode<Map> map, TNode<Int32T> instance_type, Label* bailout) { // This check can have false positives, since it applies to any JSValueType. GotoIf(IsCustomElementsReceiverInstanceType(instance_type), bailout); TNode<Uint32T> bit_field3 = LoadMapBitField3(map); GotoIf(IsSetWord32(bit_field3, Map::IsDictionaryMapBit::kMask | Map::HasHiddenPrototypeBit::kMask), bailout); return bit_field3; } TNode<IntPtrT> CodeStubAssembler::LoadJSReceiverIdentityHash( SloppyTNode<Object> receiver, Label* if_no_hash) { TVARIABLE(IntPtrT, var_hash); Label done(this), if_smi(this), if_property_array(this), if_property_dictionary(this), if_fixed_array(this); TNode<Object> properties_or_hash = LoadObjectField(TNode<HeapObject>::UncheckedCast(receiver), JSReceiver::kPropertiesOrHashOffset); GotoIf(TaggedIsSmi(properties_or_hash), &if_smi); TNode<HeapObject> properties = TNode<HeapObject>::UncheckedCast(properties_or_hash); TNode<Int32T> properties_instance_type = LoadInstanceType(properties); GotoIf(InstanceTypeEqual(properties_instance_type, PROPERTY_ARRAY_TYPE), &if_property_array); Branch(InstanceTypeEqual(properties_instance_type, NAME_DICTIONARY_TYPE), &if_property_dictionary, &if_fixed_array); BIND(&if_fixed_array); { var_hash = IntPtrConstant(PropertyArray::kNoHashSentinel); Goto(&done); } BIND(&if_smi); { var_hash = SmiUntag(TNode<Smi>::UncheckedCast(properties_or_hash)); Goto(&done); } BIND(&if_property_array); { TNode<IntPtrT> length_and_hash = LoadAndUntagObjectField( properties, PropertyArray::kLengthAndHashOffset); var_hash = TNode<IntPtrT>::UncheckedCast( DecodeWord<PropertyArray::HashField>(length_and_hash)); Goto(&done); } BIND(&if_property_dictionary); { var_hash = SmiUntag(CAST(LoadFixedArrayElement( CAST(properties), NameDictionary::kObjectHashIndex))); Goto(&done); } BIND(&done); if (if_no_hash != nullptr) { GotoIf(IntPtrEqual(var_hash.value(), IntPtrConstant(PropertyArray::kNoHashSentinel)), if_no_hash); } return var_hash.value(); } TNode<Uint32T> CodeStubAssembler::LoadNameHashField(SloppyTNode<Name> name) { CSA_ASSERT(this, IsName(name)); return LoadObjectField<Uint32T>(name, Name::kHashFieldOffset); } TNode<Uint32T> CodeStubAssembler::LoadNameHash(SloppyTNode<Name> name, Label* if_hash_not_computed) { TNode<Uint32T> hash_field = LoadNameHashField(name); if (if_hash_not_computed != nullptr) { GotoIf(IsSetWord32(hash_field, Name::kHashNotComputedMask), if_hash_not_computed); } return Unsigned(Word32Shr(hash_field, Int32Constant(Name::kHashShift))); } TNode<Smi> CodeStubAssembler::LoadStringLengthAsSmi( SloppyTNode<String> string) { return SmiFromIntPtr(LoadStringLengthAsWord(string)); } TNode<IntPtrT> CodeStubAssembler::LoadStringLengthAsWord( SloppyTNode<String> string) { return Signed(ChangeUint32ToWord(LoadStringLengthAsWord32(string))); } TNode<Uint32T> CodeStubAssembler::LoadStringLengthAsWord32( SloppyTNode<String> string) { CSA_ASSERT(this, IsString(string)); return LoadObjectField<Uint32T>(string, String::kLengthOffset); } Node* CodeStubAssembler::PointerToSeqStringData(Node* seq_string) { CSA_ASSERT(this, IsString(seq_string)); CSA_ASSERT(this, IsSequentialStringInstanceType(LoadInstanceType(seq_string))); STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize); return IntPtrAdd( BitcastTaggedToWord(seq_string), IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag)); } Node* CodeStubAssembler::LoadJSValueValue(Node* object) { CSA_ASSERT(this, IsJSValue(object)); return LoadObjectField(object, JSValue::kValueOffset); } void CodeStubAssembler::DispatchMaybeObject(TNode<MaybeObject> maybe_object, Label* if_smi, Label* if_cleared, Label* if_weak, Label* if_strong, TVariable<Object>* extracted) { Label inner_if_smi(this), inner_if_strong(this); GotoIf(TaggedIsSmi(maybe_object), &inner_if_smi); GotoIf(IsCleared(maybe_object), if_cleared); GotoIf(Word32Equal(Word32And(TruncateIntPtrToInt32( BitcastMaybeObjectToWord(maybe_object)), Int32Constant(kHeapObjectTagMask)), Int32Constant(kHeapObjectTag)), &inner_if_strong); *extracted = BitcastWordToTagged(WordAnd(BitcastMaybeObjectToWord(maybe_object), IntPtrConstant(~kWeakHeapObjectMask))); Goto(if_weak); BIND(&inner_if_smi); *extracted = CAST(maybe_object); Goto(if_smi); BIND(&inner_if_strong); *extracted = CAST(maybe_object); Goto(if_strong); } TNode<BoolT> CodeStubAssembler::IsStrong(TNode<MaybeObject> value) { return WordEqual(WordAnd(BitcastMaybeObjectToWord(value), IntPtrConstant(kHeapObjectTagMask)), IntPtrConstant(kHeapObjectTag)); } TNode<HeapObject> CodeStubAssembler::GetHeapObjectIfStrong( TNode<MaybeObject> value, Label* if_not_strong) { GotoIfNot(IsStrong(value), if_not_strong); return CAST(value); } TNode<BoolT> CodeStubAssembler::IsWeakOrCleared(TNode<MaybeObject> value) { return Word32Equal( Word32And(TruncateIntPtrToInt32(BitcastMaybeObjectToWord(value)), Int32Constant(kHeapObjectTagMask)), Int32Constant(kWeakHeapObjectTag)); } TNode<BoolT> CodeStubAssembler::IsCleared(TNode<MaybeObject> value) { return Word32Equal(TruncateIntPtrToInt32(BitcastMaybeObjectToWord(value)), Int32Constant(kClearedWeakHeapObjectLower32)); } TNode<BoolT> CodeStubAssembler::IsNotCleared(TNode<MaybeObject> value) { return Word32NotEqual(TruncateIntPtrToInt32(BitcastMaybeObjectToWord(value)), Int32Constant(kClearedWeakHeapObjectLower32)); } TNode<HeapObject> CodeStubAssembler::GetHeapObjectAssumeWeak( TNode<MaybeObject> value) { CSA_ASSERT(this, IsWeakOrCleared(value)); CSA_ASSERT(this, IsNotCleared(value)); return UncheckedCast<HeapObject>(BitcastWordToTagged(WordAnd( BitcastMaybeObjectToWord(value), IntPtrConstant(~kWeakHeapObjectMask)))); } TNode<HeapObject> CodeStubAssembler::GetHeapObjectAssumeWeak( TNode<MaybeObject> value, Label* if_cleared) { GotoIf(IsCleared(value), if_cleared); return GetHeapObjectAssumeWeak(value); } TNode<BoolT> CodeStubAssembler::IsWeakReferenceTo(TNode<MaybeObject> object, TNode<Object> value) { return WordEqual(WordAnd(BitcastMaybeObjectToWord(object), IntPtrConstant(~kWeakHeapObjectMask)), BitcastTaggedToWord(value)); } TNode<BoolT> CodeStubAssembler::IsStrongReferenceTo(TNode<MaybeObject> object, TNode<Object> value) { return WordEqual(BitcastMaybeObjectToWord(object), BitcastTaggedToWord(value)); } TNode<BoolT> CodeStubAssembler::IsNotWeakReferenceTo(TNode<MaybeObject> object, TNode<Object> value) { return WordNotEqual(WordAnd(BitcastMaybeObjectToWord(object), IntPtrConstant(~kWeakHeapObjectMask)), BitcastTaggedToWord(value)); } TNode<MaybeObject> CodeStubAssembler::MakeWeak(TNode<HeapObject> value) { return ReinterpretCast<MaybeObject>(BitcastWordToTagged( WordOr(BitcastTaggedToWord(value), IntPtrConstant(kWeakHeapObjectTag)))); } TNode<MaybeObject> CodeStubAssembler::LoadArrayElement( SloppyTNode<HeapObject> array, int array_header_size, Node* index_node, int additional_offset, ParameterMode parameter_mode, LoadSensitivity needs_poisoning) { CSA_ASSERT(this, IntPtrGreaterThanOrEqual( ParameterToIntPtr(index_node, parameter_mode), IntPtrConstant(0))); DCHECK_EQ(additional_offset % kPointerSize, 0); int32_t header_size = array_header_size + additional_offset - kHeapObjectTag; TNode<IntPtrT> offset = ElementOffsetFromIndex(index_node, HOLEY_ELEMENTS, parameter_mode, header_size); STATIC_ASSERT(FixedArrayBase::kLengthOffset == WeakFixedArray::kLengthOffset); STATIC_ASSERT(FixedArrayBase::kLengthOffset == PropertyArray::kLengthAndHashOffset); // Check that index_node + additional_offset <= object.length. // TODO(cbruni): Use proper LoadXXLength helpers CSA_ASSERT( this, IsOffsetInBounds( offset, Select<IntPtrT>( IsPropertyArray(array), [=] { TNode<IntPtrT> length_and_hash = LoadAndUntagObjectField( array, PropertyArray::kLengthAndHashOffset); return TNode<IntPtrT>::UncheckedCast( DecodeWord<PropertyArray::LengthField>(length_and_hash)); }, [=] { return LoadAndUntagObjectField(array, FixedArrayBase::kLengthOffset); }), FixedArray::kHeaderSize)); return UncheckedCast<MaybeObject>( Load(MachineType::AnyTagged(), array, offset, needs_poisoning)); } void CodeStubAssembler::FixedArrayBoundsCheck(TNode<FixedArrayBase> array, Node* index, int additional_offset, ParameterMode parameter_mode) { if (!FLAG_fixed_array_bounds_checks) return; DCHECK_EQ(0, additional_offset % kPointerSize); if (parameter_mode == ParameterMode::SMI_PARAMETERS) { TNode<Smi> effective_index; Smi constant_index; bool index_is_constant = ToSmiConstant(index, &constant_index); if (index_is_constant) { effective_index = SmiConstant(Smi::ToInt(constant_index) + additional_offset / kPointerSize); } else if (additional_offset != 0) { effective_index = SmiAdd(CAST(index), SmiConstant(additional_offset / kPointerSize)); } else { effective_index = CAST(index); } CSA_CHECK(this, SmiBelow(effective_index, LoadFixedArrayBaseLength(array))); } else { // IntPtrAdd does constant-folding automatically. TNode<IntPtrT> effective_index = IntPtrAdd(UncheckedCast<IntPtrT>(index), IntPtrConstant(additional_offset / kPointerSize)); CSA_CHECK(this, UintPtrLessThan(effective_index, LoadAndUntagFixedArrayBaseLength(array))); } } TNode<Object> CodeStubAssembler::LoadFixedArrayElement( TNode<FixedArray> object, Node* index_node, int additional_offset, ParameterMode parameter_mode, LoadSensitivity needs_poisoning) { CSA_ASSERT(this, IsFixedArraySubclass(object)); CSA_ASSERT(this, IsNotWeakFixedArraySubclass(object)); FixedArrayBoundsCheck(object, index_node, additional_offset, parameter_mode); TNode<MaybeObject> element = LoadArrayElement(object, FixedArray::kHeaderSize, index_node, additional_offset, parameter_mode, needs_poisoning); return CAST(element); } TNode<Object> CodeStubAssembler::LoadPropertyArrayElement( SloppyTNode<PropertyArray> object, SloppyTNode<IntPtrT> index) { int additional_offset = 0; ParameterMode parameter_mode = INTPTR_PARAMETERS; LoadSensitivity needs_poisoning = LoadSensitivity::kSafe; STATIC_ASSERT(PropertyArray::kHeaderSize == FixedArray::kHeaderSize); return CAST(LoadArrayElement(object, PropertyArray::kHeaderSize, index, additional_offset, parameter_mode, needs_poisoning)); } TNode<IntPtrT> CodeStubAssembler::LoadPropertyArrayLength( TNode<PropertyArray> object) { TNode<IntPtrT> value = LoadAndUntagObjectField(object, PropertyArray::kLengthAndHashOffset); return Signed(DecodeWord<PropertyArray::LengthField>(value)); } TNode<RawPtrT> CodeStubAssembler::LoadFixedTypedArrayBackingStore( TNode<FixedTypedArrayBase> typed_array) { // Backing store = external_pointer + base_pointer. Node* external_pointer = LoadObjectField(typed_array, FixedTypedArrayBase::kExternalPointerOffset, MachineType::Pointer()); Node* base_pointer = LoadObjectField(typed_array, FixedTypedArrayBase::kBasePointerOffset); return UncheckedCast<RawPtrT>( IntPtrAdd(external_pointer, BitcastTaggedToWord(base_pointer))); } Node* CodeStubAssembler::LoadFixedBigInt64ArrayElementAsTagged( Node* data_pointer, Node* offset) { if (Is64()) { TNode<IntPtrT> value = UncheckedCast<IntPtrT>( Load(MachineType::IntPtr(), data_pointer, offset)); return BigIntFromInt64(value); } else { DCHECK(!Is64()); #if defined(V8_TARGET_BIG_ENDIAN) TNode<IntPtrT> high = UncheckedCast<IntPtrT>( Load(MachineType::UintPtr(), data_pointer, offset)); TNode<IntPtrT> low = UncheckedCast<IntPtrT>( Load(MachineType::UintPtr(), data_pointer, Int32Add(offset, Int32Constant(kPointerSize)))); #else TNode<IntPtrT> low = UncheckedCast<IntPtrT>( Load(MachineType::UintPtr(), data_pointer, offset)); TNode<IntPtrT> high = UncheckedCast<IntPtrT>( Load(MachineType::UintPtr(), data_pointer, Int32Add(offset, Int32Constant(kPointerSize)))); #endif return BigIntFromInt32Pair(low, high); } } TNode<BigInt> CodeStubAssembler::BigIntFromInt32Pair(TNode<IntPtrT> low, TNode<IntPtrT> high) { DCHECK(!Is64()); TVARIABLE(BigInt, var_result); TVARIABLE(WordT, var_sign, IntPtrConstant(BigInt::SignBits::encode(false))); TVARIABLE(IntPtrT, var_high, high); TVARIABLE(IntPtrT, var_low, low); Label high_zero(this), negative(this), allocate_one_digit(this), allocate_two_digits(this), if_zero(this), done(this); GotoIf(WordEqual(var_high.value(), IntPtrConstant(0)), &high_zero); Branch(IntPtrLessThan(var_high.value(), IntPtrConstant(0)), &negative, &allocate_two_digits); BIND(&high_zero); Branch(WordEqual(var_low.value(), IntPtrConstant(0)), &if_zero, &allocate_one_digit); BIND(&negative); { var_sign = IntPtrConstant(BigInt::SignBits::encode(true)); // We must negate the value by computing "0 - (high|low)", performing // both parts of the subtraction separately and manually taking care // of the carry bit (which is 1 iff low != 0). var_high = IntPtrSub(IntPtrConstant(0), var_high.value()); Label carry(this), no_carry(this); Branch(WordEqual(var_low.value(), IntPtrConstant(0)), &no_carry, &carry); BIND(&carry); var_high = IntPtrSub(var_high.value(), IntPtrConstant(1)); Goto(&no_carry); BIND(&no_carry); var_low = IntPtrSub(IntPtrConstant(0), var_low.value()); // var_high was non-zero going into this block, but subtracting the // carry bit from it could bring us back onto the "one digit" path. Branch(WordEqual(var_high.value(), IntPtrConstant(0)), &allocate_one_digit, &allocate_two_digits); } BIND(&allocate_one_digit); { var_result = AllocateRawBigInt(IntPtrConstant(1)); StoreBigIntBitfield(var_result.value(), WordOr(var_sign.value(), IntPtrConstant(BigInt::LengthBits::encode(1)))); StoreBigIntDigit(var_result.value(), 0, Unsigned(var_low.value())); Goto(&done); } BIND(&allocate_two_digits); { var_result = AllocateRawBigInt(IntPtrConstant(2)); StoreBigIntBitfield(var_result.value(), WordOr(var_sign.value(), IntPtrConstant(BigInt::LengthBits::encode(2)))); StoreBigIntDigit(var_result.value(), 0, Unsigned(var_low.value())); StoreBigIntDigit(var_result.value(), 1, Unsigned(var_high.value())); Goto(&done); } BIND(&if_zero); var_result = AllocateBigInt(IntPtrConstant(0)); Goto(&done); BIND(&done); return var_result.value(); } TNode<BigInt> CodeStubAssembler::BigIntFromInt64(TNode<IntPtrT> value) { DCHECK(Is64()); TVARIABLE(BigInt, var_result); Label done(this), if_positive(this), if_negative(this), if_zero(this); GotoIf(WordEqual(value, IntPtrConstant(0)), &if_zero); var_result = AllocateRawBigInt(IntPtrConstant(1)); Branch(IntPtrGreaterThan(value, IntPtrConstant(0)), &if_positive, &if_negative); BIND(&if_positive); { StoreBigIntBitfield(var_result.value(), IntPtrConstant(BigInt::SignBits::encode(false) | BigInt::LengthBits::encode(1))); StoreBigIntDigit(var_result.value(), 0, Unsigned(value)); Goto(&done); } BIND(&if_negative); { StoreBigIntBitfield(var_result.value(), IntPtrConstant(BigInt::SignBits::encode(true) | BigInt::LengthBits::encode(1))); StoreBigIntDigit(var_result.value(), 0, Unsigned(IntPtrSub(IntPtrConstant(0), value))); Goto(&done); } BIND(&if_zero); { var_result = AllocateBigInt(IntPtrConstant(0)); Goto(&done); } BIND(&done); return var_result.value(); } Node* CodeStubAssembler::LoadFixedBigUint64ArrayElementAsTagged( Node* data_pointer, Node* offset) { Label if_zero(this), done(this); if (Is64()) { TNode<UintPtrT> value = UncheckedCast<UintPtrT>( Load(MachineType::UintPtr(), data_pointer, offset)); return BigIntFromUint64(value); } else { DCHECK(!Is64()); #if defined(V8_TARGET_BIG_ENDIAN) TNode<UintPtrT> high = UncheckedCast<UintPtrT>( Load(MachineType::UintPtr(), data_pointer, offset)); TNode<UintPtrT> low = UncheckedCast<UintPtrT>( Load(MachineType::UintPtr(), data_pointer, Int32Add(offset, Int32Constant(kPointerSize)))); #else TNode<UintPtrT> low = UncheckedCast<UintPtrT>( Load(MachineType::UintPtr(), data_pointer, offset)); TNode<UintPtrT> high = UncheckedCast<UintPtrT>( Load(MachineType::UintPtr(), data_pointer, Int32Add(offset, Int32Constant(kPointerSize)))); #endif return BigIntFromUint32Pair(low, high); } } TNode<BigInt> CodeStubAssembler::BigIntFromUint32Pair(TNode<UintPtrT> low, TNode<UintPtrT> high) { DCHECK(!Is64()); TVARIABLE(BigInt, var_result); Label high_zero(this), if_zero(this), done(this); GotoIf(WordEqual(high, IntPtrConstant(0)), &high_zero); var_result = AllocateBigInt(IntPtrConstant(2)); StoreBigIntDigit(var_result.value(), 0, low); StoreBigIntDigit(var_result.value(), 1, high); Goto(&done); BIND(&high_zero); GotoIf(WordEqual(low, IntPtrConstant(0)), &if_zero); var_result = AllocateBigInt(IntPtrConstant(1)); StoreBigIntDigit(var_result.value(), 0, low); Goto(&done); BIND(&if_zero); var_result = AllocateBigInt(IntPtrConstant(0)); Goto(&done); BIND(&done); return var_result.value(); } TNode<BigInt> CodeStubAssembler::BigIntFromUint64(TNode<UintPtrT> value) { DCHECK(Is64()); TVARIABLE(BigInt, var_result); Label done(this), if_zero(this); GotoIf(WordEqual(value, IntPtrConstant(0)), &if_zero); var_result = AllocateBigInt(IntPtrConstant(1)); StoreBigIntDigit(var_result.value(), 0, value); Goto(&done); BIND(&if_zero); var_result = AllocateBigInt(IntPtrConstant(0)); Goto(&done); BIND(&done); return var_result.value(); } Node* CodeStubAssembler::LoadFixedTypedArrayElementAsTagged( Node* data_pointer, Node* index_node, ElementsKind elements_kind, ParameterMode parameter_mode) { Node* offset = ElementOffsetFromIndex(index_node, elements_kind, parameter_mode, 0); switch (elements_kind) { case UINT8_ELEMENTS: /* fall through */ case UINT8_CLAMPED_ELEMENTS: return SmiFromInt32(Load(MachineType::Uint8(), data_pointer, offset)); case INT8_ELEMENTS: return SmiFromInt32(Load(MachineType::Int8(), data_pointer, offset)); case UINT16_ELEMENTS: return SmiFromInt32(Load(MachineType::Uint16(), data_pointer, offset)); case INT16_ELEMENTS: return SmiFromInt32(Load(MachineType::Int16(), data_pointer, offset)); case UINT32_ELEMENTS: return ChangeUint32ToTagged( Load(MachineType::Uint32(), data_pointer, offset)); case INT32_ELEMENTS: return ChangeInt32ToTagged( Load(MachineType::Int32(), data_pointer, offset)); case FLOAT32_ELEMENTS: return AllocateHeapNumberWithValue(ChangeFloat32ToFloat64( Load(MachineType::Float32(), data_pointer, offset))); case FLOAT64_ELEMENTS: return AllocateHeapNumberWithValue( Load(MachineType::Float64(), data_pointer, offset)); case BIGINT64_ELEMENTS: return LoadFixedBigInt64ArrayElementAsTagged(data_pointer, offset); case BIGUINT64_ELEMENTS: return LoadFixedBigUint64ArrayElementAsTagged(data_pointer, offset); default: UNREACHABLE(); } } TNode<Numeric> CodeStubAssembler::LoadFixedTypedArrayElementAsTagged( TNode<WordT> data_pointer, TNode<Smi> index, TNode<Int32T> elements_kind) { TVARIABLE(Numeric, var_result); Label done(this), if_unknown_type(this, Label::kDeferred); int32_t elements_kinds[] = { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) TYPE##_ELEMENTS, TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE }; #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) Label if_##type##array(this); TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE Label* elements_kind_labels[] = { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) &if_##type##array, TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE }; STATIC_ASSERT(arraysize(elements_kinds) == arraysize(elements_kind_labels)); Switch(elements_kind, &if_unknown_type, elements_kinds, elements_kind_labels, arraysize(elements_kinds)); BIND(&if_unknown_type); Unreachable(); #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \ BIND(&if_##type##array); \ { \ var_result = CAST(LoadFixedTypedArrayElementAsTagged( \ data_pointer, index, TYPE##_ELEMENTS, SMI_PARAMETERS)); \ Goto(&done); \ } TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE BIND(&done); return var_result.value(); } void CodeStubAssembler::StoreFixedTypedArrayElementFromTagged( TNode<Context> context, TNode<FixedTypedArrayBase> elements, TNode<Object> index_node, TNode<Object> value, ElementsKind elements_kind, ParameterMode parameter_mode) { TNode<RawPtrT> data_pointer = LoadFixedTypedArrayBackingStore(elements); switch (elements_kind) { case UINT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: case INT8_ELEMENTS: case UINT16_ELEMENTS: case INT16_ELEMENTS: StoreElement(data_pointer, elements_kind, index_node, SmiToInt32(CAST(value)), parameter_mode); break; case UINT32_ELEMENTS: case INT32_ELEMENTS: StoreElement(data_pointer, elements_kind, index_node, TruncateTaggedToWord32(context, value), parameter_mode); break; case FLOAT32_ELEMENTS: StoreElement(data_pointer, elements_kind, index_node, TruncateFloat64ToFloat32(LoadHeapNumberValue(CAST(value))), parameter_mode); break; case FLOAT64_ELEMENTS: StoreElement(data_pointer, elements_kind, index_node, LoadHeapNumberValue(CAST(value)), parameter_mode); break; case BIGUINT64_ELEMENTS: case BIGINT64_ELEMENTS: { TNode<IntPtrT> offset = ElementOffsetFromIndex(index_node, elements_kind, parameter_mode, 0); EmitBigTypedArrayElementStore(elements, data_pointer, offset, CAST(value)); break; } default: UNREACHABLE(); } } TNode<MaybeObject> CodeStubAssembler::LoadFeedbackVectorSlot( Node* object, Node* slot_index_node, int additional_offset, ParameterMode parameter_mode) { CSA_SLOW_ASSERT(this, IsFeedbackVector(object)); CSA_SLOW_ASSERT(this, MatchesParameterMode(slot_index_node, parameter_mode)); int32_t header_size = FeedbackVector::kFeedbackSlotsOffset + additional_offset - kHeapObjectTag; Node* offset = ElementOffsetFromIndex(slot_index_node, HOLEY_ELEMENTS, parameter_mode, header_size); CSA_SLOW_ASSERT( this, IsOffsetInBounds(offset, LoadFeedbackVectorLength(CAST(object)), FeedbackVector::kHeaderSize)); return UncheckedCast<MaybeObject>( Load(MachineType::AnyTagged(), object, offset)); } TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32ArrayElement( SloppyTNode<HeapObject> object, int array_header_size, Node* index_node, int additional_offset, ParameterMode parameter_mode) { CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode)); DCHECK_EQ(additional_offset % kPointerSize, 0); int endian_correction = 0; #if V8_TARGET_LITTLE_ENDIAN if (SmiValuesAre32Bits()) endian_correction = kPointerSize / 2; #endif int32_t header_size = array_header_size + additional_offset - kHeapObjectTag + endian_correction; Node* offset = ElementOffsetFromIndex(index_node, HOLEY_ELEMENTS, parameter_mode, header_size); STATIC_ASSERT(FixedArrayBase::kLengthOffset == WeakFixedArray::kLengthOffset); // Check that index_node + additional_offset <= object.length. // TODO(cbruni): Use proper LoadXXLength helpers CSA_ASSERT(this, IsOffsetInBounds( offset, LoadAndUntagObjectField(object, FixedArrayBase::kLengthOffset), FixedArray::kHeaderSize + endian_correction)); if (SmiValuesAre32Bits()) { return UncheckedCast<Int32T>(Load(MachineType::Int32(), object, offset)); } else { return SmiToInt32(Load(MachineType::AnyTagged(), object, offset)); } } TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32FixedArrayElement( SloppyTNode<HeapObject> object, Node* index_node, int additional_offset, ParameterMode parameter_mode) { CSA_SLOW_ASSERT(this, IsFixedArraySubclass(object)); return LoadAndUntagToWord32ArrayElement(object, FixedArray::kHeaderSize, index_node, additional_offset, parameter_mode); } TNode<MaybeObject> CodeStubAssembler::LoadWeakFixedArrayElement( TNode<WeakFixedArray> object, Node* index, int additional_offset, ParameterMode parameter_mode, LoadSensitivity needs_poisoning) { return LoadArrayElement(object, WeakFixedArray::kHeaderSize, index, additional_offset, parameter_mode, needs_poisoning); } TNode<Float64T> CodeStubAssembler::LoadFixedDoubleArrayElement( SloppyTNode<FixedDoubleArray> object, Node* index_node, MachineType machine_type, int additional_offset, ParameterMode parameter_mode, Label* if_hole) { CSA_ASSERT(this, IsFixedDoubleArray(object)); DCHECK_EQ(additional_offset % kPointerSize, 0); CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode)); int32_t header_size = FixedDoubleArray::kHeaderSize + additional_offset - kHeapObjectTag; TNode<IntPtrT> offset = ElementOffsetFromIndex( index_node, HOLEY_DOUBLE_ELEMENTS, parameter_mode, header_size); CSA_ASSERT(this, IsOffsetInBounds( offset, LoadAndUntagFixedArrayBaseLength(object), FixedDoubleArray::kHeaderSize, HOLEY_DOUBLE_ELEMENTS)); return LoadDoubleWithHoleCheck(object, offset, if_hole, machine_type); } TNode<Object> CodeStubAssembler::LoadFixedArrayBaseElementAsTagged( TNode<FixedArrayBase> elements, TNode<IntPtrT> index, TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole) { TVARIABLE(Object, var_result); Label done(this), if_packed(this), if_holey(this), if_packed_double(this), if_holey_double(this), if_dictionary(this, Label::kDeferred); int32_t kinds[] = {// Handled by if_packed. PACKED_SMI_ELEMENTS, PACKED_ELEMENTS, // Handled by if_holey. HOLEY_SMI_ELEMENTS, HOLEY_ELEMENTS, // Handled by if_packed_double. PACKED_DOUBLE_ELEMENTS, // Handled by if_holey_double. HOLEY_DOUBLE_ELEMENTS}; Label* labels[] = {// PACKED_{SMI,}_ELEMENTS &if_packed, &if_packed, // HOLEY_{SMI,}_ELEMENTS &if_holey, &if_holey, // PACKED_DOUBLE_ELEMENTS &if_packed_double, // HOLEY_DOUBLE_ELEMENTS &if_holey_double}; Switch(elements_kind, &if_dictionary, kinds, labels, arraysize(kinds)); BIND(&if_packed); { var_result = LoadFixedArrayElement(CAST(elements), index, 0); Goto(&done); } BIND(&if_holey); { var_result = LoadFixedArrayElement(CAST(elements), index); Branch(WordEqual(var_result.value(), TheHoleConstant()), if_hole, &done); } BIND(&if_packed_double); { var_result = AllocateHeapNumberWithValue(LoadFixedDoubleArrayElement( CAST(elements), index, MachineType::Float64())); Goto(&done); } BIND(&if_holey_double); { var_result = AllocateHeapNumberWithValue(LoadFixedDoubleArrayElement( CAST(elements), index, MachineType::Float64(), 0, INTPTR_PARAMETERS, if_hole)); Goto(&done); } BIND(&if_dictionary); { CSA_ASSERT(this, IsDictionaryElementsKind(elements_kind)); var_result = BasicLoadNumberDictionaryElement(CAST(elements), index, if_accessor, if_hole); Goto(&done); } BIND(&done); return var_result.value(); } TNode<Float64T> CodeStubAssembler::LoadDoubleWithHoleCheck( SloppyTNode<Object> base, SloppyTNode<IntPtrT> offset, Label* if_hole, MachineType machine_type) { if (if_hole) { // TODO(ishell): Compare only the upper part for the hole once the // compiler is able to fold addition of already complex |offset| with // |kIeeeDoubleExponentWordOffset| into one addressing mode. if (Is64()) { Node* element = Load(MachineType::Uint64(), base, offset); GotoIf(Word64Equal(element, Int64Constant(kHoleNanInt64)), if_hole); } else { Node* element_upper = Load( MachineType::Uint32(), base, IntPtrAdd(offset, IntPtrConstant(kIeeeDoubleExponentWordOffset))); GotoIf(Word32Equal(element_upper, Int32Constant(kHoleNanUpper32)), if_hole); } } if (machine_type.IsNone()) { // This means the actual value is not needed. return TNode<Float64T>(); } return UncheckedCast<Float64T>(Load(machine_type, base, offset)); } TNode<Object> CodeStubAssembler::LoadContextElement( SloppyTNode<Context> context, int slot_index) { int offset = Context::SlotOffset(slot_index); return UncheckedCast<Object>( Load(MachineType::AnyTagged(), context, IntPtrConstant(offset))); } TNode<Object> CodeStubAssembler::LoadContextElement( SloppyTNode<Context> context, SloppyTNode<IntPtrT> slot_index) { Node* offset = ElementOffsetFromIndex(slot_index, PACKED_ELEMENTS, INTPTR_PARAMETERS, Context::kHeaderSize - kHeapObjectTag); return UncheckedCast<Object>(Load(MachineType::AnyTagged(), context, offset)); } TNode<Object> CodeStubAssembler::LoadContextElement(TNode<Context> context, TNode<Smi> slot_index) { Node* offset = ElementOffsetFromIndex(slot_index, PACKED_ELEMENTS, SMI_PARAMETERS, Context::kHeaderSize - kHeapObjectTag); return UncheckedCast<Object>(Load(MachineType::AnyTagged(), context, offset)); } void CodeStubAssembler::StoreContextElement(SloppyTNode<Context> context, int slot_index, SloppyTNode<Object> value) { int offset = Context::SlotOffset(slot_index); Store(context, IntPtrConstant(offset), value); } void CodeStubAssembler::StoreContextElement(SloppyTNode<Context> context, SloppyTNode<IntPtrT> slot_index, SloppyTNode<Object> value) { Node* offset = IntPtrAdd(TimesPointerSize(slot_index), IntPtrConstant(Context::kHeaderSize - kHeapObjectTag)); Store(context, offset, value); } void CodeStubAssembler::StoreContextElementNoWriteBarrier( SloppyTNode<Context> context, int slot_index, SloppyTNode<Object> value) { int offset = Context::SlotOffset(slot_index); StoreNoWriteBarrier(MachineRepresentation::kTagged, context, IntPtrConstant(offset), value); } TNode<Context> CodeStubAssembler::LoadNativeContext( SloppyTNode<Context> context) { return UncheckedCast<Context>( LoadContextElement(context, Context::NATIVE_CONTEXT_INDEX)); } TNode<Context> CodeStubAssembler::LoadModuleContext( SloppyTNode<Context> context) { Node* module_map = LoadRoot(RootIndex::kModuleContextMap); Variable cur_context(this, MachineRepresentation::kTaggedPointer); cur_context.Bind(context); Label context_found(this); Variable* context_search_loop_variables[1] = {&cur_context}; Label context_search(this, 1, context_search_loop_variables); // Loop until cur_context->map() is module_map. Goto(&context_search); BIND(&context_search); { CSA_ASSERT(this, Word32BinaryNot(IsNativeContext(cur_context.value()))); GotoIf(WordEqual(LoadMap(cur_context.value()), module_map), &context_found); cur_context.Bind( LoadContextElement(cur_context.value(), Context::PREVIOUS_INDEX)); Goto(&context_search); } BIND(&context_found); return UncheckedCast<Context>(cur_context.value()); } TNode<Map> CodeStubAssembler::LoadJSArrayElementsMap( SloppyTNode<Int32T> kind, SloppyTNode<Context> native_context) { CSA_ASSERT(this, IsFastElementsKind(kind)); CSA_ASSERT(this, IsNativeContext(native_context)); Node* offset = IntPtrAdd(IntPtrConstant(Context::FIRST_JS_ARRAY_MAP_SLOT), ChangeInt32ToIntPtr(kind)); return UncheckedCast<Map>(LoadContextElement(native_context, offset)); } TNode<Map> CodeStubAssembler::LoadJSArrayElementsMap( ElementsKind kind, SloppyTNode<Context> native_context) { CSA_ASSERT(this, IsNativeContext(native_context)); return UncheckedCast<Map>( LoadContextElement(native_context, Context::ArrayMapIndex(kind))); } TNode<BoolT> CodeStubAssembler::IsGeneratorFunction( TNode<JSFunction> function) { TNode<SharedFunctionInfo> const shared_function_info = CAST(LoadObjectField(function, JSFunction::kSharedFunctionInfoOffset)); TNode<Uint32T> const function_kind = DecodeWord32<SharedFunctionInfo::FunctionKindBits>(LoadObjectField( shared_function_info, SharedFunctionInfo::kFlagsOffset, MachineType::Uint32())); return TNode<BoolT>::UncheckedCast(Word32Or( Word32Or( Word32Or( Word32Equal(function_kind, Int32Constant(FunctionKind::kAsyncGeneratorFunction)), Word32Equal( function_kind, Int32Constant(FunctionKind::kAsyncConciseGeneratorMethod))), Word32Equal(function_kind, Int32Constant(FunctionKind::kGeneratorFunction))), Word32Equal(function_kind, Int32Constant(FunctionKind::kConciseGeneratorMethod)))); } TNode<BoolT> CodeStubAssembler::HasPrototypeProperty(TNode<JSFunction> function, TNode<Map> map) { // (has_prototype_slot() && IsConstructor()) || // IsGeneratorFunction(shared()->kind()) uint32_t mask = Map::HasPrototypeSlotBit::kMask | Map::IsConstructorBit::kMask; return TNode<BoolT>::UncheckedCast( Word32Or(IsAllSetWord32(LoadMapBitField(map), mask), IsGeneratorFunction(function))); } void CodeStubAssembler::GotoIfPrototypeRequiresRuntimeLookup( TNode<JSFunction> function, TNode<Map> map, Label* runtime) { // !has_prototype_property() || has_non_instance_prototype() GotoIfNot(HasPrototypeProperty(function, map), runtime); GotoIf(IsSetWord32<Map::HasNonInstancePrototypeBit>(LoadMapBitField(map)), runtime); } Node* CodeStubAssembler::LoadJSFunctionPrototype(Node* function, Label* if_bailout) { CSA_ASSERT(this, TaggedIsNotSmi(function)); CSA_ASSERT(this, IsJSFunction(function)); CSA_ASSERT(this, IsFunctionWithPrototypeSlotMap(LoadMap(function))); CSA_ASSERT(this, IsClearWord32<Map::HasNonInstancePrototypeBit>( LoadMapBitField(LoadMap(function)))); Node* proto_or_map = LoadObjectField(function, JSFunction::kPrototypeOrInitialMapOffset); GotoIf(IsTheHole(proto_or_map), if_bailout); VARIABLE(var_result, MachineRepresentation::kTagged, proto_or_map); Label done(this, &var_result); GotoIfNot(IsMap(proto_or_map), &done); var_result.Bind(LoadMapPrototype(proto_or_map)); Goto(&done); BIND(&done); return var_result.value(); } TNode<BytecodeArray> CodeStubAssembler::LoadSharedFunctionInfoBytecodeArray( SloppyTNode<SharedFunctionInfo> shared) { Node* function_data = LoadObjectField(shared, SharedFunctionInfo::kFunctionDataOffset); VARIABLE(var_result, MachineRepresentation::kTagged, function_data); Label done(this, &var_result); GotoIfNot(HasInstanceType(function_data, INTERPRETER_DATA_TYPE), &done); Node* bytecode_array = LoadObjectField(function_data, InterpreterData::kBytecodeArrayOffset); var_result.Bind(bytecode_array); Goto(&done); BIND(&done); return CAST(var_result.value()); } void CodeStubAssembler::StoreObjectByteNoWriteBarrier(TNode<HeapObject> object, int offset, TNode<Word32T> value) { StoreNoWriteBarrier(MachineRepresentation::kWord8, object, IntPtrConstant(offset - kHeapObjectTag), value); } void CodeStubAssembler::StoreHeapNumberValue(SloppyTNode<HeapNumber> object, SloppyTNode<Float64T> value) { StoreObjectFieldNoWriteBarrier(object, HeapNumber::kValueOffset, value, MachineRepresentation::kFloat64); } void CodeStubAssembler::StoreMutableHeapNumberValue( SloppyTNode<MutableHeapNumber> object, SloppyTNode<Float64T> value) { StoreObjectFieldNoWriteBarrier(object, MutableHeapNumber::kValueOffset, value, MachineRepresentation::kFloat64); } Node* CodeStubAssembler::StoreObjectField( Node* object, int offset, Node* value) { DCHECK_NE(HeapObject::kMapOffset, offset); // Use StoreMap instead. return Store(object, IntPtrConstant(offset - kHeapObjectTag), value); } Node* CodeStubAssembler::StoreObjectField(Node* object, Node* offset, Node* value) { int const_offset; if (ToInt32Constant(offset, const_offset)) { return StoreObjectField(object, const_offset, value); } return Store(object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value); } Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier( Node* object, int offset, Node* value, MachineRepresentation rep) { return StoreNoWriteBarrier(rep, object, IntPtrConstant(offset - kHeapObjectTag), value); } Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier( Node* object, Node* offset, Node* value, MachineRepresentation rep) { int const_offset; if (ToInt32Constant(offset, const_offset)) { return StoreObjectFieldNoWriteBarrier(object, const_offset, value, rep); } return StoreNoWriteBarrier( rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value); } Node* CodeStubAssembler::StoreMap(Node* object, Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return StoreWithMapWriteBarrier( object, IntPtrConstant(HeapObject::kMapOffset - kHeapObjectTag), map); } Node* CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, RootIndex map_root_index) { return StoreMapNoWriteBarrier(object, LoadRoot(map_root_index)); } Node* CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return StoreNoWriteBarrier( MachineRepresentation::kTagged, object, IntPtrConstant(HeapObject::kMapOffset - kHeapObjectTag), map); } Node* CodeStubAssembler::StoreObjectFieldRoot(Node* object, int offset, RootIndex root_index) { if (RootsTable::IsImmortalImmovable(root_index)) { return StoreObjectFieldNoWriteBarrier(object, offset, LoadRoot(root_index)); } else { return StoreObjectField(object, offset, LoadRoot(root_index)); } } Node* CodeStubAssembler::StoreJSArrayLength(TNode<JSArray> array, TNode<Smi> length) { return StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); } Node* CodeStubAssembler::StoreElements(TNode<Object> object, TNode<FixedArrayBase> elements) { return StoreObjectField(object, JSObject::kElementsOffset, elements); } void CodeStubAssembler::StoreFixedArrayOrPropertyArrayElement( Node* object, Node* index_node, Node* value, WriteBarrierMode barrier_mode, int additional_offset, ParameterMode parameter_mode) { CSA_SLOW_ASSERT( this, Word32Or(IsFixedArraySubclass(object), IsPropertyArray(object))); CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode)); DCHECK(barrier_mode == SKIP_WRITE_BARRIER || barrier_mode == UPDATE_WRITE_BARRIER); DCHECK_EQ(additional_offset % kPointerSize, 0); STATIC_ASSERT(FixedArray::kHeaderSize == PropertyArray::kHeaderSize); int header_size = FixedArray::kHeaderSize + additional_offset - kHeapObjectTag; Node* offset = ElementOffsetFromIndex(index_node, HOLEY_ELEMENTS, parameter_mode, header_size); STATIC_ASSERT(FixedArrayBase::kLengthOffset == WeakFixedArray::kLengthOffset); STATIC_ASSERT(FixedArrayBase::kLengthOffset == PropertyArray::kLengthAndHashOffset); // Check that index_node + additional_offset <= object.length. // TODO(cbruni): Use proper LoadXXLength helpers CSA_ASSERT( this, IsOffsetInBounds( offset, Select<IntPtrT>( IsPropertyArray(object), [=] { TNode<IntPtrT> length_and_hash = LoadAndUntagObjectField( object, PropertyArray::kLengthAndHashOffset); return TNode<IntPtrT>::UncheckedCast( DecodeWord<PropertyArray::LengthField>(length_and_hash)); }, [=] { return LoadAndUntagObjectField(object, FixedArrayBase::kLengthOffset); }), FixedArray::kHeaderSize)); if (barrier_mode == SKIP_WRITE_BARRIER) { StoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset, value); } else { Store(object, offset, value); } } void CodeStubAssembler::StoreFixedDoubleArrayElement( TNode<FixedDoubleArray> object, Node* index_node, TNode<Float64T> value, ParameterMode parameter_mode) { CSA_ASSERT(this, IsFixedDoubleArray(object)); CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode)); FixedArrayBoundsCheck(object, index_node, 0, parameter_mode); Node* offset = ElementOffsetFromIndex(index_node, PACKED_DOUBLE_ELEMENTS, parameter_mode, FixedArray::kHeaderSize - kHeapObjectTag); MachineRepresentation rep = MachineRepresentation::kFloat64; StoreNoWriteBarrier(rep, object, offset, value); } Node* CodeStubAssembler::StoreFeedbackVectorSlot(Node* object, Node* slot_index_node, Node* value, WriteBarrierMode barrier_mode, int additional_offset, ParameterMode parameter_mode) { CSA_SLOW_ASSERT(this, IsFeedbackVector(object)); CSA_SLOW_ASSERT(this, MatchesParameterMode(slot_index_node, parameter_mode)); DCHECK_EQ(additional_offset % kPointerSize, 0); DCHECK(barrier_mode == SKIP_WRITE_BARRIER || barrier_mode == UPDATE_WRITE_BARRIER); int header_size = FeedbackVector::kFeedbackSlotsOffset + additional_offset - kHeapObjectTag; Node* offset = ElementOffsetFromIndex(slot_index_node, HOLEY_ELEMENTS, parameter_mode, header_size); // Check that slot_index_node <= object.length. CSA_ASSERT(this, IsOffsetInBounds(offset, LoadFeedbackVectorLength(CAST(object)), FeedbackVector::kHeaderSize)); if (barrier_mode == SKIP_WRITE_BARRIER) { return StoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset, value); } else { return Store(object, offset, value); } } void CodeStubAssembler::EnsureArrayLengthWritable(TNode<Map> map, Label* bailout) { // Don't support arrays in dictionary named property mode. GotoIf(IsDictionaryMap(map), bailout); // Check whether the length property is writable. The length property is the // only default named property on arrays. It's nonconfigurable, hence is // guaranteed to stay the first property. TNode<DescriptorArray> descriptors = LoadMapDescriptors(map); int length_index = JSArray::kLengthDescriptorIndex; #ifdef DEBUG TNode<Name> maybe_length = CAST(LoadWeakFixedArrayElement( descriptors, DescriptorArray::ToKeyIndex(length_index))); CSA_ASSERT(this, WordEqual(maybe_length, LoadRoot(RootIndex::klength_string))); #endif TNode<Uint32T> details = LoadDetailsByKeyIndex( descriptors, IntPtrConstant(DescriptorArray::ToKeyIndex(length_index))); GotoIf(IsSetWord32(details, PropertyDetails::kAttributesReadOnlyMask), bailout); } TNode<Int32T> CodeStubAssembler::EnsureArrayPushable(TNode<Map> map, Label* bailout) { // Disallow pushing onto prototypes. It might be the JSArray prototype. // Disallow pushing onto non-extensible objects. Comment("Disallow pushing onto prototypes"); Node* bit_field2 = LoadMapBitField2(map); int mask = Map::IsPrototypeMapBit::kMask | Map::IsExtensibleBit::kMask; Node* test = Word32And(bit_field2, Int32Constant(mask)); GotoIf(Word32NotEqual(test, Int32Constant(Map::IsExtensibleBit::kMask)), bailout); EnsureArrayLengthWritable(map, bailout); TNode<Uint32T> kind = DecodeWord32<Map::ElementsKindBits>(bit_field2); return Signed(kind); } void CodeStubAssembler::PossiblyGrowElementsCapacity( ParameterMode mode, ElementsKind kind, Node* array, Node* length, Variable* var_elements, Node* growth, Label* bailout) { Label fits(this, var_elements); Node* capacity = TaggedToParameter(LoadFixedArrayBaseLength(var_elements->value()), mode); // length and growth nodes are already in a ParameterMode appropriate // representation. Node* new_length = IntPtrOrSmiAdd(growth, length, mode); GotoIfNot(IntPtrOrSmiGreaterThan(new_length, capacity, mode), &fits); Node* new_capacity = CalculateNewElementsCapacity(new_length, mode); var_elements->Bind(GrowElementsCapacity(array, var_elements->value(), kind, kind, capacity, new_capacity, mode, bailout)); Goto(&fits); BIND(&fits); } TNode<Smi> CodeStubAssembler::BuildAppendJSArray(ElementsKind kind, SloppyTNode<JSArray> array, CodeStubArguments* args, TVariable<IntPtrT>* arg_index, Label* bailout) { CSA_SLOW_ASSERT(this, IsJSArray(array)); Comment("BuildAppendJSArray: %s", ElementsKindToString(kind)); Label pre_bailout(this); Label success(this); TVARIABLE(Smi, var_tagged_length); ParameterMode mode = OptimalParameterMode(); VARIABLE(var_length, OptimalParameterRepresentation(), TaggedToParameter(LoadFastJSArrayLength(array), mode)); VARIABLE(var_elements, MachineRepresentation::kTagged, LoadElements(array)); // Resize the capacity of the fixed array if it doesn't fit. TNode<IntPtrT> first = arg_index->value(); Node* growth = IntPtrToParameter( IntPtrSub(UncheckedCast<IntPtrT>(args->GetLength(INTPTR_PARAMETERS)), first), mode); PossiblyGrowElementsCapacity(mode, kind, array, var_length.value(), &var_elements, growth, &pre_bailout); // Push each argument onto the end of the array now that there is enough // capacity. CodeStubAssembler::VariableList push_vars({&var_length}, zone()); Node* elements = var_elements.value(); args->ForEach( push_vars, [this, kind, mode, elements, &var_length, &pre_bailout](Node* arg) { TryStoreArrayElement(kind, mode, &pre_bailout, elements, var_length.value(), arg); Increment(&var_length, 1, mode); }, first, nullptr); { TNode<Smi> length = ParameterToTagged(var_length.value(), mode); var_tagged_length = length; StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); Goto(&success); } BIND(&pre_bailout); { TNode<Smi> length = ParameterToTagged(var_length.value(), mode); var_tagged_length = length; Node* diff = SmiSub(length, LoadFastJSArrayLength(array)); StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); *arg_index = IntPtrAdd(arg_index->value(), SmiUntag(diff)); Goto(bailout); } BIND(&success); return var_tagged_length.value(); } void CodeStubAssembler::TryStoreArrayElement(ElementsKind kind, ParameterMode mode, Label* bailout, Node* elements, Node* index, Node* value) { if (IsSmiElementsKind(kind)) { GotoIf(TaggedIsNotSmi(value), bailout); } else if (IsDoubleElementsKind(kind)) { GotoIfNotNumber(value, bailout); } if (IsDoubleElementsKind(kind)) value = ChangeNumberToFloat64(value); StoreElement(elements, kind, index, value, mode); } void CodeStubAssembler::BuildAppendJSArray(ElementsKind kind, Node* array, Node* value, Label* bailout) { CSA_SLOW_ASSERT(this, IsJSArray(array)); Comment("BuildAppendJSArray: %s", ElementsKindToString(kind)); ParameterMode mode = OptimalParameterMode(); VARIABLE(var_length, OptimalParameterRepresentation(), TaggedToParameter(LoadFastJSArrayLength(array), mode)); VARIABLE(var_elements, MachineRepresentation::kTagged, LoadElements(array)); // Resize the capacity of the fixed array if it doesn't fit. Node* growth = IntPtrOrSmiConstant(1, mode); PossiblyGrowElementsCapacity(mode, kind, array, var_length.value(), &var_elements, growth, bailout); // Push each argument onto the end of the array now that there is enough // capacity. TryStoreArrayElement(kind, mode, bailout, var_elements.value(), var_length.value(), value); Increment(&var_length, 1, mode); Node* length = ParameterToTagged(var_length.value(), mode); StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); } Node* CodeStubAssembler::AllocateCellWithValue(Node* value, WriteBarrierMode mode) { Node* result = Allocate(Cell::kSize, kNone); StoreMapNoWriteBarrier(result, RootIndex::kCellMap); StoreCellValue(result, value, mode); return result; } Node* CodeStubAssembler::LoadCellValue(Node* cell) { CSA_SLOW_ASSERT(this, HasInstanceType(cell, CELL_TYPE)); return LoadObjectField(cell, Cell::kValueOffset); } Node* CodeStubAssembler::StoreCellValue(Node* cell, Node* value, WriteBarrierMode mode) { CSA_SLOW_ASSERT(this, HasInstanceType(cell, CELL_TYPE)); DCHECK(mode == SKIP_WRITE_BARRIER || mode == UPDATE_WRITE_BARRIER); if (mode == UPDATE_WRITE_BARRIER) { return StoreObjectField(cell, Cell::kValueOffset, value); } else { return StoreObjectFieldNoWriteBarrier(cell, Cell::kValueOffset, value); } } TNode<HeapNumber> CodeStubAssembler::AllocateHeapNumber() { Node* result = Allocate(HeapNumber::kSize, kNone); RootIndex heap_map_index = RootIndex::kHeapNumberMap; StoreMapNoWriteBarrier(result, heap_map_index); return UncheckedCast<HeapNumber>(result); } TNode<HeapNumber> CodeStubAssembler::AllocateHeapNumberWithValue( SloppyTNode<Float64T> value) { TNode<HeapNumber> result = AllocateHeapNumber(); StoreHeapNumberValue(result, value); return result; } TNode<MutableHeapNumber> CodeStubAssembler::AllocateMutableHeapNumber() { Node* result = Allocate(MutableHeapNumber::kSize, kNone); RootIndex heap_map_index = RootIndex::kMutableHeapNumberMap; StoreMapNoWriteBarrier(result, heap_map_index); return UncheckedCast<MutableHeapNumber>(result); } TNode<Object> CodeStubAssembler::CloneIfMutablePrimitive(TNode<Object> object) { TVARIABLE(Object, result, object); Label done(this); GotoIf(TaggedIsSmi(object), &done); GotoIfNot(IsMutableHeapNumber(UncheckedCast<HeapObject>(object)), &done); { // Mutable heap number found --- allocate a clone. TNode<Float64T> value = LoadHeapNumberValue(UncheckedCast<HeapNumber>(object)); result = AllocateMutableHeapNumberWithValue(value); Goto(&done); } BIND(&done); return result.value(); } TNode<MutableHeapNumber> CodeStubAssembler::AllocateMutableHeapNumberWithValue( SloppyTNode<Float64T> value) { TNode<MutableHeapNumber> result = AllocateMutableHeapNumber(); StoreMutableHeapNumberValue(result, value); return result; } TNode<BigInt> CodeStubAssembler::AllocateBigInt(TNode<IntPtrT> length) { TNode<BigInt> result = AllocateRawBigInt(length); StoreBigIntBitfield(result, WordShl(length, BigInt::LengthBits::kShift)); return result; } TNode<BigInt> CodeStubAssembler::AllocateRawBigInt(TNode<IntPtrT> length) { // This is currently used only for 64-bit wide BigInts. If more general // applicability is required, a large-object check must be added. CSA_ASSERT(this, UintPtrLessThan(length, IntPtrConstant(3))); TNode<IntPtrT> size = IntPtrAdd(IntPtrConstant(BigInt::kHeaderSize), Signed(WordShl(length, kPointerSizeLog2))); Node* raw_result = Allocate(size, kNone); StoreMapNoWriteBarrier(raw_result, RootIndex::kBigIntMap); return UncheckedCast<BigInt>(raw_result); } void CodeStubAssembler::StoreBigIntBitfield(TNode<BigInt> bigint, TNode<WordT> bitfield) { StoreObjectFieldNoWriteBarrier(bigint, BigInt::kBitfieldOffset, bitfield, MachineType::PointerRepresentation()); } void CodeStubAssembler::StoreBigIntDigit(TNode<BigInt> bigint, int digit_index, TNode<UintPtrT> digit) { StoreObjectFieldNoWriteBarrier( bigint, BigInt::kDigitsOffset + digit_index * kPointerSize, digit, UintPtrT::kMachineRepresentation); } TNode<WordT> CodeStubAssembler::LoadBigIntBitfield(TNode<BigInt> bigint) { return UncheckedCast<WordT>( LoadObjectField(bigint, BigInt::kBitfieldOffset, MachineType::UintPtr())); } TNode<UintPtrT> CodeStubAssembler::LoadBigIntDigit(TNode<BigInt> bigint, int digit_index) { return UncheckedCast<UintPtrT>(LoadObjectField( bigint, BigInt::kDigitsOffset + digit_index * kPointerSize, MachineType::UintPtr())); } TNode<String> CodeStubAssembler::AllocateSeqOneByteString( uint32_t length, AllocationFlags flags) { Comment("AllocateSeqOneByteString"); if (length == 0) { return CAST(LoadRoot(RootIndex::kempty_string)); } Node* result = Allocate(SeqOneByteString::SizeFor(length), flags); DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kOneByteStringMap)); StoreMapNoWriteBarrier(result, RootIndex::kOneByteStringMap); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset, Uint32Constant(length), MachineRepresentation::kWord32); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset, Int32Constant(String::kEmptyHashField), MachineRepresentation::kWord32); return CAST(result); } TNode<BoolT> CodeStubAssembler::IsZeroOrContext(SloppyTNode<Object> object) { return Select<BoolT>(WordEqual(object, SmiConstant(0)), [=] { return Int32TrueConstant(); }, [=] { return IsContext(CAST(object)); }); } TNode<String> CodeStubAssembler::AllocateSeqOneByteString( Node* context, TNode<Uint32T> length, AllocationFlags flags) { Comment("AllocateSeqOneByteString"); CSA_SLOW_ASSERT(this, IsZeroOrContext(context)); VARIABLE(var_result, MachineRepresentation::kTagged); // Compute the SeqOneByteString size and check if it fits into new space. Label if_lengthiszero(this), if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred), if_join(this); GotoIf(Word32Equal(length, Uint32Constant(0)), &if_lengthiszero); Node* raw_size = GetArrayAllocationSize( Signed(ChangeUint32ToWord(length)), UINT8_ELEMENTS, INTPTR_PARAMETERS, SeqOneByteString::kHeaderSize + kObjectAlignmentMask); TNode<WordT> size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask)); Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)), &if_sizeissmall, &if_notsizeissmall); BIND(&if_sizeissmall); { // Just allocate the SeqOneByteString in new space. TNode<Object> result = AllocateInNewSpace(UncheckedCast<IntPtrT>(size), flags); DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kOneByteStringMap)); StoreMapNoWriteBarrier(result, RootIndex::kOneByteStringMap); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset, length, MachineRepresentation::kWord32); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset, Int32Constant(String::kEmptyHashField), MachineRepresentation::kWord32); var_result.Bind(result); Goto(&if_join); } BIND(&if_notsizeissmall); { // We might need to allocate in large object space, go to the runtime. Node* result = CallRuntime(Runtime::kAllocateSeqOneByteString, context, ChangeUint32ToTagged(length)); var_result.Bind(result); Goto(&if_join); } BIND(&if_lengthiszero); { var_result.Bind(LoadRoot(RootIndex::kempty_string)); Goto(&if_join); } BIND(&if_join); return CAST(var_result.value()); } TNode<String> CodeStubAssembler::AllocateSeqTwoByteString( uint32_t length, AllocationFlags flags) { Comment("AllocateSeqTwoByteString"); if (length == 0) { return CAST(LoadRoot(RootIndex::kempty_string)); } Node* result = Allocate(SeqTwoByteString::SizeFor(length), flags); DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kStringMap)); StoreMapNoWriteBarrier(result, RootIndex::kStringMap); StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset, Uint32Constant(length), MachineRepresentation::kWord32); StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset, Int32Constant(String::kEmptyHashField), MachineRepresentation::kWord32); return CAST(result); } TNode<String> CodeStubAssembler::AllocateSeqTwoByteString( Node* context, TNode<Uint32T> length, AllocationFlags flags) { CSA_SLOW_ASSERT(this, IsZeroOrContext(context)); Comment("AllocateSeqTwoByteString"); VARIABLE(var_result, MachineRepresentation::kTagged); // Compute the SeqTwoByteString size and check if it fits into new space. Label if_lengthiszero(this), if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred), if_join(this); GotoIf(Word32Equal(length, Uint32Constant(0)), &if_lengthiszero); Node* raw_size = GetArrayAllocationSize( Signed(ChangeUint32ToWord(length)), UINT16_ELEMENTS, INTPTR_PARAMETERS, SeqOneByteString::kHeaderSize + kObjectAlignmentMask); TNode<WordT> size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask)); Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)), &if_sizeissmall, &if_notsizeissmall); BIND(&if_sizeissmall); { // Just allocate the SeqTwoByteString in new space. TNode<Object> result = AllocateInNewSpace(UncheckedCast<IntPtrT>(size), flags); DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kStringMap)); StoreMapNoWriteBarrier(result, RootIndex::kStringMap); StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset, length, MachineRepresentation::kWord32); StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset, Int32Constant(String::kEmptyHashField), MachineRepresentation::kWord32); var_result.Bind(result); Goto(&if_join); } BIND(&if_notsizeissmall); { // We might need to allocate in large object space, go to the runtime. Node* result = CallRuntime(Runtime::kAllocateSeqTwoByteString, context, ChangeUint32ToTagged(length)); var_result.Bind(result); Goto(&if_join); } BIND(&if_lengthiszero); { var_result.Bind(LoadRoot(RootIndex::kempty_string)); Goto(&if_join); } BIND(&if_join); return CAST(var_result.value()); } TNode<String> CodeStubAssembler::AllocateSlicedString(RootIndex map_root_index, TNode<Uint32T> length, TNode<String> parent, TNode<Smi> offset) { DCHECK(map_root_index == RootIndex::kSlicedOneByteStringMap || map_root_index == RootIndex::kSlicedStringMap); Node* result = Allocate(SlicedString::kSize); DCHECK(RootsTable::IsImmortalImmovable(map_root_index)); StoreMapNoWriteBarrier(result, map_root_index); StoreObjectFieldNoWriteBarrier(result, SlicedString::kHashFieldOffset, Int32Constant(String::kEmptyHashField), MachineRepresentation::kWord32); StoreObjectFieldNoWriteBarrier(result, SlicedString::kLengthOffset, length, MachineRepresentation::kWord32); StoreObjectFieldNoWriteBarrier(result, SlicedString::kParentOffset, parent, MachineRepresentation::kTagged); StoreObjectFieldNoWriteBarrier(result, SlicedString::kOffsetOffset, offset, MachineRepresentation::kTagged); return CAST(result); } TNode<String> CodeStubAssembler::AllocateSlicedOneByteString( TNode<Uint32T> length, TNode<String> parent, TNode<Smi> offset) { return AllocateSlicedString(RootIndex::kSlicedOneByteStringMap, length, parent, offset); } TNode<String> CodeStubAssembler::AllocateSlicedTwoByteString( TNode<Uint32T> length, TNode<String> parent, TNode<Smi> offset) { return AllocateSlicedString(RootIndex::kSlicedStringMap, length, parent, offset); } TNode<String> CodeStubAssembler::AllocateConsString(RootIndex map_root_index, TNode<Uint32T> length, TNode<String> first, TNode<String> second, AllocationFlags flags) { DCHECK(map_root_index == RootIndex::kConsOneByteStringMap || map_root_index == RootIndex::kConsStringMap); Node* result = Allocate(ConsString::kSize, flags); DCHECK(RootsTable::IsImmortalImmovable(map_root_index)); StoreMapNoWriteBarrier(result, map_root_index); StoreObjectFieldNoWriteBarrier(result, ConsString::kLengthOffset, length, MachineRepresentation::kWord32); StoreObjectFieldNoWriteBarrier(result, ConsString::kHashFieldOffset, Int32Constant(String::kEmptyHashField), MachineRepresentation::kWord32); bool const new_space = !(flags & kPretenured); if (new_space) { StoreObjectFieldNoWriteBarrier(result, ConsString::kFirstOffset, first, MachineRepresentation::kTagged); StoreObjectFieldNoWriteBarrier(result, ConsString::kSecondOffset, second, MachineRepresentation::kTagged); } else { StoreObjectField(result, ConsString::kFirstOffset, first); StoreObjectField(result, ConsString::kSecondOffset, second); } return CAST(result); } TNode<String> CodeStubAssembler::AllocateOneByteConsString( TNode<Uint32T> length, TNode<String> first, TNode<String> second, AllocationFlags flags) { return AllocateConsString(RootIndex::kConsOneByteStringMap, length, first, second, flags); } TNode<String> CodeStubAssembler::AllocateTwoByteConsString( TNode<Uint32T> length, TNode<String> first, TNode<String> second, AllocationFlags flags) { return AllocateConsString(RootIndex::kConsStringMap, length, first, second, flags); } TNode<String> CodeStubAssembler::NewConsString(TNode<Uint32T> length, TNode<String> left, TNode<String> right, AllocationFlags flags) { // Added string can be a cons string. Comment("Allocating ConsString"); Node* left_instance_type = LoadInstanceType(left); Node* right_instance_type = LoadInstanceType(right); // Compute intersection and difference of instance types. Node* anded_instance_types = Word32And(left_instance_type, right_instance_type); Node* xored_instance_types = Word32Xor(left_instance_type, right_instance_type); // We create a one-byte cons string if // 1. both strings are one-byte, or // 2. at least one of the strings is two-byte, but happens to contain only // one-byte characters. // To do this, we check // 1. if both strings are one-byte, or if the one-byte data hint is set in // both strings, or // 2. if one of the strings has the one-byte data hint set and the other // string is one-byte. STATIC_ASSERT(kOneByteStringTag != 0); STATIC_ASSERT(kOneByteDataHintTag != 0); Label one_byte_map(this); Label two_byte_map(this); TVARIABLE(String, result); Label done(this, &result); GotoIf(IsSetWord32(anded_instance_types, kStringEncodingMask | kOneByteDataHintTag), &one_byte_map); Branch(Word32NotEqual(Word32And(xored_instance_types, Int32Constant(kStringEncodingMask | kOneByteDataHintMask)), Int32Constant(kOneByteStringTag | kOneByteDataHintTag)), &two_byte_map, &one_byte_map); BIND(&one_byte_map); Comment("One-byte ConsString"); result = AllocateOneByteConsString(length, left, right, flags); Goto(&done); BIND(&two_byte_map); Comment("Two-byte ConsString"); result = AllocateTwoByteConsString(length, left, right, flags); Goto(&done); BIND(&done); return result.value(); } TNode<NameDictionary> CodeStubAssembler::AllocateNameDictionary( int at_least_space_for) { return AllocateNameDictionary(IntPtrConstant(at_least_space_for)); } TNode<NameDictionary> CodeStubAssembler::AllocateNameDictionary( TNode<IntPtrT> at_least_space_for) { CSA_ASSERT(this, UintPtrLessThanOrEqual( at_least_space_for, IntPtrConstant(NameDictionary::kMaxCapacity))); TNode<IntPtrT> capacity = HashTableComputeCapacity(at_least_space_for); return AllocateNameDictionaryWithCapacity(capacity); } TNode<NameDictionary> CodeStubAssembler::AllocateNameDictionaryWithCapacity( TNode<IntPtrT> capacity) { CSA_ASSERT(this, WordIsPowerOfTwo(capacity)); CSA_ASSERT(this, IntPtrGreaterThan(capacity, IntPtrConstant(0))); TNode<IntPtrT> length = EntryToIndex<NameDictionary>(capacity); TNode<IntPtrT> store_size = IntPtrAdd( TimesPointerSize(length), IntPtrConstant(NameDictionary::kHeaderSize)); TNode<NameDictionary> result = UncheckedCast<NameDictionary>(AllocateInNewSpace(store_size)); Comment("Initialize NameDictionary"); // Initialize FixedArray fields. DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kNameDictionaryMap)); StoreMapNoWriteBarrier(result, RootIndex::kNameDictionaryMap); StoreObjectFieldNoWriteBarrier(result, FixedArray::kLengthOffset, SmiFromIntPtr(length)); // Initialized HashTable fields. TNode<Smi> zero = SmiConstant(0); StoreFixedArrayElement(result, NameDictionary::kNumberOfElementsIndex, zero, SKIP_WRITE_BARRIER); StoreFixedArrayElement(result, NameDictionary::kNumberOfDeletedElementsIndex, zero, SKIP_WRITE_BARRIER); StoreFixedArrayElement(result, NameDictionary::kCapacityIndex, SmiTag(capacity), SKIP_WRITE_BARRIER); // Initialize Dictionary fields. TNode<HeapObject> filler = UndefinedConstant(); StoreFixedArrayElement(result, NameDictionary::kNextEnumerationIndexIndex, SmiConstant(PropertyDetails::kInitialIndex), SKIP_WRITE_BARRIER); StoreFixedArrayElement(result, NameDictionary::kObjectHashIndex, SmiConstant(PropertyArray::kNoHashSentinel), SKIP_WRITE_BARRIER); // Initialize NameDictionary elements. TNode<WordT> result_word = BitcastTaggedToWord(result); TNode<WordT> start_address = IntPtrAdd( result_word, IntPtrConstant(NameDictionary::OffsetOfElementAt( NameDictionary::kElementsStartIndex) - kHeapObjectTag)); TNode<WordT> end_address = IntPtrAdd( result_word, IntPtrSub(store_size, IntPtrConstant(kHeapObjectTag))); StoreFieldsNoWriteBarrier(start_address, end_address, filler); return result; } TNode<NameDictionary> CodeStubAssembler::CopyNameDictionary( TNode<NameDictionary> dictionary, Label* large_object_fallback) { Comment("Copy boilerplate property dict"); TNode<IntPtrT> capacity = SmiUntag(GetCapacity<NameDictionary>(dictionary)); CSA_ASSERT(this, IntPtrGreaterThanOrEqual(capacity, IntPtrConstant(0))); GotoIf(UintPtrGreaterThan( capacity, IntPtrConstant(NameDictionary::kMaxRegularCapacity)), large_object_fallback); TNode<NameDictionary> properties = AllocateNameDictionaryWithCapacity(capacity); TNode<IntPtrT> length = SmiUntag(LoadFixedArrayBaseLength(dictionary)); CopyFixedArrayElements(PACKED_ELEMENTS, dictionary, properties, length, SKIP_WRITE_BARRIER, INTPTR_PARAMETERS); return properties; } template <typename CollectionType> Node* CodeStubAssembler::AllocateOrderedHashTable() { static const int kCapacity = CollectionType::kMinCapacity; static const int kBucketCount = kCapacity / CollectionType::kLoadFactor; static const int kDataTableLength = kCapacity * CollectionType::kEntrySize; static const int kFixedArrayLength = CollectionType::kHashTableStartIndex + kBucketCount + kDataTableLength; static const int kDataTableStartIndex = CollectionType::kHashTableStartIndex + kBucketCount; STATIC_ASSERT(base::bits::IsPowerOfTwo(kCapacity)); STATIC_ASSERT(kCapacity <= CollectionType::kMaxCapacity); // Allocate the table and add the proper map. const ElementsKind elements_kind = HOLEY_ELEMENTS; TNode<IntPtrT> length_intptr = IntPtrConstant(kFixedArrayLength); TNode<Map> fixed_array_map = CAST(LoadRoot(CollectionType::GetMapRootIndex())); TNode<FixedArray> table = CAST(AllocateFixedArray(elements_kind, length_intptr, kAllowLargeObjectAllocation, fixed_array_map)); // Initialize the OrderedHashTable fields. const WriteBarrierMode barrier_mode = SKIP_WRITE_BARRIER; StoreFixedArrayElement(table, CollectionType::kNumberOfElementsIndex, SmiConstant(0), barrier_mode); StoreFixedArrayElement(table, CollectionType::kNumberOfDeletedElementsIndex, SmiConstant(0), barrier_mode); StoreFixedArrayElement(table, CollectionType::kNumberOfBucketsIndex, SmiConstant(kBucketCount), barrier_mode); // Fill the buckets with kNotFound. TNode<Smi> not_found = SmiConstant(CollectionType::kNotFound); STATIC_ASSERT(CollectionType::kHashTableStartIndex == CollectionType::kNumberOfBucketsIndex + 1); STATIC_ASSERT((CollectionType::kHashTableStartIndex + kBucketCount) == kDataTableStartIndex); for (int i = 0; i < kBucketCount; i++) { StoreFixedArrayElement(table, CollectionType::kHashTableStartIndex + i, not_found, barrier_mode); } // Fill the data table with undefined. STATIC_ASSERT(kDataTableStartIndex + kDataTableLength == kFixedArrayLength); for (int i = 0; i < kDataTableLength; i++) { StoreFixedArrayElement(table, kDataTableStartIndex + i, UndefinedConstant(), barrier_mode); } return table; } template Node* CodeStubAssembler::AllocateOrderedHashTable<OrderedHashMap>(); template Node* CodeStubAssembler::AllocateOrderedHashTable<OrderedHashSet>(); template <typename CollectionType> TNode<CollectionType> CodeStubAssembler::AllocateSmallOrderedHashTable( TNode<IntPtrT> capacity) { CSA_ASSERT(this, WordIsPowerOfTwo(capacity)); CSA_ASSERT(this, IntPtrLessThan( capacity, IntPtrConstant(CollectionType::kMaxCapacity))); TNode<IntPtrT> data_table_start_offset = IntPtrConstant(CollectionType::kDataTableStartOffset); TNode<IntPtrT> data_table_size = IntPtrMul( capacity, IntPtrConstant(CollectionType::kEntrySize * kPointerSize)); TNode<Int32T> hash_table_size = Int32Div(TruncateIntPtrToInt32(capacity), Int32Constant(CollectionType::kLoadFactor)); TNode<IntPtrT> hash_table_start_offset = IntPtrAdd(data_table_start_offset, data_table_size); TNode<IntPtrT> hash_table_and_chain_table_size = IntPtrAdd(ChangeInt32ToIntPtr(hash_table_size), capacity); TNode<IntPtrT> total_size = IntPtrAdd(hash_table_start_offset, hash_table_and_chain_table_size); TNode<IntPtrT> total_size_word_aligned = IntPtrAdd(total_size, IntPtrConstant(kPointerSize - 1)); total_size_word_aligned = ChangeInt32ToIntPtr( Int32Div(TruncateIntPtrToInt32(total_size_word_aligned), Int32Constant(kPointerSize))); total_size_word_aligned = UncheckedCast<IntPtrT>(TimesPointerSize(total_size_word_aligned)); // Allocate the table and add the proper map. TNode<Map> small_ordered_hash_map = CAST(LoadRoot(CollectionType::GetMapRootIndex())); TNode<Object> table_obj = AllocateInNewSpace(total_size_word_aligned); StoreMapNoWriteBarrier(table_obj, small_ordered_hash_map); TNode<CollectionType> table = UncheckedCast<CollectionType>(table_obj); // Initialize the SmallOrderedHashTable fields. StoreObjectByteNoWriteBarrier( table, CollectionType::kNumberOfBucketsOffset, Word32And(Int32Constant(0xFF), hash_table_size)); StoreObjectByteNoWriteBarrier(table, CollectionType::kNumberOfElementsOffset, Int32Constant(0)); StoreObjectByteNoWriteBarrier( table, CollectionType::kNumberOfDeletedElementsOffset, Int32Constant(0)); TNode<IntPtrT> table_address = IntPtrSub(BitcastTaggedToWord(table), IntPtrConstant(kHeapObjectTag)); TNode<IntPtrT> hash_table_start_address = IntPtrAdd(table_address, hash_table_start_offset); // Initialize the HashTable part. Node* memset = ExternalConstant(ExternalReference::libc_memset_function()); CallCFunction3(MachineType::AnyTagged(), MachineType::Pointer(), MachineType::IntPtr(), MachineType::UintPtr(), memset, hash_table_start_address, IntPtrConstant(0xFF), hash_table_and_chain_table_size); // Initialize the DataTable part. TNode<HeapObject> filler = TheHoleConstant(); TNode<WordT> data_table_start_address = IntPtrAdd(table_address, data_table_start_offset); TNode<WordT> data_table_end_address = IntPtrAdd(data_table_start_address, data_table_size); StoreFieldsNoWriteBarrier(data_table_start_address, data_table_end_address, filler); return table; } template TNode<SmallOrderedHashMap> CodeStubAssembler::AllocateSmallOrderedHashTable<SmallOrderedHashMap>( TNode<IntPtrT> capacity); template TNode<SmallOrderedHashSet> CodeStubAssembler::AllocateSmallOrderedHashTable<SmallOrderedHashSet>( TNode<IntPtrT> capacity); template <typename CollectionType> void CodeStubAssembler::FindOrderedHashTableEntry( Node* table, Node* hash, const std::function<void(Node*, Label*, Label*)>& key_compare, Variable* entry_start_position, Label* entry_found, Label* not_found) { // Get the index of the bucket. Node* const number_of_buckets = SmiUntag(CAST(LoadFixedArrayElement( CAST(table), CollectionType::kNumberOfBucketsIndex))); Node* const bucket = WordAnd(hash, IntPtrSub(number_of_buckets, IntPtrConstant(1))); Node* const first_entry = SmiUntag(CAST(LoadFixedArrayElement( CAST(table), bucket, CollectionType::kHashTableStartIndex * kPointerSize))); // Walk the bucket chain. Node* entry_start; Label if_key_found(this); { VARIABLE(var_entry, MachineType::PointerRepresentation(), first_entry); Label loop(this, {&var_entry, entry_start_position}), continue_next_entry(this); Goto(&loop); BIND(&loop); // If the entry index is the not-found sentinel, we are done. GotoIf( WordEqual(var_entry.value(), IntPtrConstant(CollectionType::kNotFound)), not_found); // Make sure the entry index is within range. CSA_ASSERT( this, UintPtrLessThan( var_entry.value(), SmiUntag(SmiAdd( CAST(LoadFixedArrayElement( CAST(table), CollectionType::kNumberOfElementsIndex)), CAST(LoadFixedArrayElement( CAST(table), CollectionType::kNumberOfDeletedElementsIndex)))))); // Compute the index of the entry relative to kHashTableStartIndex. entry_start = IntPtrAdd(IntPtrMul(var_entry.value(), IntPtrConstant(CollectionType::kEntrySize)), number_of_buckets); // Load the key from the entry. Node* const candidate_key = LoadFixedArrayElement( CAST(table), entry_start, CollectionType::kHashTableStartIndex * kPointerSize); key_compare(candidate_key, &if_key_found, &continue_next_entry); BIND(&continue_next_entry); // Load the index of the next entry in the bucket chain. var_entry.Bind(SmiUntag(CAST(LoadFixedArrayElement( CAST(table), entry_start, (CollectionType::kHashTableStartIndex + CollectionType::kChainOffset) * kPointerSize)))); Goto(&loop); } BIND(&if_key_found); entry_start_position->Bind(entry_start); Goto(entry_found); } template void CodeStubAssembler::FindOrderedHashTableEntry<OrderedHashMap>( Node* table, Node* hash, const std::function<void(Node*, Label*, Label*)>& key_compare, Variable* entry_start_position, Label* entry_found, Label* not_found); template void CodeStubAssembler::FindOrderedHashTableEntry<OrderedHashSet>( Node* table, Node* hash, const std::function<void(Node*, Label*, Label*)>& key_compare, Variable* entry_start_position, Label* entry_found, Label* not_found); Node* CodeStubAssembler::AllocateStruct(Node* map, AllocationFlags flags) { Comment("AllocateStruct"); CSA_ASSERT(this, IsMap(map)); TNode<IntPtrT> size = TimesPointerSize(LoadMapInstanceSizeInWords(map)); TNode<Object> object = Allocate(size, flags); StoreMapNoWriteBarrier(object, map); InitializeStructBody(object, map, size, Struct::kHeaderSize); return object; } void CodeStubAssembler::InitializeStructBody(Node* object, Node* map, Node* size, int start_offset) { CSA_SLOW_ASSERT(this, IsMap(map)); Comment("InitializeStructBody"); Node* filler = UndefinedConstant(); // Calculate the untagged field addresses. object = BitcastTaggedToWord(object); Node* start_address = IntPtrAdd(object, IntPtrConstant(start_offset - kHeapObjectTag)); Node* end_address = IntPtrSub(IntPtrAdd(object, size), IntPtrConstant(kHeapObjectTag)); StoreFieldsNoWriteBarrier(start_address, end_address, filler); } Node* CodeStubAssembler::AllocateJSObjectFromMap( Node* map, Node* properties, Node* elements, AllocationFlags flags, SlackTrackingMode slack_tracking_mode) { CSA_ASSERT(this, IsMap(map)); CSA_ASSERT(this, Word32BinaryNot(IsJSFunctionMap(map))); CSA_ASSERT(this, Word32BinaryNot(InstanceTypeEqual(LoadMapInstanceType(map), JS_GLOBAL_OBJECT_TYPE))); TNode<IntPtrT> instance_size = TimesPointerSize(LoadMapInstanceSizeInWords(map)); TNode<Object> object = AllocateInNewSpace(instance_size, flags); StoreMapNoWriteBarrier(object, map); InitializeJSObjectFromMap(object, map, instance_size, properties, elements, slack_tracking_mode); return object; } void CodeStubAssembler::InitializeJSObjectFromMap( Node* object, Node* map, Node* instance_size, Node* properties, Node* elements, SlackTrackingMode slack_tracking_mode) { CSA_SLOW_ASSERT(this, IsMap(map)); // This helper assumes that the object is in new-space, as guarded by the // check in AllocatedJSObjectFromMap. if (properties == nullptr) { CSA_ASSERT(this, Word32BinaryNot(IsDictionaryMap((map)))); StoreObjectFieldRoot(object, JSObject::kPropertiesOrHashOffset, RootIndex::kEmptyFixedArray); } else { CSA_ASSERT(this, Word32Or(Word32Or(IsPropertyArray(properties), IsNameDictionary(properties)), IsEmptyFixedArray(properties))); StoreObjectFieldNoWriteBarrier(object, JSObject::kPropertiesOrHashOffset, properties); } if (elements == nullptr) { StoreObjectFieldRoot(object, JSObject::kElementsOffset, RootIndex::kEmptyFixedArray); } else { CSA_ASSERT(this, IsFixedArray(elements)); StoreObjectFieldNoWriteBarrier(object, JSObject::kElementsOffset, elements); } if (slack_tracking_mode == kNoSlackTracking) { InitializeJSObjectBodyNoSlackTracking(object, map, instance_size); } else { DCHECK_EQ(slack_tracking_mode, kWithSlackTracking); InitializeJSObjectBodyWithSlackTracking(object, map, instance_size); } } void CodeStubAssembler::InitializeJSObjectBodyNoSlackTracking( Node* object, Node* map, Node* instance_size, int start_offset) { STATIC_ASSERT(Map::kNoSlackTracking == 0); CSA_ASSERT( this, IsClearWord32<Map::ConstructionCounterBits>(LoadMapBitField3(map))); InitializeFieldsWithRoot(object, IntPtrConstant(start_offset), instance_size, RootIndex::kUndefinedValue); } void CodeStubAssembler::InitializeJSObjectBodyWithSlackTracking( Node* object, Node* map, Node* instance_size) { CSA_SLOW_ASSERT(this, IsMap(map)); Comment("InitializeJSObjectBodyNoSlackTracking"); // Perform in-object slack tracking if requested. int start_offset = JSObject::kHeaderSize; Node* bit_field3 = LoadMapBitField3(map); Label end(this), slack_tracking(this), complete(this, Label::kDeferred); STATIC_ASSERT(Map::kNoSlackTracking == 0); GotoIf(IsSetWord32<Map::ConstructionCounterBits>(bit_field3), &slack_tracking); Comment("No slack tracking"); InitializeJSObjectBodyNoSlackTracking(object, map, instance_size); Goto(&end); BIND(&slack_tracking); { Comment("Decrease construction counter"); // Slack tracking is only done on initial maps. CSA_ASSERT(this, IsUndefined(LoadMapBackPointer(map))); STATIC_ASSERT(Map::ConstructionCounterBits::kNext == 32); Node* new_bit_field3 = Int32Sub( bit_field3, Int32Constant(1 << Map::ConstructionCounterBits::kShift)); StoreObjectFieldNoWriteBarrier(map, Map::kBitField3Offset, new_bit_field3, MachineRepresentation::kWord32); STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1); // The object still has in-object slack therefore the |unsed_or_unused| // field contain the "used" value. Node* used_size = TimesPointerSize(ChangeUint32ToWord( LoadObjectField(map, Map::kUsedOrUnusedInstanceSizeInWordsOffset, MachineType::Uint8()))); Comment("iInitialize filler fields"); InitializeFieldsWithRoot(object, used_size, instance_size, RootIndex::kOnePointerFillerMap); Comment("Initialize undefined fields"); InitializeFieldsWithRoot(object, IntPtrConstant(start_offset), used_size, RootIndex::kUndefinedValue); STATIC_ASSERT(Map::kNoSlackTracking == 0); GotoIf(IsClearWord32<Map::ConstructionCounterBits>(new_bit_field3), &complete); Goto(&end); } // Finalize the instance size. BIND(&complete); { // ComplextInobjectSlackTracking doesn't allocate and thus doesn't need a // context. CallRuntime(Runtime::kCompleteInobjectSlackTrackingForMap, NoContextConstant(), map); Goto(&end); } BIND(&end); } void CodeStubAssembler::StoreFieldsNoWriteBarrier(Node* start_address, Node* end_address, Node* value) { Comment("StoreFieldsNoWriteBarrier"); CSA_ASSERT(this, WordIsWordAligned(start_address)); CSA_ASSERT(this, WordIsWordAligned(end_address)); BuildFastLoop(start_address, end_address, [this, value](Node* current) { StoreNoWriteBarrier(MachineRepresentation::kTagged, current, value); }, kPointerSize, INTPTR_PARAMETERS, IndexAdvanceMode::kPost); } TNode<BoolT> CodeStubAssembler::IsValidFastJSArrayCapacity( Node* capacity, ParameterMode capacity_mode) { return UncheckedCast<BoolT>( UintPtrLessThanOrEqual(ParameterToIntPtr(capacity, capacity_mode), IntPtrConstant(JSArray::kMaxFastArrayLength))); } TNode<JSArray> CodeStubAssembler::AllocateUninitializedJSArrayWithoutElements( TNode<Map> array_map, TNode<Smi> length, Node* allocation_site) { Comment("begin allocation of JSArray without elements"); CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length)); int base_size = JSArray::kSize; if (allocation_site != nullptr) { base_size += AllocationMemento::kSize; } TNode<IntPtrT> size = IntPtrConstant(base_size); return AllocateUninitializedJSArray(array_map, length, allocation_site, size); } std::pair<TNode<JSArray>, TNode<FixedArrayBase>> CodeStubAssembler::AllocateUninitializedJSArrayWithElements( ElementsKind kind, TNode<Map> array_map, TNode<Smi> length, Node* allocation_site, Node* capacity, ParameterMode capacity_mode, AllocationFlags allocation_flags) { Comment("begin allocation of JSArray with elements"); CHECK_EQ(allocation_flags & ~kAllowLargeObjectAllocation, 0); CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length)); int base_size = JSArray::kSize; if (allocation_site != nullptr) base_size += AllocationMemento::kSize; const int elements_offset = base_size; // Compute space for elements base_size += FixedArray::kHeaderSize; TNode<IntPtrT> size = ElementOffsetFromIndex(capacity, kind, capacity_mode, base_size); TVARIABLE(JSArray, array); TVARIABLE(FixedArrayBase, elements); Label out(this); // For very large arrays in which the requested allocation exceeds the // maximal size of a regular heap object, we cannot use the allocation // folding trick. Instead, we first allocate the elements in large object // space, and then allocate the JSArray (and possibly the allocation memento) // in new space. if (allocation_flags & kAllowLargeObjectAllocation) { Label next(this); GotoIf(IsRegularHeapObjectSize(size), &next); CSA_CHECK(this, IsValidFastJSArrayCapacity(capacity, capacity_mode)); // Allocate and initialize the elements first. Full initialization is needed // because the upcoming JSArray allocation could trigger GC. elements = AllocateFixedArray(kind, capacity, capacity_mode, allocation_flags); if (IsDoubleElementsKind(kind)) { FillFixedDoubleArrayWithZero(CAST(elements.value()), ParameterToIntPtr(capacity, capacity_mode)); } else { FillFixedArrayWithSmiZero(CAST(elements.value()), ParameterToIntPtr(capacity, capacity_mode)); } // The JSArray and possibly allocation memento next. Note that // allocation_flags are *not* passed on here and the resulting JSArray will // always be in new space. array = AllocateUninitializedJSArrayWithoutElements(array_map, length, allocation_site); StoreObjectFieldNoWriteBarrier(array.value(), JSObject::kElementsOffset, elements.value()); Goto(&out); BIND(&next); } // Fold all objects into a single new space allocation. array = AllocateUninitializedJSArray(array_map, length, allocation_site, size); elements = UncheckedCast<FixedArrayBase>( InnerAllocate(array.value(), elements_offset)); StoreObjectFieldNoWriteBarrier(array.value(), JSObject::kElementsOffset, elements.value()); // Setup elements object. STATIC_ASSERT(FixedArrayBase::kHeaderSize == 2 * kPointerSize); RootIndex elements_map_index = IsDoubleElementsKind(kind) ? RootIndex::kFixedDoubleArrayMap : RootIndex::kFixedArrayMap; DCHECK(RootsTable::IsImmortalImmovable(elements_map_index)); StoreMapNoWriteBarrier(elements.value(), elements_map_index); TNode<Smi> capacity_smi = ParameterToTagged(capacity, capacity_mode); CSA_ASSERT(this, SmiGreaterThan(capacity_smi, SmiConstant(0))); StoreObjectFieldNoWriteBarrier(elements.value(), FixedArray::kLengthOffset, capacity_smi); Goto(&out); BIND(&out); return {array.value(), elements.value()}; } TNode<JSArray> CodeStubAssembler::AllocateUninitializedJSArray( TNode<Map> array_map, TNode<Smi> length, Node* allocation_site, TNode<IntPtrT> size_in_bytes) { CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length)); // Allocate space for the JSArray and the elements FixedArray in one go. TNode<Object> array = AllocateInNewSpace(size_in_bytes); StoreMapNoWriteBarrier(array, array_map); StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); StoreObjectFieldRoot(array, JSArray::kPropertiesOrHashOffset, RootIndex::kEmptyFixedArray); if (allocation_site != nullptr) { InitializeAllocationMemento(array, IntPtrConstant(JSArray::kSize), allocation_site); } return CAST(array); } TNode<JSArray> CodeStubAssembler::AllocateJSArray( ElementsKind kind, TNode<Map> array_map, Node* capacity, TNode<Smi> length, Node* allocation_site, ParameterMode capacity_mode, AllocationFlags allocation_flags) { CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length)); CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, capacity_mode)); TNode<JSArray> array; TNode<FixedArrayBase> elements; int capacity_as_constant; if (IsIntPtrOrSmiConstantZero(capacity, capacity_mode)) { // Array is empty. Use the shared empty fixed array instead of allocating a // new one. array = AllocateUninitializedJSArrayWithoutElements(array_map, length, allocation_site); StoreObjectFieldRoot(array, JSArray::kElementsOffset, RootIndex::kEmptyFixedArray); } else if (TryGetIntPtrOrSmiConstantValue(capacity, &capacity_as_constant, capacity_mode)) { CHECK_GT(capacity_as_constant, 0); // Allocate both array and elements object, and initialize the JSArray. std::tie(array, elements) = AllocateUninitializedJSArrayWithElements( kind, array_map, length, allocation_site, capacity, capacity_mode, allocation_flags); // Fill in the elements with holes. FillFixedArrayWithValue(kind, elements, IntPtrOrSmiConstant(0, capacity_mode), capacity, RootIndex::kTheHoleValue, capacity_mode); } else { Label out(this), empty(this), nonempty(this); TVARIABLE(JSArray, var_array); Branch(SmiEqual(ParameterToTagged(capacity, capacity_mode), SmiConstant(0)), &empty, &nonempty); BIND(&empty); { // Array is empty. Use the shared empty fixed array instead of allocating // a new one. var_array = AllocateUninitializedJSArrayWithoutElements(array_map, length, allocation_site); StoreObjectFieldRoot(var_array.value(), JSArray::kElementsOffset, RootIndex::kEmptyFixedArray); Goto(&out); } BIND(&nonempty); { // Allocate both array and elements object, and initialize the JSArray. TNode<JSArray> array; std::tie(array, elements) = AllocateUninitializedJSArrayWithElements( kind, array_map, length, allocation_site, capacity, capacity_mode, allocation_flags); var_array = array; // Fill in the elements with holes. FillFixedArrayWithValue(kind, elements, IntPtrOrSmiConstant(0, capacity_mode), capacity, RootIndex::kTheHoleValue, capacity_mode); Goto(&out); } BIND(&out); array = var_array.value(); } return array; } Node* CodeStubAssembler::ExtractFastJSArray(Node* context, Node* array, Node* begin, Node* count, ParameterMode mode, Node* capacity, Node* allocation_site) { Node* original_array_map = LoadMap(array); Node* elements_kind = LoadMapElementsKind(original_array_map); // Use the cannonical map for the Array's ElementsKind Node* native_context = LoadNativeContext(context); TNode<Map> array_map = LoadJSArrayElementsMap(elements_kind, native_context); Node* new_elements = ExtractFixedArray( LoadElements(array), begin, count, capacity, ExtractFixedArrayFlag::kAllFixedArrays, mode, nullptr, elements_kind); TNode<Object> result = AllocateUninitializedJSArrayWithoutElements( array_map, ParameterToTagged(count, mode), allocation_site); StoreObjectField(result, JSObject::kElementsOffset, new_elements); return result; } Node* CodeStubAssembler::CloneFastJSArray(Node* context, Node* array, ParameterMode mode, Node* allocation_site, HoleConversionMode convert_holes) { // TODO(dhai): we should be able to assert IsFastJSArray(array) here, but this // function is also used to copy boilerplates even when the no-elements // protector is invalid. This function should be renamed to reflect its uses. CSA_ASSERT(this, IsJSArray(array)); Node* length = LoadJSArrayLength(array); Node* new_elements = nullptr; VARIABLE(var_new_elements, MachineRepresentation::kTagged); TVARIABLE(Int32T, var_elements_kind, LoadMapElementsKind(LoadMap(array))); Label allocate_jsarray(this), holey_extract(this); bool need_conversion = convert_holes == HoleConversionMode::kConvertToUndefined; if (need_conversion) { // We need to take care of holes, if the array is of holey elements kind. GotoIf(IsHoleyFastElementsKind(var_elements_kind.value()), &holey_extract); } // Simple extraction that preserves holes. new_elements = ExtractFixedArray(LoadElements(array), IntPtrOrSmiConstant(0, mode), TaggedToParameter(length, mode), nullptr, ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW, mode, nullptr, var_elements_kind.value()); var_new_elements.Bind(new_elements); Goto(&allocate_jsarray); if (need_conversion) { BIND(&holey_extract); // Convert holes to undefined. TVARIABLE(BoolT, var_holes_converted, Int32FalseConstant()); // Copy |array|'s elements store. The copy will be compatible with the // original elements kind unless there are holes in the source. Any holes // get converted to undefined, hence in that case the copy is compatible // only with PACKED_ELEMENTS and HOLEY_ELEMENTS, and we will choose // PACKED_ELEMENTS. Also, if we want to replace holes, we must not use // ExtractFixedArrayFlag::kDontCopyCOW. new_elements = ExtractFixedArray( LoadElements(array), IntPtrOrSmiConstant(0, mode), TaggedToParameter(length, mode), nullptr, ExtractFixedArrayFlag::kAllFixedArrays, mode, &var_holes_converted); var_new_elements.Bind(new_elements); // If the array type didn't change, use the original elements kind. GotoIfNot(var_holes_converted.value(), &allocate_jsarray); // Otherwise use PACKED_ELEMENTS for the target's elements kind. var_elements_kind = Int32Constant(PACKED_ELEMENTS); Goto(&allocate_jsarray); } BIND(&allocate_jsarray); // Use the cannonical map for the chosen elements kind. Node* native_context = LoadNativeContext(context); TNode<Map> array_map = LoadJSArrayElementsMap(var_elements_kind.value(), native_context); TNode<Object> result = AllocateUninitializedJSArrayWithoutElements( array_map, CAST(length), allocation_site); StoreObjectField(result, JSObject::kElementsOffset, var_new_elements.value()); return result; } TNode<FixedArrayBase> CodeStubAssembler::AllocateFixedArray( ElementsKind kind, Node* capacity, ParameterMode mode, AllocationFlags flags, SloppyTNode<Map> fixed_array_map) { Comment("AllocateFixedArray"); CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode)); CSA_ASSERT(this, IntPtrOrSmiGreaterThan(capacity, IntPtrOrSmiConstant(0, mode), mode)); TNode<IntPtrT> total_size = GetFixedArrayAllocationSize(capacity, kind, mode); if (IsDoubleElementsKind(kind)) flags |= kDoubleAlignment; // Allocate both array and elements object, and initialize the JSArray. Node* array = Allocate(total_size, flags); if (fixed_array_map != nullptr) { // Conservatively only skip the write barrier if there are no allocation // flags, this ensures that the object hasn't ended up in LOS. Note that the // fixed array map is currently always immortal and technically wouldn't // need the write barrier even in LOS, but it's better to not take chances // in case this invariant changes later, since it's difficult to enforce // locally here. if (flags == CodeStubAssembler::kNone) { StoreMapNoWriteBarrier(array, fixed_array_map); } else { StoreMap(array, fixed_array_map); } } else { RootIndex map_index = IsDoubleElementsKind(kind) ? RootIndex::kFixedDoubleArrayMap : RootIndex::kFixedArrayMap; DCHECK(RootsTable::IsImmortalImmovable(map_index)); StoreMapNoWriteBarrier(array, map_index); } StoreObjectFieldNoWriteBarrier(array, FixedArray::kLengthOffset, ParameterToTagged(capacity, mode)); return UncheckedCast<FixedArray>(array); } TNode<FixedArray> CodeStubAssembler::ExtractToFixedArray( Node* source, Node* first, Node* count, Node* capacity, Node* source_map, ElementsKind from_kind, AllocationFlags allocation_flags, ExtractFixedArrayFlags extract_flags, ParameterMode parameter_mode, HoleConversionMode convert_holes, TVariable<BoolT>* var_holes_converted, Node* source_elements_kind) { DCHECK_NE(first, nullptr); DCHECK_NE(count, nullptr); DCHECK_NE(capacity, nullptr); DCHECK(extract_flags & ExtractFixedArrayFlag::kFixedArrays); CSA_ASSERT(this, WordNotEqual(IntPtrOrSmiConstant(0, parameter_mode), capacity)); CSA_ASSERT(this, WordEqual(source_map, LoadMap(source))); VARIABLE(var_result, MachineRepresentation::kTagged); VARIABLE(var_target_map, MachineRepresentation::kTagged, source_map); Label done(this, {&var_result}), is_cow(this), new_space_check(this, {&var_target_map}); // If source_map is either FixedDoubleArrayMap, or FixedCOWArrayMap but // we can't just use COW, use FixedArrayMap as the target map. Otherwise, use // source_map as the target map. if (IsDoubleElementsKind(from_kind)) { CSA_ASSERT(this, IsFixedDoubleArrayMap(source_map)); var_target_map.Bind(LoadRoot(RootIndex::kFixedArrayMap)); Goto(&new_space_check); } else { CSA_ASSERT(this, Word32BinaryNot(IsFixedDoubleArrayMap(source_map))); Branch(WordEqual(var_target_map.value(), LoadRoot(RootIndex::kFixedCOWArrayMap)), &is_cow, &new_space_check); BIND(&is_cow); { // |source| is a COW array, so we don't actually need to allocate a new // array unless: // 1) |extract_flags| forces us to, or // 2) we're asked to extract only part of the |source| (|first| != 0). if (extract_flags & ExtractFixedArrayFlag::kDontCopyCOW) { Branch(WordNotEqual(IntPtrOrSmiConstant(0, parameter_mode), first), &new_space_check, [&] { var_result.Bind(source); Goto(&done); }); } else { var_target_map.Bind(LoadRoot(RootIndex::kFixedArrayMap)); Goto(&new_space_check); } } } BIND(&new_space_check); { bool handle_old_space = true; if (extract_flags & ExtractFixedArrayFlag::kNewSpaceAllocationOnly) { handle_old_space = false; CSA_ASSERT(this, Word32BinaryNot(FixedArraySizeDoesntFitInNewSpace( count, FixedArray::kHeaderSize, parameter_mode))); } else { int constant_count; handle_old_space = !TryGetIntPtrOrSmiConstantValue(count, &constant_count, parameter_mode) || (constant_count > FixedArray::GetMaxLengthForNewSpaceAllocation(PACKED_ELEMENTS)); } Label old_space(this, Label::kDeferred); if (handle_old_space) { GotoIfFixedArraySizeDoesntFitInNewSpace( capacity, &old_space, FixedArray::kHeaderSize, parameter_mode); } Comment("Copy FixedArray new space"); // We use PACKED_ELEMENTS to tell AllocateFixedArray and // CopyFixedArrayElements that we want a FixedArray. const ElementsKind to_kind = PACKED_ELEMENTS; TNode<FixedArrayBase> to_elements = AllocateFixedArray(to_kind, capacity, parameter_mode, AllocationFlag::kNone, var_target_map.value()); var_result.Bind(to_elements); if (convert_holes == HoleConversionMode::kDontConvert && !IsDoubleElementsKind(from_kind)) { // We can use CopyElements (memcpy) because we don't need to replace or // convert any values. Since {to_elements} is in new-space, CopyElements // will efficiently use memcpy. FillFixedArrayWithValue(to_kind, to_elements, count, capacity, RootIndex::kTheHoleValue, parameter_mode); CopyElements(to_kind, to_elements, IntPtrConstant(0), CAST(source), ParameterToIntPtr(first, parameter_mode), ParameterToIntPtr(count, parameter_mode), SKIP_WRITE_BARRIER); } else { CopyFixedArrayElements(from_kind, source, to_kind, to_elements, first, count, capacity, SKIP_WRITE_BARRIER, parameter_mode, convert_holes, var_holes_converted); } Goto(&done); if (handle_old_space) { BIND(&old_space); { Comment("Copy FixedArray old space"); Label copy_one_by_one(this); // Try to use memcpy if we don't need to convert holes to undefined. if (convert_holes == HoleConversionMode::kDontConvert && source_elements_kind != nullptr) { // Only try memcpy if we're not copying object pointers. GotoIfNot(IsFastSmiElementsKind(source_elements_kind), ©_one_by_one); const ElementsKind to_smi_kind = PACKED_SMI_ELEMENTS; to_elements = AllocateFixedArray(to_smi_kind, capacity, parameter_mode, allocation_flags, var_target_map.value()); var_result.Bind(to_elements); FillFixedArrayWithValue(to_smi_kind, to_elements, count, capacity, RootIndex::kTheHoleValue, parameter_mode); // CopyElements will try to use memcpy if it's not conflicting with // GC. Otherwise it will copy elements by elements, but skip write // barriers (since we're copying smis to smis). CopyElements(to_smi_kind, to_elements, IntPtrConstant(0), CAST(source), ParameterToIntPtr(first, parameter_mode), ParameterToIntPtr(count, parameter_mode), SKIP_WRITE_BARRIER); Goto(&done); } else { Goto(©_one_by_one); } BIND(©_one_by_one); { to_elements = AllocateFixedArray(to_kind, capacity, parameter_mode, allocation_flags, var_target_map.value()); var_result.Bind(to_elements); CopyFixedArrayElements(from_kind, source, to_kind, to_elements, first, count, capacity, UPDATE_WRITE_BARRIER, parameter_mode, convert_holes, var_holes_converted); Goto(&done); } } } } BIND(&done); return UncheckedCast<FixedArray>(var_result.value()); } TNode<FixedArrayBase> CodeStubAssembler::ExtractFixedDoubleArrayFillingHoles( Node* from_array, Node* first, Node* count, Node* capacity, Node* fixed_array_map, TVariable<BoolT>* var_holes_converted, AllocationFlags allocation_flags, ExtractFixedArrayFlags extract_flags, ParameterMode mode) { DCHECK_NE(first, nullptr); DCHECK_NE(count, nullptr); DCHECK_NE(capacity, nullptr); DCHECK_NE(var_holes_converted, nullptr); CSA_ASSERT(this, IsFixedDoubleArrayMap(fixed_array_map)); VARIABLE(var_result, MachineRepresentation::kTagged); const ElementsKind kind = PACKED_DOUBLE_ELEMENTS; Node* to_elements = AllocateFixedArray(kind, capacity, mode, allocation_flags, fixed_array_map); var_result.Bind(to_elements); // We first try to copy the FixedDoubleArray to a new FixedDoubleArray. // |var_holes_converted| is set to False preliminarily. *var_holes_converted = Int32FalseConstant(); // The construction of the loop and the offsets for double elements is // extracted from CopyFixedArrayElements. CSA_SLOW_ASSERT(this, MatchesParameterMode(count, mode)); CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode)); CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(from_array, kind)); STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize); Comment("[ ExtractFixedDoubleArrayFillingHoles"); // This copy can trigger GC, so we pre-initialize the array with holes. FillFixedArrayWithValue(kind, to_elements, IntPtrOrSmiConstant(0, mode), capacity, RootIndex::kTheHoleValue, mode); const int first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag; Node* first_from_element_offset = ElementOffsetFromIndex(first, kind, mode, 0); Node* limit_offset = IntPtrAdd(first_from_element_offset, IntPtrConstant(first_element_offset)); VARIABLE(var_from_offset, MachineType::PointerRepresentation(), ElementOffsetFromIndex(IntPtrOrSmiAdd(first, count, mode), kind, mode, first_element_offset)); Label decrement(this, {&var_from_offset}), done(this); Node* to_array_adjusted = IntPtrSub(BitcastTaggedToWord(to_elements), first_from_element_offset); Branch(WordEqual(var_from_offset.value(), limit_offset), &done, &decrement); BIND(&decrement); { Node* from_offset = IntPtrSub(var_from_offset.value(), IntPtrConstant(kDoubleSize)); var_from_offset.Bind(from_offset); Node* to_offset = from_offset; Label if_hole(this); Node* value = LoadElementAndPrepareForStore( from_array, var_from_offset.value(), kind, kind, &if_hole); StoreNoWriteBarrier(MachineRepresentation::kFloat64, to_array_adjusted, to_offset, value); Node* compare = WordNotEqual(from_offset, limit_offset); Branch(compare, &decrement, &done); BIND(&if_hole); // We are unlucky: there are holes! We need to restart the copy, this time // we will copy the FixedDoubleArray to a new FixedArray with undefined // replacing holes. We signal this to the caller through // |var_holes_converted|. *var_holes_converted = Int32TrueConstant(); to_elements = ExtractToFixedArray(from_array, first, count, capacity, fixed_array_map, kind, allocation_flags, extract_flags, mode, HoleConversionMode::kConvertToUndefined); var_result.Bind(to_elements); Goto(&done); } BIND(&done); Comment("] ExtractFixedDoubleArrayFillingHoles"); return UncheckedCast<FixedArrayBase>(var_result.value()); } TNode<FixedArrayBase> CodeStubAssembler::ExtractFixedArray( Node* source, Node* first, Node* count, Node* capacity, ExtractFixedArrayFlags extract_flags, ParameterMode parameter_mode, TVariable<BoolT>* var_holes_converted, Node* source_runtime_kind) { DCHECK(extract_flags & ExtractFixedArrayFlag::kFixedArrays || extract_flags & ExtractFixedArrayFlag::kFixedDoubleArrays); // If we want to replace holes, ExtractFixedArrayFlag::kDontCopyCOW should not // be used, because that disables the iteration which detects holes. DCHECK_IMPLIES(var_holes_converted != nullptr, !(extract_flags & ExtractFixedArrayFlag::kDontCopyCOW)); HoleConversionMode convert_holes = var_holes_converted != nullptr ? HoleConversionMode::kConvertToUndefined : HoleConversionMode::kDontConvert; VARIABLE(var_result, MachineRepresentation::kTagged); const AllocationFlags allocation_flags = (extract_flags & ExtractFixedArrayFlag::kNewSpaceAllocationOnly) ? CodeStubAssembler::kNone : CodeStubAssembler::kAllowLargeObjectAllocation; if (first == nullptr) { first = IntPtrOrSmiConstant(0, parameter_mode); } if (count == nullptr) { count = IntPtrOrSmiSub( TaggedToParameter(LoadFixedArrayBaseLength(source), parameter_mode), first, parameter_mode); CSA_ASSERT( this, IntPtrOrSmiLessThanOrEqual(IntPtrOrSmiConstant(0, parameter_mode), count, parameter_mode)); } if (capacity == nullptr) { capacity = count; } else { CSA_ASSERT(this, Word32BinaryNot(IntPtrOrSmiGreaterThan( IntPtrOrSmiAdd(first, count, parameter_mode), capacity, parameter_mode))); } Label if_fixed_double_array(this), empty(this), done(this, {&var_result}); Node* source_map = LoadMap(source); GotoIf(WordEqual(IntPtrOrSmiConstant(0, parameter_mode), capacity), &empty); if (extract_flags & ExtractFixedArrayFlag::kFixedDoubleArrays) { if (extract_flags & ExtractFixedArrayFlag::kFixedArrays) { GotoIf(IsFixedDoubleArrayMap(source_map), &if_fixed_double_array); } else { CSA_ASSERT(this, IsFixedDoubleArrayMap(source_map)); } } if (extract_flags & ExtractFixedArrayFlag::kFixedArrays) { // Here we can only get |source| as FixedArray, never FixedDoubleArray. // PACKED_ELEMENTS is used to signify that the source is a FixedArray. Node* to_elements = ExtractToFixedArray( source, first, count, capacity, source_map, PACKED_ELEMENTS, allocation_flags, extract_flags, parameter_mode, convert_holes, var_holes_converted, source_runtime_kind); var_result.Bind(to_elements); Goto(&done); } if (extract_flags & ExtractFixedArrayFlag::kFixedDoubleArrays) { BIND(&if_fixed_double_array); Comment("Copy FixedDoubleArray"); if (convert_holes == HoleConversionMode::kConvertToUndefined) { Node* to_elements = ExtractFixedDoubleArrayFillingHoles( source, first, count, capacity, source_map, var_holes_converted, allocation_flags, extract_flags, parameter_mode); var_result.Bind(to_elements); } else { // We use PACKED_DOUBLE_ELEMENTS to signify that both the source and // the target are FixedDoubleArray. That it is PACKED or HOLEY does not // matter. ElementsKind kind = PACKED_DOUBLE_ELEMENTS; TNode<FixedArrayBase> to_elements = AllocateFixedArray( kind, capacity, parameter_mode, allocation_flags, source_map); var_result.Bind(to_elements); CopyElements(kind, to_elements, IntPtrConstant(0), CAST(source), ParameterToIntPtr(first, parameter_mode), ParameterToIntPtr(count, parameter_mode)); } Goto(&done); } BIND(&empty); { Comment("Copy empty array"); var_result.Bind(EmptyFixedArrayConstant()); Goto(&done); } BIND(&done); return UncheckedCast<FixedArray>(var_result.value()); } void CodeStubAssembler::InitializePropertyArrayLength(Node* property_array, Node* length, ParameterMode mode) { CSA_SLOW_ASSERT(this, IsPropertyArray(property_array)); CSA_ASSERT( this, IntPtrOrSmiGreaterThan(length, IntPtrOrSmiConstant(0, mode), mode)); CSA_ASSERT( this, IntPtrOrSmiLessThanOrEqual( length, IntPtrOrSmiConstant(PropertyArray::LengthField::kMax, mode), mode)); StoreObjectFieldNoWriteBarrier( property_array, PropertyArray::kLengthAndHashOffset, ParameterToTagged(length, mode), MachineRepresentation::kTaggedSigned); } Node* CodeStubAssembler::AllocatePropertyArray(Node* capacity_node, ParameterMode mode, AllocationFlags flags) { CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity_node, mode)); CSA_ASSERT(this, IntPtrOrSmiGreaterThan(capacity_node, IntPtrOrSmiConstant(0, mode), mode)); TNode<IntPtrT> total_size = GetPropertyArrayAllocationSize(capacity_node, mode); TNode<Object> array = Allocate(total_size, flags); RootIndex map_index = RootIndex::kPropertyArrayMap; DCHECK(RootsTable::IsImmortalImmovable(map_index)); StoreMapNoWriteBarrier(array, map_index); InitializePropertyArrayLength(array, capacity_node, mode); return array; } void CodeStubAssembler::FillPropertyArrayWithUndefined(Node* array, Node* from_node, Node* to_node, ParameterMode mode) { CSA_SLOW_ASSERT(this, MatchesParameterMode(from_node, mode)); CSA_SLOW_ASSERT(this, MatchesParameterMode(to_node, mode)); CSA_SLOW_ASSERT(this, IsPropertyArray(array)); ElementsKind kind = PACKED_ELEMENTS; Node* value = UndefinedConstant(); BuildFastFixedArrayForEach(array, kind, from_node, to_node, [this, value](Node* array, Node* offset) { StoreNoWriteBarrier( MachineRepresentation::kTagged, array, offset, value); }, mode); } void CodeStubAssembler::FillFixedArrayWithValue(ElementsKind kind, Node* array, Node* from_node, Node* to_node, RootIndex value_root_index, ParameterMode mode) { CSA_SLOW_ASSERT(this, MatchesParameterMode(from_node, mode)); CSA_SLOW_ASSERT(this, MatchesParameterMode(to_node, mode)); CSA_SLOW_ASSERT(this, IsFixedArrayWithKind(array, kind)); DCHECK(value_root_index == RootIndex::kTheHoleValue || value_root_index == RootIndex::kUndefinedValue); // Determine the value to initialize the {array} based // on the {value_root_index} and the elements {kind}. Node* value = LoadRoot(value_root_index); if (IsDoubleElementsKind(kind)) { value = LoadHeapNumberValue(value); } BuildFastFixedArrayForEach( array, kind, from_node, to_node, [this, value, kind](Node* array, Node* offset) { if (IsDoubleElementsKind(kind)) { StoreNoWriteBarrier(MachineRepresentation::kFloat64, array, offset, value); } else { StoreNoWriteBarrier(MachineRepresentation::kTagged, array, offset, value); } }, mode); } void CodeStubAssembler::StoreFixedDoubleArrayHole( TNode<FixedDoubleArray> array, Node* index, ParameterMode parameter_mode) { CSA_SLOW_ASSERT(this, MatchesParameterMode(index, parameter_mode)); Node* offset = ElementOffsetFromIndex(index, PACKED_DOUBLE_ELEMENTS, parameter_mode, FixedArray::kHeaderSize - kHeapObjectTag); CSA_ASSERT(this, IsOffsetInBounds( offset, LoadAndUntagFixedArrayBaseLength(array), FixedDoubleArray::kHeaderSize, PACKED_DOUBLE_ELEMENTS)); Node* double_hole = Is64() ? ReinterpretCast<UintPtrT>(Int64Constant(kHoleNanInt64)) : ReinterpretCast<UintPtrT>(Int32Constant(kHoleNanLower32)); // TODO(danno): When we have a Float32/Float64 wrapper class that // preserves double bits during manipulation, remove this code/change // this to an indexed Float64 store. if (Is64()) { StoreNoWriteBarrier(MachineRepresentation::kWord64, array, offset, double_hole); } else { StoreNoWriteBarrier(MachineRepresentation::kWord32, array, offset, double_hole); StoreNoWriteBarrier(MachineRepresentation::kWord32, array, IntPtrAdd(offset, IntPtrConstant(kPointerSize)), double_hole); } } void CodeStubAssembler::FillFixedArrayWithSmiZero(TNode<FixedArray> array, TNode<IntPtrT> length) { CSA_ASSERT(this, WordEqual(length, LoadAndUntagFixedArrayBaseLength(array))); TNode<IntPtrT> byte_length = TimesPointerSize(length); CSA_ASSERT(this, UintPtrLessThan(length, byte_length)); static const int32_t fa_base_data_offset = FixedArray::kHeaderSize - kHeapObjectTag; TNode<IntPtrT> backing_store = IntPtrAdd(BitcastTaggedToWord(array), IntPtrConstant(fa_base_data_offset)); // Call out to memset to perform initialization. TNode<ExternalReference> memset = ExternalConstant(ExternalReference::libc_memset_function()); STATIC_ASSERT(kSizetSize == kIntptrSize); CallCFunction3(MachineType::Pointer(), MachineType::Pointer(), MachineType::IntPtr(), MachineType::UintPtr(), memset, backing_store, IntPtrConstant(0), byte_length); } void CodeStubAssembler::FillFixedDoubleArrayWithZero( TNode<FixedDoubleArray> array, TNode<IntPtrT> length) { CSA_ASSERT(this, WordEqual(length, LoadAndUntagFixedArrayBaseLength(array))); TNode<IntPtrT> byte_length = TimesDoubleSize(length); CSA_ASSERT(this, UintPtrLessThan(length, byte_length)); static const int32_t fa_base_data_offset = FixedDoubleArray::kHeaderSize - kHeapObjectTag; TNode<IntPtrT> backing_store = IntPtrAdd(BitcastTaggedToWord(array), IntPtrConstant(fa_base_data_offset)); // Call out to memset to perform initialization. TNode<ExternalReference> memset = ExternalConstant(ExternalReference::libc_memset_function()); STATIC_ASSERT(kSizetSize == kIntptrSize); CallCFunction3(MachineType::Pointer(), MachineType::Pointer(), MachineType::IntPtr(), MachineType::UintPtr(), memset, backing_store, IntPtrConstant(0), byte_length); } void CodeStubAssembler::JumpIfPointersFromHereAreInteresting( TNode<Object> object, Label* interesting) { Label finished(this); TNode<IntPtrT> object_word = BitcastTaggedToWord(object); TNode<IntPtrT> object_page = PageFromAddress(object_word); TNode<IntPtrT> page_flags = UncheckedCast<IntPtrT>(Load( MachineType::IntPtr(), object_page, IntPtrConstant(Page::kFlagsOffset))); Branch( WordEqual(WordAnd(page_flags, IntPtrConstant( MemoryChunk::kPointersFromHereAreInterestingMask)), IntPtrConstant(0)), &finished, interesting); BIND(&finished); } void CodeStubAssembler::MoveElements(ElementsKind kind, TNode<FixedArrayBase> elements, TNode<IntPtrT> dst_index, TNode<IntPtrT> src_index, TNode<IntPtrT> length) { Label finished(this); Label needs_barrier(this); const bool needs_barrier_check = !IsDoubleElementsKind(kind); DCHECK(IsFastElementsKind(kind)); CSA_ASSERT(this, IsFixedArrayWithKind(elements, kind)); CSA_ASSERT(this, IntPtrLessThanOrEqual(IntPtrAdd(dst_index, length), LoadAndUntagFixedArrayBaseLength(elements))); CSA_ASSERT(this, IntPtrLessThanOrEqual(IntPtrAdd(src_index, length), LoadAndUntagFixedArrayBaseLength(elements))); // The write barrier can be ignored if {dst_elements} is in new space, or if // the elements pointer is FixedDoubleArray. if (needs_barrier_check) { JumpIfPointersFromHereAreInteresting(elements, &needs_barrier); } const TNode<IntPtrT> source_byte_length = IntPtrMul(length, IntPtrConstant(ElementsKindToByteSize(kind))); static const int32_t fa_base_data_offset = FixedArrayBase::kHeaderSize - kHeapObjectTag; TNode<IntPtrT> elements_intptr = BitcastTaggedToWord(elements); TNode<IntPtrT> target_data_ptr = IntPtrAdd(elements_intptr, ElementOffsetFromIndex(dst_index, kind, INTPTR_PARAMETERS, fa_base_data_offset)); TNode<IntPtrT> source_data_ptr = IntPtrAdd(elements_intptr, ElementOffsetFromIndex(src_index, kind, INTPTR_PARAMETERS, fa_base_data_offset)); TNode<ExternalReference> memmove = ExternalConstant(ExternalReference::libc_memmove_function()); CallCFunction3(MachineType::Pointer(), MachineType::Pointer(), MachineType::Pointer(), MachineType::UintPtr(), memmove, target_data_ptr, source_data_ptr, source_byte_length); if (needs_barrier_check) { Goto(&finished); BIND(&needs_barrier); { const TNode<IntPtrT> begin = src_index; const TNode<IntPtrT> end = IntPtrAdd(begin, length); // If dst_index is less than src_index, then walk forward. const TNode<IntPtrT> delta = IntPtrMul(IntPtrSub(dst_index, begin), IntPtrConstant(ElementsKindToByteSize(kind))); auto loop_body = [&](Node* array, Node* offset) { Node* const element = Load(MachineType::AnyTagged(), array, offset); Node* const delta_offset = IntPtrAdd(offset, delta); Store(array, delta_offset, element); }; Label iterate_forward(this); Label iterate_backward(this); Branch(IntPtrLessThan(delta, IntPtrConstant(0)), &iterate_forward, &iterate_backward); BIND(&iterate_forward); { // Make a loop for the stores. BuildFastFixedArrayForEach(elements, kind, begin, end, loop_body, INTPTR_PARAMETERS, ForEachDirection::kForward); Goto(&finished); } BIND(&iterate_backward); { BuildFastFixedArrayForEach(elements, kind, begin, end, loop_body, INTPTR_PARAMETERS, ForEachDirection::kReverse); Goto(&finished); } } BIND(&finished); } } void CodeStubAssembler::CopyElements(ElementsKind kind, TNode<FixedArrayBase> dst_elements, TNode<IntPtrT> dst_index, TNode<FixedArrayBase> src_elements, TNode<IntPtrT> src_index, TNode<IntPtrT> length, WriteBarrierMode write_barrier) { Label finished(this); Label needs_barrier(this); const bool needs_barrier_check = !IsDoubleElementsKind(kind); DCHECK(IsFastElementsKind(kind)); CSA_ASSERT(this, IsFixedArrayWithKind(dst_elements, kind)); CSA_ASSERT(this, IsFixedArrayWithKind(src_elements, kind)); CSA_ASSERT(this, IntPtrLessThanOrEqual( IntPtrAdd(dst_index, length), LoadAndUntagFixedArrayBaseLength(dst_elements))); CSA_ASSERT(this, IntPtrLessThanOrEqual( IntPtrAdd(src_index, length), LoadAndUntagFixedArrayBaseLength(src_elements))); CSA_ASSERT(this, Word32Or(WordNotEqual(dst_elements, src_elements), WordEqual(length, IntPtrConstant(0)))); // The write barrier can be ignored if {dst_elements} is in new space, or if // the elements pointer is FixedDoubleArray. if (needs_barrier_check) { JumpIfPointersFromHereAreInteresting(dst_elements, &needs_barrier); } TNode<IntPtrT> source_byte_length = IntPtrMul(length, IntPtrConstant(ElementsKindToByteSize(kind))); static const int32_t fa_base_data_offset = FixedArrayBase::kHeaderSize - kHeapObjectTag; TNode<IntPtrT> src_offset_start = ElementOffsetFromIndex( src_index, kind, INTPTR_PARAMETERS, fa_base_data_offset); TNode<IntPtrT> dst_offset_start = ElementOffsetFromIndex( dst_index, kind, INTPTR_PARAMETERS, fa_base_data_offset); TNode<IntPtrT> src_elements_intptr = BitcastTaggedToWord(src_elements); TNode<IntPtrT> source_data_ptr = IntPtrAdd(src_elements_intptr, src_offset_start); TNode<IntPtrT> dst_elements_intptr = BitcastTaggedToWord(dst_elements); TNode<IntPtrT> dst_data_ptr = IntPtrAdd(dst_elements_intptr, dst_offset_start); TNode<ExternalReference> memcpy = ExternalConstant(ExternalReference::libc_memcpy_function()); CallCFunction3(MachineType::Pointer(), MachineType::Pointer(), MachineType::Pointer(), MachineType::UintPtr(), memcpy, dst_data_ptr, source_data_ptr, source_byte_length); if (needs_barrier_check) { Goto(&finished); BIND(&needs_barrier); { const TNode<IntPtrT> begin = src_index; const TNode<IntPtrT> end = IntPtrAdd(begin, length); const TNode<IntPtrT> delta = IntPtrMul(IntPtrSub(dst_index, src_index), IntPtrConstant(ElementsKindToByteSize(kind))); BuildFastFixedArrayForEach( src_elements, kind, begin, end, [&](Node* array, Node* offset) { Node* const element = Load(MachineType::AnyTagged(), array, offset); Node* const delta_offset = IntPtrAdd(offset, delta); if (write_barrier == SKIP_WRITE_BARRIER) { StoreNoWriteBarrier(MachineRepresentation::kTagged, dst_elements, delta_offset, element); } else { Store(dst_elements, delta_offset, element); } }, INTPTR_PARAMETERS, ForEachDirection::kForward); Goto(&finished); } BIND(&finished); } } void CodeStubAssembler::CopyFixedArrayElements( ElementsKind from_kind, Node* from_array, ElementsKind to_kind, Node* to_array, Node* first_element, Node* element_count, Node* capacity, WriteBarrierMode barrier_mode, ParameterMode mode, HoleConversionMode convert_holes, TVariable<BoolT>* var_holes_converted) { DCHECK_IMPLIES(var_holes_converted != nullptr, convert_holes == HoleConversionMode::kConvertToUndefined); CSA_SLOW_ASSERT(this, MatchesParameterMode(element_count, mode)); CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode)); CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(from_array, from_kind)); CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(to_array, to_kind)); STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize); const int first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag; Comment("[ CopyFixedArrayElements"); // Typed array elements are not supported. DCHECK(!IsFixedTypedArrayElementsKind(from_kind)); DCHECK(!IsFixedTypedArrayElementsKind(to_kind)); Label done(this); bool from_double_elements = IsDoubleElementsKind(from_kind); bool to_double_elements = IsDoubleElementsKind(to_kind); bool doubles_to_objects_conversion = IsDoubleElementsKind(from_kind) && IsObjectElementsKind(to_kind); bool needs_write_barrier = doubles_to_objects_conversion || (barrier_mode == UPDATE_WRITE_BARRIER && IsObjectElementsKind(to_kind)); bool element_offset_matches = !needs_write_barrier && (Is64() || IsDoubleElementsKind(from_kind) == IsDoubleElementsKind(to_kind)); Node* double_hole = Is64() ? ReinterpretCast<UintPtrT>(Int64Constant(kHoleNanInt64)) : ReinterpretCast<UintPtrT>(Int32Constant(kHoleNanLower32)); // If copying might trigger a GC, we pre-initialize the FixedArray such that // it's always in a consistent state. if (convert_holes == HoleConversionMode::kConvertToUndefined) { DCHECK(IsObjectElementsKind(to_kind)); // Use undefined for the part that we copy and holes for the rest. // Later if we run into a hole in the source we can just skip the writing // to the target and are still guaranteed that we get an undefined. FillFixedArrayWithValue(to_kind, to_array, IntPtrOrSmiConstant(0, mode), element_count, RootIndex::kUndefinedValue, mode); FillFixedArrayWithValue(to_kind, to_array, element_count, capacity, RootIndex::kTheHoleValue, mode); } else if (doubles_to_objects_conversion) { // Pre-initialized the target with holes so later if we run into a hole in // the source we can just skip the writing to the target. FillFixedArrayWithValue(to_kind, to_array, IntPtrOrSmiConstant(0, mode), capacity, RootIndex::kTheHoleValue, mode); } else if (element_count != capacity) { FillFixedArrayWithValue(to_kind, to_array, element_count, capacity, RootIndex::kTheHoleValue, mode); } Node* first_from_element_offset = ElementOffsetFromIndex(first_element, from_kind, mode, 0); Node* limit_offset = IntPtrAdd(first_from_element_offset, IntPtrConstant(first_element_offset)); VARIABLE( var_from_offset, MachineType::PointerRepresentation(), ElementOffsetFromIndex(IntPtrOrSmiAdd(first_element, element_count, mode), from_kind, mode, first_element_offset)); // This second variable is used only when the element sizes of source and // destination arrays do not match. VARIABLE(var_to_offset, MachineType::PointerRepresentation()); if (element_offset_matches) { var_to_offset.Bind(var_from_offset.value()); } else { var_to_offset.Bind(ElementOffsetFromIndex(element_count, to_kind, mode, first_element_offset)); } Variable* vars[] = {&var_from_offset, &var_to_offset, var_holes_converted}; int num_vars = var_holes_converted != nullptr ? arraysize(vars) : arraysize(vars) - 1; Label decrement(this, num_vars, vars); Node* to_array_adjusted = element_offset_matches ? IntPtrSub(BitcastTaggedToWord(to_array), first_from_element_offset) : to_array; Branch(WordEqual(var_from_offset.value(), limit_offset), &done, &decrement); BIND(&decrement); { Node* from_offset = IntPtrSub( var_from_offset.value(), IntPtrConstant(from_double_elements ? kDoubleSize : kPointerSize)); var_from_offset.Bind(from_offset); Node* to_offset; if (element_offset_matches) { to_offset = from_offset; } else { to_offset = IntPtrSub( var_to_offset.value(), IntPtrConstant(to_double_elements ? kDoubleSize : kPointerSize)); var_to_offset.Bind(to_offset); } Label next_iter(this), store_double_hole(this), signal_hole(this); Label* if_hole; if (convert_holes == HoleConversionMode::kConvertToUndefined) { // The target elements array is already preinitialized with undefined // so we only need to signal that a hole was found and continue the loop. if_hole = &signal_hole; } else if (doubles_to_objects_conversion) { // The target elements array is already preinitialized with holes, so we // can just proceed with the next iteration. if_hole = &next_iter; } else if (IsDoubleElementsKind(to_kind)) { if_hole = &store_double_hole; } else { // In all the other cases don't check for holes and copy the data as is. if_hole = nullptr; } Node* value = LoadElementAndPrepareForStore( from_array, var_from_offset.value(), from_kind, to_kind, if_hole); if (needs_write_barrier) { CHECK_EQ(to_array, to_array_adjusted); Store(to_array_adjusted, to_offset, value); } else if (to_double_elements) { StoreNoWriteBarrier(MachineRepresentation::kFloat64, to_array_adjusted, to_offset, value); } else { StoreNoWriteBarrier(MachineRepresentation::kTagged, to_array_adjusted, to_offset, value); } Goto(&next_iter); if (if_hole == &store_double_hole) { BIND(&store_double_hole); // Don't use doubles to store the hole double, since manipulating the // signaling NaN used for the hole in C++, e.g. with bit_cast, will // change its value on ia32 (the x87 stack is used to return values // and stores to the stack silently clear the signalling bit). // // TODO(danno): When we have a Float32/Float64 wrapper class that // preserves double bits during manipulation, remove this code/change // this to an indexed Float64 store. if (Is64()) { StoreNoWriteBarrier(MachineRepresentation::kWord64, to_array_adjusted, to_offset, double_hole); } else { StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array_adjusted, to_offset, double_hole); StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array_adjusted, IntPtrAdd(to_offset, IntPtrConstant(kPointerSize)), double_hole); } Goto(&next_iter); } else if (if_hole == &signal_hole) { // This case happens only when IsObjectElementsKind(to_kind). BIND(&signal_hole); if (var_holes_converted != nullptr) { *var_holes_converted = Int32TrueConstant(); } Goto(&next_iter); } BIND(&next_iter); Node* compare = WordNotEqual(from_offset, limit_offset); Branch(compare, &decrement, &done); } BIND(&done); Comment("] CopyFixedArrayElements"); } TNode<FixedArray> CodeStubAssembler::HeapObjectToFixedArray( TNode<HeapObject> base, Label* cast_fail) { Label fixed_array(this); TNode<Map> map = LoadMap(base); GotoIf(WordEqual(map, LoadRoot(RootIndex::kFixedArrayMap)), &fixed_array); GotoIf(WordNotEqual(map, LoadRoot(RootIndex::kFixedCOWArrayMap)), cast_fail); Goto(&fixed_array); BIND(&fixed_array); return UncheckedCast<FixedArray>(base); } void CodeStubAssembler::CopyPropertyArrayValues(Node* from_array, Node* to_array, Node* property_count, WriteBarrierMode barrier_mode, ParameterMode mode, DestroySource destroy_source) { CSA_SLOW_ASSERT(this, MatchesParameterMode(property_count, mode)); CSA_SLOW_ASSERT(this, Word32Or(IsPropertyArray(from_array), IsEmptyFixedArray(from_array))); CSA_SLOW_ASSERT(this, IsPropertyArray(to_array)); Comment("[ CopyPropertyArrayValues"); bool needs_write_barrier = barrier_mode == UPDATE_WRITE_BARRIER; if (destroy_source == DestroySource::kNo) { // PropertyArray may contain MutableHeapNumbers, which will be cloned on the // heap, requiring a write barrier. needs_write_barrier = true; } Node* start = IntPtrOrSmiConstant(0, mode); ElementsKind kind = PACKED_ELEMENTS; BuildFastFixedArrayForEach( from_array, kind, start, property_count, [this, to_array, needs_write_barrier, destroy_source](Node* array, Node* offset) { Node* value = Load(MachineType::AnyTagged(), array, offset); if (destroy_source == DestroySource::kNo) { value = CloneIfMutablePrimitive(CAST(value)); } if (needs_write_barrier) { Store(to_array, offset, value); } else { StoreNoWriteBarrier(MachineRepresentation::kTagged, to_array, offset, value); } }, mode); #ifdef DEBUG // Zap {from_array} if the copying above has made it invalid. if (destroy_source == DestroySource::kYes) { Label did_zap(this); GotoIf(IsEmptyFixedArray(from_array), &did_zap); FillPropertyArrayWithUndefined(from_array, start, property_count, mode); Goto(&did_zap); BIND(&did_zap); } #endif Comment("] CopyPropertyArrayValues"); } void CodeStubAssembler::CopyStringCharacters(Node* from_string, Node* to_string, TNode<IntPtrT> from_index, TNode<IntPtrT> to_index, TNode<IntPtrT> character_count, String::Encoding from_encoding, String::Encoding to_encoding) { // Cannot assert IsString(from_string) and IsString(to_string) here because // CSA::SubString can pass in faked sequential strings when handling external // subject strings. bool from_one_byte = from_encoding == String::ONE_BYTE_ENCODING; bool to_one_byte = to_encoding == String::ONE_BYTE_ENCODING; DCHECK_IMPLIES(to_one_byte, from_one_byte); Comment("CopyStringCharacters %s -> %s", from_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING", to_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING"); ElementsKind from_kind = from_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS; ElementsKind to_kind = to_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS; STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize); int header_size = SeqOneByteString::kHeaderSize - kHeapObjectTag; Node* from_offset = ElementOffsetFromIndex(from_index, from_kind, INTPTR_PARAMETERS, header_size); Node* to_offset = ElementOffsetFromIndex(to_index, to_kind, INTPTR_PARAMETERS, header_size); Node* byte_count = ElementOffsetFromIndex(character_count, from_kind, INTPTR_PARAMETERS); Node* limit_offset = IntPtrAdd(from_offset, byte_count); // Prepare the fast loop MachineType type = from_one_byte ? MachineType::Uint8() : MachineType::Uint16(); MachineRepresentation rep = to_one_byte ? MachineRepresentation::kWord8 : MachineRepresentation::kWord16; int from_increment = 1 << ElementsKindToShiftSize(from_kind); int to_increment = 1 << ElementsKindToShiftSize(to_kind); VARIABLE(current_to_offset, MachineType::PointerRepresentation(), to_offset); VariableList vars({¤t_to_offset}, zone()); int to_index_constant = 0, from_index_constant = 0; bool index_same = (from_encoding == to_encoding) && (from_index == to_index || (ToInt32Constant(from_index, from_index_constant) && ToInt32Constant(to_index, to_index_constant) && from_index_constant == to_index_constant)); BuildFastLoop(vars, from_offset, limit_offset, [this, from_string, to_string, ¤t_to_offset, to_increment, type, rep, index_same](Node* offset) { Node* value = Load(type, from_string, offset); StoreNoWriteBarrier( rep, to_string, index_same ? offset : current_to_offset.value(), value); if (!index_same) { Increment(¤t_to_offset, to_increment); } }, from_increment, INTPTR_PARAMETERS, IndexAdvanceMode::kPost); } Node* CodeStubAssembler::LoadElementAndPrepareForStore(Node* array, Node* offset, ElementsKind from_kind, ElementsKind to_kind, Label* if_hole) { CSA_ASSERT(this, IsFixedArrayWithKind(array, from_kind)); if (IsDoubleElementsKind(from_kind)) { Node* value = LoadDoubleWithHoleCheck(array, offset, if_hole, MachineType::Float64()); if (!IsDoubleElementsKind(to_kind)) { value = AllocateHeapNumberWithValue(value); } return value; } else { Node* value = Load(MachineType::AnyTagged(), array, offset); if (if_hole) { GotoIf(WordEqual(value, TheHoleConstant()), if_hole); } if (IsDoubleElementsKind(to_kind)) { if (IsSmiElementsKind(from_kind)) { value = SmiToFloat64(value); } else { value = LoadHeapNumberValue(value); } } return value; } } Node* CodeStubAssembler::CalculateNewElementsCapacity(Node* old_capacity, ParameterMode mode) { CSA_SLOW_ASSERT(this, MatchesParameterMode(old_capacity, mode)); Node* half_old_capacity = WordOrSmiShr(old_capacity, 1, mode); Node* new_capacity = IntPtrOrSmiAdd(half_old_capacity, old_capacity, mode); Node* padding = IntPtrOrSmiConstant(JSObject::kMinAddedElementsCapacity, mode); return IntPtrOrSmiAdd(new_capacity, padding, mode); } Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind, Node* key, Label* bailout) { CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object)); CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(elements, kind)); CSA_SLOW_ASSERT(this, TaggedIsSmi(key)); Node* capacity = LoadFixedArrayBaseLength(elements); ParameterMode mode = OptimalParameterMode(); capacity = TaggedToParameter(capacity, mode); key = TaggedToParameter(key, mode); return TryGrowElementsCapacity(object, elements, kind, key, capacity, mode, bailout); } Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind, Node* key, Node* capacity, ParameterMode mode, Label* bailout) { Comment("TryGrowElementsCapacity"); CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object)); CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(elements, kind)); CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode)); CSA_SLOW_ASSERT(this, MatchesParameterMode(key, mode)); // If the gap growth is too big, fall back to the runtime. Node* max_gap = IntPtrOrSmiConstant(JSObject::kMaxGap, mode); Node* max_capacity = IntPtrOrSmiAdd(capacity, max_gap, mode); GotoIf(UintPtrOrSmiGreaterThanOrEqual(key, max_capacity, mode), bailout); // Calculate the capacity of the new backing store. Node* new_capacity = CalculateNewElementsCapacity( IntPtrOrSmiAdd(key, IntPtrOrSmiConstant(1, mode), mode), mode); return GrowElementsCapacity(object, elements, kind, kind, capacity, new_capacity, mode, bailout); } Node* CodeStubAssembler::GrowElementsCapacity( Node* object, Node* elements, ElementsKind from_kind, ElementsKind to_kind, Node* capacity, Node* new_capacity, ParameterMode mode, Label* bailout) { Comment("[ GrowElementsCapacity"); CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object)); CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(elements, from_kind)); CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode)); CSA_SLOW_ASSERT(this, MatchesParameterMode(new_capacity, mode)); // If size of the allocation for the new capacity doesn't fit in a page // that we can bump-pointer allocate from, fall back to the runtime. int max_size = FixedArrayBase::GetMaxLengthForNewSpaceAllocation(to_kind); GotoIf(UintPtrOrSmiGreaterThanOrEqual( new_capacity, IntPtrOrSmiConstant(max_size, mode), mode), bailout); // Allocate the new backing store. Node* new_elements = AllocateFixedArray(to_kind, new_capacity, mode); // Copy the elements from the old elements store to the new. // The size-check above guarantees that the |new_elements| is allocated // in new space so we can skip the write barrier. CopyFixedArrayElements(from_kind, elements, to_kind, new_elements, capacity, new_capacity, SKIP_WRITE_BARRIER, mode); StoreObjectField(object, JSObject::kElementsOffset, new_elements); Comment("] GrowElementsCapacity"); return new_elements; } void CodeStubAssembler::InitializeAllocationMemento(Node* base, Node* base_allocation_size, Node* allocation_site) { Comment("[Initialize AllocationMemento"); TNode<Object> memento = InnerAllocate(CAST(base), UncheckedCast<IntPtrT>(base_allocation_size)); StoreMapNoWriteBarrier(memento, RootIndex::kAllocationMementoMap); StoreObjectFieldNoWriteBarrier( memento, AllocationMemento::kAllocationSiteOffset, allocation_site); if (FLAG_allocation_site_pretenuring) { TNode<Int32T> count = UncheckedCast<Int32T>(LoadObjectField( allocation_site, AllocationSite::kPretenureCreateCountOffset, MachineType::Int32())); TNode<Int32T> incremented_count = Int32Add(count, Int32Constant(1)); StoreObjectFieldNoWriteBarrier( allocation_site, AllocationSite::kPretenureCreateCountOffset, incremented_count, MachineRepresentation::kWord32); } Comment("]"); } Node* CodeStubAssembler::TryTaggedToFloat64(Node* value, Label* if_valueisnotnumber) { Label out(this); VARIABLE(var_result, MachineRepresentation::kFloat64); // Check if the {value} is a Smi or a HeapObject. Label if_valueissmi(this), if_valueisnotsmi(this); Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); BIND(&if_valueissmi); { // Convert the Smi {value}. var_result.Bind(SmiToFloat64(value)); Goto(&out); } BIND(&if_valueisnotsmi); { // Check if {value} is a HeapNumber. Label if_valueisheapnumber(this); Branch(IsHeapNumber(value), &if_valueisheapnumber, if_valueisnotnumber); BIND(&if_valueisheapnumber); { // Load the floating point value. var_result.Bind(LoadHeapNumberValue(value)); Goto(&out); } } BIND(&out); return var_result.value(); } Node* CodeStubAssembler::TruncateTaggedToFloat64(Node* context, Node* value) { // We might need to loop once due to ToNumber conversion. VARIABLE(var_value, MachineRepresentation::kTagged); VARIABLE(var_result, MachineRepresentation::kFloat64); Label loop(this, &var_value), done_loop(this, &var_result); var_value.Bind(value); Goto(&loop); BIND(&loop); { Label if_valueisnotnumber(this, Label::kDeferred); // Load the current {value}. value = var_value.value(); // Convert {value} to Float64 if it is a number and convert it to a number // otherwise. Node* const result = TryTaggedToFloat64(value, &if_valueisnotnumber); var_result.Bind(result); Goto(&done_loop); BIND(&if_valueisnotnumber); { // Convert the {value} to a Number first. var_value.Bind(CallBuiltin(Builtins::kNonNumberToNumber, context, value)); Goto(&loop); } } BIND(&done_loop); return var_result.value(); } Node* CodeStubAssembler::TruncateTaggedToWord32(Node* context, Node* value) { VARIABLE(var_result, MachineRepresentation::kWord32); Label done(this); TaggedToWord32OrBigIntImpl<Object::Conversion::kToNumber>(context, value, &done, &var_result); BIND(&done); return var_result.value(); } // Truncate {value} to word32 and jump to {if_number} if it is a Number, // or find that it is a BigInt and jump to {if_bigint}. void CodeStubAssembler::TaggedToWord32OrBigInt(Node* context, Node* value, Label* if_number, Variable* var_word32, Label* if_bigint, Variable* var_bigint) { TaggedToWord32OrBigIntImpl<Object::Conversion::kToNumeric>( context, value, if_number, var_word32, if_bigint, var_bigint); } // Truncate {value} to word32 and jump to {if_number} if it is a Number, // or find that it is a BigInt and jump to {if_bigint}. In either case, // store the type feedback in {var_feedback}. void CodeStubAssembler::TaggedToWord32OrBigIntWithFeedback( Node* context, Node* value, Label* if_number, Variable* var_word32, Label* if_bigint, Variable* var_bigint, Variable* var_feedback) { TaggedToWord32OrBigIntImpl<Object::Conversion::kToNumeric>( context, value, if_number, var_word32, if_bigint, var_bigint, var_feedback); } template <Object::Conversion conversion> void CodeStubAssembler::TaggedToWord32OrBigIntImpl( Node* context, Node* value, Label* if_number, Variable* var_word32, Label* if_bigint, Variable* var_bigint, Variable* var_feedback) { DCHECK(var_word32->rep() == MachineRepresentation::kWord32); DCHECK(var_bigint == nullptr || var_bigint->rep() == MachineRepresentation::kTagged); DCHECK(var_feedback == nullptr || var_feedback->rep() == MachineRepresentation::kTaggedSigned); // We might need to loop after conversion. VARIABLE(var_value, MachineRepresentation::kTagged, value); OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNone); Variable* loop_vars[] = {&var_value, var_feedback}; int num_vars = var_feedback != nullptr ? arraysize(loop_vars) : arraysize(loop_vars) - 1; Label loop(this, num_vars, loop_vars); Goto(&loop); BIND(&loop); { value = var_value.value(); Label not_smi(this), is_heap_number(this), is_oddball(this), is_bigint(this); GotoIf(TaggedIsNotSmi(value), ¬_smi); // {value} is a Smi. var_word32->Bind(SmiToInt32(value)); CombineFeedback(var_feedback, BinaryOperationFeedback::kSignedSmall); Goto(if_number); BIND(¬_smi); Node* map = LoadMap(value); GotoIf(IsHeapNumberMap(map), &is_heap_number); Node* instance_type = LoadMapInstanceType(map); if (conversion == Object::Conversion::kToNumeric) { GotoIf(IsBigIntInstanceType(instance_type), &is_bigint); } // Not HeapNumber (or BigInt if conversion == kToNumeric). { if (var_feedback != nullptr) { // We do not require an Or with earlier feedback here because once we // convert the value to a Numeric, we cannot reach this path. We can // only reach this path on the first pass when the feedback is kNone. CSA_ASSERT(this, SmiEqual(CAST(var_feedback->value()), SmiConstant(BinaryOperationFeedback::kNone))); } GotoIf(InstanceTypeEqual(instance_type, ODDBALL_TYPE), &is_oddball); // Not an oddball either -> convert. auto builtin = conversion == Object::Conversion::kToNumeric ? Builtins::kNonNumberToNumeric : Builtins::kNonNumberToNumber; var_value.Bind(CallBuiltin(builtin, context, value)); OverwriteFeedback(var_feedback, BinaryOperationFeedback::kAny); Goto(&loop); BIND(&is_oddball); var_value.Bind(LoadObjectField(value, Oddball::kToNumberOffset)); OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNumberOrOddball); Goto(&loop); } BIND(&is_heap_number); var_word32->Bind(TruncateHeapNumberValueToWord32(value)); CombineFeedback(var_feedback, BinaryOperationFeedback::kNumber); Goto(if_number); if (conversion == Object::Conversion::kToNumeric) { BIND(&is_bigint); var_bigint->Bind(value); CombineFeedback(var_feedback, BinaryOperationFeedback::kBigInt); Goto(if_bigint); } } } Node* CodeStubAssembler::TruncateHeapNumberValueToWord32(Node* object) { Node* value = LoadHeapNumberValue(object); return TruncateFloat64ToWord32(value); } void CodeStubAssembler::TryHeapNumberToSmi(TNode<HeapNumber> number, TVariable<Smi>& var_result_smi, Label* if_smi) { TNode<Float64T> value = LoadHeapNumberValue(number); TryFloat64ToSmi(value, var_result_smi, if_smi); } void CodeStubAssembler::TryFloat64ToSmi(TNode<Float64T> value, TVariable<Smi>& var_result_smi, Label* if_smi) { TNode<Int32T> value32 = RoundFloat64ToInt32(value); TNode<Float64T> value64 = ChangeInt32ToFloat64(value32); Label if_int32(this), if_heap_number(this, Label::kDeferred); GotoIfNot(Float64Equal(value, value64), &if_heap_number); GotoIfNot(Word32Equal(value32, Int32Constant(0)), &if_int32); Branch(Int32LessThan(UncheckedCast<Int32T>(Float64ExtractHighWord32(value)), Int32Constant(0)), &if_heap_number, &if_int32); TVARIABLE(Number, var_result); BIND(&if_int32); { if (SmiValuesAre32Bits()) { var_result_smi = SmiTag(ChangeInt32ToIntPtr(value32)); } else { DCHECK(SmiValuesAre31Bits()); TNode<PairT<Int32T, BoolT>> pair = Int32AddWithOverflow(value32, value32); TNode<BoolT> overflow = Projection<1>(pair); GotoIf(overflow, &if_heap_number); var_result_smi = BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(Projection<0>(pair))); } Goto(if_smi); } BIND(&if_heap_number); } TNode<Number> CodeStubAssembler::ChangeFloat64ToTagged( SloppyTNode<Float64T> value) { Label if_smi(this), done(this); TVARIABLE(Smi, var_smi_result); TVARIABLE(Number, var_result); TryFloat64ToSmi(value, var_smi_result, &if_smi); var_result = AllocateHeapNumberWithValue(value); Goto(&done); BIND(&if_smi); { var_result = var_smi_result.value(); Goto(&done); } BIND(&done); return var_result.value(); } TNode<Number> CodeStubAssembler::ChangeInt32ToTagged( SloppyTNode<Int32T> value) { if (SmiValuesAre32Bits()) { return SmiTag(ChangeInt32ToIntPtr(value)); } DCHECK(SmiValuesAre31Bits()); TVARIABLE(Number, var_result); TNode<PairT<Int32T, BoolT>> pair = Int32AddWithOverflow(value, value); TNode<BoolT> overflow = Projection<1>(pair); Label if_overflow(this, Label::kDeferred), if_notoverflow(this), if_join(this); Branch(overflow, &if_overflow, &if_notoverflow); BIND(&if_overflow); { TNode<Float64T> value64 = ChangeInt32ToFloat64(value); TNode<HeapNumber> result = AllocateHeapNumberWithValue(value64); var_result = result; Goto(&if_join); } BIND(&if_notoverflow); { TNode<IntPtrT> almost_tagged_value = ChangeInt32ToIntPtr(Projection<0>(pair)); TNode<Smi> result = BitcastWordToTaggedSigned(almost_tagged_value); var_result = result; Goto(&if_join); } BIND(&if_join); return var_result.value(); } TNode<Number> CodeStubAssembler::ChangeUint32ToTagged( SloppyTNode<Uint32T> value) { Label if_overflow(this, Label::kDeferred), if_not_overflow(this), if_join(this); TVARIABLE(Number, var_result); // If {value} > 2^31 - 1, we need to store it in a HeapNumber. Branch(Uint32LessThan(Uint32Constant(Smi::kMaxValue), value), &if_overflow, &if_not_overflow); BIND(&if_not_overflow); { // The {value} is definitely in valid Smi range. var_result = SmiTag(Signed(ChangeUint32ToWord(value))); } Goto(&if_join); BIND(&if_overflow); { TNode<Float64T> float64_value = ChangeUint32ToFloat64(value); var_result = AllocateHeapNumberWithValue(float64_value); } Goto(&if_join); BIND(&if_join); return var_result.value(); } TNode<Number> CodeStubAssembler::ChangeUintPtrToTagged(TNode<UintPtrT> value) { Label if_overflow(this, Label::kDeferred), if_not_overflow(this), if_join(this); TVARIABLE(Number, var_result); // If {value} > 2^31 - 1, we need to store it in a HeapNumber. Branch(UintPtrLessThan(UintPtrConstant(Smi::kMaxValue), value), &if_overflow, &if_not_overflow); BIND(&if_not_overflow); { // The {value} is definitely in valid Smi range. var_result = SmiTag(Signed(value)); } Goto(&if_join); BIND(&if_overflow); { TNode<Float64T> float64_value = ChangeUintPtrToFloat64(value); var_result = AllocateHeapNumberWithValue(float64_value); } Goto(&if_join); BIND(&if_join); return var_result.value(); } TNode<String> CodeStubAssembler::ToThisString(Node* context, Node* value, char const* method_name) { VARIABLE(var_value, MachineRepresentation::kTagged, value); // Check if the {value} is a Smi or a HeapObject. Label if_valueissmi(this, Label::kDeferred), if_valueisnotsmi(this), if_valueisstring(this); Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); BIND(&if_valueisnotsmi); { // Load the instance type of the {value}. Node* value_instance_type = LoadInstanceType(value); // Check if the {value} is already String. Label if_valueisnotstring(this, Label::kDeferred); Branch(IsStringInstanceType(value_instance_type), &if_valueisstring, &if_valueisnotstring); BIND(&if_valueisnotstring); { // Check if the {value} is null. Label if_valueisnullorundefined(this, Label::kDeferred); GotoIf(IsNullOrUndefined(value), &if_valueisnullorundefined); // Convert the {value} to a String. var_value.Bind(CallBuiltin(Builtins::kToString, context, value)); Goto(&if_valueisstring); BIND(&if_valueisnullorundefined); { // The {value} is either null or undefined. ThrowTypeError(context, MessageTemplate::kCalledOnNullOrUndefined, method_name); } } } BIND(&if_valueissmi); { // The {value} is a Smi, convert it to a String. var_value.Bind(CallBuiltin(Builtins::kNumberToString, context, value)); Goto(&if_valueisstring); } BIND(&if_valueisstring); return CAST(var_value.value()); } TNode<Uint32T> CodeStubAssembler::ChangeNumberToUint32(TNode<Number> value) { TVARIABLE(Uint32T, var_result); Label if_smi(this), if_heapnumber(this, Label::kDeferred), done(this); Branch(TaggedIsSmi(value), &if_smi, &if_heapnumber); BIND(&if_smi); { var_result = Unsigned(SmiToInt32(CAST(value))); Goto(&done); } BIND(&if_heapnumber); { var_result = ChangeFloat64ToUint32(LoadHeapNumberValue(CAST(value))); Goto(&done); } BIND(&done); return var_result.value(); } TNode<Float64T> CodeStubAssembler::ChangeNumberToFloat64( SloppyTNode<Number> value) { // TODO(tebbi): Remove assert once argument is TNode instead of SloppyTNode. CSA_SLOW_ASSERT(this, IsNumber(value)); TVARIABLE(Float64T, result); Label smi(this); Label done(this, &result); GotoIf(TaggedIsSmi(value), &smi); result = LoadHeapNumberValue(CAST(value)); Goto(&done); BIND(&smi); { result = SmiToFloat64(CAST(value)); Goto(&done); } BIND(&done); return result.value(); } TNode<UintPtrT> CodeStubAssembler::ChangeNonnegativeNumberToUintPtr( TNode<Number> value) { TVARIABLE(UintPtrT, result); Label done(this, &result); Branch(TaggedIsSmi(value), [&] { TNode<Smi> value_smi = CAST(value); CSA_SLOW_ASSERT(this, SmiLessThan(SmiConstant(-1), value_smi)); result = UncheckedCast<UintPtrT>(SmiToIntPtr(value_smi)); Goto(&done); }, [&] { TNode<HeapNumber> value_hn = CAST(value); result = ChangeFloat64ToUintPtr(LoadHeapNumberValue(value_hn)); Goto(&done); }); BIND(&done); return result.value(); } TNode<WordT> CodeStubAssembler::TimesPointerSize(SloppyTNode<WordT> value) { return WordShl(value, kPointerSizeLog2); } TNode<WordT> CodeStubAssembler::TimesDoubleSize(SloppyTNode<WordT> value) { return WordShl(value, kDoubleSizeLog2); } Node* CodeStubAssembler::ToThisValue(Node* context, Node* value, PrimitiveType primitive_type, char const* method_name) { // We might need to loop once due to JSValue unboxing. VARIABLE(var_value, MachineRepresentation::kTagged, value); Label loop(this, &var_value), done_loop(this), done_throw(this, Label::kDeferred); Goto(&loop); BIND(&loop); { // Load the current {value}. value = var_value.value(); // Check if the {value} is a Smi or a HeapObject. GotoIf(TaggedIsSmi(value), (primitive_type == PrimitiveType::kNumber) ? &done_loop : &done_throw); // Load the map of the {value}. Node* value_map = LoadMap(value); // Load the instance type of the {value}. Node* value_instance_type = LoadMapInstanceType(value_map); // Check if {value} is a JSValue. Label if_valueisvalue(this, Label::kDeferred), if_valueisnotvalue(this); Branch(InstanceTypeEqual(value_instance_type, JS_VALUE_TYPE), &if_valueisvalue, &if_valueisnotvalue); BIND(&if_valueisvalue); { // Load the actual value from the {value}. var_value.Bind(LoadObjectField(value, JSValue::kValueOffset)); Goto(&loop); } BIND(&if_valueisnotvalue); { switch (primitive_type) { case PrimitiveType::kBoolean: GotoIf(WordEqual(value_map, BooleanMapConstant()), &done_loop); break; case PrimitiveType::kNumber: GotoIf(WordEqual(value_map, HeapNumberMapConstant()), &done_loop); break; case PrimitiveType::kString: GotoIf(IsStringInstanceType(value_instance_type), &done_loop); break; case PrimitiveType::kSymbol: GotoIf(WordEqual(value_map, SymbolMapConstant()), &done_loop); break; } Goto(&done_throw); } } BIND(&done_throw); { const char* primitive_name = nullptr; switch (primitive_type) { case PrimitiveType::kBoolean: primitive_name = "Boolean"; break; case PrimitiveType::kNumber: primitive_name = "Number"; break; case PrimitiveType::kString: primitive_name = "String"; break; case PrimitiveType::kSymbol: primitive_name = "Symbol"; break; } CHECK_NOT_NULL(primitive_name); // The {value} is not a compatible receiver for this method. ThrowTypeError(context, MessageTemplate::kNotGeneric, method_name, primitive_name); } BIND(&done_loop); return var_value.value(); } Node* CodeStubAssembler::ThrowIfNotInstanceType(Node* context, Node* value, InstanceType instance_type, char const* method_name) { Label out(this), throw_exception(this, Label::kDeferred); VARIABLE(var_value_map, MachineRepresentation::kTagged); GotoIf(TaggedIsSmi(value), &throw_exception); // Load the instance type of the {value}. var_value_map.Bind(LoadMap(value)); Node* const value_instance_type = LoadMapInstanceType(var_value_map.value()); Branch(Word32Equal(value_instance_type, Int32Constant(instance_type)), &out, &throw_exception); // The {value} is not a compatible receiver for this method. BIND(&throw_exception); ThrowTypeError(context, MessageTemplate::kIncompatibleMethodReceiver, StringConstant(method_name), value); BIND(&out); return var_value_map.value(); } Node* CodeStubAssembler::ThrowIfNotJSReceiver(Node* context, Node* value, MessageTemplate msg_template, const char* method_name) { Label out(this), throw_exception(this, Label::kDeferred); VARIABLE(var_value_map, MachineRepresentation::kTagged); GotoIf(TaggedIsSmi(value), &throw_exception); // Load the instance type of the {value}. var_value_map.Bind(LoadMap(value)); Node* const value_instance_type = LoadMapInstanceType(var_value_map.value()); Branch(IsJSReceiverInstanceType(value_instance_type), &out, &throw_exception); // The {value} is not a compatible receiver for this method. BIND(&throw_exception); ThrowTypeError(context, msg_template, method_name); BIND(&out); return var_value_map.value(); } void CodeStubAssembler::ThrowRangeError(Node* context, MessageTemplate message, Node* arg0, Node* arg1, Node* arg2) { Node* template_index = SmiConstant(static_cast<int>(message)); if (arg0 == nullptr) { CallRuntime(Runtime::kThrowRangeError, context, template_index); } else if (arg1 == nullptr) { CallRuntime(Runtime::kThrowRangeError, context, template_index, arg0); } else if (arg2 == nullptr) { CallRuntime(Runtime::kThrowRangeError, context, template_index, arg0, arg1); } else { CallRuntime(Runtime::kThrowRangeError, context, template_index, arg0, arg1, arg2); } Unreachable(); } void CodeStubAssembler::ThrowTypeError(Node* context, MessageTemplate message, char const* arg0, char const* arg1) { Node* arg0_node = nullptr; if (arg0) arg0_node = StringConstant(arg0); Node* arg1_node = nullptr; if (arg1) arg1_node = StringConstant(arg1); ThrowTypeError(context, message, arg0_node, arg1_node); } void CodeStubAssembler::ThrowTypeError(Node* context, MessageTemplate message, Node* arg0, Node* arg1, Node* arg2) { Node* template_index = SmiConstant(static_cast<int>(message)); if (arg0 == nullptr) { CallRuntime(Runtime::kThrowTypeError, context, template_index); } else if (arg1 == nullptr) { CallRuntime(Runtime::kThrowTypeError, context, template_index, arg0); } else if (arg2 == nullptr) { CallRuntime(Runtime::kThrowTypeError, context, template_index, arg0, arg1); } else { CallRuntime(Runtime::kThrowTypeError, context, template_index, arg0, arg1, arg2); } Unreachable(); } TNode<BoolT> CodeStubAssembler::InstanceTypeEqual( SloppyTNode<Int32T> instance_type, int type) { return Word32Equal(instance_type, Int32Constant(type)); } TNode<BoolT> CodeStubAssembler::IsDictionaryMap(SloppyTNode<Map> map) { CSA_SLOW_ASSERT(this, IsMap(map)); Node* bit_field3 = LoadMapBitField3(map); return IsSetWord32<Map::IsDictionaryMapBit>(bit_field3); } TNode<BoolT> CodeStubAssembler::IsExtensibleMap(SloppyTNode<Map> map) { CSA_ASSERT(this, IsMap(map)); return IsSetWord32<Map::IsExtensibleBit>(LoadMapBitField2(map)); } TNode<BoolT> CodeStubAssembler::IsExtensibleNonPrototypeMap(TNode<Map> map) { int kMask = Map::IsExtensibleBit::kMask | Map::IsPrototypeMapBit::kMask; int kExpected = Map::IsExtensibleBit::kMask; return Word32Equal(Word32And(LoadMapBitField2(map), Int32Constant(kMask)), Int32Constant(kExpected)); } TNode<BoolT> CodeStubAssembler::IsCallableMap(SloppyTNode<Map> map) { CSA_ASSERT(this, IsMap(map)); return IsSetWord32<Map::IsCallableBit>(LoadMapBitField(map)); } TNode<BoolT> CodeStubAssembler::IsDeprecatedMap(SloppyTNode<Map> map) { CSA_ASSERT(this, IsMap(map)); return IsSetWord32<Map::IsDeprecatedBit>(LoadMapBitField3(map)); } TNode<BoolT> CodeStubAssembler::IsUndetectableMap(SloppyTNode<Map> map) { CSA_ASSERT(this, IsMap(map)); return IsSetWord32<Map::IsUndetectableBit>(LoadMapBitField(map)); } TNode<BoolT> CodeStubAssembler::IsNoElementsProtectorCellInvalid() { Node* invalid = SmiConstant(Isolate::kProtectorInvalid); Node* cell = LoadRoot(RootIndex::kNoElementsProtector); Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset); return WordEqual(cell_value, invalid); } TNode<BoolT> CodeStubAssembler::IsPromiseResolveProtectorCellInvalid() { Node* invalid = SmiConstant(Isolate::kProtectorInvalid); Node* cell = LoadRoot(RootIndex::kPromiseResolveProtector); Node* cell_value = LoadObjectField(cell, Cell::kValueOffset); return WordEqual(cell_value, invalid); } TNode<BoolT> CodeStubAssembler::IsPromiseThenProtectorCellInvalid() { Node* invalid = SmiConstant(Isolate::kProtectorInvalid); Node* cell = LoadRoot(RootIndex::kPromiseThenProtector); Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset); return WordEqual(cell_value, invalid); } TNode<BoolT> CodeStubAssembler::IsArraySpeciesProtectorCellInvalid() { Node* invalid = SmiConstant(Isolate::kProtectorInvalid); Node* cell = LoadRoot(RootIndex::kArraySpeciesProtector); Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset); return WordEqual(cell_value, invalid); } TNode<BoolT> CodeStubAssembler::IsTypedArraySpeciesProtectorCellInvalid() { Node* invalid = SmiConstant(Isolate::kProtectorInvalid); Node* cell = LoadRoot(RootIndex::kTypedArraySpeciesProtector); Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset); return WordEqual(cell_value, invalid); } TNode<BoolT> CodeStubAssembler::IsRegExpSpeciesProtectorCellInvalid() { Node* invalid = SmiConstant(Isolate::kProtectorInvalid); Node* cell = LoadRoot(RootIndex::kRegExpSpeciesProtector); Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset); return WordEqual(cell_value, invalid); } TNode<BoolT> CodeStubAssembler::IsPromiseSpeciesProtectorCellInvalid() { Node* invalid = SmiConstant(Isolate::kProtectorInvalid); Node* cell = LoadRoot(RootIndex::kPromiseSpeciesProtector); Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset); return WordEqual(cell_value, invalid); } TNode<BoolT> CodeStubAssembler::IsPrototypeInitialArrayPrototype( SloppyTNode<Context> context, SloppyTNode<Map> map) { Node* const native_context = LoadNativeContext(context); Node* const initial_array_prototype = LoadContextElement( native_context, Context::INITIAL_ARRAY_PROTOTYPE_INDEX); Node* proto = LoadMapPrototype(map); return WordEqual(proto, initial_array_prototype); } TNode<BoolT> CodeStubAssembler::IsPrototypeTypedArrayPrototype( SloppyTNode<Context> context, SloppyTNode<Map> map) { TNode<Context> const native_context = LoadNativeContext(context); TNode<Object> const typed_array_prototype = LoadContextElement(native_context, Context::TYPED_ARRAY_PROTOTYPE_INDEX); TNode<HeapObject> proto = LoadMapPrototype(map); TNode<HeapObject> proto_of_proto = Select<HeapObject>( IsJSObject(proto), [=] { return LoadMapPrototype(LoadMap(proto)); }, [=] { return NullConstant(); }); return WordEqual(proto_of_proto, typed_array_prototype); } TNode<BoolT> CodeStubAssembler::IsFastAliasedArgumentsMap( TNode<Context> context, TNode<Map> map) { TNode<Context> const native_context = LoadNativeContext(context); TNode<Object> const arguments_map = LoadContextElement( native_context, Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX); return WordEqual(arguments_map, map); } TNode<BoolT> CodeStubAssembler::IsSlowAliasedArgumentsMap( TNode<Context> context, TNode<Map> map) { TNode<Context> const native_context = LoadNativeContext(context); TNode<Object> const arguments_map = LoadContextElement( native_context, Context::SLOW_ALIASED_ARGUMENTS_MAP_INDEX); return WordEqual(arguments_map, map); } TNode<BoolT> CodeStubAssembler::IsSloppyArgumentsMap(TNode<Context> context, TNode<Map> map) { TNode<Context> const native_context = LoadNativeContext(context); TNode<Object> const arguments_map = LoadContextElement(native_context, Context::SLOPPY_ARGUMENTS_MAP_INDEX); return WordEqual(arguments_map, map); } TNode<BoolT> CodeStubAssembler::IsStrictArgumentsMap(TNode<Context> context, TNode<Map> map) { TNode<Context> const native_context = LoadNativeContext(context); TNode<Object> const arguments_map = LoadContextElement(native_context, Context::STRICT_ARGUMENTS_MAP_INDEX); return WordEqual(arguments_map, map); } TNode<BoolT> CodeStubAssembler::TaggedIsCallable(TNode<Object> object) { return Select<BoolT>( TaggedIsSmi(object), [=] { return Int32FalseConstant(); }, [=] { return IsCallableMap(LoadMap(UncheckedCast<HeapObject>(object))); }); } TNode<BoolT> CodeStubAssembler::IsCallable(SloppyTNode<HeapObject> object) { return IsCallableMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsCell(SloppyTNode<HeapObject> object) { return WordEqual(LoadMap(object), LoadRoot(RootIndex::kCellMap)); } TNode<BoolT> CodeStubAssembler::IsCode(SloppyTNode<HeapObject> object) { return HasInstanceType(object, CODE_TYPE); } TNode<BoolT> CodeStubAssembler::IsConstructorMap(SloppyTNode<Map> map) { CSA_ASSERT(this, IsMap(map)); return IsSetWord32<Map::IsConstructorBit>(LoadMapBitField(map)); } TNode<BoolT> CodeStubAssembler::IsConstructor(SloppyTNode<HeapObject> object) { return IsConstructorMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsFunctionWithPrototypeSlotMap( SloppyTNode<Map> map) { CSA_ASSERT(this, IsMap(map)); return IsSetWord32<Map::HasPrototypeSlotBit>(LoadMapBitField(map)); } TNode<BoolT> CodeStubAssembler::IsSpecialReceiverInstanceType( TNode<Int32T> instance_type) { STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE); return Int32LessThanOrEqual(instance_type, Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)); } TNode<BoolT> CodeStubAssembler::IsCustomElementsReceiverInstanceType( TNode<Int32T> instance_type) { return Int32LessThanOrEqual(instance_type, Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER)); } TNode<BoolT> CodeStubAssembler::IsStringInstanceType( SloppyTNode<Int32T> instance_type) { STATIC_ASSERT(INTERNALIZED_STRING_TYPE == FIRST_TYPE); return Int32LessThan(instance_type, Int32Constant(FIRST_NONSTRING_TYPE)); } TNode<BoolT> CodeStubAssembler::IsOneByteStringInstanceType( SloppyTNode<Int32T> instance_type) { CSA_ASSERT(this, IsStringInstanceType(instance_type)); return Word32Equal( Word32And(instance_type, Int32Constant(kStringEncodingMask)), Int32Constant(kOneByteStringTag)); } TNode<BoolT> CodeStubAssembler::HasOnlyOneByteChars( TNode<Int32T> instance_type) { CSA_ASSERT(this, IsStringInstanceType(instance_type)); return IsSetWord32(instance_type, kStringEncodingMask | kOneByteDataHintMask); } TNode<BoolT> CodeStubAssembler::IsSequentialStringInstanceType( SloppyTNode<Int32T> instance_type) { CSA_ASSERT(this, IsStringInstanceType(instance_type)); return Word32Equal( Word32And(instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kSeqStringTag)); } TNode<BoolT> CodeStubAssembler::IsConsStringInstanceType( SloppyTNode<Int32T> instance_type) { CSA_ASSERT(this, IsStringInstanceType(instance_type)); return Word32Equal( Word32And(instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kConsStringTag)); } TNode<BoolT> CodeStubAssembler::IsIndirectStringInstanceType( SloppyTNode<Int32T> instance_type) { CSA_ASSERT(this, IsStringInstanceType(instance_type)); STATIC_ASSERT(kIsIndirectStringMask == 0x1); STATIC_ASSERT(kIsIndirectStringTag == 0x1); return UncheckedCast<BoolT>( Word32And(instance_type, Int32Constant(kIsIndirectStringMask))); } TNode<BoolT> CodeStubAssembler::IsExternalStringInstanceType( SloppyTNode<Int32T> instance_type) { CSA_ASSERT(this, IsStringInstanceType(instance_type)); return Word32Equal( Word32And(instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kExternalStringTag)); } TNode<BoolT> CodeStubAssembler::IsUncachedExternalStringInstanceType( SloppyTNode<Int32T> instance_type) { CSA_ASSERT(this, IsStringInstanceType(instance_type)); STATIC_ASSERT(kUncachedExternalStringTag != 0); return IsSetWord32(instance_type, kUncachedExternalStringMask); } TNode<BoolT> CodeStubAssembler::IsJSReceiverInstanceType( SloppyTNode<Int32T> instance_type) { STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); return Int32GreaterThanOrEqual(instance_type, Int32Constant(FIRST_JS_RECEIVER_TYPE)); } TNode<BoolT> CodeStubAssembler::IsJSReceiverMap(SloppyTNode<Map> map) { return IsJSReceiverInstanceType(LoadMapInstanceType(map)); } TNode<BoolT> CodeStubAssembler::IsJSReceiver(SloppyTNode<HeapObject> object) { return IsJSReceiverMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsNullOrJSReceiver( SloppyTNode<HeapObject> object) { return UncheckedCast<BoolT>(Word32Or(IsJSReceiver(object), IsNull(object))); } TNode<BoolT> CodeStubAssembler::IsNullOrUndefined(SloppyTNode<Object> value) { return UncheckedCast<BoolT>(Word32Or(IsUndefined(value), IsNull(value))); } TNode<BoolT> CodeStubAssembler::IsJSGlobalProxyInstanceType( SloppyTNode<Int32T> instance_type) { return InstanceTypeEqual(instance_type, JS_GLOBAL_PROXY_TYPE); } TNode<BoolT> CodeStubAssembler::IsJSObjectInstanceType( SloppyTNode<Int32T> instance_type) { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return Int32GreaterThanOrEqual(instance_type, Int32Constant(FIRST_JS_OBJECT_TYPE)); } TNode<BoolT> CodeStubAssembler::IsJSObjectMap(SloppyTNode<Map> map) { CSA_ASSERT(this, IsMap(map)); return IsJSObjectInstanceType(LoadMapInstanceType(map)); } TNode<BoolT> CodeStubAssembler::IsJSObject(SloppyTNode<HeapObject> object) { return IsJSObjectMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsJSPromiseMap(SloppyTNode<Map> map) { CSA_ASSERT(this, IsMap(map)); return InstanceTypeEqual(LoadMapInstanceType(map), JS_PROMISE_TYPE); } TNode<BoolT> CodeStubAssembler::IsJSPromise(SloppyTNode<HeapObject> object) { return IsJSPromiseMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsJSProxy(SloppyTNode<HeapObject> object) { return HasInstanceType(object, JS_PROXY_TYPE); } TNode<BoolT> CodeStubAssembler::IsJSGlobalProxy( SloppyTNode<HeapObject> object) { return HasInstanceType(object, JS_GLOBAL_PROXY_TYPE); } TNode<BoolT> CodeStubAssembler::IsMap(SloppyTNode<HeapObject> map) { return IsMetaMap(LoadMap(map)); } TNode<BoolT> CodeStubAssembler::IsJSValueInstanceType( SloppyTNode<Int32T> instance_type) { return InstanceTypeEqual(instance_type, JS_VALUE_TYPE); } TNode<BoolT> CodeStubAssembler::IsJSValue(SloppyTNode<HeapObject> object) { return IsJSValueMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsJSValueMap(SloppyTNode<Map> map) { return IsJSValueInstanceType(LoadMapInstanceType(map)); } TNode<BoolT> CodeStubAssembler::IsJSArrayInstanceType( SloppyTNode<Int32T> instance_type) { return InstanceTypeEqual(instance_type, JS_ARRAY_TYPE); } TNode<BoolT> CodeStubAssembler::IsJSArray(SloppyTNode<HeapObject> object) { return IsJSArrayMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsJSArrayMap(SloppyTNode<Map> map) { return IsJSArrayInstanceType(LoadMapInstanceType(map)); } TNode<BoolT> CodeStubAssembler::IsJSArrayIterator( SloppyTNode<HeapObject> object) { return HasInstanceType(object, JS_ARRAY_ITERATOR_TYPE); } TNode<BoolT> CodeStubAssembler::IsJSAsyncGeneratorObject( SloppyTNode<HeapObject> object) { return HasInstanceType(object, JS_ASYNC_GENERATOR_OBJECT_TYPE); } TNode<BoolT> CodeStubAssembler::IsContext(SloppyTNode<HeapObject> object) { Node* instance_type = LoadInstanceType(object); return UncheckedCast<BoolT>(Word32And( Int32GreaterThanOrEqual(instance_type, Int32Constant(FIRST_CONTEXT_TYPE)), Int32LessThanOrEqual(instance_type, Int32Constant(LAST_CONTEXT_TYPE)))); } TNode<BoolT> CodeStubAssembler::IsFixedArray(SloppyTNode<HeapObject> object) { return HasInstanceType(object, FIXED_ARRAY_TYPE); } TNode<BoolT> CodeStubAssembler::IsFixedArraySubclass( SloppyTNode<HeapObject> object) { Node* instance_type = LoadInstanceType(object); return UncheckedCast<BoolT>( Word32And(Int32GreaterThanOrEqual(instance_type, Int32Constant(FIRST_FIXED_ARRAY_TYPE)), Int32LessThanOrEqual(instance_type, Int32Constant(LAST_FIXED_ARRAY_TYPE)))); } TNode<BoolT> CodeStubAssembler::IsNotWeakFixedArraySubclass( SloppyTNode<HeapObject> object) { Node* instance_type = LoadInstanceType(object); return UncheckedCast<BoolT>(Word32Or( Int32LessThan(instance_type, Int32Constant(FIRST_WEAK_FIXED_ARRAY_TYPE)), Int32GreaterThan(instance_type, Int32Constant(LAST_WEAK_FIXED_ARRAY_TYPE)))); } TNode<BoolT> CodeStubAssembler::IsPromiseCapability( SloppyTNode<HeapObject> object) { return HasInstanceType(object, PROMISE_CAPABILITY_TYPE); } TNode<BoolT> CodeStubAssembler::IsPropertyArray( SloppyTNode<HeapObject> object) { return HasInstanceType(object, PROPERTY_ARRAY_TYPE); } // This complicated check is due to elements oddities. If a smi array is empty // after Array.p.shift, it is replaced by the empty array constant. If it is // later filled with a double element, we try to grow it but pass in a double // elements kind. Usually this would cause a size mismatch (since the source // fixed array has HOLEY_ELEMENTS and destination has // HOLEY_DOUBLE_ELEMENTS), but we don't have to worry about it when the // source array is empty. // TODO(jgruber): It might we worth creating an empty_double_array constant to // simplify this case. TNode<BoolT> CodeStubAssembler::IsFixedArrayWithKindOrEmpty( SloppyTNode<HeapObject> object, ElementsKind kind) { Label out(this); TVARIABLE(BoolT, var_result, Int32TrueConstant()); GotoIf(IsFixedArrayWithKind(object, kind), &out); TNode<Smi> const length = LoadFixedArrayBaseLength(CAST(object)); GotoIf(SmiEqual(length, SmiConstant(0)), &out); var_result = Int32FalseConstant(); Goto(&out); BIND(&out); return var_result.value(); } TNode<BoolT> CodeStubAssembler::IsFixedArrayWithKind( SloppyTNode<HeapObject> object, ElementsKind kind) { if (IsDoubleElementsKind(kind)) { return IsFixedDoubleArray(object); } else { DCHECK(IsSmiOrObjectElementsKind(kind)); return IsFixedArraySubclass(object); } } TNode<BoolT> CodeStubAssembler::IsBoolean(SloppyTNode<HeapObject> object) { return IsBooleanMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsPropertyCell(SloppyTNode<HeapObject> object) { return IsPropertyCellMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsAccessorInfo(SloppyTNode<HeapObject> object) { return IsAccessorInfoMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsAccessorPair(SloppyTNode<HeapObject> object) { return IsAccessorPairMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsAllocationSite( SloppyTNode<HeapObject> object) { return IsAllocationSiteInstanceType(LoadInstanceType(object)); } TNode<BoolT> CodeStubAssembler::IsAnyHeapNumber( SloppyTNode<HeapObject> object) { return UncheckedCast<BoolT>( Word32Or(IsMutableHeapNumber(object), IsHeapNumber(object))); } TNode<BoolT> CodeStubAssembler::IsHeapNumber(SloppyTNode<HeapObject> object) { return IsHeapNumberMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsHeapNumberInstanceType( SloppyTNode<Int32T> instance_type) { return InstanceTypeEqual(instance_type, HEAP_NUMBER_TYPE); } TNode<BoolT> CodeStubAssembler::IsOddball(SloppyTNode<HeapObject> object) { return IsOddballInstanceType(LoadInstanceType(object)); } TNode<BoolT> CodeStubAssembler::IsOddballInstanceType( SloppyTNode<Int32T> instance_type) { return InstanceTypeEqual(instance_type, ODDBALL_TYPE); } TNode<BoolT> CodeStubAssembler::IsMutableHeapNumber( SloppyTNode<HeapObject> object) { return IsMutableHeapNumberMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsFeedbackCell(SloppyTNode<HeapObject> object) { return HasInstanceType(object, FEEDBACK_CELL_TYPE); } TNode<BoolT> CodeStubAssembler::IsFeedbackVector( SloppyTNode<HeapObject> object) { return IsFeedbackVectorMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsName(SloppyTNode<HeapObject> object) { return IsNameInstanceType(LoadInstanceType(object)); } TNode<BoolT> CodeStubAssembler::IsNameInstanceType( SloppyTNode<Int32T> instance_type) { return Int32LessThanOrEqual(instance_type, Int32Constant(LAST_NAME_TYPE)); } TNode<BoolT> CodeStubAssembler::IsString(SloppyTNode<HeapObject> object) { return IsStringInstanceType(LoadInstanceType(object)); } TNode<BoolT> CodeStubAssembler::IsSymbolInstanceType( SloppyTNode<Int32T> instance_type) { return InstanceTypeEqual(instance_type, SYMBOL_TYPE); } TNode<BoolT> CodeStubAssembler::IsSymbol(SloppyTNode<HeapObject> object) { return IsSymbolMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsBigIntInstanceType( SloppyTNode<Int32T> instance_type) { return InstanceTypeEqual(instance_type, BIGINT_TYPE); } TNode<BoolT> CodeStubAssembler::IsBigInt(SloppyTNode<HeapObject> object) { return IsBigIntInstanceType(LoadInstanceType(object)); } TNode<BoolT> CodeStubAssembler::IsPrimitiveInstanceType( SloppyTNode<Int32T> instance_type) { return Int32LessThanOrEqual(instance_type, Int32Constant(LAST_PRIMITIVE_TYPE)); } TNode<BoolT> CodeStubAssembler::IsPrivateSymbol( SloppyTNode<HeapObject> object) { return Select<BoolT>(IsSymbol(object), [=] { TNode<Symbol> symbol = CAST(object); TNode<Uint32T> flags = LoadObjectField<Uint32T>( symbol, Symbol::kFlagsOffset); return IsSetWord32<Symbol::IsPrivateBit>(flags); }, [=] { return Int32FalseConstant(); }); } TNode<BoolT> CodeStubAssembler::IsNativeContext( SloppyTNode<HeapObject> object) { return WordEqual(LoadMap(object), LoadRoot(RootIndex::kNativeContextMap)); } TNode<BoolT> CodeStubAssembler::IsFixedDoubleArray( SloppyTNode<HeapObject> object) { return WordEqual(LoadMap(object), FixedDoubleArrayMapConstant()); } TNode<BoolT> CodeStubAssembler::IsHashTable(SloppyTNode<HeapObject> object) { Node* instance_type = LoadInstanceType(object); return UncheckedCast<BoolT>( Word32And(Int32GreaterThanOrEqual(instance_type, Int32Constant(FIRST_HASH_TABLE_TYPE)), Int32LessThanOrEqual(instance_type, Int32Constant(LAST_HASH_TABLE_TYPE)))); } TNode<BoolT> CodeStubAssembler::IsEphemeronHashTable( SloppyTNode<HeapObject> object) { return HasInstanceType(object, EPHEMERON_HASH_TABLE_TYPE); } TNode<BoolT> CodeStubAssembler::IsNameDictionary( SloppyTNode<HeapObject> object) { return HasInstanceType(object, NAME_DICTIONARY_TYPE); } TNode<BoolT> CodeStubAssembler::IsGlobalDictionary( SloppyTNode<HeapObject> object) { return HasInstanceType(object, GLOBAL_DICTIONARY_TYPE); } TNode<BoolT> CodeStubAssembler::IsNumberDictionary( SloppyTNode<HeapObject> object) { return HasInstanceType(object, NUMBER_DICTIONARY_TYPE); } TNode<BoolT> CodeStubAssembler::IsJSGeneratorObject( SloppyTNode<HeapObject> object) { return HasInstanceType(object, JS_GENERATOR_OBJECT_TYPE); } TNode<BoolT> CodeStubAssembler::IsJSFunctionInstanceType( SloppyTNode<Int32T> instance_type) { return InstanceTypeEqual(instance_type, JS_FUNCTION_TYPE); } TNode<BoolT> CodeStubAssembler::IsAllocationSiteInstanceType( SloppyTNode<Int32T> instance_type) { return InstanceTypeEqual(instance_type, ALLOCATION_SITE_TYPE); } TNode<BoolT> CodeStubAssembler::IsJSFunction(SloppyTNode<HeapObject> object) { return IsJSFunctionMap(LoadMap(object)); } TNode<BoolT> CodeStubAssembler::IsJSFunctionMap(SloppyTNode<Map> map) { return IsJSFunctionInstanceType(LoadMapInstanceType(map)); } TNode<BoolT> CodeStubAssembler::IsJSTypedArray(SloppyTNode<HeapObject> object) { return HasInstanceType(object, JS_TYPED_ARRAY_TYPE); } TNode<BoolT> CodeStubAssembler::IsJSArrayBuffer( SloppyTNode<HeapObject> object) { return HasInstanceType(object, JS_ARRAY_BUFFER_TYPE); } TNode<BoolT> CodeStubAssembler::IsJSDataView(TNode<HeapObject> object) { return HasInstanceType(object, JS_DATA_VIEW_TYPE); } TNode<BoolT> CodeStubAssembler::IsFixedTypedArray( SloppyTNode<HeapObject> object) { TNode<Int32T> instance_type = LoadInstanceType(object); return UncheckedCast<BoolT>(Word32And( Int32GreaterThanOrEqual(instance_type, Int32Constant(FIRST_FIXED_TYPED_ARRAY_TYPE)), Int32LessThanOrEqual(instance_type, Int32Constant(LAST_FIXED_TYPED_ARRAY_TYPE)))); } TNode<BoolT> CodeStubAssembler::IsJSRegExp(SloppyTNode<HeapObject> object) { return HasInstanceType(object, JS_REGEXP_TYPE); } TNode<BoolT> CodeStubAssembler::IsNumber(SloppyTNode<Object> object) { return Select<BoolT>(TaggedIsSmi(object), [=] { return Int32TrueConstant(); }, [=] { return IsHeapNumber(CAST(object)); }); } TNode<BoolT> CodeStubAssembler::IsNumeric(SloppyTNode<Object> object) { return Select<BoolT>( TaggedIsSmi(object), [=] { return Int32TrueConstant(); }, [=] { return UncheckedCast<BoolT>( Word32Or(IsHeapNumber(CAST(object)), IsBigInt(CAST(object)))); }); } TNode<BoolT> CodeStubAssembler::IsNumberNormalized(SloppyTNode<Number> number) { TVARIABLE(BoolT, var_result, Int32TrueConstant()); Label out(this); GotoIf(TaggedIsSmi(number), &out); TNode<Float64T> value = LoadHeapNumberValue(CAST(number)); TNode<Float64T> smi_min = Float64Constant(static_cast<double>(Smi::kMinValue)); TNode<Float64T> smi_max = Float64Constant(static_cast<double>(Smi::kMaxValue)); GotoIf(Float64LessThan(value, smi_min), &out); GotoIf(Float64GreaterThan(value, smi_max), &out); GotoIfNot(Float64Equal(value, value), &out); // NaN. var_result = Int32FalseConstant(); Goto(&out); BIND(&out); return var_result.value(); } TNode<BoolT> CodeStubAssembler::IsNumberPositive(SloppyTNode<Number> number) { return Select<BoolT>(TaggedIsSmi(number), [=] { return TaggedIsPositiveSmi(number); }, [=] { return IsHeapNumberPositive(CAST(number)); }); } // TODO(cbruni): Use TNode<HeapNumber> instead of custom name. TNode<BoolT> CodeStubAssembler::IsHeapNumberPositive(TNode<HeapNumber> number) { TNode<Float64T> value = LoadHeapNumberValue(number); TNode<Float64T> float_zero = Float64Constant(0.); return Float64GreaterThanOrEqual(value, float_zero); } TNode<BoolT> CodeStubAssembler::IsNumberNonNegativeSafeInteger( TNode<Number> number) { return Select<BoolT>( // TODO(cbruni): Introduce TaggedIsNonNegateSmi to avoid confusion. TaggedIsSmi(number), [=] { return TaggedIsPositiveSmi(number); }, [=] { TNode<HeapNumber> heap_number = CAST(number); return Select<BoolT>(IsInteger(heap_number), [=] { return IsHeapNumberPositive(heap_number); }, [=] { return Int32FalseConstant(); }); }); } TNode<BoolT> CodeStubAssembler::IsSafeInteger(TNode<Object> number) { return Select<BoolT>( TaggedIsSmi(number), [=] { return Int32TrueConstant(); }, [=] { return Select<BoolT>( IsHeapNumber(CAST(number)), [=] { return IsSafeInteger(UncheckedCast<HeapNumber>(number)); }, [=] { return Int32FalseConstant(); }); }); } TNode<BoolT> CodeStubAssembler::IsSafeInteger(TNode<HeapNumber> number) { // Load the actual value of {number}. TNode<Float64T> number_value = LoadHeapNumberValue(number); // Truncate the value of {number} to an integer (or an infinity). TNode<Float64T> integer = Float64Trunc(number_value); return Select<BoolT>( // Check if {number}s value matches the integer (ruling out the // infinities). Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0)), [=] { // Check if the {integer} value is in safe integer range. return Float64LessThanOrEqual(Float64Abs(integer), Float64Constant(kMaxSafeInteger)); }, [=] { return Int32FalseConstant(); }); } TNode<BoolT> CodeStubAssembler::IsInteger(TNode<Object> number) { return Select<BoolT>( TaggedIsSmi(number), [=] { return Int32TrueConstant(); }, [=] { return Select<BoolT>( IsHeapNumber(CAST(number)), [=] { return IsInteger(UncheckedCast<HeapNumber>(number)); }, [=] { return Int32FalseConstant(); }); }); } TNode<BoolT> CodeStubAssembler::IsInteger(TNode<HeapNumber> number) { TNode<Float64T> number_value = LoadHeapNumberValue(number); // Truncate the value of {number} to an integer (or an infinity). TNode<Float64T> integer = Float64Trunc(number_value); // Check if {number}s value matches the integer (ruling out the infinities). return Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0)); } TNode<BoolT> CodeStubAssembler::IsHeapNumberUint32(TNode<HeapNumber> number) { // Check that the HeapNumber is a valid uint32 return Select<BoolT>( IsHeapNumberPositive(number), [=] { TNode<Float64T> value = LoadHeapNumberValue(number); TNode<Uint32T> int_value = Unsigned(TruncateFloat64ToWord32(value)); return Float64Equal(value, ChangeUint32ToFloat64(int_value)); }, [=] { return Int32FalseConstant(); }); } TNode<BoolT> CodeStubAssembler::IsNumberArrayIndex(TNode<Number> number) { return Select<BoolT>(TaggedIsSmi(number), [=] { return TaggedIsPositiveSmi(number); }, [=] { return IsHeapNumberUint32(CAST(number)); }); } Node* CodeStubAssembler::FixedArraySizeDoesntFitInNewSpace(Node* element_count, int base_size, ParameterMode mode) { int max_newspace_elements = (kMaxRegularHeapObjectSize - base_size) / kPointerSize; return IntPtrOrSmiGreaterThan( element_count, IntPtrOrSmiConstant(max_newspace_elements, mode), mode); } TNode<Int32T> CodeStubAssembler::StringCharCodeAt(SloppyTNode<String> string, SloppyTNode<IntPtrT> index) { CSA_ASSERT(this, IsString(string)); CSA_ASSERT(this, IntPtrGreaterThanOrEqual(index, IntPtrConstant(0))); CSA_ASSERT(this, IntPtrLessThan(index, LoadStringLengthAsWord(string))); TVARIABLE(Int32T, var_result); Label return_result(this), if_runtime(this, Label::kDeferred), if_stringistwobyte(this), if_stringisonebyte(this); ToDirectStringAssembler to_direct(state(), string); to_direct.TryToDirect(&if_runtime); Node* const offset = IntPtrAdd(index, to_direct.offset()); Node* const instance_type = to_direct.instance_type(); Node* const string_data = to_direct.PointerToData(&if_runtime); // Check if the {string} is a TwoByteSeqString or a OneByteSeqString. Branch(IsOneByteStringInstanceType(instance_type), &if_stringisonebyte, &if_stringistwobyte); BIND(&if_stringisonebyte); { var_result = UncheckedCast<Int32T>(Load(MachineType::Uint8(), string_data, offset)); Goto(&return_result); } BIND(&if_stringistwobyte); { var_result = UncheckedCast<Int32T>(Load(MachineType::Uint16(), string_data, WordShl(offset, IntPtrConstant(1)))); Goto(&return_result); } BIND(&if_runtime); { Node* result = CallRuntime(Runtime::kStringCharCodeAt, NoContextConstant(), string, SmiTag(index)); var_result = SmiToInt32(result); Goto(&return_result); } BIND(&return_result); return var_result.value(); } TNode<String> CodeStubAssembler::StringFromSingleCharCode(TNode<Int32T> code) { VARIABLE(var_result, MachineRepresentation::kTagged); // Check if the {code} is a one-byte char code. Label if_codeisonebyte(this), if_codeistwobyte(this, Label::kDeferred), if_done(this); Branch(Int32LessThanOrEqual(code, Int32Constant(String::kMaxOneByteCharCode)), &if_codeisonebyte, &if_codeistwobyte); BIND(&if_codeisonebyte); { // Load the isolate wide single character string cache. TNode<FixedArray> cache = CAST(LoadRoot(RootIndex::kSingleCharacterStringCache)); TNode<IntPtrT> code_index = Signed(ChangeUint32ToWord(code)); // Check if we have an entry for the {code} in the single character string // cache already. Label if_entryisundefined(this, Label::kDeferred), if_entryisnotundefined(this); Node* entry = LoadFixedArrayElement(cache, code_index); Branch(IsUndefined(entry), &if_entryisundefined, &if_entryisnotundefined); BIND(&if_entryisundefined); { // Allocate a new SeqOneByteString for {code} and store it in the {cache}. TNode<String> result = AllocateSeqOneByteString(1); StoreNoWriteBarrier( MachineRepresentation::kWord8, result, IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag), code); StoreFixedArrayElement(cache, code_index, result); var_result.Bind(result); Goto(&if_done); } BIND(&if_entryisnotundefined); { // Return the entry from the {cache}. var_result.Bind(entry); Goto(&if_done); } } BIND(&if_codeistwobyte); { // Allocate a new SeqTwoByteString for {code}. Node* result = AllocateSeqTwoByteString(1); StoreNoWriteBarrier( MachineRepresentation::kWord16, result, IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), code); var_result.Bind(result); Goto(&if_done); } BIND(&if_done); CSA_ASSERT(this, IsString(var_result.value())); return CAST(var_result.value()); } // A wrapper around CopyStringCharacters which determines the correct string // encoding, allocates a corresponding sequential string, and then copies the // given character range using CopyStringCharacters. // |from_string| must be a sequential string. // 0 <= |from_index| <= |from_index| + |character_count| < from_string.length. TNode<String> CodeStubAssembler::AllocAndCopyStringCharacters( Node* from, Node* from_instance_type, TNode<IntPtrT> from_index, TNode<IntPtrT> character_count) { Label end(this), one_byte_sequential(this), two_byte_sequential(this); TVARIABLE(String, var_result); Branch(IsOneByteStringInstanceType(from_instance_type), &one_byte_sequential, &two_byte_sequential); // The subject string is a sequential one-byte string. BIND(&one_byte_sequential); { TNode<String> result = AllocateSeqOneByteString( NoContextConstant(), Unsigned(TruncateIntPtrToInt32(character_count))); CopyStringCharacters(from, result, from_index, IntPtrConstant(0), character_count, String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING); var_result = result; Goto(&end); } // The subject string is a sequential two-byte string. BIND(&two_byte_sequential); { TNode<String> result = AllocateSeqTwoByteString( NoContextConstant(), Unsigned(TruncateIntPtrToInt32(character_count))); CopyStringCharacters(from, result, from_index, IntPtrConstant(0), character_count, String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING); var_result = result; Goto(&end); } BIND(&end); return var_result.value(); } TNode<String> CodeStubAssembler::SubString(TNode<String> string, TNode<IntPtrT> from, TNode<IntPtrT> to) { TVARIABLE(String, var_result); ToDirectStringAssembler to_direct(state(), string); Label end(this), runtime(this); TNode<IntPtrT> const substr_length = IntPtrSub(to, from); TNode<IntPtrT> const string_length = LoadStringLengthAsWord(string); // Begin dispatching based on substring length. Label original_string_or_invalid_length(this); GotoIf(UintPtrGreaterThanOrEqual(substr_length, string_length), &original_string_or_invalid_length); // A real substring (substr_length < string_length). Label single_char(this); GotoIf(IntPtrEqual(substr_length, IntPtrConstant(1)), &single_char); // TODO(jgruber): Add an additional case for substring of length == 0? // Deal with different string types: update the index if necessary // and extract the underlying string. TNode<String> direct_string = to_direct.TryToDirect(&runtime); TNode<IntPtrT> offset = IntPtrAdd(from, to_direct.offset()); Node* const instance_type = to_direct.instance_type(); // The subject string can only be external or sequential string of either // encoding at this point. Label external_string(this); { if (FLAG_string_slices) { Label next(this); // Short slice. Copy instead of slicing. GotoIf(IntPtrLessThan(substr_length, IntPtrConstant(SlicedString::kMinLength)), &next); // Allocate new sliced string. Counters* counters = isolate()->counters(); IncrementCounter(counters->sub_string_native(), 1); Label one_byte_slice(this), two_byte_slice(this); Branch(IsOneByteStringInstanceType(to_direct.instance_type()), &one_byte_slice, &two_byte_slice); BIND(&one_byte_slice); { var_result = AllocateSlicedOneByteString( Unsigned(TruncateIntPtrToInt32(substr_length)), direct_string, SmiTag(offset)); Goto(&end); } BIND(&two_byte_slice); { var_result = AllocateSlicedTwoByteString( Unsigned(TruncateIntPtrToInt32(substr_length)), direct_string, SmiTag(offset)); Goto(&end); } BIND(&next); } // The subject string can only be external or sequential string of either // encoding at this point. GotoIf(to_direct.is_external(), &external_string); var_result = AllocAndCopyStringCharacters(direct_string, instance_type, offset, substr_length); Counters* counters = isolate()->counters(); IncrementCounter(counters->sub_string_native(), 1); Goto(&end); } // Handle external string. BIND(&external_string); { Node* const fake_sequential_string = to_direct.PointerToString(&runtime); var_result = AllocAndCopyStringCharacters( fake_sequential_string, instance_type, offset, substr_length); Counters* counters = isolate()->counters(); IncrementCounter(counters->sub_string_native(), 1); Goto(&end); } // Substrings of length 1 are generated through CharCodeAt and FromCharCode. BIND(&single_char); { TNode<Int32T> char_code = StringCharCodeAt(string, from); var_result = StringFromSingleCharCode(char_code); Goto(&end); } BIND(&original_string_or_invalid_length); { CSA_ASSERT(this, IntPtrEqual(substr_length, string_length)); // Equal length - check if {from, to} == {0, str.length}. GotoIf(UintPtrGreaterThan(from, IntPtrConstant(0)), &runtime); // Return the original string (substr_length == string_length). Counters* counters = isolate()->counters(); IncrementCounter(counters->sub_string_native(), 1); var_result = string; Goto(&end); } // Fall back to a runtime call. BIND(&runtime); { var_result = CAST(CallRuntime(Runtime::kStringSubstring, NoContextConstant(), string, SmiTag(from), SmiTag(to))); Goto(&end); } BIND(&end); return var_result.value(); } ToDirectStringAssembler::ToDirectStringAssembler( compiler::CodeAssemblerState* state, Node* string, Flags flags) : CodeStubAssembler(state), var_string_(this, MachineRepresentation::kTagged, string), var_instance_type_(this, MachineRepresentation::kWord32), var_offset_(this, MachineType::PointerRepresentation()), var_is_external_(this, MachineRepresentation::kWord32), flags_(flags) { CSA_ASSERT(this, TaggedIsNotSmi(string)); CSA_ASSERT(this, IsString(string)); var_string_.Bind(string); var_offset_.Bind(IntPtrConstant(0)); var_instance_type_.Bind(LoadInstanceType(string)); var_is_external_.Bind(Int32Constant(0)); } TNode<String> ToDirectStringAssembler::TryToDirect(Label* if_bailout) { VariableList vars({&var_string_, &var_offset_, &var_instance_type_}, zone()); Label dispatch(this, vars); Label if_iscons(this); Label if_isexternal(this); Label if_issliced(this); Label if_isthin(this); Label out(this); Branch(IsSequentialStringInstanceType(var_instance_type_.value()), &out, &dispatch); // Dispatch based on string representation. BIND(&dispatch); { int32_t values[] = { kSeqStringTag, kConsStringTag, kExternalStringTag, kSlicedStringTag, kThinStringTag, }; Label* labels[] = { &out, &if_iscons, &if_isexternal, &if_issliced, &if_isthin, }; STATIC_ASSERT(arraysize(values) == arraysize(labels)); Node* const representation = Word32And( var_instance_type_.value(), Int32Constant(kStringRepresentationMask)); Switch(representation, if_bailout, values, labels, arraysize(values)); } // Cons string. Check whether it is flat, then fetch first part. // Flat cons strings have an empty second part. BIND(&if_iscons); { Node* const string = var_string_.value(); GotoIfNot(IsEmptyString(LoadObjectField(string, ConsString::kSecondOffset)), if_bailout); Node* const lhs = LoadObjectField(string, ConsString::kFirstOffset); var_string_.Bind(lhs); var_instance_type_.Bind(LoadInstanceType(lhs)); Goto(&dispatch); } // Sliced string. Fetch parent and correct start index by offset. BIND(&if_issliced); { if (!FLAG_string_slices || (flags_ & kDontUnpackSlicedStrings)) { Goto(if_bailout); } else { Node* const string = var_string_.value(); Node* const sliced_offset = LoadAndUntagObjectField(string, SlicedString::kOffsetOffset); var_offset_.Bind(IntPtrAdd(var_offset_.value(), sliced_offset)); Node* const parent = LoadObjectField(string, SlicedString::kParentOffset); var_string_.Bind(parent); var_instance_type_.Bind(LoadInstanceType(parent)); Goto(&dispatch); } } // Thin string. Fetch the actual string. BIND(&if_isthin); { Node* const string = var_string_.value(); Node* const actual_string = LoadObjectField(string, ThinString::kActualOffset); Node* const actual_instance_type = LoadInstanceType(actual_string); var_string_.Bind(actual_string); var_instance_type_.Bind(actual_instance_type); Goto(&dispatch); } // External string. BIND(&if_isexternal); var_is_external_.Bind(Int32Constant(1)); Goto(&out); BIND(&out); return CAST(var_string_.value()); } TNode<RawPtrT> ToDirectStringAssembler::TryToSequential( StringPointerKind ptr_kind, Label* if_bailout) { CHECK(ptr_kind == PTR_TO_DATA || ptr_kind == PTR_TO_STRING); TVARIABLE(RawPtrT, var_result); Label out(this), if_issequential(this), if_isexternal(this, Label::kDeferred); Branch(is_external(), &if_isexternal, &if_issequential); BIND(&if_issequential); { STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize); TNode<IntPtrT> result = BitcastTaggedToWord(var_string_.value()); if (ptr_kind == PTR_TO_DATA) { result = IntPtrAdd(result, IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag)); } var_result = ReinterpretCast<RawPtrT>(result); Goto(&out); } BIND(&if_isexternal); { GotoIf(IsUncachedExternalStringInstanceType(var_instance_type_.value()), if_bailout); TNode<String> string = CAST(var_string_.value()); TNode<IntPtrT> result = LoadObjectField<IntPtrT>(string, ExternalString::kResourceDataOffset); if (ptr_kind == PTR_TO_STRING) { result = IntPtrSub(result, IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag)); } var_result = ReinterpretCast<RawPtrT>(result); Goto(&out); } BIND(&out); return var_result.value(); } void CodeStubAssembler::BranchIfCanDerefIndirectString(Node* string, Node* instance_type, Label* can_deref, Label* cannot_deref) { CSA_ASSERT(this, IsString(string)); Node* representation = Word32And(instance_type, Int32Constant(kStringRepresentationMask)); GotoIf(Word32Equal(representation, Int32Constant(kThinStringTag)), can_deref); GotoIf(Word32NotEqual(representation, Int32Constant(kConsStringTag)), cannot_deref); // Cons string. Node* rhs = LoadObjectField(string, ConsString::kSecondOffset); GotoIf(IsEmptyString(rhs), can_deref); Goto(cannot_deref); } Node* CodeStubAssembler::DerefIndirectString(TNode<String> string, TNode<Int32T> instance_type, Label* cannot_deref) { Label deref(this); BranchIfCanDerefIndirectString(string, instance_type, &deref, cannot_deref); BIND(&deref); STATIC_ASSERT(ThinString::kActualOffset == ConsString::kFirstOffset); return LoadObjectField(string, ThinString::kActualOffset); } void CodeStubAssembler::DerefIndirectString(Variable* var_string, Node* instance_type) { #ifdef DEBUG Label can_deref(this), cannot_deref(this); BranchIfCanDerefIndirectString(var_string->value(), instance_type, &can_deref, &cannot_deref); BIND(&cannot_deref); DebugBreak(); // Should be able to dereference string. Goto(&can_deref); BIND(&can_deref); #endif // DEBUG STATIC_ASSERT(ThinString::kActualOffset == ConsString::kFirstOffset); var_string->Bind( LoadObjectField(var_string->value(), ThinString::kActualOffset)); } void CodeStubAssembler::MaybeDerefIndirectString(Variable* var_string, Node* instance_type, Label* did_deref, Label* cannot_deref) { Label deref(this); BranchIfCanDerefIndirectString(var_string->value(), instance_type, &deref, cannot_deref); BIND(&deref); { DerefIndirectString(var_string, instance_type); Goto(did_deref); } } void CodeStubAssembler::MaybeDerefIndirectStrings(Variable* var_left, Node* left_instance_type, Variable* var_right, Node* right_instance_type, Label* did_something) { Label did_nothing_left(this), did_something_left(this), didnt_do_anything(this); MaybeDerefIndirectString(var_left, left_instance_type, &did_something_left, &did_nothing_left); BIND(&did_something_left); { MaybeDerefIndirectString(var_right, right_instance_type, did_something, did_something); } BIND(&did_nothing_left); { MaybeDerefIndirectString(var_right, right_instance_type, did_something, &didnt_do_anything); } BIND(&didnt_do_anything); // Fall through if neither string was an indirect string. } TNode<String> CodeStubAssembler::StringAdd(Node* context, TNode<String> left, TNode<String> right, AllocationFlags flags) { TVARIABLE(String, result); Label check_right(this), runtime(this, Label::kDeferred), cons(this), done(this, &result), done_native(this, &result); Counters* counters = isolate()->counters(); TNode<Uint32T> left_length = LoadStringLengthAsWord32(left); GotoIfNot(Word32Equal(left_length, Uint32Constant(0)), &check_right); result = right; Goto(&done_native); BIND(&check_right); TNode<Uint32T> right_length = LoadStringLengthAsWord32(right); GotoIfNot(Word32Equal(right_length, Uint32Constant(0)), &cons); result = left; Goto(&done_native); BIND(&cons); { TNode<Uint32T> new_length = Uint32Add(left_length, right_length); // If new length is greater than String::kMaxLength, goto runtime to // throw. Note: we also need to invalidate the string length protector, so // can't just throw here directly. GotoIf(Uint32GreaterThan(new_length, Uint32Constant(String::kMaxLength)), &runtime); TVARIABLE(String, var_left, left); TVARIABLE(String, var_right, right); Variable* input_vars[2] = {&var_left, &var_right}; Label non_cons(this, 2, input_vars); Label slow(this, Label::kDeferred); GotoIf(Uint32LessThan(new_length, Uint32Constant(ConsString::kMinLength)), &non_cons); result = NewConsString(new_length, var_left.value(), var_right.value(), flags); Goto(&done_native); BIND(&non_cons); Comment("Full string concatenate"); Node* left_instance_type = LoadInstanceType(var_left.value()); Node* right_instance_type = LoadInstanceType(var_right.value()); // Compute intersection and difference of instance types. Node* ored_instance_types = Word32Or(left_instance_type, right_instance_type); Node* xored_instance_types = Word32Xor(left_instance_type, right_instance_type); // Check if both strings have the same encoding and both are sequential. GotoIf(IsSetWord32(xored_instance_types, kStringEncodingMask), &runtime); GotoIf(IsSetWord32(ored_instance_types, kStringRepresentationMask), &slow); TNode<IntPtrT> word_left_length = Signed(ChangeUint32ToWord(left_length)); TNode<IntPtrT> word_right_length = Signed(ChangeUint32ToWord(right_length)); Label two_byte(this); GotoIf(Word32Equal(Word32And(ored_instance_types, Int32Constant(kStringEncodingMask)), Int32Constant(kTwoByteStringTag)), &two_byte); // One-byte sequential string case result = AllocateSeqOneByteString(context, new_length); CopyStringCharacters(var_left.value(), result.value(), IntPtrConstant(0), IntPtrConstant(0), word_left_length, String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING); CopyStringCharacters(var_right.value(), result.value(), IntPtrConstant(0), word_left_length, word_right_length, String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING); Goto(&done_native); BIND(&two_byte); { // Two-byte sequential string case result = AllocateSeqTwoByteString(context, new_length); CopyStringCharacters(var_left.value(), result.value(), IntPtrConstant(0), IntPtrConstant(0), word_left_length, String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING); CopyStringCharacters(var_right.value(), result.value(), IntPtrConstant(0), word_left_length, word_right_length, String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING); Goto(&done_native); } BIND(&slow); { // Try to unwrap indirect strings, restart the above attempt on success. MaybeDerefIndirectStrings(&var_left, left_instance_type, &var_right, right_instance_type, &non_cons); Goto(&runtime); } } BIND(&runtime); { result = CAST(CallRuntime(Runtime::kStringAdd, context, left, right)); Goto(&done); } BIND(&done_native); { IncrementCounter(counters->string_add_native(), 1); Goto(&done); } BIND(&done); return result.value(); } TNode<String> CodeStubAssembler::StringFromSingleCodePoint( TNode<Int32T> codepoint, UnicodeEncoding encoding) { VARIABLE(var_result, MachineRepresentation::kTagged, EmptyStringConstant()); Label if_isword16(this), if_isword32(this), return_result(this); Branch(Uint32LessThan(codepoint, Int32Constant(0x10000)), &if_isword16, &if_isword32); BIND(&if_isword16); { var_result.Bind(StringFromSingleCharCode(codepoint)); Goto(&return_result); } BIND(&if_isword32); { switch (encoding) { case UnicodeEncoding::UTF16: break; case UnicodeEncoding::UTF32: { // Convert UTF32 to UTF16 code units, and store as a 32 bit word. Node* lead_offset = Int32Constant(0xD800 - (0x10000 >> 10)); // lead = (codepoint >> 10) + LEAD_OFFSET Node* lead = Int32Add(Word32Shr(codepoint, Int32Constant(10)), lead_offset); // trail = (codepoint & 0x3FF) + 0xDC00; Node* trail = Int32Add(Word32And(codepoint, Int32Constant(0x3FF)), Int32Constant(0xDC00)); // codpoint = (trail << 16) | lead; codepoint = Signed(Word32Or(Word32Shl(trail, Int32Constant(16)), lead)); break; } } Node* value = AllocateSeqTwoByteString(2); StoreNoWriteBarrier( MachineRepresentation::kWord32, value, IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), codepoint); var_result.Bind(value); Goto(&return_result); } BIND(&return_result); return CAST(var_result.value()); } TNode<Number> CodeStubAssembler::StringToNumber(TNode<String> input) { Label runtime(this, Label::kDeferred); Label end(this); TVARIABLE(Number, var_result); // Check if string has a cached array index. TNode<Uint32T> hash = LoadNameHashField(input); GotoIf(IsSetWord32(hash, Name::kDoesNotContainCachedArrayIndexMask), &runtime); var_result = SmiTag(Signed(DecodeWordFromWord32<String::ArrayIndexValueBits>(hash))); Goto(&end); BIND(&runtime); { var_result = CAST(CallRuntime(Runtime::kStringToNumber, NoContextConstant(), input)); Goto(&end); } BIND(&end); return var_result.value(); } TNode<String> CodeStubAssembler::NumberToString(TNode<Number> input) { TVARIABLE(String, result); TVARIABLE(Smi, smi_input); Label runtime(this, Label::kDeferred), if_smi(this), if_heap_number(this), done(this, &result); // Load the number string cache. Node* number_string_cache = LoadRoot(RootIndex::kNumberStringCache); // Make the hash mask from the length of the number string cache. It // contains two elements (number and string) for each cache entry. // TODO(ishell): cleanup mask handling. Node* mask = BitcastTaggedToWord(LoadFixedArrayBaseLength(number_string_cache)); TNode<IntPtrT> one = IntPtrConstant(1); mask = IntPtrSub(mask, one); GotoIfNot(TaggedIsSmi(input), &if_heap_number); smi_input = CAST(input); Goto(&if_smi); BIND(&if_heap_number); { TNode<HeapNumber> heap_number_input = CAST(input); // Try normalizing the HeapNumber. TryHeapNumberToSmi(heap_number_input, smi_input, &if_smi); // Make a hash from the two 32-bit values of the double. TNode<Int32T> low = LoadObjectField<Int32T>(heap_number_input, HeapNumber::kValueOffset); TNode<Int32T> high = LoadObjectField<Int32T>( heap_number_input, HeapNumber::kValueOffset + kIntSize); TNode<Word32T> hash = Word32Xor(low, high); TNode<WordT> word_hash = WordShl(ChangeInt32ToIntPtr(hash), one); TNode<WordT> index = WordAnd(word_hash, WordSar(mask, SmiShiftBitsConstant())); // Cache entry's key must be a heap number Node* number_key = LoadFixedArrayElement(CAST(number_string_cache), index); GotoIf(TaggedIsSmi(number_key), &runtime); GotoIfNot(IsHeapNumber(number_key), &runtime); // Cache entry's key must match the heap number value we're looking for. Node* low_compare = LoadObjectField(number_key, HeapNumber::kValueOffset, MachineType::Int32()); Node* high_compare = LoadObjectField( number_key, HeapNumber::kValueOffset + kIntSize, MachineType::Int32()); GotoIfNot(Word32Equal(low, low_compare), &runtime); GotoIfNot(Word32Equal(high, high_compare), &runtime); // Heap number match, return value from cache entry. result = CAST( LoadFixedArrayElement(CAST(number_string_cache), index, kPointerSize)); Goto(&done); } BIND(&if_smi); { // Load the smi key, make sure it matches the smi we're looking for. Node* smi_index = BitcastWordToTagged( WordAnd(WordShl(BitcastTaggedToWord(smi_input.value()), one), mask)); Node* smi_key = LoadFixedArrayElement(CAST(number_string_cache), smi_index, 0, SMI_PARAMETERS); GotoIf(WordNotEqual(smi_key, smi_input.value()), &runtime); // Smi match, return value from cache entry. result = CAST(LoadFixedArrayElement(CAST(number_string_cache), smi_index, kPointerSize, SMI_PARAMETERS)); Goto(&done); } BIND(&runtime); { // No cache entry, go to the runtime. result = CAST(CallRuntime(Runtime::kNumberToString, NoContextConstant(), input)); Goto(&done); } BIND(&done); return result.value(); } Node* CodeStubAssembler::NonNumberToNumberOrNumeric( Node* context, Node* input, Object::Conversion mode, BigIntHandling bigint_handling) { CSA_ASSERT(this, Word32BinaryNot(TaggedIsSmi(input))); CSA_ASSERT(this, Word32BinaryNot(IsHeapNumber(input))); // We might need to loop once here due to ToPrimitive conversions. VARIABLE(var_input, MachineRepresentation::kTagged, input); VARIABLE(var_result, MachineRepresentation::kTagged); Label loop(this, &var_input); Label end(this); Goto(&loop); BIND(&loop); { // Load the current {input} value (known to be a HeapObject). Node* input = var_input.value(); // Dispatch on the {input} instance type. Node* input_instance_type = LoadInstanceType(input); Label if_inputisstring(this), if_inputisoddball(this), if_inputisbigint(this), if_inputisreceiver(this, Label::kDeferred), if_inputisother(this, Label::kDeferred); GotoIf(IsStringInstanceType(input_instance_type), &if_inputisstring); GotoIf(IsBigIntInstanceType(input_instance_type), &if_inputisbigint); GotoIf(InstanceTypeEqual(input_instance_type, ODDBALL_TYPE), &if_inputisoddball); Branch(IsJSReceiverInstanceType(input_instance_type), &if_inputisreceiver, &if_inputisother); BIND(&if_inputisstring); { // The {input} is a String, use the fast stub to convert it to a Number. TNode<String> string_input = CAST(input); var_result.Bind(StringToNumber(string_input)); Goto(&end); } BIND(&if_inputisbigint); if (mode == Object::Conversion::kToNumeric) { var_result.Bind(input); Goto(&end); } else { DCHECK_EQ(mode, Object::Conversion::kToNumber); if (bigint_handling == BigIntHandling::kThrow) { Goto(&if_inputisother); } else { DCHECK_EQ(bigint_handling, BigIntHandling::kConvertToNumber); var_result.Bind(CallRuntime(Runtime::kBigIntToNumber, context, input)); Goto(&end); } } BIND(&if_inputisoddball); { // The {input} is an Oddball, we just need to load the Number value of it. var_result.Bind(LoadObjectField(input, Oddball::kToNumberOffset)); Goto(&end); } BIND(&if_inputisreceiver); { // The {input} is a JSReceiver, we need to convert it to a Primitive first // using the ToPrimitive type conversion, preferably yielding a Number. Callable callable = CodeFactory::NonPrimitiveToPrimitive( isolate(), ToPrimitiveHint::kNumber); Node* result = CallStub(callable, context, input); // Check if the {result} is already a Number/Numeric. Label if_done(this), if_notdone(this); Branch(mode == Object::Conversion::kToNumber ? IsNumber(result) : IsNumeric(result), &if_done, &if_notdone); BIND(&if_done); { // The ToPrimitive conversion already gave us a Number/Numeric, so we're // done. var_result.Bind(result); Goto(&end); } BIND(&if_notdone); { // We now have a Primitive {result}, but it's not yet a Number/Numeric. var_input.Bind(result); Goto(&loop); } } BIND(&if_inputisother); { // The {input} is something else (e.g. Symbol), let the runtime figure // out the correct exception. // Note: We cannot tail call to the runtime here, as js-to-wasm // trampolines also use this code currently, and they declare all // outgoing parameters as untagged, while we would push a tagged // object here. auto function_id = mode == Object::Conversion::kToNumber ? Runtime::kToNumber : Runtime::kToNumeric; var_result.Bind(CallRuntime(function_id, context, input)); Goto(&end); } } BIND(&end); if (mode == Object::Conversion::kToNumeric) { CSA_ASSERT(this, IsNumeric(var_result.value())); } else { DCHECK_EQ(mode, Object::Conversion::kToNumber); CSA_ASSERT(this, IsNumber(var_result.value())); } return var_result.value(); } TNode<Number> CodeStubAssembler::NonNumberToNumber( SloppyTNode<Context> context, SloppyTNode<HeapObject> input, BigIntHandling bigint_handling) { return CAST(NonNumberToNumberOrNumeric( context, input, Object::Conversion::kToNumber, bigint_handling)); } TNode<Numeric> CodeStubAssembler::NonNumberToNumeric( SloppyTNode<Context> context, SloppyTNode<HeapObject> input) { Node* result = NonNumberToNumberOrNumeric(context, input, Object::Conversion::kToNumeric); CSA_SLOW_ASSERT(this, IsNumeric(result)); return UncheckedCast<Numeric>(result); } TNode<Number> CodeStubAssembler::ToNumber_Inline(SloppyTNode<Context> context, SloppyTNode<Object> input) { TVARIABLE(Number, var_result); Label end(this), not_smi(this, Label::kDeferred); GotoIfNot(TaggedIsSmi(input), ¬_smi); var_result = CAST(input); Goto(&end); BIND(¬_smi); { var_result = Select<Number>(IsHeapNumber(CAST(input)), [=] { return CAST(input); }, [=] { return CAST(CallBuiltin(Builtins::kNonNumberToNumber, context, input)); }); Goto(&end); } BIND(&end); return var_result.value(); } TNode<Number> CodeStubAssembler::ToNumber(SloppyTNode<Context> context, SloppyTNode<Object> input, BigIntHandling bigint_handling) { TVARIABLE(Number, var_result); Label end(this); Label not_smi(this, Label::kDeferred); GotoIfNot(TaggedIsSmi(input), ¬_smi); TNode<Smi> input_smi = CAST(input); var_result = input_smi; Goto(&end); BIND(¬_smi); { Label not_heap_number(this, Label::kDeferred); TNode<HeapObject> input_ho = CAST(input); GotoIfNot(IsHeapNumber(input_ho), ¬_heap_number); TNode<HeapNumber> input_hn = CAST(input_ho); var_result = input_hn; Goto(&end); BIND(¬_heap_number); { var_result = NonNumberToNumber(context, input_ho, bigint_handling); Goto(&end); } } BIND(&end); return var_result.value(); } TNode<BigInt> CodeStubAssembler::ToBigInt(SloppyTNode<Context> context, SloppyTNode<Object> input) { TVARIABLE(BigInt, var_result); Label if_bigint(this), done(this), if_throw(this); GotoIf(TaggedIsSmi(input), &if_throw); GotoIf(IsBigInt(CAST(input)), &if_bigint); var_result = CAST(CallRuntime(Runtime::kToBigInt, context, input)); Goto(&done); BIND(&if_bigint); var_result = CAST(input); Goto(&done); BIND(&if_throw); ThrowTypeError(context, MessageTemplate::kBigIntFromObject, input); BIND(&done); return var_result.value(); } void CodeStubAssembler::TaggedToNumeric(Node* context, Node* value, Label* done, Variable* var_numeric) { TaggedToNumeric(context, value, done, var_numeric, nullptr); } void CodeStubAssembler::TaggedToNumericWithFeedback(Node* context, Node* value, Label* done, Variable* var_numeric, Variable* var_feedback) { DCHECK_NOT_NULL(var_feedback); TaggedToNumeric(context, value, done, var_numeric, var_feedback); } void CodeStubAssembler::TaggedToNumeric(Node* context, Node* value, Label* done, Variable* var_numeric, Variable* var_feedback) { var_numeric->Bind(value); Label if_smi(this), if_heapnumber(this), if_bigint(this), if_oddball(this); GotoIf(TaggedIsSmi(value), &if_smi); Node* map = LoadMap(value); GotoIf(IsHeapNumberMap(map), &if_heapnumber); Node* instance_type = LoadMapInstanceType(map); GotoIf(IsBigIntInstanceType(instance_type), &if_bigint); // {value} is not a Numeric yet. GotoIf(Word32Equal(instance_type, Int32Constant(ODDBALL_TYPE)), &if_oddball); var_numeric->Bind(CallBuiltin(Builtins::kNonNumberToNumeric, context, value)); OverwriteFeedback(var_feedback, BinaryOperationFeedback::kAny); Goto(done); BIND(&if_smi); OverwriteFeedback(var_feedback, BinaryOperationFeedback::kSignedSmall); Goto(done); BIND(&if_heapnumber); OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNumber); Goto(done); BIND(&if_bigint); OverwriteFeedback(var_feedback, BinaryOperationFeedback::kBigInt); Goto(done); BIND(&if_oddball); OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNumberOrOddball); var_numeric->Bind(LoadObjectField(value, Oddball::kToNumberOffset)); Goto(done); } // ES#sec-touint32 TNode<Number> CodeStubAssembler::ToUint32(SloppyTNode<Context> context, SloppyTNode<Object> input) { Node* const float_zero = Float64Constant(0.0); Node* const float_two_32 = Float64Constant(static_cast<double>(1ULL << 32)); Label out(this); VARIABLE(var_result, MachineRepresentation::kTagged, input); // Early exit for positive smis. { // TODO(jgruber): This branch and the recheck below can be removed once we // have a ToNumber with multiple exits. Label next(this, Label::kDeferred); Branch(TaggedIsPositiveSmi(input), &out, &next); BIND(&next); } Node* const number = ToNumber(context, input); var_result.Bind(number); // Perhaps we have a positive smi now. { Label next(this, Label::kDeferred); Branch(TaggedIsPositiveSmi(number), &out, &next); BIND(&next); } Label if_isnegativesmi(this), if_isheapnumber(this); Branch(TaggedIsSmi(number), &if_isnegativesmi, &if_isheapnumber); BIND(&if_isnegativesmi); { Node* const uint32_value = SmiToInt32(number); Node* float64_value = ChangeUint32ToFloat64(uint32_value); var_result.Bind(AllocateHeapNumberWithValue(float64_value)); Goto(&out); } BIND(&if_isheapnumber); { Label return_zero(this); Node* const value = LoadHeapNumberValue(number); { // +-0. Label next(this); Branch(Float64Equal(value, float_zero), &return_zero, &next); BIND(&next); } { // NaN. Label next(this); Branch(Float64Equal(value, value), &next, &return_zero); BIND(&next); } { // +Infinity. Label next(this); Node* const positive_infinity = Float64Constant(std::numeric_limits<double>::infinity()); Branch(Float64Equal(value, positive_infinity), &return_zero, &next); BIND(&next); } { // -Infinity. Label next(this); Node* const negative_infinity = Float64Constant(-1.0 * std::numeric_limits<double>::infinity()); Branch(Float64Equal(value, negative_infinity), &return_zero, &next); BIND(&next); } // * Let int be the mathematical value that is the same sign as number and // whose magnitude is floor(abs(number)). // * Let int32bit be int modulo 2^32. // * Return int32bit. { Node* x = Float64Trunc(value); x = Float64Mod(x, float_two_32); x = Float64Add(x, float_two_32); x = Float64Mod(x, float_two_32); Node* const result = ChangeFloat64ToTagged(x); var_result.Bind(result); Goto(&out); } BIND(&return_zero); { var_result.Bind(SmiConstant(0)); Goto(&out); } } BIND(&out); return CAST(var_result.value()); } TNode<String> CodeStubAssembler::ToString(SloppyTNode<Context> context, SloppyTNode<Object> input) { Label is_number(this); Label runtime(this, Label::kDeferred), done(this); VARIABLE(result, MachineRepresentation::kTagged); GotoIf(TaggedIsSmi(input), &is_number); TNode<Map> input_map = LoadMap(CAST(input)); TNode<Int32T> input_instance_type = LoadMapInstanceType(input_map); result.Bind(input); GotoIf(IsStringInstanceType(input_instance_type), &done); Label not_heap_number(this); Branch(IsHeapNumberMap(input_map), &is_number, ¬_heap_number); BIND(&is_number); TNode<Number> number_input = CAST(input); result.Bind(NumberToString(number_input)); Goto(&done); BIND(¬_heap_number); { GotoIfNot(InstanceTypeEqual(input_instance_type, ODDBALL_TYPE), &runtime); result.Bind(LoadObjectField(CAST(input), Oddball::kToStringOffset)); Goto(&done); } BIND(&runtime); { result.Bind(CallRuntime(Runtime::kToString, context, input)); Goto(&done); } BIND(&done); return CAST(result.value()); } TNode<String> CodeStubAssembler::ToString_Inline(SloppyTNode<Context> context, SloppyTNode<Object> input) { VARIABLE(var_result, MachineRepresentation::kTagged, input); Label stub_call(this, Label::kDeferred), out(this); GotoIf(TaggedIsSmi(input), &stub_call); Branch(IsString(CAST(input)), &out, &stub_call); BIND(&stub_call); var_result.Bind(CallBuiltin(Builtins::kToString, context, input)); Goto(&out); BIND(&out); return CAST(var_result.value()); } Node* CodeStubAssembler::JSReceiverToPrimitive(Node* context, Node* input) { Label if_isreceiver(this, Label::kDeferred), if_isnotreceiver(this); VARIABLE(result, MachineRepresentation::kTagged); Label done(this, &result); BranchIfJSReceiver(input, &if_isreceiver, &if_isnotreceiver); BIND(&if_isreceiver); { // Convert {input} to a primitive first passing Number hint. Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); result.Bind(CallStub(callable, context, input)); Goto(&done); } BIND(&if_isnotreceiver); { result.Bind(input); Goto(&done); } BIND(&done); return result.value(); } TNode<JSReceiver> CodeStubAssembler::ToObject(SloppyTNode<Context> context, SloppyTNode<Object> input) { return CAST(CallBuiltin(Builtins::kToObject, context, input)); } TNode<JSReceiver> CodeStubAssembler::ToObject_Inline(TNode<Context> context, TNode<Object> input) { TVARIABLE(JSReceiver, result); Label if_isreceiver(this), if_isnotreceiver(this, Label::kDeferred); Label done(this); BranchIfJSReceiver(input, &if_isreceiver, &if_isnotreceiver); BIND(&if_isreceiver); { result = CAST(input); Goto(&done); } BIND(&if_isnotreceiver); { result = ToObject(context, input); Goto(&done); } BIND(&done); return result.value(); } TNode<Smi> CodeStubAssembler::ToSmiIndex(TNode<Object> input, TNode<Context> context, Label* range_error) { TVARIABLE(Smi, result); Label check_undefined(this), return_zero(this), defined(this), negative_check(this), done(this); GotoIfNot(TaggedIsSmi(input), &check_undefined); result = CAST(input); Goto(&negative_check); BIND(&check_undefined); Branch(IsUndefined(input), &return_zero, &defined); BIND(&defined); TNode<Number> integer_input = CAST(CallBuiltin(Builtins::kToInteger_TruncateMinusZero, context, input)); GotoIfNot(TaggedIsSmi(integer_input), range_error); result = CAST(integer_input); Goto(&negative_check); BIND(&negative_check); Branch(SmiLessThan(result.value(), SmiConstant(0)), range_error, &done); BIND(&return_zero); result = SmiConstant(0); Goto(&done); BIND(&done); return result.value(); } TNode<Smi> CodeStubAssembler::ToSmiLength(TNode<Object> input, TNode<Context> context, Label* range_error) { TVARIABLE(Smi, result); Label to_integer(this), negative_check(this), heap_number_negative_check(this), return_zero(this), done(this); GotoIfNot(TaggedIsSmi(input), &to_integer); result = CAST(input); Goto(&negative_check); BIND(&to_integer); { TNode<Number> integer_input = CAST( CallBuiltin(Builtins::kToInteger_TruncateMinusZero, context, input)); GotoIfNot(TaggedIsSmi(integer_input), &heap_number_negative_check); result = CAST(integer_input); Goto(&negative_check); // integer_input can still be a negative HeapNumber here. BIND(&heap_number_negative_check); TNode<HeapNumber> heap_number_input = CAST(integer_input); Branch(IsTrue(CallBuiltin(Builtins::kLessThan, context, heap_number_input, SmiConstant(0))), &return_zero, range_error); } BIND(&negative_check); Branch(SmiLessThan(result.value(), SmiConstant(0)), &return_zero, &done); BIND(&return_zero); result = SmiConstant(0); Goto(&done); BIND(&done); return result.value(); } TNode<Number> CodeStubAssembler::ToLength_Inline(SloppyTNode<Context> context, SloppyTNode<Object> input) { TNode<Smi> smi_zero = SmiConstant(0); return Select<Number>( TaggedIsSmi(input), [=] { return SmiMax(CAST(input), smi_zero); }, [=] { return CAST(CallBuiltin(Builtins::kToLength, context, input)); }); } TNode<Number> CodeStubAssembler::ToInteger_Inline( SloppyTNode<Context> context, SloppyTNode<Object> input, ToIntegerTruncationMode mode) { Builtins::Name builtin = (mode == kNoTruncation) ? Builtins::kToInteger : Builtins::kToInteger_TruncateMinusZero; return Select<Number>( TaggedIsSmi(input), [=] { return CAST(input); }, [=] { return CAST(CallBuiltin(builtin, context, input)); }); } TNode<Number> CodeStubAssembler::ToInteger(SloppyTNode<Context> context, SloppyTNode<Object> input, ToIntegerTruncationMode mode) { // We might need to loop once for ToNumber conversion. TVARIABLE(Object, var_arg, input); Label loop(this, &var_arg), out(this); Goto(&loop); BIND(&loop); { // Shared entry points. Label return_zero(this, Label::kDeferred); // Load the current {arg} value. TNode<Object> arg = var_arg.value(); // Check if {arg} is a Smi. GotoIf(TaggedIsSmi(arg), &out); // Check if {arg} is a HeapNumber. Label if_argisheapnumber(this), if_argisnotheapnumber(this, Label::kDeferred); Branch(IsHeapNumber(CAST(arg)), &if_argisheapnumber, &if_argisnotheapnumber); BIND(&if_argisheapnumber); { TNode<HeapNumber> arg_hn = CAST(arg); // Load the floating-point value of {arg}. Node* arg_value = LoadHeapNumberValue(arg_hn); // Check if {arg} is NaN. GotoIfNot(Float64Equal(arg_value, arg_value), &return_zero); // Truncate {arg} towards zero. TNode<Float64T> value = Float64Trunc(arg_value); if (mode == kTruncateMinusZero) { // Truncate -0.0 to 0. GotoIf(Float64Equal(value, Float64Constant(0.0)), &return_zero); } var_arg = ChangeFloat64ToTagged(value); Goto(&out); } BIND(&if_argisnotheapnumber); { // Need to convert {arg} to a Number first. var_arg = UncheckedCast<Object>( CallBuiltin(Builtins::kNonNumberToNumber, context, arg)); Goto(&loop); } BIND(&return_zero); var_arg = SmiConstant(0); Goto(&out); } BIND(&out); if (mode == kTruncateMinusZero) { CSA_ASSERT(this, IsNumberNormalized(CAST(var_arg.value()))); } return CAST(var_arg.value()); } TNode<Uint32T> CodeStubAssembler::DecodeWord32(SloppyTNode<Word32T> word32, uint32_t shift, uint32_t mask) { return UncheckedCast<Uint32T>(Word32Shr( Word32And(word32, Int32Constant(mask)), static_cast<int>(shift))); } TNode<UintPtrT> CodeStubAssembler::DecodeWord(SloppyTNode<WordT> word, uint32_t shift, uint32_t mask) { return Unsigned( WordShr(WordAnd(word, IntPtrConstant(mask)), static_cast<int>(shift))); } TNode<WordT> CodeStubAssembler::UpdateWord(TNode<WordT> word, TNode<WordT> value, uint32_t shift, uint32_t mask) { TNode<WordT> encoded_value = WordShl(value, static_cast<int>(shift)); TNode<IntPtrT> inverted_mask = IntPtrConstant(~static_cast<intptr_t>(mask)); // Ensure the {value} fits fully in the mask. CSA_ASSERT(this, WordEqual(WordAnd(encoded_value, inverted_mask), IntPtrConstant(0))); return WordOr(WordAnd(word, inverted_mask), encoded_value); } void CodeStubAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { Node* counter_address = ExternalConstant(ExternalReference::Create(counter)); StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, Int32Constant(value)); } } void CodeStubAssembler::IncrementCounter(StatsCounter* counter, int delta) { DCHECK_GT(delta, 0); if (FLAG_native_code_counters && counter->Enabled()) { Node* counter_address = ExternalConstant(ExternalReference::Create(counter)); Node* value = Load(MachineType::Int32(), counter_address); value = Int32Add(value, Int32Constant(delta)); StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value); } } void CodeStubAssembler::DecrementCounter(StatsCounter* counter, int delta) { DCHECK_GT(delta, 0); if (FLAG_native_code_counters && counter->Enabled()) { Node* counter_address = ExternalConstant(ExternalReference::Create(counter)); Node* value = Load(MachineType::Int32(), counter_address); value = Int32Sub(value, Int32Constant(delta)); StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value); } } void CodeStubAssembler::Increment(Variable* variable, int value, ParameterMode mode) { DCHECK_IMPLIES(mode == INTPTR_PARAMETERS, variable->rep() == MachineType::PointerRepresentation()); DCHECK_IMPLIES(mode == SMI_PARAMETERS, variable->rep() == MachineRepresentation::kTagged || variable->rep() == MachineRepresentation::kTaggedSigned); variable->Bind(IntPtrOrSmiAdd(variable->value(), IntPtrOrSmiConstant(value, mode), mode)); } void CodeStubAssembler::Use(Label* label) { GotoIf(Word32Equal(Int32Constant(0), Int32Constant(1)), label); } void CodeStubAssembler::TryToName(Node* key, Label* if_keyisindex, Variable* var_index, Label* if_keyisunique, Variable* var_unique, Label* if_bailout, Label* if_notinternalized) { DCHECK_EQ(MachineType::PointerRepresentation(), var_index->rep()); DCHECK_EQ(MachineRepresentation::kTagged, var_unique->rep()); Comment("TryToName"); Label if_hascachedindex(this), if_keyisnotindex(this), if_thinstring(this), if_keyisother(this, Label::kDeferred); // Handle Smi and HeapNumber keys. var_index->Bind(TryToIntptr(key, &if_keyisnotindex)); Goto(if_keyisindex); BIND(&if_keyisnotindex); Node* key_map = LoadMap(key); var_unique->Bind(key); // Symbols are unique. GotoIf(IsSymbolMap(key_map), if_keyisunique); Node* key_instance_type = LoadMapInstanceType(key_map); // Miss if |key| is not a String. STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE); GotoIfNot(IsStringInstanceType(key_instance_type), &if_keyisother); // |key| is a String. Check if it has a cached array index. Node* hash = LoadNameHashField(key); GotoIf(IsClearWord32(hash, Name::kDoesNotContainCachedArrayIndexMask), &if_hascachedindex); // No cached array index. If the string knows that it contains an index, // then it must be an uncacheable index. Handle this case in the runtime. GotoIf(IsClearWord32(hash, Name::kIsNotArrayIndexMask), if_bailout); // Check if we have a ThinString. GotoIf(InstanceTypeEqual(key_instance_type, THIN_STRING_TYPE), &if_thinstring); GotoIf(InstanceTypeEqual(key_instance_type, THIN_ONE_BYTE_STRING_TYPE), &if_thinstring); // Finally, check if |key| is internalized. STATIC_ASSERT(kNotInternalizedTag != 0); GotoIf(IsSetWord32(key_instance_type, kIsNotInternalizedMask), if_notinternalized != nullptr ? if_notinternalized : if_bailout); Goto(if_keyisunique); BIND(&if_thinstring); var_unique->Bind(LoadObjectField(key, ThinString::kActualOffset)); Goto(if_keyisunique); BIND(&if_hascachedindex); var_index->Bind(DecodeWordFromWord32<Name::ArrayIndexValueBits>(hash)); Goto(if_keyisindex); BIND(&if_keyisother); GotoIfNot(InstanceTypeEqual(key_instance_type, ODDBALL_TYPE), if_bailout); var_unique->Bind(LoadObjectField(key, Oddball::kToStringOffset)); Goto(if_keyisunique); } void CodeStubAssembler::TryInternalizeString( Node* string, Label* if_index, Variable* var_index, Label* if_internalized, Variable* var_internalized, Label* if_not_internalized, Label* if_bailout) { DCHECK(var_index->rep() == MachineType::PointerRepresentation()); DCHECK_EQ(var_internalized->rep(), MachineRepresentation::kTagged); CSA_SLOW_ASSERT(this, IsString(string)); Node* function = ExternalConstant(ExternalReference::try_internalize_string_function()); Node* const isolate_ptr = ExternalConstant(ExternalReference::isolate_address(isolate())); Node* result = CallCFunction2(MachineType::AnyTagged(), MachineType::Pointer(), MachineType::AnyTagged(), function, isolate_ptr, string); Label internalized(this); GotoIf(TaggedIsNotSmi(result), &internalized); Node* word_result = SmiUntag(result); GotoIf(WordEqual(word_result, IntPtrConstant(ResultSentinel::kNotFound)), if_not_internalized); GotoIf(WordEqual(word_result, IntPtrConstant(ResultSentinel::kUnsupported)), if_bailout); var_index->Bind(word_result); Goto(if_index); BIND(&internalized); var_internalized->Bind(result); Goto(if_internalized); } template <typename Dictionary> TNode<IntPtrT> CodeStubAssembler::EntryToIndex(TNode<IntPtrT> entry, int field_index) { TNode<IntPtrT> entry_index = IntPtrMul(entry, IntPtrConstant(Dictionary::kEntrySize)); return IntPtrAdd(entry_index, IntPtrConstant(Dictionary::kElementsStartIndex + field_index)); } TNode<Uint32T> CodeStubAssembler::LoadDetailsByKeyIndex( TNode<DescriptorArray> container, TNode<IntPtrT> key_index) { const int kKeyToDetailsOffset = (DescriptorArray::kEntryDetailsIndex - DescriptorArray::kEntryKeyIndex) * kPointerSize; return Unsigned(LoadAndUntagToWord32ArrayElement( container, WeakFixedArray::kHeaderSize, key_index, kKeyToDetailsOffset)); } TNode<Object> CodeStubAssembler::LoadValueByKeyIndex( TNode<DescriptorArray> container, TNode<IntPtrT> key_index) { const int kKeyToValueOffset = (DescriptorArray::kEntryValueIndex - DescriptorArray::kEntryKeyIndex) * kPointerSize; return CAST( LoadWeakFixedArrayElement(container, key_index, kKeyToValueOffset)); } TNode<MaybeObject> CodeStubAssembler::LoadFieldTypeByKeyIndex( TNode<DescriptorArray> container, TNode<IntPtrT> key_index) { const int kKeyToValueOffset = (DescriptorArray::kEntryValueIndex - DescriptorArray::kEntryKeyIndex) * kPointerSize; return LoadWeakFixedArrayElement(container, key_index, kKeyToValueOffset); } template TNode<IntPtrT> CodeStubAssembler::EntryToIndex<NameDictionary>( TNode<IntPtrT>, int); template TNode<IntPtrT> CodeStubAssembler::EntryToIndex<GlobalDictionary>( TNode<IntPtrT>, int); template TNode<IntPtrT> CodeStubAssembler::EntryToIndex<NumberDictionary>( TNode<IntPtrT>, int); // This must be kept in sync with HashTableBase::ComputeCapacity(). TNode<IntPtrT> CodeStubAssembler::HashTableComputeCapacity( TNode<IntPtrT> at_least_space_for) { TNode<IntPtrT> capacity = IntPtrRoundUpToPowerOfTwo32( IntPtrAdd(at_least_space_for, WordShr(at_least_space_for, 1))); return IntPtrMax(capacity, IntPtrConstant(HashTableBase::kMinCapacity)); } TNode<IntPtrT> CodeStubAssembler::IntPtrMax(SloppyTNode<IntPtrT> left, SloppyTNode<IntPtrT> right) { intptr_t left_constant; intptr_t right_constant; if (ToIntPtrConstant(left, left_constant) && ToIntPtrConstant(right, right_constant)) { return IntPtrConstant(std::max(left_constant, right_constant)); } return SelectConstant<IntPtrT>(IntPtrGreaterThanOrEqual(left, right), left, right); } TNode<IntPtrT> CodeStubAssembler::IntPtrMin(SloppyTNode<IntPtrT> left, SloppyTNode<IntPtrT> right) { intptr_t left_constant; intptr_t right_constant; if (ToIntPtrConstant(left, left_constant) && ToIntPtrConstant(right, right_constant)) { return IntPtrConstant(std::min(left_constant, right_constant)); } return SelectConstant<IntPtrT>(IntPtrLessThanOrEqual(left, right), left, right); } template <> TNode<HeapObject> CodeStubAssembler::LoadName<NameDictionary>( TNode<HeapObject> key) { CSA_ASSERT(this, Word32Or(IsTheHole(key), IsName(key))); return key; } template <> TNode<HeapObject> CodeStubAssembler::LoadName<GlobalDictionary>( TNode<HeapObject> key) { TNode<PropertyCell> property_cell = CAST(key); return CAST(LoadObjectField(property_cell, PropertyCell::kNameOffset)); } template <typename Dictionary> void CodeStubAssembler::NameDictionaryLookup( TNode<Dictionary> dictionary, TNode<Name> unique_name, Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found, int inlined_probes, LookupMode mode) { static_assert(std::is_same<Dictionary, NameDictionary>::value || std::is_same<Dictionary, GlobalDictionary>::value, "Unexpected NameDictionary"); DCHECK_EQ(MachineType::PointerRepresentation(), var_name_index->rep()); DCHECK_IMPLIES(mode == kFindInsertionIndex, inlined_probes == 0 && if_found == nullptr); Comment("NameDictionaryLookup"); TNode<IntPtrT> capacity = SmiUntag(GetCapacity<Dictionary>(dictionary)); TNode<WordT> mask = IntPtrSub(capacity, IntPtrConstant(1)); TNode<WordT> hash = ChangeUint32ToWord(LoadNameHash(unique_name)); // See Dictionary::FirstProbe(). TNode<IntPtrT> count = IntPtrConstant(0); TNode<IntPtrT> entry = Signed(WordAnd(hash, mask)); Node* undefined = UndefinedConstant(); for (int i = 0; i < inlined_probes; i++) { TNode<IntPtrT> index = EntryToIndex<Dictionary>(entry); *var_name_index = index; TNode<HeapObject> current = CAST(LoadFixedArrayElement(dictionary, index)); GotoIf(WordEqual(current, undefined), if_not_found); current = LoadName<Dictionary>(current); GotoIf(WordEqual(current, unique_name), if_found); // See Dictionary::NextProbe(). count = IntPtrConstant(i + 1); entry = Signed(WordAnd(IntPtrAdd(entry, count), mask)); } if (mode == kFindInsertionIndex) { // Appease the variable merging algorithm for "Goto(&loop)" below. *var_name_index = IntPtrConstant(0); } TVARIABLE(IntPtrT, var_count, count); TVARIABLE(IntPtrT, var_entry, entry); Variable* loop_vars[] = {&var_count, &var_entry, var_name_index}; Label loop(this, 3, loop_vars); Goto(&loop); BIND(&loop); { TNode<IntPtrT> entry = var_entry.value(); TNode<IntPtrT> index = EntryToIndex<Dictionary>(entry); *var_name_index = index; TNode<HeapObject> current = CAST(LoadFixedArrayElement(dictionary, index)); GotoIf(WordEqual(current, undefined), if_not_found); if (mode == kFindExisting) { current = LoadName<Dictionary>(current); GotoIf(WordEqual(current, unique_name), if_found); } else { DCHECK_EQ(kFindInsertionIndex, mode); GotoIf(WordEqual(current, TheHoleConstant()), if_not_found); } // See Dictionary::NextProbe(). Increment(&var_count); entry = Signed(WordAnd(IntPtrAdd(entry, var_count.value()), mask)); var_entry = entry; Goto(&loop); } } // Instantiate template methods to workaround GCC compilation issue. template void CodeStubAssembler::NameDictionaryLookup<NameDictionary>( TNode<NameDictionary>, TNode<Name>, Label*, TVariable<IntPtrT>*, Label*, int, LookupMode); template void CodeStubAssembler::NameDictionaryLookup<GlobalDictionary>( TNode<GlobalDictionary>, TNode<Name>, Label*, TVariable<IntPtrT>*, Label*, int, LookupMode); Node* CodeStubAssembler::ComputeUnseededHash(Node* key) { // See v8::internal::ComputeUnseededHash() Node* hash = TruncateIntPtrToInt32(key); hash = Int32Add(Word32Xor(hash, Int32Constant(0xFFFFFFFF)), Word32Shl(hash, Int32Constant(15))); hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(12))); hash = Int32Add(hash, Word32Shl(hash, Int32Constant(2))); hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(4))); hash = Int32Mul(hash, Int32Constant(2057)); hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(16))); return Word32And(hash, Int32Constant(0x3FFFFFFF)); } Node* CodeStubAssembler::ComputeSeededHash(Node* key) { Node* const function_addr = ExternalConstant(ExternalReference::compute_integer_hash()); Node* const isolate_ptr = ExternalConstant(ExternalReference::isolate_address(isolate())); MachineType type_ptr = MachineType::Pointer(); MachineType type_uint32 = MachineType::Uint32(); Node* const result = CallCFunction2(type_uint32, type_ptr, type_uint32, function_addr, isolate_ptr, TruncateIntPtrToInt32(key)); return result; } void CodeStubAssembler::NumberDictionaryLookup( TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index, Label* if_found, TVariable<IntPtrT>* var_entry, Label* if_not_found) { CSA_ASSERT(this, IsNumberDictionary(dictionary)); DCHECK_EQ(MachineType::PointerRepresentation(), var_entry->rep()); Comment("NumberDictionaryLookup"); TNode<IntPtrT> capacity = SmiUntag(GetCapacity<NumberDictionary>(dictionary)); TNode<WordT> mask = IntPtrSub(capacity, IntPtrConstant(1)); TNode<WordT> hash = ChangeUint32ToWord(ComputeSeededHash(intptr_index)); Node* key_as_float64 = RoundIntPtrToFloat64(intptr_index); // See Dictionary::FirstProbe(). TNode<IntPtrT> count = IntPtrConstant(0); TNode<IntPtrT> entry = Signed(WordAnd(hash, mask)); Node* undefined = UndefinedConstant(); Node* the_hole = TheHoleConstant(); TVARIABLE(IntPtrT, var_count, count); Variable* loop_vars[] = {&var_count, var_entry}; Label loop(this, 2, loop_vars); *var_entry = entry; Goto(&loop); BIND(&loop); { TNode<IntPtrT> entry = var_entry->value(); TNode<IntPtrT> index = EntryToIndex<NumberDictionary>(entry); Node* current = LoadFixedArrayElement(dictionary, index); GotoIf(WordEqual(current, undefined), if_not_found); Label next_probe(this); { Label if_currentissmi(this), if_currentisnotsmi(this); Branch(TaggedIsSmi(current), &if_currentissmi, &if_currentisnotsmi); BIND(&if_currentissmi); { Node* current_value = SmiUntag(current); Branch(WordEqual(current_value, intptr_index), if_found, &next_probe); } BIND(&if_currentisnotsmi); { GotoIf(WordEqual(current, the_hole), &next_probe); // Current must be the Number. Node* current_value = LoadHeapNumberValue(current); Branch(Float64Equal(current_value, key_as_float64), if_found, &next_probe); } } BIND(&next_probe); // See Dictionary::NextProbe(). Increment(&var_count); entry = Signed(WordAnd(IntPtrAdd(entry, var_count.value()), mask)); *var_entry = entry; Goto(&loop); } } TNode<Object> CodeStubAssembler::BasicLoadNumberDictionaryElement( TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index, Label* not_data, Label* if_hole) { TVARIABLE(IntPtrT, var_entry); Label if_found(this); NumberDictionaryLookup(dictionary, intptr_index, &if_found, &var_entry, if_hole); BIND(&if_found); // Check that the value is a data property. TNode<IntPtrT> index = EntryToIndex<NumberDictionary>(var_entry.value()); TNode<Uint32T> details = LoadDetailsByKeyIndex<NumberDictionary>(dictionary, index); TNode<Uint32T> kind = DecodeWord32<PropertyDetails::KindField>(details); // TODO(jkummerow): Support accessors without missing? GotoIfNot(Word32Equal(kind, Int32Constant(kData)), not_data); // Finally, load the value. return LoadValueByKeyIndex<NumberDictionary>(dictionary, index); } void CodeStubAssembler::BasicStoreNumberDictionaryElement( TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index, TNode<Object> value, Label* not_data, Label* if_hole, Label* read_only) { TVARIABLE(IntPtrT, var_entry); Label if_found(this); NumberDictionaryLookup(dictionary, intptr_index, &if_found, &var_entry, if_hole); BIND(&if_found); // Check that the value is a data property. TNode<IntPtrT> index = EntryToIndex<NumberDictionary>(var_entry.value()); TNode<Uint32T> details = LoadDetailsByKeyIndex<NumberDictionary>(dictionary, index); TNode<Uint32T> kind = DecodeWord32<PropertyDetails::KindField>(details); // TODO(jkummerow): Support accessors without missing? GotoIfNot(Word32Equal(kind, Int32Constant(kData)), not_data); // Check that the property is writeable. GotoIf(IsSetWord32(details, PropertyDetails::kAttributesReadOnlyMask), read_only); // Finally, store the value. StoreValueByKeyIndex<NumberDictionary>(dictionary, index, value); } template <class Dictionary> void CodeStubAssembler::FindInsertionEntry(TNode<Dictionary> dictionary, TNode<Name> key, TVariable<IntPtrT>* var_key_index) { UNREACHABLE(); } template <> void CodeStubAssembler::FindInsertionEntry<NameDictionary>( TNode<NameDictionary> dictionary, TNode<Name> key, TVariable<IntPtrT>* var_key_index) { Label done(this); NameDictionaryLookup<NameDictionary>(dictionary, key, nullptr, var_key_index, &done, 0, kFindInsertionIndex); BIND(&done); } template <class Dictionary> void CodeStubAssembler::InsertEntry(TNode<Dictionary> dictionary, TNode<Name> key, TNode<Object> value, TNode<IntPtrT> index, TNode<Smi> enum_index) { UNREACHABLE(); // Use specializations instead. } template <> void CodeStubAssembler::InsertEntry<NameDictionary>( TNode<NameDictionary> dictionary, TNode<Name> name, TNode<Object> value, TNode<IntPtrT> index, TNode<Smi> enum_index) { // Store name and value. StoreFixedArrayElement(dictionary, index, name); StoreValueByKeyIndex<NameDictionary>(dictionary, index, value); // Prepare details of the new property. PropertyDetails d(kData, NONE, PropertyCellType::kNoCell); enum_index = SmiShl(enum_index, PropertyDetails::DictionaryStorageField::kShift); // We OR over the actual index below, so we expect the initial value to be 0. DCHECK_EQ(0, d.dictionary_index()); TVARIABLE(Smi, var_details, SmiOr(SmiConstant(d.AsSmi()), enum_index)); // Private names must be marked non-enumerable. Label not_private(this, &var_details); GotoIfNot(IsPrivateSymbol(name), ¬_private); TNode<Smi> dont_enum = SmiShl(SmiConstant(DONT_ENUM), PropertyDetails::AttributesField::kShift); var_details = SmiOr(var_details.value(), dont_enum); Goto(¬_private); BIND(¬_private); // Finally, store the details. StoreDetailsByKeyIndex<NameDictionary>(dictionary, index, var_details.value()); } template <> void CodeStubAssembler::InsertEntry<GlobalDictionary>( TNode<GlobalDictionary> dictionary, TNode<Name> key, TNode<Object> value, TNode<IntPtrT> index, TNode<Smi> enum_index) { UNIMPLEMENTED(); } template <class Dictionary> void CodeStubAssembler::Add(TNode<Dictionary> dictionary, TNode<Name> key, TNode<Object> value, Label* bailout) { CSA_ASSERT(this, Word32BinaryNot(IsEmptyPropertyDictionary(dictionary))); TNode<Smi> capacity = GetCapacity<Dictionary>(dictionary); TNode<Smi> nof = GetNumberOfElements<Dictionary>(dictionary); TNode<Smi> new_nof = SmiAdd(nof, SmiConstant(1)); // Require 33% to still be free after adding additional_elements. // Computing "x + (x >> 1)" on a Smi x does not return a valid Smi! // But that's OK here because it's only used for a comparison. TNode<Smi> required_capacity_pseudo_smi = SmiAdd(new_nof, SmiShr(new_nof, 1)); GotoIf(SmiBelow(capacity, required_capacity_pseudo_smi), bailout); // Require rehashing if more than 50% of free elements are deleted elements. TNode<Smi> deleted = GetNumberOfDeletedElements<Dictionary>(dictionary); CSA_ASSERT(this, SmiAbove(capacity, new_nof)); TNode<Smi> half_of_free_elements = SmiShr(SmiSub(capacity, new_nof), 1); GotoIf(SmiAbove(deleted, half_of_free_elements), bailout); TNode<Smi> enum_index = GetNextEnumerationIndex<Dictionary>(dictionary); TNode<Smi> new_enum_index = SmiAdd(enum_index, SmiConstant(1)); TNode<Smi> max_enum_index = SmiConstant(PropertyDetails::DictionaryStorageField::kMax); GotoIf(SmiAbove(new_enum_index, max_enum_index), bailout); // No more bailouts after this point. // Operations from here on can have side effects. SetNextEnumerationIndex<Dictionary>(dictionary, new_enum_index); SetNumberOfElements<Dictionary>(dictionary, new_nof); TVARIABLE(IntPtrT, var_key_index); FindInsertionEntry<Dictionary>(dictionary, key, &var_key_index); InsertEntry<Dictionary>(dictionary, key, value, var_key_index.value(), enum_index); } template void CodeStubAssembler::Add<NameDictionary>(TNode<NameDictionary>, TNode<Name>, TNode<Object>, Label*); template <typename Array> void CodeStubAssembler::LookupLinear(TNode<Name> unique_name, TNode<Array> array, TNode<Uint32T> number_of_valid_entries, Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found) { static_assert(std::is_base_of<FixedArray, Array>::value || std::is_base_of<WeakFixedArray, Array>::value, "T must be a descendant of FixedArray or a WeakFixedArray"); Comment("LookupLinear"); TNode<IntPtrT> first_inclusive = IntPtrConstant(Array::ToKeyIndex(0)); TNode<IntPtrT> factor = IntPtrConstant(Array::kEntrySize); TNode<IntPtrT> last_exclusive = IntPtrAdd( first_inclusive, IntPtrMul(ChangeInt32ToIntPtr(number_of_valid_entries), factor)); BuildFastLoop(last_exclusive, first_inclusive, [=](SloppyTNode<IntPtrT> name_index) { TNode<MaybeObject> element = LoadArrayElement(array, Array::kHeaderSize, name_index); TNode<Name> candidate_name = CAST(element); *var_name_index = name_index; GotoIf(WordEqual(candidate_name, unique_name), if_found); }, -Array::kEntrySize, INTPTR_PARAMETERS, IndexAdvanceMode::kPre); Goto(if_not_found); } template <> TNode<Uint32T> CodeStubAssembler::NumberOfEntries<DescriptorArray>( TNode<DescriptorArray> descriptors) { return Unsigned(LoadAndUntagToWord32ArrayElement( descriptors, WeakFixedArray::kHeaderSize, IntPtrConstant(DescriptorArray::kDescriptorLengthIndex))); } template <> TNode<Uint32T> CodeStubAssembler::NumberOfEntries<TransitionArray>( TNode<TransitionArray> transitions) { TNode<IntPtrT> length = LoadAndUntagWeakFixedArrayLength(transitions); return Select<Uint32T>( UintPtrLessThan(length, IntPtrConstant(TransitionArray::kFirstIndex)), [=] { return Unsigned(Int32Constant(0)); }, [=] { return Unsigned(LoadAndUntagToWord32ArrayElement( transitions, WeakFixedArray::kHeaderSize, IntPtrConstant(TransitionArray::kTransitionLengthIndex))); }); } template <typename Array> TNode<IntPtrT> CodeStubAssembler::EntryIndexToIndex( TNode<Uint32T> entry_index) { TNode<Int32T> entry_size = Int32Constant(Array::kEntrySize); TNode<Word32T> index = Int32Mul(entry_index, entry_size); return ChangeInt32ToIntPtr(index); } template <typename Array> TNode<IntPtrT> CodeStubAssembler::ToKeyIndex(TNode<Uint32T> entry_index) { return IntPtrAdd(IntPtrConstant(Array::ToKeyIndex(0)), EntryIndexToIndex<Array>(entry_index)); } template TNode<IntPtrT> CodeStubAssembler::ToKeyIndex<DescriptorArray>( TNode<Uint32T>); template TNode<IntPtrT> CodeStubAssembler::ToKeyIndex<TransitionArray>( TNode<Uint32T>); template <> TNode<Uint32T> CodeStubAssembler::GetSortedKeyIndex<DescriptorArray>( TNode<DescriptorArray> descriptors, TNode<Uint32T> descriptor_number) { TNode<Uint32T> details = DescriptorArrayGetDetails(descriptors, descriptor_number); return DecodeWord32<PropertyDetails::DescriptorPointer>(details); } template <> TNode<Uint32T> CodeStubAssembler::GetSortedKeyIndex<TransitionArray>( TNode<TransitionArray> transitions, TNode<Uint32T> transition_number) { return transition_number; } template <typename Array> TNode<Name> CodeStubAssembler::GetKey(TNode<Array> array, TNode<Uint32T> entry_index) { static_assert(std::is_base_of<FixedArray, Array>::value || std::is_base_of<WeakFixedArray, Array>::value, "T must be a descendant of FixedArray or a TransitionArray"); const int key_offset = Array::ToKeyIndex(0) * kPointerSize; TNode<MaybeObject> element = LoadArrayElement(array, Array::kHeaderSize, EntryIndexToIndex<Array>(entry_index), key_offset); return CAST(element); } template TNode<Name> CodeStubAssembler::GetKey<DescriptorArray>( TNode<DescriptorArray>, TNode<Uint32T>); template TNode<Name> CodeStubAssembler::GetKey<TransitionArray>( TNode<TransitionArray>, TNode<Uint32T>); TNode<Uint32T> CodeStubAssembler::DescriptorArrayGetDetails( TNode<DescriptorArray> descriptors, TNode<Uint32T> descriptor_number) { const int details_offset = DescriptorArray::ToDetailsIndex(0) * kPointerSize; return Unsigned(LoadAndUntagToWord32ArrayElement( descriptors, WeakFixedArray::kHeaderSize, EntryIndexToIndex<DescriptorArray>(descriptor_number), details_offset)); } template <typename Array> void CodeStubAssembler::LookupBinary(TNode<Name> unique_name, TNode<Array> array, TNode<Uint32T> number_of_valid_entries, Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found) { Comment("LookupBinary"); TVARIABLE(Uint32T, var_low, Unsigned(Int32Constant(0))); TNode<Uint32T> limit = Unsigned(Int32Sub(NumberOfEntries<Array>(array), Int32Constant(1))); TVARIABLE(Uint32T, var_high, limit); TNode<Uint32T> hash = LoadNameHashField(unique_name); CSA_ASSERT(this, Word32NotEqual(hash, Int32Constant(0))); // Assume non-empty array. CSA_ASSERT(this, Uint32LessThanOrEqual(var_low.value(), var_high.value())); Label binary_loop(this, {&var_high, &var_low}); Goto(&binary_loop); BIND(&binary_loop); { // mid = low + (high - low) / 2 (to avoid overflow in "(low + high) / 2"). TNode<Uint32T> mid = Unsigned( Int32Add(var_low.value(), Word32Shr(Int32Sub(var_high.value(), var_low.value()), 1))); // mid_name = array->GetSortedKey(mid). TNode<Uint32T> sorted_key_index = GetSortedKeyIndex<Array>(array, mid); TNode<Name> mid_name = GetKey<Array>(array, sorted_key_index); TNode<Uint32T> mid_hash = LoadNameHashField(mid_name); Label mid_greater(this), mid_less(this), merge(this); Branch(Uint32GreaterThanOrEqual(mid_hash, hash), &mid_greater, &mid_less); BIND(&mid_greater); { var_high = mid; Goto(&merge); } BIND(&mid_less); { var_low = Unsigned(Int32Add(mid, Int32Constant(1))); Goto(&merge); } BIND(&merge); GotoIf(Word32NotEqual(var_low.value(), var_high.value()), &binary_loop); } Label scan_loop(this, &var_low); Goto(&scan_loop); BIND(&scan_loop); { GotoIf(Int32GreaterThan(var_low.value(), limit), if_not_found); TNode<Uint32T> sort_index = GetSortedKeyIndex<Array>(array, var_low.value()); TNode<Name> current_name = GetKey<Array>(array, sort_index); TNode<Uint32T> current_hash = LoadNameHashField(current_name); GotoIf(Word32NotEqual(current_hash, hash), if_not_found); Label next(this); GotoIf(WordNotEqual(current_name, unique_name), &next); GotoIf(Uint32GreaterThanOrEqual(sort_index, number_of_valid_entries), if_not_found); *var_name_index = ToKeyIndex<Array>(sort_index); Goto(if_found); BIND(&next); var_low = Unsigned(Int32Add(var_low.value(), Int32Constant(1))); Goto(&scan_loop); } } void CodeStubAssembler::DescriptorArrayForEach( VariableList& variable_list, TNode<Uint32T> start_descriptor, TNode<Uint32T> end_descriptor, const ForEachDescriptorBodyFunction& body) { TNode<IntPtrT> start_index = IntPtrAdd(IntPtrConstant(DescriptorArray::ToKeyIndex(0)), EntryIndexToIndex<DescriptorArray>(start_descriptor)); TNode<IntPtrT> end_index = IntPtrAdd(IntPtrConstant(DescriptorArray::ToKeyIndex(0)), EntryIndexToIndex<DescriptorArray>(end_descriptor)); BuildFastLoop(variable_list, start_index, end_index, [=](Node* index) { TNode<UintPtrT> descriptor_key_index = TNode<UintPtrT>::UncheckedCast(index); body(descriptor_key_index); }, DescriptorArray::kEntrySize, INTPTR_PARAMETERS, IndexAdvanceMode::kPost); } void CodeStubAssembler::ForEachEnumerableOwnProperty( TNode<Context> context, TNode<Map> map, TNode<JSObject> object, const ForEachKeyValueFunction& body, Label* bailout) { TNode<Int32T> type = LoadMapInstanceType(map); TNode<Uint32T> bit_field3 = EnsureOnlyHasSimpleProperties(map, type, bailout); TNode<DescriptorArray> descriptors = LoadMapDescriptors(map); TNode<Uint32T> nof_descriptors = DecodeWord32<Map::NumberOfOwnDescriptorsBits>(bit_field3); TVARIABLE(BoolT, var_stable, Int32TrueConstant()); VariableList list({&var_stable}, zone()); DescriptorArrayForEach( list, Unsigned(Int32Constant(0)), nof_descriptors, [=, &var_stable](TNode<UintPtrT> descriptor_key_index) { TNode<Name> next_key = CAST(LoadWeakFixedArrayElement(descriptors, descriptor_key_index)); TVARIABLE(Object, var_value, SmiConstant(0)); Label callback(this), next_iteration(this); { TVARIABLE(Map, var_map); TVARIABLE(HeapObject, var_meta_storage); TVARIABLE(IntPtrT, var_entry); TVARIABLE(Uint32T, var_details); Label if_found(this); Label if_found_fast(this), if_found_dict(this); Label if_stable(this), if_not_stable(this); Branch(var_stable.value(), &if_stable, &if_not_stable); BIND(&if_stable); { // Directly decode from the descriptor array if |object| did not // change shape. var_map = map; var_meta_storage = descriptors; var_entry = Signed(descriptor_key_index); Goto(&if_found_fast); } BIND(&if_not_stable); { // If the map did change, do a slower lookup. We are still // guaranteed that the object has a simple shape, and that the key // is a name. var_map = LoadMap(object); TryLookupPropertyInSimpleObject( object, var_map.value(), next_key, &if_found_fast, &if_found_dict, &var_meta_storage, &var_entry, &next_iteration); } BIND(&if_found_fast); { TNode<DescriptorArray> descriptors = CAST(var_meta_storage.value()); TNode<IntPtrT> name_index = var_entry.value(); // Skip non-enumerable properties. var_details = LoadDetailsByKeyIndex(descriptors, name_index); GotoIf(IsSetWord32(var_details.value(), PropertyDetails::kAttributesDontEnumMask), &next_iteration); LoadPropertyFromFastObject(object, var_map.value(), descriptors, name_index, var_details.value(), &var_value); Goto(&if_found); } BIND(&if_found_dict); { TNode<NameDictionary> dictionary = CAST(var_meta_storage.value()); TNode<IntPtrT> entry = var_entry.value(); TNode<Uint32T> details = LoadDetailsByKeyIndex<NameDictionary>(dictionary, entry); // Skip non-enumerable properties. GotoIf( IsSetWord32(details, PropertyDetails::kAttributesDontEnumMask), &next_iteration); var_details = details; var_value = LoadValueByKeyIndex<NameDictionary>(dictionary, entry); Goto(&if_found); } // Here we have details and value which could be an accessor. BIND(&if_found); { Label slow_load(this, Label::kDeferred); var_value = CallGetterIfAccessor(var_value.value(), var_details.value(), context, object, &slow_load, kCallJSGetter); Goto(&callback); BIND(&slow_load); var_value = CallRuntime(Runtime::kGetProperty, context, object, next_key); Goto(&callback); BIND(&callback); body(next_key, var_value.value()); // Check if |object| is still stable, i.e. we can proceed using // property details from preloaded |descriptors|. var_stable = Select<BoolT>(var_stable.value(), [=] { return WordEqual(LoadMap(object), map); }, [=] { return Int32FalseConstant(); }); Goto(&next_iteration); } } BIND(&next_iteration); }); } void CodeStubAssembler::DescriptorLookup( SloppyTNode<Name> unique_name, SloppyTNode<DescriptorArray> descriptors, SloppyTNode<Uint32T> bitfield3, Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found) { Comment("DescriptorArrayLookup"); TNode<Uint32T> nof = DecodeWord32<Map::NumberOfOwnDescriptorsBits>(bitfield3); Lookup<DescriptorArray>(unique_name, descriptors, nof, if_found, var_name_index, if_not_found); } void CodeStubAssembler::TransitionLookup( SloppyTNode<Name> unique_name, SloppyTNode<TransitionArray> transitions, Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found) { Comment("TransitionArrayLookup"); TNode<Uint32T> number_of_valid_transitions = NumberOfEntries<TransitionArray>(transitions); Lookup<TransitionArray>(unique_name, transitions, number_of_valid_transitions, if_found, var_name_index, if_not_found); } template <typename Array> void CodeStubAssembler::Lookup(TNode<Name> unique_name, TNode<Array> array, TNode<Uint32T> number_of_valid_entries, Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found) { Comment("ArrayLookup"); if (!number_of_valid_entries) { number_of_valid_entries = NumberOfEntries(array); } GotoIf(Word32Equal(number_of_valid_entries, Int32Constant(0)), if_not_found); Label linear_search(this), binary_search(this); const int kMaxElementsForLinearSearch = 32; Branch(Uint32LessThanOrEqual(number_of_valid_entries, Int32Constant(kMaxElementsForLinearSearch)), &linear_search, &binary_search); BIND(&linear_search); { LookupLinear<Array>(unique_name, array, number_of_valid_entries, if_found, var_name_index, if_not_found); } BIND(&binary_search); { LookupBinary<Array>(unique_name, array, number_of_valid_entries, if_found, var_name_index, if_not_found); } } TNode<BoolT> CodeStubAssembler::IsSimpleObjectMap(TNode<Map> map) { uint32_t mask = Map::HasNamedInterceptorBit::kMask | Map::IsAccessCheckNeededBit::kMask; // !IsSpecialReceiverType && !IsNamedInterceptor && !IsAccessCheckNeeded return Select<BoolT>( IsSpecialReceiverInstanceType(LoadMapInstanceType(map)), [=] { return Int32FalseConstant(); }, [=] { return IsClearWord32(LoadMapBitField(map), mask); }); } void CodeStubAssembler::TryLookupPropertyInSimpleObject( TNode<JSObject> object, TNode<Map> map, TNode<Name> unique_name, Label* if_found_fast, Label* if_found_dict, TVariable<HeapObject>* var_meta_storage, TVariable<IntPtrT>* var_name_index, Label* if_not_found) { CSA_ASSERT(this, IsSimpleObjectMap(map)); TNode<Uint32T> bit_field3 = LoadMapBitField3(map); Label if_isfastmap(this), if_isslowmap(this); Branch(IsSetWord32<Map::IsDictionaryMapBit>(bit_field3), &if_isslowmap, &if_isfastmap); BIND(&if_isfastmap); { TNode<DescriptorArray> descriptors = LoadMapDescriptors(map); *var_meta_storage = descriptors; DescriptorLookup(unique_name, descriptors, bit_field3, if_found_fast, var_name_index, if_not_found); } BIND(&if_isslowmap); { TNode<NameDictionary> dictionary = CAST(LoadSlowProperties(object)); *var_meta_storage = dictionary; NameDictionaryLookup<NameDictionary>(dictionary, unique_name, if_found_dict, var_name_index, if_not_found); } } void CodeStubAssembler::TryLookupProperty( SloppyTNode<JSObject> object, SloppyTNode<Map> map, SloppyTNode<Int32T> instance_type, SloppyTNode<Name> unique_name, Label* if_found_fast, Label* if_found_dict, Label* if_found_global, TVariable<HeapObject>* var_meta_storage, TVariable<IntPtrT>* var_name_index, Label* if_not_found, Label* if_bailout) { Label if_objectisspecial(this); GotoIf(IsSpecialReceiverInstanceType(instance_type), &if_objectisspecial); TryLookupPropertyInSimpleObject(object, map, unique_name, if_found_fast, if_found_dict, var_meta_storage, var_name_index, if_not_found); BIND(&if_objectisspecial); { // Handle global object here and bailout for other special objects. GotoIfNot(InstanceTypeEqual(instance_type, JS_GLOBAL_OBJECT_TYPE), if_bailout); // Handle interceptors and access checks in runtime. TNode<Int32T> bit_field = LoadMapBitField(map); int mask = Map::HasNamedInterceptorBit::kMask | Map::IsAccessCheckNeededBit::kMask; GotoIf(IsSetWord32(bit_field, mask), if_bailout); TNode<GlobalDictionary> dictionary = CAST(LoadSlowProperties(object)); *var_meta_storage = dictionary; NameDictionaryLookup<GlobalDictionary>( dictionary, unique_name, if_found_global, var_name_index, if_not_found); } } void CodeStubAssembler::TryHasOwnProperty(Node* object, Node* map, Node* instance_type, Node* unique_name, Label* if_found, Label* if_not_found, Label* if_bailout) { Comment("TryHasOwnProperty"); TVARIABLE(HeapObject, var_meta_storage); TVARIABLE(IntPtrT, var_name_index); Label if_found_global(this); TryLookupProperty(object, map, instance_type, unique_name, if_found, if_found, &if_found_global, &var_meta_storage, &var_name_index, if_not_found, if_bailout); BIND(&if_found_global); { VARIABLE(var_value, MachineRepresentation::kTagged); VARIABLE(var_details, MachineRepresentation::kWord32); // Check if the property cell is not deleted. LoadPropertyFromGlobalDictionary(var_meta_storage.value(), var_name_index.value(), &var_value, &var_details, if_not_found); Goto(if_found); } } Node* CodeStubAssembler::GetMethod(Node* context, Node* object, Handle<Name> name, Label* if_null_or_undefined) { Node* method = GetProperty(context, object, name); GotoIf(IsUndefined(method), if_null_or_undefined); GotoIf(IsNull(method), if_null_or_undefined); return method; } void CodeStubAssembler::LoadPropertyFromFastObject( Node* object, Node* map, TNode<DescriptorArray> descriptors, Node* name_index, Variable* var_details, Variable* var_value) { DCHECK_EQ(MachineRepresentation::kWord32, var_details->rep()); DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep()); Node* details = LoadDetailsByKeyIndex(descriptors, UncheckedCast<IntPtrT>(name_index)); var_details->Bind(details); LoadPropertyFromFastObject(object, map, descriptors, name_index, details, var_value); } void CodeStubAssembler::LoadPropertyFromFastObject( Node* object, Node* map, TNode<DescriptorArray> descriptors, Node* name_index, Node* details, Variable* var_value) { Comment("[ LoadPropertyFromFastObject"); Node* location = DecodeWord32<PropertyDetails::LocationField>(details); Label if_in_field(this), if_in_descriptor(this), done(this); Branch(Word32Equal(location, Int32Constant(kField)), &if_in_field, &if_in_descriptor); BIND(&if_in_field); { Node* field_index = DecodeWordFromWord32<PropertyDetails::FieldIndexField>(details); Node* representation = DecodeWord32<PropertyDetails::RepresentationField>(details); field_index = IntPtrAdd(field_index, LoadMapInobjectPropertiesStartInWords(map)); Node* instance_size_in_words = LoadMapInstanceSizeInWords(map); Label if_inobject(this), if_backing_store(this); VARIABLE(var_double_value, MachineRepresentation::kFloat64); Label rebox_double(this, &var_double_value); Branch(UintPtrLessThan(field_index, instance_size_in_words), &if_inobject, &if_backing_store); BIND(&if_inobject); { Comment("if_inobject"); Node* field_offset = TimesPointerSize(field_index); Label if_double(this), if_tagged(this); Branch(Word32NotEqual(representation, Int32Constant(Representation::kDouble)), &if_tagged, &if_double); BIND(&if_tagged); { var_value->Bind(LoadObjectField(object, field_offset)); Goto(&done); } BIND(&if_double); { if (FLAG_unbox_double_fields) { var_double_value.Bind( LoadObjectField(object, field_offset, MachineType::Float64())); } else { Node* mutable_heap_number = LoadObjectField(object, field_offset); var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number)); } Goto(&rebox_double); } } BIND(&if_backing_store); { Comment("if_backing_store"); Node* properties = LoadFastProperties(object); field_index = IntPtrSub(field_index, instance_size_in_words); Node* value = LoadPropertyArrayElement(properties, field_index); Label if_double(this), if_tagged(this); Branch(Word32NotEqual(representation, Int32Constant(Representation::kDouble)), &if_tagged, &if_double); BIND(&if_tagged); { var_value->Bind(value); Goto(&done); } BIND(&if_double); { var_double_value.Bind(LoadHeapNumberValue(value)); Goto(&rebox_double); } } BIND(&rebox_double); { Comment("rebox_double"); Node* heap_number = AllocateHeapNumberWithValue(var_double_value.value()); var_value->Bind(heap_number); Goto(&done); } } BIND(&if_in_descriptor); { var_value->Bind( LoadValueByKeyIndex(descriptors, UncheckedCast<IntPtrT>(name_index))); Goto(&done); } BIND(&done); Comment("] LoadPropertyFromFastObject"); } void CodeStubAssembler::LoadPropertyFromNameDictionary(Node* dictionary, Node* name_index, Variable* var_details, Variable* var_value) { Comment("LoadPropertyFromNameDictionary"); CSA_ASSERT(this, IsNameDictionary(dictionary)); var_details->Bind( LoadDetailsByKeyIndex<NameDictionary>(dictionary, name_index)); var_value->Bind(LoadValueByKeyIndex<NameDictionary>(dictionary, name_index)); Comment("] LoadPropertyFromNameDictionary"); } void CodeStubAssembler::LoadPropertyFromGlobalDictionary(Node* dictionary, Node* name_index, Variable* var_details, Variable* var_value, Label* if_deleted) { Comment("[ LoadPropertyFromGlobalDictionary"); CSA_ASSERT(this, IsGlobalDictionary(dictionary)); Node* property_cell = LoadFixedArrayElement(CAST(dictionary), name_index); CSA_ASSERT(this, IsPropertyCell(property_cell)); Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset); GotoIf(WordEqual(value, TheHoleConstant()), if_deleted); var_value->Bind(value); Node* details = LoadAndUntagToWord32ObjectField(property_cell, PropertyCell::kDetailsOffset); var_details->Bind(details); Comment("] LoadPropertyFromGlobalDictionary"); } // |value| is the property backing store's contents, which is either a value // or an accessor pair, as specified by |details|. // Returns either the original value, or the result of the getter call. TNode<Object> CodeStubAssembler::CallGetterIfAccessor( Node* value, Node* details, Node* context, Node* receiver, Label* if_bailout, GetOwnPropertyMode mode) { VARIABLE(var_value, MachineRepresentation::kTagged, value); Label done(this), if_accessor_info(this, Label::kDeferred); Node* kind = DecodeWord32<PropertyDetails::KindField>(details); GotoIf(Word32Equal(kind, Int32Constant(kData)), &done); // Accessor case. GotoIfNot(IsAccessorPair(value), &if_accessor_info); // AccessorPair case. { if (mode == kCallJSGetter) { Node* accessor_pair = value; Node* getter = LoadObjectField(accessor_pair, AccessorPair::kGetterOffset); Node* getter_map = LoadMap(getter); Node* instance_type = LoadMapInstanceType(getter_map); // FunctionTemplateInfo getters are not supported yet. GotoIf(InstanceTypeEqual(instance_type, FUNCTION_TEMPLATE_INFO_TYPE), if_bailout); // Return undefined if the {getter} is not callable. var_value.Bind(UndefinedConstant()); GotoIfNot(IsCallableMap(getter_map), &done); // Call the accessor. Callable callable = CodeFactory::Call(isolate()); Node* result = CallJS(callable, context, getter, receiver); var_value.Bind(result); } Goto(&done); } // AccessorInfo case. BIND(&if_accessor_info); { Node* accessor_info = value; CSA_ASSERT(this, IsAccessorInfo(value)); CSA_ASSERT(this, TaggedIsNotSmi(receiver)); Label if_array(this), if_function(this), if_value(this); // Dispatch based on {receiver} instance type. Node* receiver_map = LoadMap(receiver); Node* receiver_instance_type = LoadMapInstanceType(receiver_map); GotoIf(IsJSArrayInstanceType(receiver_instance_type), &if_array); GotoIf(IsJSFunctionInstanceType(receiver_instance_type), &if_function); Branch(IsJSValueInstanceType(receiver_instance_type), &if_value, if_bailout); // JSArray AccessorInfo case. BIND(&if_array); { // We only deal with the "length" accessor on JSArray. GotoIfNot(IsLengthString( LoadObjectField(accessor_info, AccessorInfo::kNameOffset)), if_bailout); var_value.Bind(LoadJSArrayLength(receiver)); Goto(&done); } // JSFunction AccessorInfo case. BIND(&if_function); { // We only deal with the "prototype" accessor on JSFunction here. GotoIfNot(IsPrototypeString( LoadObjectField(accessor_info, AccessorInfo::kNameOffset)), if_bailout); GotoIfPrototypeRequiresRuntimeLookup(CAST(receiver), CAST(receiver_map), if_bailout); var_value.Bind(LoadJSFunctionPrototype(receiver, if_bailout)); Goto(&done); } // JSValue AccessorInfo case. BIND(&if_value); { // We only deal with the "length" accessor on JSValue string wrappers. GotoIfNot(IsLengthString( LoadObjectField(accessor_info, AccessorInfo::kNameOffset)), if_bailout); Node* receiver_value = LoadJSValueValue(receiver); GotoIfNot(TaggedIsNotSmi(receiver_value), if_bailout); GotoIfNot(IsString(receiver_value), if_bailout); var_value.Bind(LoadStringLengthAsSmi(receiver_value)); Goto(&done); } } BIND(&done); return UncheckedCast<Object>(var_value.value()); } void CodeStubAssembler::TryGetOwnProperty( Node* context, Node* receiver, Node* object, Node* map, Node* instance_type, Node* unique_name, Label* if_found_value, Variable* var_value, Label* if_not_found, Label* if_bailout) { TryGetOwnProperty(context, receiver, object, map, instance_type, unique_name, if_found_value, var_value, nullptr, nullptr, if_not_found, if_bailout, kCallJSGetter); } void CodeStubAssembler::TryGetOwnProperty( Node* context, Node* receiver, Node* object, Node* map, Node* instance_type, Node* unique_name, Label* if_found_value, Variable* var_value, Variable* var_details, Variable* var_raw_value, Label* if_not_found, Label* if_bailout, GetOwnPropertyMode mode) { DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep()); Comment("TryGetOwnProperty"); TVARIABLE(HeapObject, var_meta_storage); TVARIABLE(IntPtrT, var_entry); Label if_found_fast(this), if_found_dict(this), if_found_global(this); VARIABLE(local_var_details, MachineRepresentation::kWord32); if (!var_details) { var_details = &local_var_details; } Label if_found(this); TryLookupProperty(object, map, instance_type, unique_name, &if_found_fast, &if_found_dict, &if_found_global, &var_meta_storage, &var_entry, if_not_found, if_bailout); BIND(&if_found_fast); { TNode<DescriptorArray> descriptors = CAST(var_meta_storage.value()); Node* name_index = var_entry.value(); LoadPropertyFromFastObject(object, map, descriptors, name_index, var_details, var_value); Goto(&if_found); } BIND(&if_found_dict); { Node* dictionary = var_meta_storage.value(); Node* entry = var_entry.value(); LoadPropertyFromNameDictionary(dictionary, entry, var_details, var_value); Goto(&if_found); } BIND(&if_found_global); { Node* dictionary = var_meta_storage.value(); Node* entry = var_entry.value(); LoadPropertyFromGlobalDictionary(dictionary, entry, var_details, var_value, if_not_found); Goto(&if_found); } // Here we have details and value which could be an accessor. BIND(&if_found); { // TODO(ishell): Execute C++ accessor in case of accessor info if (var_raw_value) { var_raw_value->Bind(var_value->value()); } Node* value = CallGetterIfAccessor(var_value->value(), var_details->value(), context, receiver, if_bailout, mode); var_value->Bind(value); Goto(if_found_value); } } void CodeStubAssembler::TryLookupElement(Node* object, Node* map, SloppyTNode<Int32T> instance_type, SloppyTNode<IntPtrT> intptr_index, Label* if_found, Label* if_absent, Label* if_not_found, Label* if_bailout) { // Handle special objects in runtime. GotoIf(IsSpecialReceiverInstanceType(instance_type), if_bailout); Node* elements_kind = LoadMapElementsKind(map); // TODO(verwaest): Support other elements kinds as well. Label if_isobjectorsmi(this), if_isdouble(this), if_isdictionary(this), if_isfaststringwrapper(this), if_isslowstringwrapper(this), if_oob(this), if_typedarray(this); // clang-format off int32_t values[] = { // Handled by {if_isobjectorsmi}. PACKED_SMI_ELEMENTS, HOLEY_SMI_ELEMENTS, PACKED_ELEMENTS, HOLEY_ELEMENTS, // Handled by {if_isdouble}. PACKED_DOUBLE_ELEMENTS, HOLEY_DOUBLE_ELEMENTS, // Handled by {if_isdictionary}. DICTIONARY_ELEMENTS, // Handled by {if_isfaststringwrapper}. FAST_STRING_WRAPPER_ELEMENTS, // Handled by {if_isslowstringwrapper}. SLOW_STRING_WRAPPER_ELEMENTS, // Handled by {if_not_found}. NO_ELEMENTS, // Handled by {if_typed_array}. UINT8_ELEMENTS, INT8_ELEMENTS, UINT16_ELEMENTS, INT16_ELEMENTS, UINT32_ELEMENTS, INT32_ELEMENTS, FLOAT32_ELEMENTS, FLOAT64_ELEMENTS, UINT8_CLAMPED_ELEMENTS, BIGUINT64_ELEMENTS, BIGINT64_ELEMENTS, }; Label* labels[] = { &if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi, &if_isdouble, &if_isdouble, &if_isdictionary, &if_isfaststringwrapper, &if_isslowstringwrapper, if_not_found, &if_typedarray, &if_typedarray, &if_typedarray, &if_typedarray, &if_typedarray, &if_typedarray, &if_typedarray, &if_typedarray, &if_typedarray, &if_typedarray, &if_typedarray, }; // clang-format on STATIC_ASSERT(arraysize(values) == arraysize(labels)); Switch(elements_kind, if_bailout, values, labels, arraysize(values)); BIND(&if_isobjectorsmi); { TNode<FixedArray> elements = CAST(LoadElements(object)); TNode<IntPtrT> length = LoadAndUntagFixedArrayBaseLength(elements); GotoIfNot(UintPtrLessThan(intptr_index, length), &if_oob); TNode<Object> element = LoadFixedArrayElement(elements, intptr_index); TNode<Oddball> the_hole = TheHoleConstant(); Branch(WordEqual(element, the_hole), if_not_found, if_found); } BIND(&if_isdouble); { TNode<FixedArrayBase> elements = LoadElements(object); TNode<IntPtrT> length = LoadAndUntagFixedArrayBaseLength(elements); GotoIfNot(UintPtrLessThan(intptr_index, length), &if_oob); // Check if the element is a double hole, but don't load it. LoadFixedDoubleArrayElement(CAST(elements), intptr_index, MachineType::None(), 0, INTPTR_PARAMETERS, if_not_found); Goto(if_found); } BIND(&if_isdictionary); { // Negative keys must be converted to property names. GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout); TVARIABLE(IntPtrT, var_entry); TNode<NumberDictionary> elements = CAST(LoadElements(object)); NumberDictionaryLookup(elements, intptr_index, if_found, &var_entry, if_not_found); } BIND(&if_isfaststringwrapper); { CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE)); Node* string = LoadJSValueValue(object); CSA_ASSERT(this, IsString(string)); Node* length = LoadStringLengthAsWord(string); GotoIf(UintPtrLessThan(intptr_index, length), if_found); Goto(&if_isobjectorsmi); } BIND(&if_isslowstringwrapper); { CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE)); Node* string = LoadJSValueValue(object); CSA_ASSERT(this, IsString(string)); Node* length = LoadStringLengthAsWord(string); GotoIf(UintPtrLessThan(intptr_index, length), if_found); Goto(&if_isdictionary); } BIND(&if_typedarray); { Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset); GotoIf(IsDetachedBuffer(buffer), if_absent); Node* length = SmiUntag(LoadJSTypedArrayLength(CAST(object))); Branch(UintPtrLessThan(intptr_index, length), if_found, if_absent); } BIND(&if_oob); { // Positive OOB indices mean "not found", negative indices must be // converted to property names. GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout); Goto(if_not_found); } } void CodeStubAssembler::BranchIfMaybeSpecialIndex(TNode<String> name_string, Label* if_maybe_special_index, Label* if_not_special_index) { // TODO(cwhan.tunz): Implement fast cases more. // If a name is empty or too long, it's not a special index // Max length of canonical double: -X.XXXXXXXXXXXXXXXXX-eXXX const int kBufferSize = 24; TNode<Smi> string_length = LoadStringLengthAsSmi(name_string); GotoIf(SmiEqual(string_length, SmiConstant(0)), if_not_special_index); GotoIf(SmiGreaterThan(string_length, SmiConstant(kBufferSize)), if_not_special_index); // If the first character of name is not a digit or '-', or we can't match it // to Infinity or NaN, then this is not a special index. TNode<Int32T> first_char = StringCharCodeAt(name_string, IntPtrConstant(0)); // If the name starts with '-', it can be a negative index. GotoIf(Word32Equal(first_char, Int32Constant('-')), if_maybe_special_index); // If the name starts with 'I', it can be "Infinity". GotoIf(Word32Equal(first_char, Int32Constant('I')), if_maybe_special_index); // If the name starts with 'N', it can be "NaN". GotoIf(Word32Equal(first_char, Int32Constant('N')), if_maybe_special_index); // Finally, if the first character is not a digit either, then we are sure // that the name is not a special index. GotoIf(Uint32LessThan(first_char, Int32Constant('0')), if_not_special_index); GotoIf(Uint32LessThan(Int32Constant('9'), first_char), if_not_special_index); Goto(if_maybe_special_index); } void CodeStubAssembler::TryPrototypeChainLookup( Node* receiver, Node* key, const LookupInHolder& lookup_property_in_holder, const LookupInHolder& lookup_element_in_holder, Label* if_end, Label* if_bailout, Label* if_proxy) { // Ensure receiver is JSReceiver, otherwise bailout. Label if_objectisnotsmi(this); Branch(TaggedIsSmi(receiver), if_bailout, &if_objectisnotsmi); BIND(&if_objectisnotsmi); Node* map = LoadMap(receiver); Node* instance_type = LoadMapInstanceType(map); { Label if_objectisreceiver(this); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); STATIC_ASSERT(FIRST_JS_RECEIVER_TYPE == JS_PROXY_TYPE); Branch(IsJSReceiverInstanceType(instance_type), &if_objectisreceiver, if_bailout); BIND(&if_objectisreceiver); if (if_proxy) { GotoIf(InstanceTypeEqual(instance_type, JS_PROXY_TYPE), if_proxy); } } VARIABLE(var_index, MachineType::PointerRepresentation()); VARIABLE(var_unique, MachineRepresentation::kTagged); Label if_keyisindex(this), if_iskeyunique(this); TryToName(key, &if_keyisindex, &var_index, &if_iskeyunique, &var_unique, if_bailout); BIND(&if_iskeyunique); { VARIABLE(var_holder, MachineRepresentation::kTagged, receiver); VARIABLE(var_holder_map, MachineRepresentation::kTagged, map); VARIABLE(var_holder_instance_type, MachineRepresentation::kWord32, instance_type); Variable* merged_variables[] = {&var_holder, &var_holder_map, &var_holder_instance_type}; Label loop(this, arraysize(merged_variables), merged_variables); Goto(&loop); BIND(&loop); { Node* holder_map = var_holder_map.value(); Node* holder_instance_type = var_holder_instance_type.value(); Label next_proto(this), check_integer_indexed_exotic(this); lookup_property_in_holder(receiver, var_holder.value(), holder_map, holder_instance_type, var_unique.value(), &check_integer_indexed_exotic, if_bailout); BIND(&check_integer_indexed_exotic); { // Bailout if it can be an integer indexed exotic case. GotoIfNot(InstanceTypeEqual(holder_instance_type, JS_TYPED_ARRAY_TYPE), &next_proto); GotoIfNot(IsString(var_unique.value()), &next_proto); BranchIfMaybeSpecialIndex(CAST(var_unique.value()), if_bailout, &next_proto); } BIND(&next_proto); Node* proto = LoadMapPrototype(holder_map); GotoIf(IsNull(proto), if_end); Node* map = LoadMap(proto); Node* instance_type = LoadMapInstanceType(map); var_holder.Bind(proto); var_holder_map.Bind(map); var_holder_instance_type.Bind(instance_type); Goto(&loop); } } BIND(&if_keyisindex); { VARIABLE(var_holder, MachineRepresentation::kTagged, receiver); VARIABLE(var_holder_map, MachineRepresentation::kTagged, map); VARIABLE(var_holder_instance_type, MachineRepresentation::kWord32, instance_type); Variable* merged_variables[] = {&var_holder, &var_holder_map, &var_holder_instance_type}; Label loop(this, arraysize(merged_variables), merged_variables); Goto(&loop); BIND(&loop); { Label next_proto(this); lookup_element_in_holder(receiver, var_holder.value(), var_holder_map.value(), var_holder_instance_type.value(), var_index.value(), &next_proto, if_bailout); BIND(&next_proto); Node* proto = LoadMapPrototype(var_holder_map.value()); GotoIf(IsNull(proto), if_end); Node* map = LoadMap(proto); Node* instance_type = LoadMapInstanceType(map); var_holder.Bind(proto); var_holder_map.Bind(map); var_holder_instance_type.Bind(instance_type); Goto(&loop); } } } Node* CodeStubAssembler::HasInPrototypeChain(Node* context, Node* object, Node* prototype) { CSA_ASSERT(this, TaggedIsNotSmi(object)); VARIABLE(var_result, MachineRepresentation::kTagged); Label return_false(this), return_true(this), return_runtime(this, Label::kDeferred), return_result(this); // Loop through the prototype chain looking for the {prototype}. VARIABLE(var_object_map, MachineRepresentation::kTagged, LoadMap(object)); Label loop(this, &var_object_map); Goto(&loop); BIND(&loop); { // Check if we can determine the prototype directly from the {object_map}. Label if_objectisdirect(this), if_objectisspecial(this, Label::kDeferred); Node* object_map = var_object_map.value(); TNode<Int32T> object_instance_type = LoadMapInstanceType(object_map); Branch(IsSpecialReceiverInstanceType(object_instance_type), &if_objectisspecial, &if_objectisdirect); BIND(&if_objectisspecial); { // The {object_map} is a special receiver map or a primitive map, check // if we need to use the if_objectisspecial path in the runtime. GotoIf(InstanceTypeEqual(object_instance_type, JS_PROXY_TYPE), &return_runtime); Node* object_bitfield = LoadMapBitField(object_map); int mask = Map::HasNamedInterceptorBit::kMask | Map::IsAccessCheckNeededBit::kMask; Branch(IsSetWord32(object_bitfield, mask), &return_runtime, &if_objectisdirect); } BIND(&if_objectisdirect); // Check the current {object} prototype. Node* object_prototype = LoadMapPrototype(object_map); GotoIf(IsNull(object_prototype), &return_false); GotoIf(WordEqual(object_prototype, prototype), &return_true); // Continue with the prototype. CSA_ASSERT(this, TaggedIsNotSmi(object_prototype)); var_object_map.Bind(LoadMap(object_prototype)); Goto(&loop); } BIND(&return_true); var_result.Bind(TrueConstant()); Goto(&return_result); BIND(&return_false); var_result.Bind(FalseConstant()); Goto(&return_result); BIND(&return_runtime); { // Fallback to the runtime implementation. var_result.Bind( CallRuntime(Runtime::kHasInPrototypeChain, context, object, prototype)); } Goto(&return_result); BIND(&return_result); return var_result.value(); } Node* CodeStubAssembler::OrdinaryHasInstance(Node* context, Node* callable, Node* object) { VARIABLE(var_result, MachineRepresentation::kTagged); Label return_runtime(this, Label::kDeferred), return_result(this); // Goto runtime if {object} is a Smi. GotoIf(TaggedIsSmi(object), &return_runtime); // Goto runtime if {callable} is a Smi. GotoIf(TaggedIsSmi(callable), &return_runtime); // Load map of {callable}. Node* callable_map = LoadMap(callable); // Goto runtime if {callable} is not a JSFunction. Node* callable_instance_type = LoadMapInstanceType(callable_map); GotoIfNot(InstanceTypeEqual(callable_instance_type, JS_FUNCTION_TYPE), &return_runtime); GotoIfPrototypeRequiresRuntimeLookup(CAST(callable), CAST(callable_map), &return_runtime); // Get the "prototype" (or initial map) of the {callable}. Node* callable_prototype = LoadObjectField(callable, JSFunction::kPrototypeOrInitialMapOffset); { Label callable_prototype_valid(this); VARIABLE(var_callable_prototype, MachineRepresentation::kTagged, callable_prototype); // Resolve the "prototype" if the {callable} has an initial map. Afterwards // the {callable_prototype} will be either the JSReceiver prototype object // or the hole value, which means that no instances of the {callable} were // created so far and hence we should return false. Node* callable_prototype_instance_type = LoadInstanceType(callable_prototype); GotoIfNot(InstanceTypeEqual(callable_prototype_instance_type, MAP_TYPE), &callable_prototype_valid); var_callable_prototype.Bind( LoadObjectField(callable_prototype, Map::kPrototypeOffset)); Goto(&callable_prototype_valid); BIND(&callable_prototype_valid); callable_prototype = var_callable_prototype.value(); } // Loop through the prototype chain looking for the {callable} prototype. var_result.Bind(HasInPrototypeChain(context, object, callable_prototype)); Goto(&return_result); BIND(&return_runtime); { // Fallback to the runtime implementation. var_result.Bind( CallRuntime(Runtime::kOrdinaryHasInstance, context, callable, object)); } Goto(&return_result); BIND(&return_result); return var_result.value(); } TNode<IntPtrT> CodeStubAssembler::ElementOffsetFromIndex(Node* index_node, ElementsKind kind, ParameterMode mode, int base_size) { CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, mode)); int element_size_shift = ElementsKindToShiftSize(kind); int element_size = 1 << element_size_shift; int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize; intptr_t index = 0; bool constant_index = false; if (mode == SMI_PARAMETERS) { element_size_shift -= kSmiShiftBits; Smi smi_index; constant_index = ToSmiConstant(index_node, &smi_index); if (constant_index) index = smi_index->value(); index_node = BitcastTaggedToWord(index_node); } else { DCHECK(mode == INTPTR_PARAMETERS); constant_index = ToIntPtrConstant(index_node, index); } if (constant_index) { return IntPtrConstant(base_size + element_size * index); } TNode<WordT> shifted_index = (element_size_shift == 0) ? UncheckedCast<WordT>(index_node) : ((element_size_shift > 0) ? WordShl(index_node, IntPtrConstant(element_size_shift)) : WordSar(index_node, IntPtrConstant(-element_size_shift))); return IntPtrAdd(IntPtrConstant(base_size), Signed(shifted_index)); } TNode<BoolT> CodeStubAssembler::IsOffsetInBounds(SloppyTNode<IntPtrT> offset, SloppyTNode<IntPtrT> length, int header_size, ElementsKind kind) { // Make sure we point to the last field. int element_size = 1 << ElementsKindToShiftSize(kind); int correction = header_size - kHeapObjectTag - element_size; TNode<IntPtrT> last_offset = ElementOffsetFromIndex(length, kind, INTPTR_PARAMETERS, correction); return IntPtrLessThanOrEqual(offset, last_offset); } TNode<FeedbackVector> CodeStubAssembler::LoadFeedbackVector( SloppyTNode<JSFunction> closure, Label* if_undefined) { TNode<Object> maybe_vector = LoadFeedbackVectorUnchecked(closure); if (if_undefined) { GotoIf(IsUndefined(maybe_vector), if_undefined); } return CAST(maybe_vector); } TNode<Object> CodeStubAssembler::LoadFeedbackVectorUnchecked( SloppyTNode<JSFunction> closure) { TNode<FeedbackCell> feedback_cell = CAST(LoadObjectField(closure, JSFunction::kFeedbackCellOffset)); TNode<Object> maybe_vector = LoadObjectField(feedback_cell, FeedbackCell::kValueOffset); return maybe_vector; } TNode<FeedbackVector> CodeStubAssembler::LoadFeedbackVectorForStub() { TNode<JSFunction> function = CAST(LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset)); return LoadFeedbackVector(function); } void CodeStubAssembler::UpdateFeedback(Node* feedback, Node* maybe_vector, Node* slot_id) { Label end(this); // If feedback_vector is not valid, then nothing to do. GotoIf(IsUndefined(maybe_vector), &end); // This method is used for binary op and compare feedback. These // vector nodes are initialized with a smi 0, so we can simply OR // our new feedback in place. TNode<FeedbackVector> feedback_vector = CAST(maybe_vector); TNode<MaybeObject> feedback_element = LoadFeedbackVectorSlot(feedback_vector, slot_id); TNode<Smi> previous_feedback = CAST(feedback_element); TNode<Smi> combined_feedback = SmiOr(previous_feedback, CAST(feedback)); GotoIf(SmiEqual(previous_feedback, combined_feedback), &end); { StoreFeedbackVectorSlot(feedback_vector, slot_id, combined_feedback, SKIP_WRITE_BARRIER); ReportFeedbackUpdate(feedback_vector, slot_id, "UpdateFeedback"); Goto(&end); } BIND(&end); } void CodeStubAssembler::ReportFeedbackUpdate( SloppyTNode<FeedbackVector> feedback_vector, SloppyTNode<IntPtrT> slot_id, const char* reason) { // Reset profiler ticks. StoreObjectFieldNoWriteBarrier( feedback_vector, FeedbackVector::kProfilerTicksOffset, Int32Constant(0), MachineRepresentation::kWord32); #ifdef V8_TRACE_FEEDBACK_UPDATES // Trace the update. CallRuntime(Runtime::kInterpreterTraceUpdateFeedback, NoContextConstant(), LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset), SmiTag(slot_id), StringConstant(reason)); #endif // V8_TRACE_FEEDBACK_UPDATES } void CodeStubAssembler::OverwriteFeedback(Variable* existing_feedback, int new_feedback) { if (existing_feedback == nullptr) return; existing_feedback->Bind(SmiConstant(new_feedback)); } void CodeStubAssembler::CombineFeedback(Variable* existing_feedback, int feedback) { if (existing_feedback == nullptr) return; existing_feedback->Bind( SmiOr(CAST(existing_feedback->value()), SmiConstant(feedback))); } void CodeStubAssembler::CombineFeedback(Variable* existing_feedback, Node* feedback) { if (existing_feedback == nullptr) return; existing_feedback->Bind( SmiOr(CAST(existing_feedback->value()), CAST(feedback))); } void CodeStubAssembler::CheckForAssociatedProtector(Node* name, Label* if_protector) { // This list must be kept in sync with LookupIterator::UpdateProtector! // TODO(jkummerow): Would it be faster to have a bit in Symbol::flags()? GotoIf(WordEqual(name, LoadRoot(RootIndex::kconstructor_string)), if_protector); GotoIf(WordEqual(name, LoadRoot(RootIndex::kiterator_symbol)), if_protector); GotoIf(WordEqual(name, LoadRoot(RootIndex::knext_string)), if_protector); GotoIf(WordEqual(name, LoadRoot(RootIndex::kspecies_symbol)), if_protector); GotoIf(WordEqual(name, LoadRoot(RootIndex::kis_concat_spreadable_symbol)), if_protector); GotoIf(WordEqual(name, LoadRoot(RootIndex::kresolve_string)), if_protector); GotoIf(WordEqual(name, LoadRoot(RootIndex::kthen_string)), if_protector); // Fall through if no case matched. } TNode<Map> CodeStubAssembler::LoadReceiverMap(SloppyTNode<Object> receiver) { return Select<Map>( TaggedIsSmi(receiver), [=] { return CAST(LoadRoot(RootIndex::kHeapNumberMap)); }, [=] { return LoadMap(UncheckedCast<HeapObject>(receiver)); }); } TNode<IntPtrT> CodeStubAssembler::TryToIntptr(Node* key, Label* miss) { TVARIABLE(IntPtrT, var_intptr_key); Label done(this, &var_intptr_key), key_is_smi(this); GotoIf(TaggedIsSmi(key), &key_is_smi); // Try to convert a heap number to a Smi. GotoIfNot(IsHeapNumber(key), miss); { TNode<Float64T> value = LoadHeapNumberValue(key); TNode<Int32T> int_value = RoundFloat64ToInt32(value); GotoIfNot(Float64Equal(value, ChangeInt32ToFloat64(int_value)), miss); var_intptr_key = ChangeInt32ToIntPtr(int_value); Goto(&done); } BIND(&key_is_smi); { var_intptr_key = SmiUntag(key); Goto(&done); } BIND(&done); return var_intptr_key.value(); } Node* CodeStubAssembler::EmitKeyedSloppyArguments(Node* receiver, Node* key, Node* value, Label* bailout) { // Mapped arguments are actual arguments. Unmapped arguments are values added // to the arguments object after it was created for the call. Mapped arguments // are stored in the context at indexes given by elements[key + 2]. Unmapped // arguments are stored as regular indexed properties in the arguments array, // held at elements[1]. See NewSloppyArguments() in runtime.cc for a detailed // look at argument object construction. // // The sloppy arguments elements array has a special format: // // 0: context // 1: unmapped arguments array // 2: mapped_index0, // 3: mapped_index1, // ... // // length is 2 + min(number_of_actual_arguments, number_of_formal_arguments). // If key + 2 >= elements.length then attempt to look in the unmapped // arguments array (given by elements[1]) and return the value at key, missing // to the runtime if the unmapped arguments array is not a fixed array or if // key >= unmapped_arguments_array.length. // // Otherwise, t = elements[key + 2]. If t is the hole, then look up the value // in the unmapped arguments array, as described above. Otherwise, t is a Smi // index into the context array given at elements[0]. Return the value at // context[t]. bool is_load = value == nullptr; GotoIfNot(TaggedIsSmi(key), bailout); key = SmiUntag(key); GotoIf(IntPtrLessThan(key, IntPtrConstant(0)), bailout); TNode<FixedArray> elements = CAST(LoadElements(receiver)); TNode<IntPtrT> elements_length = LoadAndUntagFixedArrayBaseLength(elements); VARIABLE(var_result, MachineRepresentation::kTagged); if (!is_load) { var_result.Bind(value); } Label if_mapped(this), if_unmapped(this), end(this, &var_result); Node* intptr_two = IntPtrConstant(2); Node* adjusted_length = IntPtrSub(elements_length, intptr_two); GotoIf(UintPtrGreaterThanOrEqual(key, adjusted_length), &if_unmapped); TNode<Object> mapped_index = LoadFixedArrayElement(elements, IntPtrAdd(key, intptr_two)); Branch(WordEqual(mapped_index, TheHoleConstant()), &if_unmapped, &if_mapped); BIND(&if_mapped); { TNode<IntPtrT> mapped_index_intptr = SmiUntag(CAST(mapped_index)); TNode<Context> the_context = CAST(LoadFixedArrayElement(elements, 0)); // Assert that we can use LoadFixedArrayElement/StoreFixedArrayElement // methods for accessing Context. STATIC_ASSERT(Context::kHeaderSize == FixedArray::kHeaderSize); DCHECK_EQ(Context::SlotOffset(0) + kHeapObjectTag, FixedArray::OffsetOfElementAt(0)); if (is_load) { Node* result = LoadFixedArrayElement(the_context, mapped_index_intptr); CSA_ASSERT(this, WordNotEqual(result, TheHoleConstant())); var_result.Bind(result); } else { StoreFixedArrayElement(the_context, mapped_index_intptr, value); } Goto(&end); } BIND(&if_unmapped); { TNode<HeapObject> backing_store_ho = CAST(LoadFixedArrayElement(elements, 1)); GotoIf(WordNotEqual(LoadMap(backing_store_ho), FixedArrayMapConstant()), bailout); TNode<FixedArray> backing_store = CAST(backing_store_ho); TNode<IntPtrT> backing_store_length = LoadAndUntagFixedArrayBaseLength(backing_store); GotoIf(UintPtrGreaterThanOrEqual(key, backing_store_length), bailout); // The key falls into unmapped range. if (is_load) { Node* result = LoadFixedArrayElement(backing_store, key); GotoIf(WordEqual(result, TheHoleConstant()), bailout); var_result.Bind(result); } else { StoreFixedArrayElement(backing_store, key, value); } Goto(&end); } BIND(&end); return var_result.value(); } TNode<Context> CodeStubAssembler::LoadScriptContext( TNode<Context> context, TNode<IntPtrT> context_index) { TNode<Context> native_context = LoadNativeContext(context); TNode<ScriptContextTable> script_context_table = CAST( LoadContextElement(native_context, Context::SCRIPT_CONTEXT_TABLE_INDEX)); TNode<Context> script_context = CAST(LoadFixedArrayElement( script_context_table, context_index, ScriptContextTable::kFirstContextSlotIndex * kPointerSize)); return script_context; } namespace { // Converts typed array elements kind to a machine representations. MachineRepresentation ElementsKindToMachineRepresentation(ElementsKind kind) { switch (kind) { case UINT8_CLAMPED_ELEMENTS: case UINT8_ELEMENTS: case INT8_ELEMENTS: return MachineRepresentation::kWord8; case UINT16_ELEMENTS: case INT16_ELEMENTS: return MachineRepresentation::kWord16; case UINT32_ELEMENTS: case INT32_ELEMENTS: return MachineRepresentation::kWord32; case FLOAT32_ELEMENTS: return MachineRepresentation::kFloat32; case FLOAT64_ELEMENTS: return MachineRepresentation::kFloat64; default: UNREACHABLE(); } } } // namespace void CodeStubAssembler::StoreElement(Node* elements, ElementsKind kind, Node* index, Node* value, ParameterMode mode) { if (IsFixedTypedArrayElementsKind(kind)) { if (kind == UINT8_CLAMPED_ELEMENTS) { CSA_ASSERT(this, Word32Equal(value, Word32And(Int32Constant(0xFF), value))); } Node* offset = ElementOffsetFromIndex(index, kind, mode, 0); // TODO(cbruni): Add OOB check once typed. MachineRepresentation rep = ElementsKindToMachineRepresentation(kind); StoreNoWriteBarrier(rep, elements, offset, value); return; } else if (IsDoubleElementsKind(kind)) { // Make sure we do not store signalling NaNs into double arrays. TNode<Float64T> value_silenced = Float64SilenceNaN(value); StoreFixedDoubleArrayElement(CAST(elements), index, value_silenced, mode); } else { WriteBarrierMode barrier_mode = IsSmiElementsKind(kind) ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER; StoreFixedArrayElement(CAST(elements), index, value, barrier_mode, 0, mode); } } Node* CodeStubAssembler::Int32ToUint8Clamped(Node* int32_value) { Label done(this); Node* int32_zero = Int32Constant(0); Node* int32_255 = Int32Constant(255); VARIABLE(var_value, MachineRepresentation::kWord32, int32_value); GotoIf(Uint32LessThanOrEqual(int32_value, int32_255), &done); var_value.Bind(int32_zero); GotoIf(Int32LessThan(int32_value, int32_zero), &done); var_value.Bind(int32_255); Goto(&done); BIND(&done); return var_value.value(); } Node* CodeStubAssembler::Float64ToUint8Clamped(Node* float64_value) { Label done(this); VARIABLE(var_value, MachineRepresentation::kWord32, Int32Constant(0)); GotoIf(Float64LessThanOrEqual(float64_value, Float64Constant(0.0)), &done); var_value.Bind(Int32Constant(255)); GotoIf(Float64LessThanOrEqual(Float64Constant(255.0), float64_value), &done); { Node* rounded_value = Float64RoundToEven(float64_value); var_value.Bind(TruncateFloat64ToWord32(rounded_value)); Goto(&done); } BIND(&done); return var_value.value(); } Node* CodeStubAssembler::PrepareValueForWriteToTypedArray( TNode<Object> input, ElementsKind elements_kind, TNode<Context> context) { DCHECK(IsFixedTypedArrayElementsKind(elements_kind)); MachineRepresentation rep; switch (elements_kind) { case UINT8_ELEMENTS: case INT8_ELEMENTS: case UINT16_ELEMENTS: case INT16_ELEMENTS: case UINT32_ELEMENTS: case INT32_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: rep = MachineRepresentation::kWord32; break; case FLOAT32_ELEMENTS: rep = MachineRepresentation::kFloat32; break; case FLOAT64_ELEMENTS: rep = MachineRepresentation::kFloat64; break; case BIGINT64_ELEMENTS: case BIGUINT64_ELEMENTS: return ToBigInt(context, input); default: UNREACHABLE(); } VARIABLE(var_result, rep); VARIABLE(var_input, MachineRepresentation::kTagged, input); Label done(this, &var_result), if_smi(this), if_heapnumber_or_oddball(this), convert(this), loop(this, &var_input); Goto(&loop); BIND(&loop); GotoIf(TaggedIsSmi(var_input.value()), &if_smi); // We can handle both HeapNumber and Oddball here, since Oddball has the // same layout as the HeapNumber for the HeapNumber::value field. This // way we can also properly optimize stores of oddballs to typed arrays. GotoIf(IsHeapNumber(var_input.value()), &if_heapnumber_or_oddball); STATIC_ASSERT(HeapNumber::kValueOffset == Oddball::kToNumberRawOffset); Branch(HasInstanceType(var_input.value(), ODDBALL_TYPE), &if_heapnumber_or_oddball, &convert); BIND(&if_heapnumber_or_oddball); { Node* value = UncheckedCast<Float64T>(LoadObjectField( var_input.value(), HeapNumber::kValueOffset, MachineType::Float64())); if (rep == MachineRepresentation::kWord32) { if (elements_kind == UINT8_CLAMPED_ELEMENTS) { value = Float64ToUint8Clamped(value); } else { value = TruncateFloat64ToWord32(value); } } else if (rep == MachineRepresentation::kFloat32) { value = TruncateFloat64ToFloat32(value); } else { DCHECK_EQ(MachineRepresentation::kFloat64, rep); } var_result.Bind(value); Goto(&done); } BIND(&if_smi); { Node* value = SmiToInt32(var_input.value()); if (rep == MachineRepresentation::kFloat32) { value = RoundInt32ToFloat32(value); } else if (rep == MachineRepresentation::kFloat64) { value = ChangeInt32ToFloat64(value); } else { DCHECK_EQ(MachineRepresentation::kWord32, rep); if (elements_kind == UINT8_CLAMPED_ELEMENTS) { value = Int32ToUint8Clamped(value); } } var_result.Bind(value); Goto(&done); } BIND(&convert); { var_input.Bind(CallBuiltin(Builtins::kNonNumberToNumber, context, input)); Goto(&loop); } BIND(&done); return var_result.value(); } void CodeStubAssembler::EmitBigTypedArrayElementStore( TNode<JSTypedArray> object, TNode<FixedTypedArrayBase> elements, TNode<IntPtrT> intptr_key, TNode<Object> value, TNode<Context> context, Label* opt_if_neutered) { TNode<BigInt> bigint_value = ToBigInt(context, value); if (opt_if_neutered != nullptr) { // Check if buffer has been neutered. Must happen after {ToBigInt}! Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset); GotoIf(IsDetachedBuffer(buffer), opt_if_neutered); } TNode<RawPtrT> backing_store = LoadFixedTypedArrayBackingStore(elements); TNode<IntPtrT> offset = ElementOffsetFromIndex(intptr_key, BIGINT64_ELEMENTS, INTPTR_PARAMETERS, 0); EmitBigTypedArrayElementStore(elements, backing_store, offset, bigint_value); } void CodeStubAssembler::BigIntToRawBytes(TNode<BigInt> bigint, TVariable<UintPtrT>* var_low, TVariable<UintPtrT>* var_high) { Label done(this); *var_low = Unsigned(IntPtrConstant(0)); *var_high = Unsigned(IntPtrConstant(0)); TNode<WordT> bitfield = LoadBigIntBitfield(bigint); TNode<UintPtrT> length = DecodeWord<BigIntBase::LengthBits>(bitfield); TNode<UintPtrT> sign = DecodeWord<BigIntBase::SignBits>(bitfield); GotoIf(WordEqual(length, IntPtrConstant(0)), &done); *var_low = LoadBigIntDigit(bigint, 0); if (!Is64()) { Label load_done(this); GotoIf(WordEqual(length, IntPtrConstant(1)), &load_done); *var_high = LoadBigIntDigit(bigint, 1); Goto(&load_done); BIND(&load_done); } GotoIf(WordEqual(sign, IntPtrConstant(0)), &done); // Negative value. Simulate two's complement. if (!Is64()) { *var_high = Unsigned(IntPtrSub(IntPtrConstant(0), var_high->value())); Label no_carry(this); GotoIf(WordEqual(var_low->value(), IntPtrConstant(0)), &no_carry); *var_high = Unsigned(IntPtrSub(var_high->value(), IntPtrConstant(1))); Goto(&no_carry); BIND(&no_carry); } *var_low = Unsigned(IntPtrSub(IntPtrConstant(0), var_low->value())); Goto(&done); BIND(&done); } void CodeStubAssembler::EmitBigTypedArrayElementStore( TNode<FixedTypedArrayBase> elements, TNode<RawPtrT> backing_store, TNode<IntPtrT> offset, TNode<BigInt> bigint_value) { TVARIABLE(UintPtrT, var_low); // Only used on 32-bit platforms. TVARIABLE(UintPtrT, var_high); BigIntToRawBytes(bigint_value, &var_low, &var_high); // Assert that offset < elements.length. Given that it's an offset for a raw // pointer we correct it by the usual kHeapObjectTag offset. CSA_ASSERT( this, IsOffsetInBounds(offset, LoadAndUntagFixedArrayBaseLength(elements), kHeapObjectTag, BIGINT64_ELEMENTS)); MachineRepresentation rep = WordT::kMachineRepresentation; #if defined(V8_TARGET_BIG_ENDIAN) if (!Is64()) { StoreNoWriteBarrier(rep, backing_store, offset, var_high.value()); StoreNoWriteBarrier(rep, backing_store, IntPtrAdd(offset, IntPtrConstant(kPointerSize)), var_low.value()); } else { StoreNoWriteBarrier(rep, backing_store, offset, var_low.value()); } #else StoreNoWriteBarrier(rep, backing_store, offset, var_low.value()); if (!Is64()) { StoreNoWriteBarrier(rep, backing_store, IntPtrAdd(offset, IntPtrConstant(kPointerSize)), var_high.value()); } #endif } void CodeStubAssembler::EmitElementStore(Node* object, Node* key, Node* value, ElementsKind elements_kind, KeyedAccessStoreMode store_mode, Label* bailout, Node* context) { CSA_ASSERT(this, Word32BinaryNot(IsJSProxy(object))); Node* elements = LoadElements(object); if (!IsSmiOrObjectElementsKind(elements_kind)) { CSA_ASSERT(this, Word32BinaryNot(IsFixedCOWArrayMap(LoadMap(elements)))); } else if (!IsCOWHandlingStoreMode(store_mode)) { GotoIf(IsFixedCOWArrayMap(LoadMap(elements)), bailout); } // TODO(ishell): introduce TryToIntPtrOrSmi() and use OptimalParameterMode(). ParameterMode parameter_mode = INTPTR_PARAMETERS; TNode<IntPtrT> intptr_key = TryToIntptr(key, bailout); if (IsFixedTypedArrayElementsKind(elements_kind)) { Label done(this); // IntegerIndexedElementSet converts value to a Number/BigInt prior to the // bounds check. value = PrepareValueForWriteToTypedArray(CAST(value), elements_kind, CAST(context)); // There must be no allocations between the buffer load and // and the actual store to backing store, because GC may decide that // the buffer is not alive or move the elements. // TODO(ishell): introduce DisallowHeapAllocationCode scope here. // Check if buffer has been neutered. Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset); GotoIf(IsDetachedBuffer(buffer), bailout); // Bounds check. Node* length = TaggedToParameter(LoadJSTypedArrayLength(CAST(object)), parameter_mode); if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) { // Skip the store if we write beyond the length or // to a property with a negative integer index. GotoIfNot(UintPtrLessThan(intptr_key, length), &done); } else { DCHECK_EQ(STANDARD_STORE, store_mode); GotoIfNot(UintPtrLessThan(intptr_key, length), bailout); } if (elements_kind == BIGINT64_ELEMENTS || elements_kind == BIGUINT64_ELEMENTS) { TNode<BigInt> bigint_value = UncheckedCast<BigInt>(value); TNode<RawPtrT> backing_store = LoadFixedTypedArrayBackingStore(CAST(elements)); TNode<IntPtrT> offset = ElementOffsetFromIndex( intptr_key, BIGINT64_ELEMENTS, INTPTR_PARAMETERS, 0); EmitBigTypedArrayElementStore(CAST(elements), backing_store, offset, bigint_value); } else { Node* backing_store = LoadFixedTypedArrayBackingStore(CAST(elements)); StoreElement(backing_store, elements_kind, intptr_key, value, parameter_mode); } Goto(&done); BIND(&done); return; } DCHECK(IsSmiOrObjectElementsKind(elements_kind) || IsDoubleElementsKind(elements_kind)); Node* length = SelectImpl(IsJSArray(object), [=]() { return LoadJSArrayLength(object); }, [=]() { return LoadFixedArrayBaseLength(elements); }, MachineRepresentation::kTagged); length = TaggedToParameter(length, parameter_mode); // In case value is stored into a fast smi array, assure that the value is // a smi before manipulating the backing store. Otherwise the backing store // may be left in an invalid state. if (IsSmiElementsKind(elements_kind)) { GotoIfNot(TaggedIsSmi(value), bailout); } else if (IsDoubleElementsKind(elements_kind)) { value = TryTaggedToFloat64(value, bailout); } if (IsGrowStoreMode(store_mode)) { elements = CheckForCapacityGrow(object, elements, elements_kind, length, intptr_key, parameter_mode, bailout); } else { GotoIfNot(UintPtrLessThan(intptr_key, length), bailout); } // If we didn't grow {elements}, it might still be COW, in which case we // copy it now. if (!IsSmiOrObjectElementsKind(elements_kind)) { CSA_ASSERT(this, Word32BinaryNot(IsFixedCOWArrayMap(LoadMap(elements)))); } else if (IsCOWHandlingStoreMode(store_mode)) { elements = CopyElementsOnWrite(object, elements, elements_kind, length, parameter_mode, bailout); } CSA_ASSERT(this, Word32BinaryNot(IsFixedCOWArrayMap(LoadMap(elements)))); StoreElement(elements, elements_kind, intptr_key, value, parameter_mode); } Node* CodeStubAssembler::CheckForCapacityGrow(Node* object, Node* elements, ElementsKind kind, Node* length, Node* key, ParameterMode mode, Label* bailout) { DCHECK(IsFastElementsKind(kind)); VARIABLE(checked_elements, MachineRepresentation::kTagged); Label grow_case(this), no_grow_case(this), done(this), grow_bailout(this, Label::kDeferred); Node* condition; if (IsHoleyElementsKind(kind)) { condition = UintPtrGreaterThanOrEqual(key, length); } else { // We don't support growing here unless the value is being appended. condition = WordEqual(key, length); } Branch(condition, &grow_case, &no_grow_case); BIND(&grow_case); { Node* current_capacity = TaggedToParameter(LoadFixedArrayBaseLength(elements), mode); checked_elements.Bind(elements); Label fits_capacity(this); // If key is negative, we will notice in Runtime::kGrowArrayElements. GotoIf(UintPtrLessThan(key, current_capacity), &fits_capacity); { Node* new_elements = TryGrowElementsCapacity( object, elements, kind, key, current_capacity, mode, &grow_bailout); checked_elements.Bind(new_elements); Goto(&fits_capacity); } BIND(&grow_bailout); { Node* tagged_key = mode == SMI_PARAMETERS ? key : ChangeInt32ToTagged(TruncateIntPtrToInt32(key)); Node* maybe_elements = CallRuntime( Runtime::kGrowArrayElements, NoContextConstant(), object, tagged_key); GotoIf(TaggedIsSmi(maybe_elements), bailout); CSA_ASSERT(this, IsFixedArrayWithKind(maybe_elements, kind)); checked_elements.Bind(maybe_elements); Goto(&fits_capacity); } BIND(&fits_capacity); GotoIfNot(IsJSArray(object), &done); Node* new_length = IntPtrAdd(key, IntPtrOrSmiConstant(1, mode)); StoreObjectFieldNoWriteBarrier(object, JSArray::kLengthOffset, ParameterToTagged(new_length, mode)); Goto(&done); } BIND(&no_grow_case); { GotoIfNot(UintPtrLessThan(key, length), bailout); checked_elements.Bind(elements); Goto(&done); } BIND(&done); return checked_elements.value(); } Node* CodeStubAssembler::CopyElementsOnWrite(Node* object, Node* elements, ElementsKind kind, Node* length, ParameterMode mode, Label* bailout) { VARIABLE(new_elements_var, MachineRepresentation::kTagged, elements); Label done(this); GotoIfNot(IsFixedCOWArrayMap(LoadMap(elements)), &done); { Node* capacity = TaggedToParameter(LoadFixedArrayBaseLength(elements), mode); Node* new_elements = GrowElementsCapacity(object, elements, kind, kind, length, capacity, mode, bailout); new_elements_var.Bind(new_elements); Goto(&done); } BIND(&done); return new_elements_var.value(); } void CodeStubAssembler::TransitionElementsKind(Node* object, Node* map, ElementsKind from_kind, ElementsKind to_kind, Label* bailout) { DCHECK(!IsHoleyElementsKind(from_kind) || IsHoleyElementsKind(to_kind)); if (AllocationSite::ShouldTrack(from_kind, to_kind)) { TrapAllocationMemento(object, bailout); } if (!IsSimpleMapChangeTransition(from_kind, to_kind)) { Comment("Non-simple map transition"); Node* elements = LoadElements(object); Label done(this); GotoIf(WordEqual(elements, EmptyFixedArrayConstant()), &done); // TODO(ishell): Use OptimalParameterMode(). ParameterMode mode = INTPTR_PARAMETERS; Node* elements_length = SmiUntag(LoadFixedArrayBaseLength(elements)); Node* array_length = SelectImpl( IsJSArray(object), [=]() { CSA_ASSERT(this, IsFastElementsKind(LoadElementsKind(object))); return SmiUntag(LoadFastJSArrayLength(object)); }, [=]() { return elements_length; }, MachineType::PointerRepresentation()); CSA_ASSERT(this, WordNotEqual(elements_length, IntPtrConstant(0))); GrowElementsCapacity(object, elements, from_kind, to_kind, array_length, elements_length, mode, bailout); Goto(&done); BIND(&done); } StoreMap(object, map); } void CodeStubAssembler::TrapAllocationMemento(Node* object, Label* memento_found) { Comment("[ TrapAllocationMemento"); Label no_memento_found(this); Label top_check(this), map_check(this); TNode<ExternalReference> new_space_top_address = ExternalConstant( ExternalReference::new_space_allocation_top_address(isolate())); const int kMementoMapOffset = JSArray::kSize; const int kMementoLastWordOffset = kMementoMapOffset + AllocationMemento::kSize - kPointerSize; // Bail out if the object is not in new space. TNode<IntPtrT> object_word = BitcastTaggedToWord(object); TNode<IntPtrT> object_page = PageFromAddress(object_word); { TNode<IntPtrT> page_flags = UncheckedCast<IntPtrT>(Load(MachineType::IntPtr(), object_page, IntPtrConstant(Page::kFlagsOffset))); GotoIf(WordEqual(WordAnd(page_flags, IntPtrConstant(MemoryChunk::kIsInNewSpaceMask)), IntPtrConstant(0)), &no_memento_found); } TNode<IntPtrT> memento_last_word = IntPtrAdd( object_word, IntPtrConstant(kMementoLastWordOffset - kHeapObjectTag)); TNode<IntPtrT> memento_last_word_page = PageFromAddress(memento_last_word); TNode<IntPtrT> new_space_top = UncheckedCast<IntPtrT>( Load(MachineType::Pointer(), new_space_top_address)); TNode<IntPtrT> new_space_top_page = PageFromAddress(new_space_top); // If the object is in new space, we need to check whether respective // potential memento object is on the same page as the current top. GotoIf(WordEqual(memento_last_word_page, new_space_top_page), &top_check); // The object is on a different page than allocation top. Bail out if the // object sits on the page boundary as no memento can follow and we cannot // touch the memory following it. Branch(WordEqual(object_page, memento_last_word_page), &map_check, &no_memento_found); // If top is on the same page as the current object, we need to check whether // we are below top. BIND(&top_check); { Branch(UintPtrGreaterThanOrEqual(memento_last_word, new_space_top), &no_memento_found, &map_check); } // Memento map check. BIND(&map_check); { TNode<Object> memento_map = LoadObjectField(object, kMementoMapOffset); Branch(WordEqual(memento_map, LoadRoot(RootIndex::kAllocationMementoMap)), memento_found, &no_memento_found); } BIND(&no_memento_found); Comment("] TrapAllocationMemento"); } TNode<IntPtrT> CodeStubAssembler::PageFromAddress(TNode<IntPtrT> address) { return WordAnd(address, IntPtrConstant(~kPageAlignmentMask)); } TNode<AllocationSite> CodeStubAssembler::CreateAllocationSiteInFeedbackVector( SloppyTNode<FeedbackVector> feedback_vector, TNode<Smi> slot) { TNode<IntPtrT> size = IntPtrConstant(AllocationSite::kSizeWithWeakNext); Node* site = Allocate(size, CodeStubAssembler::kPretenured); StoreMapNoWriteBarrier(site, RootIndex::kAllocationSiteWithWeakNextMap); // Should match AllocationSite::Initialize. TNode<WordT> field = UpdateWord<AllocationSite::ElementsKindBits>( IntPtrConstant(0), IntPtrConstant(GetInitialFastElementsKind())); StoreObjectFieldNoWriteBarrier( site, AllocationSite::kTransitionInfoOrBoilerplateOffset, SmiTag(Signed(field))); // Unlike literals, constructed arrays don't have nested sites TNode<Smi> zero = SmiConstant(0); StoreObjectFieldNoWriteBarrier(site, AllocationSite::kNestedSiteOffset, zero); // Pretenuring calculation field. StoreObjectFieldNoWriteBarrier(site, AllocationSite::kPretenureDataOffset, Int32Constant(0), MachineRepresentation::kWord32); // Pretenuring memento creation count field. StoreObjectFieldNoWriteBarrier( site, AllocationSite::kPretenureCreateCountOffset, Int32Constant(0), MachineRepresentation::kWord32); // Store an empty fixed array for the code dependency. StoreObjectFieldRoot(site, AllocationSite::kDependentCodeOffset, RootIndex::kEmptyWeakFixedArray); // Link the object to the allocation site list TNode<ExternalReference> site_list = ExternalConstant( ExternalReference::allocation_sites_list_address(isolate())); TNode<Object> next_site = CAST(LoadBufferObject(site_list, 0)); // TODO(mvstanton): This is a store to a weak pointer, which we may want to // mark as such in order to skip the write barrier, once we have a unified // system for weakness. For now we decided to keep it like this because having // an initial write barrier backed store makes this pointer strong until the // next GC, and allocation sites are designed to survive several GCs anyway. StoreObjectField(site, AllocationSite::kWeakNextOffset, next_site); StoreNoWriteBarrier(MachineRepresentation::kTagged, site_list, site); StoreFeedbackVectorSlot(feedback_vector, slot, site, UPDATE_WRITE_BARRIER, 0, SMI_PARAMETERS); return CAST(site); } TNode<MaybeObject> CodeStubAssembler::StoreWeakReferenceInFeedbackVector( SloppyTNode<FeedbackVector> feedback_vector, Node* slot, SloppyTNode<HeapObject> value, int additional_offset, ParameterMode parameter_mode) { TNode<MaybeObject> weak_value = MakeWeak(value); StoreFeedbackVectorSlot(feedback_vector, slot, weak_value, UPDATE_WRITE_BARRIER, additional_offset, parameter_mode); return weak_value; } TNode<BoolT> CodeStubAssembler::NotHasBoilerplate( TNode<Object> maybe_literal_site) { return TaggedIsSmi(maybe_literal_site); } TNode<Smi> CodeStubAssembler::LoadTransitionInfo( TNode<AllocationSite> allocation_site) { TNode<Smi> transition_info = CAST(LoadObjectField( allocation_site, AllocationSite::kTransitionInfoOrBoilerplateOffset)); return transition_info; } TNode<JSObject> CodeStubAssembler::LoadBoilerplate( TNode<AllocationSite> allocation_site) { TNode<JSObject> boilerplate = CAST(LoadObjectField( allocation_site, AllocationSite::kTransitionInfoOrBoilerplateOffset)); return boilerplate; } TNode<Int32T> CodeStubAssembler::LoadElementsKind( TNode<AllocationSite> allocation_site) { TNode<Smi> transition_info = LoadTransitionInfo(allocation_site); TNode<Int32T> elements_kind = Signed(DecodeWord32<AllocationSite::ElementsKindBits>( SmiToInt32(transition_info))); CSA_ASSERT(this, IsFastElementsKind(elements_kind)); return elements_kind; } Node* CodeStubAssembler::BuildFastLoop( const CodeStubAssembler::VariableList& vars, Node* start_index, Node* end_index, const FastLoopBody& body, int increment, ParameterMode parameter_mode, IndexAdvanceMode advance_mode) { CSA_SLOW_ASSERT(this, MatchesParameterMode(start_index, parameter_mode)); CSA_SLOW_ASSERT(this, MatchesParameterMode(end_index, parameter_mode)); MachineRepresentation index_rep = (parameter_mode == INTPTR_PARAMETERS) ? MachineType::PointerRepresentation() : MachineRepresentation::kTaggedSigned; VARIABLE(var, index_rep, start_index); VariableList vars_copy(vars.begin(), vars.end(), zone()); vars_copy.push_back(&var); Label loop(this, vars_copy); Label after_loop(this); // Introduce an explicit second check of the termination condition before the // loop that helps turbofan generate better code. If there's only a single // check, then the CodeStubAssembler forces it to be at the beginning of the // loop requiring a backwards branch at the end of the loop (it's not possible // to force the loop header check at the end of the loop and branch forward to // it from the pre-header). The extra branch is slower in the case that the // loop actually iterates. Node* first_check = WordEqual(var.value(), end_index); int32_t first_check_val; if (ToInt32Constant(first_check, first_check_val)) { if (first_check_val) return var.value(); Goto(&loop); } else { Branch(first_check, &after_loop, &loop); } BIND(&loop); { if (advance_mode == IndexAdvanceMode::kPre) { Increment(&var, increment, parameter_mode); } body(var.value()); if (advance_mode == IndexAdvanceMode::kPost) { Increment(&var, increment, parameter_mode); } Branch(WordNotEqual(var.value(), end_index), &loop, &after_loop); } BIND(&after_loop); return var.value(); } void CodeStubAssembler::BuildFastFixedArrayForEach( const CodeStubAssembler::VariableList& vars, Node* fixed_array, ElementsKind kind, Node* first_element_inclusive, Node* last_element_exclusive, const FastFixedArrayForEachBody& body, ParameterMode mode, ForEachDirection direction) { STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize); CSA_SLOW_ASSERT(this, MatchesParameterMode(first_element_inclusive, mode)); CSA_SLOW_ASSERT(this, MatchesParameterMode(last_element_exclusive, mode)); CSA_SLOW_ASSERT(this, Word32Or(IsFixedArrayWithKind(fixed_array, kind), IsPropertyArray(fixed_array))); int32_t first_val; bool constant_first = ToInt32Constant(first_element_inclusive, first_val); int32_t last_val; bool constent_last = ToInt32Constant(last_element_exclusive, last_val); if (constant_first && constent_last) { int delta = last_val - first_val; DCHECK_GE(delta, 0); if (delta <= kElementLoopUnrollThreshold) { if (direction == ForEachDirection::kForward) { for (int i = first_val; i < last_val; ++i) { Node* index = IntPtrConstant(i); Node* offset = ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS, FixedArray::kHeaderSize - kHeapObjectTag); body(fixed_array, offset); } } else { for (int i = last_val - 1; i >= first_val; --i) { Node* index = IntPtrConstant(i); Node* offset = ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS, FixedArray::kHeaderSize - kHeapObjectTag); body(fixed_array, offset); } } return; } } Node* start = ElementOffsetFromIndex(first_element_inclusive, kind, mode, FixedArray::kHeaderSize - kHeapObjectTag); Node* limit = ElementOffsetFromIndex(last_element_exclusive, kind, mode, FixedArray::kHeaderSize - kHeapObjectTag); if (direction == ForEachDirection::kReverse) std::swap(start, limit); int increment = IsDoubleElementsKind(kind) ? kDoubleSize : kPointerSize; BuildFastLoop( vars, start, limit, [fixed_array, &body](Node* offset) { body(fixed_array, offset); }, direction == ForEachDirection::kReverse ? -increment : increment, INTPTR_PARAMETERS, direction == ForEachDirection::kReverse ? IndexAdvanceMode::kPre : IndexAdvanceMode::kPost); } void CodeStubAssembler::GotoIfFixedArraySizeDoesntFitInNewSpace( Node* element_count, Label* doesnt_fit, int base_size, ParameterMode mode) { GotoIf(FixedArraySizeDoesntFitInNewSpace(element_count, base_size, mode), doesnt_fit); } void CodeStubAssembler::InitializeFieldsWithRoot(Node* object, Node* start_offset, Node* end_offset, RootIndex root_index) { CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object)); start_offset = IntPtrAdd(start_offset, IntPtrConstant(-kHeapObjectTag)); end_offset = IntPtrAdd(end_offset, IntPtrConstant(-kHeapObjectTag)); Node* root_value = LoadRoot(root_index); BuildFastLoop(end_offset, start_offset, [this, object, root_value](Node* current) { StoreNoWriteBarrier(MachineRepresentation::kTagged, object, current, root_value); }, -kPointerSize, INTPTR_PARAMETERS, CodeStubAssembler::IndexAdvanceMode::kPre); } void CodeStubAssembler::BranchIfNumberRelationalComparison( Operation op, Node* left, Node* right, Label* if_true, Label* if_false) { CSA_SLOW_ASSERT(this, IsNumber(left)); CSA_SLOW_ASSERT(this, IsNumber(right)); Label do_float_comparison(this); TVARIABLE(Float64T, var_left_float); TVARIABLE(Float64T, var_right_float); Branch(TaggedIsSmi(left), [&] { TNode<Smi> smi_left = CAST(left); Branch(TaggedIsSmi(right), [&] { TNode<Smi> smi_right = CAST(right); // Both {left} and {right} are Smi, so just perform a fast // Smi comparison. switch (op) { case Operation::kEqual: BranchIfSmiEqual(smi_left, smi_right, if_true, if_false); break; case Operation::kLessThan: BranchIfSmiLessThan(smi_left, smi_right, if_true, if_false); break; case Operation::kLessThanOrEqual: BranchIfSmiLessThanOrEqual(smi_left, smi_right, if_true, if_false); break; case Operation::kGreaterThan: BranchIfSmiLessThan(smi_right, smi_left, if_true, if_false); break; case Operation::kGreaterThanOrEqual: BranchIfSmiLessThanOrEqual(smi_right, smi_left, if_true, if_false); break; default: UNREACHABLE(); } }, [&] { CSA_ASSERT(this, IsHeapNumber(right)); var_left_float = SmiToFloat64(smi_left); var_right_float = LoadHeapNumberValue(right); Goto(&do_float_comparison); }); }, [&] { CSA_ASSERT(this, IsHeapNumber(left)); var_left_float = LoadHeapNumberValue(left); Branch(TaggedIsSmi(right), [&] { var_right_float = SmiToFloat64(right); Goto(&do_float_comparison); }, [&] { CSA_ASSERT(this, IsHeapNumber(right)); var_right_float = LoadHeapNumberValue(right); Goto(&do_float_comparison); }); }); BIND(&do_float_comparison); { switch (op) { case Operation::kEqual: Branch(Float64Equal(var_left_float.value(), var_right_float.value()), if_true, if_false); break; case Operation::kLessThan: Branch(Float64LessThan(var_left_float.value(), var_right_float.value()), if_true, if_false); break; case Operation::kLessThanOrEqual: Branch(Float64LessThanOrEqual(var_left_float.value(), var_right_float.value()), if_true, if_false); break; case Operation::kGreaterThan: Branch( Float64GreaterThan(var_left_float.value(), var_right_float.value()), if_true, if_false); break; case Operation::kGreaterThanOrEqual: Branch(Float64GreaterThanOrEqual(var_left_float.value(), var_right_float.value()), if_true, if_false); break; default: UNREACHABLE(); } } } void CodeStubAssembler::GotoIfNumberGreaterThanOrEqual(Node* left, Node* right, Label* if_true) { Label if_false(this); BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, left, right, if_true, &if_false); BIND(&if_false); } namespace { Operation Reverse(Operation op) { switch (op) { case Operation::kLessThan: return Operation::kGreaterThan; case Operation::kLessThanOrEqual: return Operation::kGreaterThanOrEqual; case Operation::kGreaterThan: return Operation::kLessThan; case Operation::kGreaterThanOrEqual: return Operation::kLessThanOrEqual; default: break; } UNREACHABLE(); } } // anonymous namespace Node* CodeStubAssembler::RelationalComparison(Operation op, Node* left, Node* right, Node* context, Variable* var_type_feedback) { Label return_true(this), return_false(this), do_float_comparison(this), end(this); TVARIABLE(Oddball, var_result); // Actually only "true" or "false". TVARIABLE(Float64T, var_left_float); TVARIABLE(Float64T, var_right_float); // We might need to loop several times due to ToPrimitive and/or ToNumeric // conversions. VARIABLE(var_left, MachineRepresentation::kTagged, left); VARIABLE(var_right, MachineRepresentation::kTagged, right); VariableList loop_variable_list({&var_left, &var_right}, zone()); if (var_type_feedback != nullptr) { // Initialize the type feedback to None. The current feedback is combined // with the previous feedback. var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kNone)); loop_variable_list.push_back(var_type_feedback); } Label loop(this, loop_variable_list); Goto(&loop); BIND(&loop); { left = var_left.value(); right = var_right.value(); Label if_left_smi(this), if_left_not_smi(this); Branch(TaggedIsSmi(left), &if_left_smi, &if_left_not_smi); BIND(&if_left_smi); { TNode<Smi> smi_left = CAST(left); Label if_right_smi(this), if_right_heapnumber(this), if_right_bigint(this, Label::kDeferred), if_right_not_numeric(this, Label::kDeferred); GotoIf(TaggedIsSmi(right), &if_right_smi); Node* right_map = LoadMap(right); GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber); Node* right_instance_type = LoadMapInstanceType(right_map); Branch(IsBigIntInstanceType(right_instance_type), &if_right_bigint, &if_right_not_numeric); BIND(&if_right_smi); { TNode<Smi> smi_right = CAST(right); CombineFeedback(var_type_feedback, CompareOperationFeedback::kSignedSmall); switch (op) { case Operation::kLessThan: BranchIfSmiLessThan(smi_left, smi_right, &return_true, &return_false); break; case Operation::kLessThanOrEqual: BranchIfSmiLessThanOrEqual(smi_left, smi_right, &return_true, &return_false); break; case Operation::kGreaterThan: BranchIfSmiLessThan(smi_right, smi_left, &return_true, &return_false); break; case Operation::kGreaterThanOrEqual: BranchIfSmiLessThanOrEqual(smi_right, smi_left, &return_true, &return_false); break; default: UNREACHABLE(); } } BIND(&if_right_heapnumber); { CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber); var_left_float = SmiToFloat64(smi_left); var_right_float = LoadHeapNumberValue(right); Goto(&do_float_comparison); } BIND(&if_right_bigint); { OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); var_result = CAST(CallRuntime(Runtime::kBigIntCompareToNumber, NoContextConstant(), SmiConstant(Reverse(op)), right, left)); Goto(&end); } BIND(&if_right_not_numeric); { OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); // Convert {right} to a Numeric; we don't need to perform the // dedicated ToPrimitive(right, hint Number) operation, as the // ToNumeric(right) will by itself already invoke ToPrimitive with // a Number hint. var_right.Bind( CallBuiltin(Builtins::kNonNumberToNumeric, context, right)); Goto(&loop); } } BIND(&if_left_not_smi); { Node* left_map = LoadMap(left); Label if_right_smi(this), if_right_not_smi(this); Branch(TaggedIsSmi(right), &if_right_smi, &if_right_not_smi); BIND(&if_right_smi); { Label if_left_heapnumber(this), if_left_bigint(this, Label::kDeferred), if_left_not_numeric(this, Label::kDeferred); GotoIf(IsHeapNumberMap(left_map), &if_left_heapnumber); Node* left_instance_type = LoadMapInstanceType(left_map); Branch(IsBigIntInstanceType(left_instance_type), &if_left_bigint, &if_left_not_numeric); BIND(&if_left_heapnumber); { CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber); var_left_float = LoadHeapNumberValue(left); var_right_float = SmiToFloat64(right); Goto(&do_float_comparison); } BIND(&if_left_bigint); { OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); var_result = CAST(CallRuntime(Runtime::kBigIntCompareToNumber, NoContextConstant(), SmiConstant(op), left, right)); Goto(&end); } BIND(&if_left_not_numeric); { OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); // Convert {left} to a Numeric; we don't need to perform the // dedicated ToPrimitive(left, hint Number) operation, as the // ToNumeric(left) will by itself already invoke ToPrimitive with // a Number hint. var_left.Bind( CallBuiltin(Builtins::kNonNumberToNumeric, context, left)); Goto(&loop); } } BIND(&if_right_not_smi); { Node* right_map = LoadMap(right); Label if_left_heapnumber(this), if_left_bigint(this, Label::kDeferred), if_left_string(this), if_left_other(this, Label::kDeferred); GotoIf(IsHeapNumberMap(left_map), &if_left_heapnumber); Node* left_instance_type = LoadMapInstanceType(left_map); GotoIf(IsBigIntInstanceType(left_instance_type), &if_left_bigint); Branch(IsStringInstanceType(left_instance_type), &if_left_string, &if_left_other); BIND(&if_left_heapnumber); { Label if_right_heapnumber(this), if_right_bigint(this, Label::kDeferred), if_right_not_numeric(this, Label::kDeferred); GotoIf(WordEqual(right_map, left_map), &if_right_heapnumber); Node* right_instance_type = LoadMapInstanceType(right_map); Branch(IsBigIntInstanceType(right_instance_type), &if_right_bigint, &if_right_not_numeric); BIND(&if_right_heapnumber); { CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber); var_left_float = LoadHeapNumberValue(left); var_right_float = LoadHeapNumberValue(right); Goto(&do_float_comparison); } BIND(&if_right_bigint); { OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); var_result = CAST(CallRuntime( Runtime::kBigIntCompareToNumber, NoContextConstant(), SmiConstant(Reverse(op)), right, left)); Goto(&end); } BIND(&if_right_not_numeric); { OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); // Convert {right} to a Numeric; we don't need to perform // dedicated ToPrimitive(right, hint Number) operation, as the // ToNumeric(right) will by itself already invoke ToPrimitive with // a Number hint. var_right.Bind( CallBuiltin(Builtins::kNonNumberToNumeric, context, right)); Goto(&loop); } } BIND(&if_left_bigint); { Label if_right_heapnumber(this), if_right_bigint(this), if_right_string(this), if_right_other(this); GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber); Node* right_instance_type = LoadMapInstanceType(right_map); GotoIf(IsBigIntInstanceType(right_instance_type), &if_right_bigint); Branch(IsStringInstanceType(right_instance_type), &if_right_string, &if_right_other); BIND(&if_right_heapnumber); { OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); var_result = CAST(CallRuntime(Runtime::kBigIntCompareToNumber, NoContextConstant(), SmiConstant(op), left, right)); Goto(&end); } BIND(&if_right_bigint); { CombineFeedback(var_type_feedback, CompareOperationFeedback::kBigInt); var_result = CAST(CallRuntime(Runtime::kBigIntCompareToBigInt, NoContextConstant(), SmiConstant(op), left, right)); Goto(&end); } BIND(&if_right_string); { OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); var_result = CAST(CallRuntime(Runtime::kBigIntCompareToString, NoContextConstant(), SmiConstant(op), left, right)); Goto(&end); } // {right} is not a Number, BigInt, or String. BIND(&if_right_other); { OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); // Convert {right} to a Numeric; we don't need to perform // dedicated ToPrimitive(right, hint Number) operation, as the // ToNumeric(right) will by itself already invoke ToPrimitive with // a Number hint. var_right.Bind( CallBuiltin(Builtins::kNonNumberToNumeric, context, right)); Goto(&loop); } } BIND(&if_left_string); { Node* right_instance_type = LoadMapInstanceType(right_map); Label if_right_not_string(this, Label::kDeferred); GotoIfNot(IsStringInstanceType(right_instance_type), &if_right_not_string); // Both {left} and {right} are strings. CombineFeedback(var_type_feedback, CompareOperationFeedback::kString); Builtins::Name builtin; switch (op) { case Operation::kLessThan: builtin = Builtins::kStringLessThan; break; case Operation::kLessThanOrEqual: builtin = Builtins::kStringLessThanOrEqual; break; case Operation::kGreaterThan: builtin = Builtins::kStringGreaterThan; break; case Operation::kGreaterThanOrEqual: builtin = Builtins::kStringGreaterThanOrEqual; break; default: UNREACHABLE(); } var_result = CAST(CallBuiltin(builtin, context, left, right)); Goto(&end); BIND(&if_right_not_string); { OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); // {left} is a String, while {right} isn't. Check if {right} is // a BigInt, otherwise call ToPrimitive(right, hint Number) if // {right} is a receiver, or ToNumeric(left) and then // ToNumeric(right) in the other cases. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); Label if_right_bigint(this), if_right_receiver(this, Label::kDeferred); GotoIf(IsBigIntInstanceType(right_instance_type), &if_right_bigint); GotoIf(IsJSReceiverInstanceType(right_instance_type), &if_right_receiver); var_left.Bind( CallBuiltin(Builtins::kNonNumberToNumeric, context, left)); var_right.Bind(CallBuiltin(Builtins::kToNumeric, context, right)); Goto(&loop); BIND(&if_right_bigint); { var_result = CAST(CallRuntime( Runtime::kBigIntCompareToString, NoContextConstant(), SmiConstant(Reverse(op)), right, left)); Goto(&end); } BIND(&if_right_receiver); { Callable callable = CodeFactory::NonPrimitiveToPrimitive( isolate(), ToPrimitiveHint::kNumber); var_right.Bind(CallStub(callable, context, right)); Goto(&loop); } } } BIND(&if_left_other); { // {left} is neither a Numeric nor a String, and {right} is not a Smi. if (var_type_feedback != nullptr) { // Collect NumberOrOddball feedback if {left} is an Oddball // and {right} is either a HeapNumber or Oddball. Otherwise collect // Any feedback. Label collect_any_feedback(this), collect_oddball_feedback(this), collect_feedback_done(this); GotoIfNot(InstanceTypeEqual(left_instance_type, ODDBALL_TYPE), &collect_any_feedback); GotoIf(IsHeapNumberMap(right_map), &collect_oddball_feedback); Node* right_instance_type = LoadMapInstanceType(right_map); Branch(InstanceTypeEqual(right_instance_type, ODDBALL_TYPE), &collect_oddball_feedback, &collect_any_feedback); BIND(&collect_oddball_feedback); { CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumberOrOddball); Goto(&collect_feedback_done); } BIND(&collect_any_feedback); { OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); Goto(&collect_feedback_done); } BIND(&collect_feedback_done); } // If {left} is a receiver, call ToPrimitive(left, hint Number). // Otherwise call ToNumeric(right) and then ToNumeric(left), the // order here is important as it's observable by user code. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); Label if_left_receiver(this, Label::kDeferred); GotoIf(IsJSReceiverInstanceType(left_instance_type), &if_left_receiver); var_right.Bind(CallBuiltin(Builtins::kToNumeric, context, right)); var_left.Bind( CallBuiltin(Builtins::kNonNumberToNumeric, context, left)); Goto(&loop); BIND(&if_left_receiver); { Callable callable = CodeFactory::NonPrimitiveToPrimitive( isolate(), ToPrimitiveHint::kNumber); var_left.Bind(CallStub(callable, context, left)); Goto(&loop); } } } } } BIND(&do_float_comparison); { switch (op) { case Operation::kLessThan: Branch(Float64LessThan(var_left_float.value(), var_right_float.value()), &return_true, &return_false); break; case Operation::kLessThanOrEqual: Branch(Float64LessThanOrEqual(var_left_float.value(), var_right_float.value()), &return_true, &return_false); break; case Operation::kGreaterThan: Branch( Float64GreaterThan(var_left_float.value(), var_right_float.value()), &return_true, &return_false); break; case Operation::kGreaterThanOrEqual: Branch(Float64GreaterThanOrEqual(var_left_float.value(), var_right_float.value()), &return_true, &return_false); break; default: UNREACHABLE(); } } BIND(&return_true); { var_result = TrueConstant(); Goto(&end); } BIND(&return_false); { var_result = FalseConstant(); Goto(&end); } BIND(&end); return var_result.value(); } TNode<Smi> CodeStubAssembler::CollectFeedbackForString( SloppyTNode<Int32T> instance_type) { TNode<Smi> feedback = SelectSmiConstant( Word32Equal( Word32And(instance_type, Int32Constant(kIsNotInternalizedMask)), Int32Constant(kInternalizedTag)), CompareOperationFeedback::kInternalizedString, CompareOperationFeedback::kString); return feedback; } void CodeStubAssembler::GenerateEqual_Same(Node* value, Label* if_equal, Label* if_notequal, Variable* var_type_feedback) { // In case of abstract or strict equality checks, we need additional checks // for NaN values because they are not considered equal, even if both the // left and the right hand side reference exactly the same value. Label if_smi(this), if_heapnumber(this); GotoIf(TaggedIsSmi(value), &if_smi); Node* value_map = LoadMap(value); GotoIf(IsHeapNumberMap(value_map), &if_heapnumber); // For non-HeapNumbers, all we do is collect type feedback. if (var_type_feedback != nullptr) { Node* instance_type = LoadMapInstanceType(value_map); Label if_string(this), if_receiver(this), if_oddball(this), if_symbol(this), if_bigint(this); GotoIf(IsStringInstanceType(instance_type), &if_string); GotoIf(IsJSReceiverInstanceType(instance_type), &if_receiver); GotoIf(IsOddballInstanceType(instance_type), &if_oddball); Branch(IsBigIntInstanceType(instance_type), &if_bigint, &if_symbol); BIND(&if_string); { CSA_ASSERT(this, IsString(value)); CombineFeedback(var_type_feedback, CollectFeedbackForString(instance_type)); Goto(if_equal); } BIND(&if_symbol); { CSA_ASSERT(this, IsSymbol(value)); CombineFeedback(var_type_feedback, CompareOperationFeedback::kSymbol); Goto(if_equal); } BIND(&if_receiver); { CSA_ASSERT(this, IsJSReceiver(value)); CombineFeedback(var_type_feedback, CompareOperationFeedback::kReceiver); Goto(if_equal); } BIND(&if_bigint); { CSA_ASSERT(this, IsBigInt(value)); CombineFeedback(var_type_feedback, CompareOperationFeedback::kBigInt); Goto(if_equal); } BIND(&if_oddball); { CSA_ASSERT(this, IsOddball(value)); Label if_boolean(this), if_not_boolean(this); Branch(IsBooleanMap(value_map), &if_boolean, &if_not_boolean); BIND(&if_boolean); { CombineFeedback(var_type_feedback, CompareOperationFeedback::kAny); Goto(if_equal); } BIND(&if_not_boolean); { CSA_ASSERT(this, IsNullOrUndefined(value)); CombineFeedback(var_type_feedback, CompareOperationFeedback::kReceiverOrNullOrUndefined); Goto(if_equal); } } } else { Goto(if_equal); } BIND(&if_heapnumber); { CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber); Node* number_value = LoadHeapNumberValue(value); BranchIfFloat64IsNaN(number_value, if_notequal, if_equal); } BIND(&if_smi); { CombineFeedback(var_type_feedback, CompareOperationFeedback::kSignedSmall); Goto(if_equal); } } // ES6 section 7.2.12 Abstract Equality Comparison Node* CodeStubAssembler::Equal(Node* left, Node* right, Node* context, Variable* var_type_feedback) { // This is a slightly optimized version of Object::Equals. Whenever you // change something functionality wise in here, remember to update the // Object::Equals method as well. Label if_equal(this), if_notequal(this), do_float_comparison(this), do_right_stringtonumber(this, Label::kDeferred), end(this); VARIABLE(result, MachineRepresentation::kTagged); TVARIABLE(Float64T, var_left_float); TVARIABLE(Float64T, var_right_float); // We can avoid code duplication by exploiting the fact that abstract equality // is symmetric. Label use_symmetry(this); // We might need to loop several times due to ToPrimitive and/or ToNumber // conversions. VARIABLE(var_left, MachineRepresentation::kTagged, left); VARIABLE(var_right, MachineRepresentation::kTagged, right); VariableList loop_variable_list({&var_left, &var_right}, zone()); if (var_type_feedback != nullptr) { // Initialize the type feedback to None. The current feedback will be // combined with the previous feedback. OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kNone); loop_variable_list.push_back(var_type_feedback); } Label loop(this, loop_variable_list); Goto(&loop); BIND(&loop); { left = var_left.value(); right = var_right.value(); Label if_notsame(this); GotoIf(WordNotEqual(left, right), &if_notsame); { // {left} and {right} reference the exact same value, yet we need special // treatment for HeapNumber, as NaN is not equal to NaN. GenerateEqual_Same(left, &if_equal, &if_notequal, var_type_feedback); } BIND(&if_notsame); Label if_left_smi(this), if_left_not_smi(this); Branch(TaggedIsSmi(left), &if_left_smi, &if_left_not_smi); BIND(&if_left_smi); { Label if_right_smi(this), if_right_not_smi(this); Branch(TaggedIsSmi(right), &if_right_smi, &if_right_not_smi); BIND(&if_right_smi); { // We have already checked for {left} and {right} being the same value, // so when we get here they must be different Smis. CombineFeedback(var_type_feedback, CompareOperationFeedback::kSignedSmall); Goto(&if_notequal); } BIND(&if_right_not_smi); Node* right_map = LoadMap(right); Label if_right_heapnumber(this), if_right_boolean(this), if_right_bigint(this, Label::kDeferred), if_right_receiver(this, Label::kDeferred); GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber); // {left} is Smi and {right} is not HeapNumber or Smi. if (var_type_feedback != nullptr) { var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kAny)); } GotoIf(IsBooleanMap(right_map), &if_right_boolean); Node* right_type = LoadMapInstanceType(right_map); GotoIf(IsStringInstanceType(right_type), &do_right_stringtonumber); GotoIf(IsBigIntInstanceType(right_type), &if_right_bigint); Branch(IsJSReceiverInstanceType(right_type), &if_right_receiver, &if_notequal); BIND(&if_right_heapnumber); { var_left_float = SmiToFloat64(left); var_right_float = LoadHeapNumberValue(right); CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber); Goto(&do_float_comparison); } BIND(&if_right_boolean); { var_right.Bind(LoadObjectField(right, Oddball::kToNumberOffset)); Goto(&loop); } BIND(&if_right_bigint); { result.Bind(CallRuntime(Runtime::kBigIntEqualToNumber, NoContextConstant(), right, left)); Goto(&end); } BIND(&if_right_receiver); { Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); var_right.Bind(CallStub(callable, context, right)); Goto(&loop); } } BIND(&if_left_not_smi); { GotoIf(TaggedIsSmi(right), &use_symmetry); Label if_left_symbol(this), if_left_number(this), if_left_string(this), if_left_bigint(this, Label::kDeferred), if_left_oddball(this), if_left_receiver(this); Node* left_map = LoadMap(left); Node* right_map = LoadMap(right); Node* left_type = LoadMapInstanceType(left_map); Node* right_type = LoadMapInstanceType(right_map); GotoIf(IsStringInstanceType(left_type), &if_left_string); GotoIf(IsSymbolInstanceType(left_type), &if_left_symbol); GotoIf(IsHeapNumberInstanceType(left_type), &if_left_number); GotoIf(IsOddballInstanceType(left_type), &if_left_oddball); Branch(IsBigIntInstanceType(left_type), &if_left_bigint, &if_left_receiver); BIND(&if_left_string); { GotoIfNot(IsStringInstanceType(right_type), &use_symmetry); result.Bind(CallBuiltin(Builtins::kStringEqual, context, left, right)); CombineFeedback(var_type_feedback, SmiOr(CollectFeedbackForString(left_type), CollectFeedbackForString(right_type))); Goto(&end); } BIND(&if_left_number); { Label if_right_not_number(this); GotoIf(Word32NotEqual(left_type, right_type), &if_right_not_number); var_left_float = LoadHeapNumberValue(left); var_right_float = LoadHeapNumberValue(right); CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber); Goto(&do_float_comparison); BIND(&if_right_not_number); { Label if_right_boolean(this); if (var_type_feedback != nullptr) { var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kAny)); } GotoIf(IsStringInstanceType(right_type), &do_right_stringtonumber); GotoIf(IsBooleanMap(right_map), &if_right_boolean); GotoIf(IsBigIntInstanceType(right_type), &use_symmetry); Branch(IsJSReceiverInstanceType(right_type), &use_symmetry, &if_notequal); BIND(&if_right_boolean); { var_right.Bind(LoadObjectField(right, Oddball::kToNumberOffset)); Goto(&loop); } } } BIND(&if_left_bigint); { Label if_right_heapnumber(this), if_right_bigint(this), if_right_string(this), if_right_boolean(this); GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber); GotoIf(IsBigIntInstanceType(right_type), &if_right_bigint); GotoIf(IsStringInstanceType(right_type), &if_right_string); GotoIf(IsBooleanMap(right_map), &if_right_boolean); Branch(IsJSReceiverInstanceType(right_type), &use_symmetry, &if_notequal); BIND(&if_right_heapnumber); { if (var_type_feedback != nullptr) { var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kAny)); } result.Bind(CallRuntime(Runtime::kBigIntEqualToNumber, NoContextConstant(), left, right)); Goto(&end); } BIND(&if_right_bigint); { CombineFeedback(var_type_feedback, CompareOperationFeedback::kBigInt); result.Bind(CallRuntime(Runtime::kBigIntEqualToBigInt, NoContextConstant(), left, right)); Goto(&end); } BIND(&if_right_string); { if (var_type_feedback != nullptr) { var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kAny)); } result.Bind(CallRuntime(Runtime::kBigIntEqualToString, NoContextConstant(), left, right)); Goto(&end); } BIND(&if_right_boolean); { if (var_type_feedback != nullptr) { var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kAny)); } var_right.Bind(LoadObjectField(right, Oddball::kToNumberOffset)); Goto(&loop); } } BIND(&if_left_oddball); { Label if_left_boolean(this), if_left_not_boolean(this); Branch(IsBooleanMap(left_map), &if_left_boolean, &if_left_not_boolean); BIND(&if_left_not_boolean); { // {left} is either Null or Undefined. Check if {right} is // undetectable (which includes Null and Undefined). Label if_right_undetectable(this), if_right_not_undetectable(this); Branch(IsUndetectableMap(right_map), &if_right_undetectable, &if_right_not_undetectable); BIND(&if_right_undetectable); { if (var_type_feedback != nullptr) { // If {right} is undetectable, it must be either also // Null or Undefined, or a Receiver (aka document.all). var_type_feedback->Bind(SmiConstant( CompareOperationFeedback::kReceiverOrNullOrUndefined)); } Goto(&if_equal); } BIND(&if_right_not_undetectable); { if (var_type_feedback != nullptr) { // Track whether {right} is Null, Undefined or Receiver. var_type_feedback->Bind(SmiConstant( CompareOperationFeedback::kReceiverOrNullOrUndefined)); GotoIf(IsJSReceiverInstanceType(right_type), &if_notequal); GotoIfNot(IsBooleanMap(right_map), &if_notequal); var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kAny)); } Goto(&if_notequal); } } BIND(&if_left_boolean); { if (var_type_feedback != nullptr) { var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kAny)); } // If {right} is a Boolean too, it must be a different Boolean. GotoIf(WordEqual(right_map, left_map), &if_notequal); // Otherwise, convert {left} to number and try again. var_left.Bind(LoadObjectField(left, Oddball::kToNumberOffset)); Goto(&loop); } } BIND(&if_left_symbol); { Label if_right_receiver(this); GotoIf(IsJSReceiverInstanceType(right_type), &if_right_receiver); // {right} is not a JSReceiver and also not the same Symbol as {left}, // so the result is "not equal". if (var_type_feedback != nullptr) { Label if_right_symbol(this); GotoIf(IsSymbolInstanceType(right_type), &if_right_symbol); var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kAny)); Goto(&if_notequal); BIND(&if_right_symbol); { CombineFeedback(var_type_feedback, CompareOperationFeedback::kSymbol); Goto(&if_notequal); } } else { Goto(&if_notequal); } BIND(&if_right_receiver); { // {left} is a Primitive and {right} is a JSReceiver, so swapping // the order is not observable. if (var_type_feedback != nullptr) { var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kAny)); } Goto(&use_symmetry); } } BIND(&if_left_receiver); { CSA_ASSERT(this, IsJSReceiverInstanceType(left_type)); Label if_right_receiver(this), if_right_not_receiver(this); Branch(IsJSReceiverInstanceType(right_type), &if_right_receiver, &if_right_not_receiver); BIND(&if_right_receiver); { // {left} and {right} are different JSReceiver references. CombineFeedback(var_type_feedback, CompareOperationFeedback::kReceiver); Goto(&if_notequal); } BIND(&if_right_not_receiver); { // Check if {right} is undetectable, which means it must be Null // or Undefined, since we already ruled out Receiver for {right}. Label if_right_undetectable(this), if_right_not_undetectable(this, Label::kDeferred); Branch(IsUndetectableMap(right_map), &if_right_undetectable, &if_right_not_undetectable); BIND(&if_right_undetectable); { // When we get here, {right} must be either Null or Undefined. CSA_ASSERT(this, IsNullOrUndefined(right)); if (var_type_feedback != nullptr) { var_type_feedback->Bind(SmiConstant( CompareOperationFeedback::kReceiverOrNullOrUndefined)); } Branch(IsUndetectableMap(left_map), &if_equal, &if_notequal); } BIND(&if_right_not_undetectable); { // {right} is a Primitive, and neither Null or Undefined; // convert {left} to Primitive too. if (var_type_feedback != nullptr) { var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kAny)); } Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); var_left.Bind(CallStub(callable, context, left)); Goto(&loop); } } } } BIND(&do_right_stringtonumber); { var_right.Bind(CallBuiltin(Builtins::kStringToNumber, context, right)); Goto(&loop); } BIND(&use_symmetry); { var_left.Bind(right); var_right.Bind(left); Goto(&loop); } } BIND(&do_float_comparison); { Branch(Float64Equal(var_left_float.value(), var_right_float.value()), &if_equal, &if_notequal); } BIND(&if_equal); { result.Bind(TrueConstant()); Goto(&end); } BIND(&if_notequal); { result.Bind(FalseConstant()); Goto(&end); } BIND(&end); return result.value(); } Node* CodeStubAssembler::StrictEqual(Node* lhs, Node* rhs, Variable* var_type_feedback) { // Pseudo-code for the algorithm below: // // if (lhs == rhs) { // if (lhs->IsHeapNumber()) return HeapNumber::cast(lhs)->value() != NaN; // return true; // } // if (!lhs->IsSmi()) { // if (lhs->IsHeapNumber()) { // if (rhs->IsSmi()) { // return Smi::ToInt(rhs) == HeapNumber::cast(lhs)->value(); // } else if (rhs->IsHeapNumber()) { // return HeapNumber::cast(rhs)->value() == // HeapNumber::cast(lhs)->value(); // } else { // return false; // } // } else { // if (rhs->IsSmi()) { // return false; // } else { // if (lhs->IsString()) { // if (rhs->IsString()) { // return %StringEqual(lhs, rhs); // } else { // return false; // } // } else if (lhs->IsBigInt()) { // if (rhs->IsBigInt()) { // return %BigIntEqualToBigInt(lhs, rhs); // } else { // return false; // } // } else { // return false; // } // } // } // } else { // if (rhs->IsSmi()) { // return false; // } else { // if (rhs->IsHeapNumber()) { // return Smi::ToInt(lhs) == HeapNumber::cast(rhs)->value(); // } else { // return false; // } // } // } Label if_equal(this), if_notequal(this), end(this); VARIABLE(result, MachineRepresentation::kTagged); // Check if {lhs} and {rhs} refer to the same object. Label if_same(this), if_notsame(this); Branch(WordEqual(lhs, rhs), &if_same, &if_notsame); BIND(&if_same); { // The {lhs} and {rhs} reference the exact same value, yet we need special // treatment for HeapNumber, as NaN is not equal to NaN. if (var_type_feedback != nullptr) { var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kNone)); } GenerateEqual_Same(lhs, &if_equal, &if_notequal, var_type_feedback); } BIND(&if_notsame); { // The {lhs} and {rhs} reference different objects, yet for Smi, HeapNumber, // BigInt and String they can still be considered equal. if (var_type_feedback != nullptr) { var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kAny)); } // Check if {lhs} is a Smi or a HeapObject. Label if_lhsissmi(this), if_lhsisnotsmi(this); Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); BIND(&if_lhsisnotsmi); { // Load the map of {lhs}. Node* lhs_map = LoadMap(lhs); // Check if {lhs} is a HeapNumber. Label if_lhsisnumber(this), if_lhsisnotnumber(this); Branch(IsHeapNumberMap(lhs_map), &if_lhsisnumber, &if_lhsisnotnumber); BIND(&if_lhsisnumber); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); BIND(&if_rhsissmi); { // Convert {lhs} and {rhs} to floating point values. Node* lhs_value = LoadHeapNumberValue(lhs); Node* rhs_value = SmiToFloat64(rhs); if (var_type_feedback != nullptr) { var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kNumber)); } // Perform a floating point comparison of {lhs} and {rhs}. Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); } BIND(&if_rhsisnotsmi); { // Load the map of {rhs}. Node* rhs_map = LoadMap(rhs); // Check if {rhs} is also a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this); Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); BIND(&if_rhsisnumber); { // Convert {lhs} and {rhs} to floating point values. Node* lhs_value = LoadHeapNumberValue(lhs); Node* rhs_value = LoadHeapNumberValue(rhs); if (var_type_feedback != nullptr) { var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kNumber)); } // Perform a floating point comparison of {lhs} and {rhs}. Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); } BIND(&if_rhsisnotnumber); Goto(&if_notequal); } } BIND(&if_lhsisnotnumber); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); BIND(&if_rhsissmi); Goto(&if_notequal); BIND(&if_rhsisnotsmi); { // Load the instance type of {lhs}. Node* lhs_instance_type = LoadMapInstanceType(lhs_map); // Check if {lhs} is a String. Label if_lhsisstring(this), if_lhsisnotstring(this); Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring, &if_lhsisnotstring); BIND(&if_lhsisstring); { // Load the instance type of {rhs}. Node* rhs_instance_type = LoadInstanceType(rhs); // Check if {rhs} is also a String. Label if_rhsisstring(this, Label::kDeferred), if_rhsisnotstring(this); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); BIND(&if_rhsisstring); { if (var_type_feedback != nullptr) { TNode<Smi> lhs_feedback = CollectFeedbackForString(lhs_instance_type); TNode<Smi> rhs_feedback = CollectFeedbackForString(rhs_instance_type); var_type_feedback->Bind(SmiOr(lhs_feedback, rhs_feedback)); } result.Bind(CallBuiltin(Builtins::kStringEqual, NoContextConstant(), lhs, rhs)); Goto(&end); } BIND(&if_rhsisnotstring); Goto(&if_notequal); } BIND(&if_lhsisnotstring); // Check if {lhs} is a BigInt. Label if_lhsisbigint(this), if_lhsisnotbigint(this); Branch(IsBigIntInstanceType(lhs_instance_type), &if_lhsisbigint, &if_lhsisnotbigint); BIND(&if_lhsisbigint); { // Load the instance type of {rhs}. Node* rhs_instance_type = LoadInstanceType(rhs); // Check if {rhs} is also a BigInt. Label if_rhsisbigint(this, Label::kDeferred), if_rhsisnotbigint(this); Branch(IsBigIntInstanceType(rhs_instance_type), &if_rhsisbigint, &if_rhsisnotbigint); BIND(&if_rhsisbigint); { if (var_type_feedback != nullptr) { var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kBigInt)); } result.Bind(CallRuntime(Runtime::kBigIntEqualToBigInt, NoContextConstant(), lhs, rhs)); Goto(&end); } BIND(&if_rhsisnotbigint); Goto(&if_notequal); } BIND(&if_lhsisnotbigint); if (var_type_feedback != nullptr) { // Load the instance type of {rhs}. Node* rhs_map = LoadMap(rhs); Node* rhs_instance_type = LoadMapInstanceType(rhs_map); Label if_lhsissymbol(this), if_lhsisreceiver(this), if_lhsisoddball(this); GotoIf(IsJSReceiverInstanceType(lhs_instance_type), &if_lhsisreceiver); GotoIf(IsBooleanMap(lhs_map), &if_notequal); GotoIf(IsOddballInstanceType(lhs_instance_type), &if_lhsisoddball); Branch(IsSymbolInstanceType(lhs_instance_type), &if_lhsissymbol, &if_notequal); BIND(&if_lhsisreceiver); { GotoIf(IsBooleanMap(rhs_map), &if_notequal); var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kReceiver)); GotoIf(IsJSReceiverInstanceType(rhs_instance_type), &if_notequal); var_type_feedback->Bind(SmiConstant( CompareOperationFeedback::kReceiverOrNullOrUndefined)); GotoIf(IsOddballInstanceType(rhs_instance_type), &if_notequal); var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kAny)); Goto(&if_notequal); } BIND(&if_lhsisoddball); { STATIC_ASSERT(LAST_PRIMITIVE_TYPE == ODDBALL_TYPE); GotoIf(IsBooleanMap(rhs_map), &if_notequal); GotoIf( Int32LessThan(rhs_instance_type, Int32Constant(ODDBALL_TYPE)), &if_notequal); var_type_feedback->Bind(SmiConstant( CompareOperationFeedback::kReceiverOrNullOrUndefined)); Goto(&if_notequal); } BIND(&if_lhsissymbol); { GotoIfNot(IsSymbolInstanceType(rhs_instance_type), &if_notequal); var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kSymbol)); Goto(&if_notequal); } } else { Goto(&if_notequal); } } } } BIND(&if_lhsissmi); { // We already know that {lhs} and {rhs} are not reference equal, and {lhs} // is a Smi; so {lhs} and {rhs} can only be strictly equal if {rhs} is a // HeapNumber with an equal floating point value. // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); BIND(&if_rhsissmi); if (var_type_feedback != nullptr) { var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kSignedSmall)); } Goto(&if_notequal); BIND(&if_rhsisnotsmi); { // Load the map of the {rhs}. Node* rhs_map = LoadMap(rhs); // The {rhs} could be a HeapNumber with the same value as {lhs}. Label if_rhsisnumber(this), if_rhsisnotnumber(this); Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); BIND(&if_rhsisnumber); { // Convert {lhs} and {rhs} to floating point values. Node* lhs_value = SmiToFloat64(lhs); Node* rhs_value = LoadHeapNumberValue(rhs); if (var_type_feedback != nullptr) { var_type_feedback->Bind( SmiConstant(CompareOperationFeedback::kNumber)); } // Perform a floating point comparison of {lhs} and {rhs}. Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); } BIND(&if_rhsisnotnumber); Goto(&if_notequal); } } } BIND(&if_equal); { result.Bind(TrueConstant()); Goto(&end); } BIND(&if_notequal); { result.Bind(FalseConstant()); Goto(&end); } BIND(&end); return result.value(); } // ECMA#sec-samevalue // This algorithm differs from the Strict Equality Comparison Algorithm in its // treatment of signed zeroes and NaNs. void CodeStubAssembler::BranchIfSameValue(Node* lhs, Node* rhs, Label* if_true, Label* if_false) { VARIABLE(var_lhs_value, MachineRepresentation::kFloat64); VARIABLE(var_rhs_value, MachineRepresentation::kFloat64); Label do_fcmp(this); // Immediately jump to {if_true} if {lhs} == {rhs}, because - unlike // StrictEqual - SameValue considers two NaNs to be equal. GotoIf(WordEqual(lhs, rhs), if_true); // Check if the {lhs} is a Smi. Label if_lhsissmi(this), if_lhsisheapobject(this); Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisheapobject); BIND(&if_lhsissmi); { // Since {lhs} is a Smi, the comparison can only yield true // iff the {rhs} is a HeapNumber with the same float64 value. Branch(TaggedIsSmi(rhs), if_false, [&] { GotoIfNot(IsHeapNumber(rhs), if_false); var_lhs_value.Bind(SmiToFloat64(lhs)); var_rhs_value.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); }); } BIND(&if_lhsisheapobject); { // Check if the {rhs} is a Smi. Branch(TaggedIsSmi(rhs), [&] { // Since {rhs} is a Smi, the comparison can only yield true // iff the {lhs} is a HeapNumber with the same float64 value. GotoIfNot(IsHeapNumber(lhs), if_false); var_lhs_value.Bind(LoadHeapNumberValue(lhs)); var_rhs_value.Bind(SmiToFloat64(rhs)); Goto(&do_fcmp); }, [&] { // Now this can only yield true if either both {lhs} and {rhs} are // HeapNumbers with the same value, or both are Strings with the // same character sequence, or both are BigInts with the same // value. Label if_lhsisheapnumber(this), if_lhsisstring(this), if_lhsisbigint(this); Node* const lhs_map = LoadMap(lhs); GotoIf(IsHeapNumberMap(lhs_map), &if_lhsisheapnumber); Node* const lhs_instance_type = LoadMapInstanceType(lhs_map); GotoIf(IsStringInstanceType(lhs_instance_type), &if_lhsisstring); Branch(IsBigIntInstanceType(lhs_instance_type), &if_lhsisbigint, if_false); BIND(&if_lhsisheapnumber); { GotoIfNot(IsHeapNumber(rhs), if_false); var_lhs_value.Bind(LoadHeapNumberValue(lhs)); var_rhs_value.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } BIND(&if_lhsisstring); { // Now we can only yield true if {rhs} is also a String // with the same sequence of characters. GotoIfNot(IsString(rhs), if_false); Node* const result = CallBuiltin(Builtins::kStringEqual, NoContextConstant(), lhs, rhs); Branch(IsTrue(result), if_true, if_false); } BIND(&if_lhsisbigint); { GotoIfNot(IsBigInt(rhs), if_false); Node* const result = CallRuntime(Runtime::kBigIntEqualToBigInt, NoContextConstant(), lhs, rhs); Branch(IsTrue(result), if_true, if_false); } }); } BIND(&do_fcmp); { Node* const lhs_value = var_lhs_value.value(); Node* const rhs_value = var_rhs_value.value(); Label if_equal(this), if_notequal(this); Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); BIND(&if_equal); { // We still need to handle the case when {lhs} and {rhs} are -0.0 and // 0.0 (or vice versa). Compare the high word to // distinguish between the two. Node* const lhs_hi_word = Float64ExtractHighWord32(lhs_value); Node* const rhs_hi_word = Float64ExtractHighWord32(rhs_value); // If x is +0 and y is -0, return false. // If x is -0 and y is +0, return false. Branch(Word32Equal(lhs_hi_word, rhs_hi_word), if_true, if_false); } BIND(&if_notequal); { // Return true iff both {rhs} and {lhs} are NaN. GotoIf(Float64Equal(lhs_value, lhs_value), if_false); Branch(Float64Equal(rhs_value, rhs_value), if_false, if_true); } } } TNode<Oddball> CodeStubAssembler::HasProperty(SloppyTNode<Context> context, SloppyTNode<Object> object, SloppyTNode<Object> key, HasPropertyLookupMode mode) { Label call_runtime(this, Label::kDeferred), return_true(this), return_false(this), end(this), if_proxy(this, Label::kDeferred); CodeStubAssembler::LookupInHolder lookup_property_in_holder = [this, &return_true](Node* receiver, Node* holder, Node* holder_map, Node* holder_instance_type, Node* unique_name, Label* next_holder, Label* if_bailout) { TryHasOwnProperty(holder, holder_map, holder_instance_type, unique_name, &return_true, next_holder, if_bailout); }; CodeStubAssembler::LookupInHolder lookup_element_in_holder = [this, &return_true, &return_false]( Node* receiver, Node* holder, Node* holder_map, Node* holder_instance_type, Node* index, Label* next_holder, Label* if_bailout) { TryLookupElement(holder, holder_map, holder_instance_type, index, &return_true, &return_false, next_holder, if_bailout); }; TryPrototypeChainLookup(object, key, lookup_property_in_holder, lookup_element_in_holder, &return_false, &call_runtime, &if_proxy); TVARIABLE(Oddball, result); BIND(&if_proxy); { TNode<Name> name = CAST(CallBuiltin(Builtins::kToName, context, key)); switch (mode) { case kHasProperty: GotoIf(IsPrivateSymbol(name), &return_false); result = CAST( CallBuiltin(Builtins::kProxyHasProperty, context, object, name)); Goto(&end); break; case kForInHasProperty: Goto(&call_runtime); break; } } BIND(&return_true); { result = TrueConstant(); Goto(&end); } BIND(&return_false); { result = FalseConstant(); Goto(&end); } BIND(&call_runtime); { Runtime::FunctionId fallback_runtime_function_id; switch (mode) { case kHasProperty: fallback_runtime_function_id = Runtime::kHasProperty; break; case kForInHasProperty: fallback_runtime_function_id = Runtime::kForInHasProperty; break; } result = CAST(CallRuntime(fallback_runtime_function_id, context, object, key)); Goto(&end); } BIND(&end); CSA_ASSERT(this, IsBoolean(result.value())); return result.value(); } Node* CodeStubAssembler::Typeof(Node* value) { VARIABLE(result_var, MachineRepresentation::kTagged); Label return_number(this, Label::kDeferred), if_oddball(this), return_function(this), return_undefined(this), return_object(this), return_string(this), return_bigint(this), return_result(this); GotoIf(TaggedIsSmi(value), &return_number); Node* map = LoadMap(value); GotoIf(IsHeapNumberMap(map), &return_number); Node* instance_type = LoadMapInstanceType(map); GotoIf(InstanceTypeEqual(instance_type, ODDBALL_TYPE), &if_oddball); Node* callable_or_undetectable_mask = Word32And( LoadMapBitField(map), Int32Constant(Map::IsCallableBit::kMask | Map::IsUndetectableBit::kMask)); GotoIf(Word32Equal(callable_or_undetectable_mask, Int32Constant(Map::IsCallableBit::kMask)), &return_function); GotoIfNot(Word32Equal(callable_or_undetectable_mask, Int32Constant(0)), &return_undefined); GotoIf(IsJSReceiverInstanceType(instance_type), &return_object); GotoIf(IsStringInstanceType(instance_type), &return_string); GotoIf(IsBigIntInstanceType(instance_type), &return_bigint); CSA_ASSERT(this, InstanceTypeEqual(instance_type, SYMBOL_TYPE)); result_var.Bind(HeapConstant(isolate()->factory()->symbol_string())); Goto(&return_result); BIND(&return_number); { result_var.Bind(HeapConstant(isolate()->factory()->number_string())); Goto(&return_result); } BIND(&if_oddball); { Node* type = LoadObjectField(value, Oddball::kTypeOfOffset); result_var.Bind(type); Goto(&return_result); } BIND(&return_function); { result_var.Bind(HeapConstant(isolate()->factory()->function_string())); Goto(&return_result); } BIND(&return_undefined); { result_var.Bind(HeapConstant(isolate()->factory()->undefined_string())); Goto(&return_result); } BIND(&return_object); { result_var.Bind(HeapConstant(isolate()->factory()->object_string())); Goto(&return_result); } BIND(&return_string); { result_var.Bind(HeapConstant(isolate()->factory()->string_string())); Goto(&return_result); } BIND(&return_bigint); { result_var.Bind(HeapConstant(isolate()->factory()->bigint_string())); Goto(&return_result); } BIND(&return_result); return result_var.value(); } TNode<Object> CodeStubAssembler::GetSuperConstructor( SloppyTNode<Context> context, SloppyTNode<JSFunction> active_function) { Label is_not_constructor(this, Label::kDeferred), out(this); TVARIABLE(Object, result); TNode<Map> map = LoadMap(active_function); TNode<Object> prototype = LoadMapPrototype(map); TNode<Map> prototype_map = LoadMap(CAST(prototype)); GotoIfNot(IsConstructorMap(prototype_map), &is_not_constructor); result = prototype; Goto(&out); BIND(&is_not_constructor); { CallRuntime(Runtime::kThrowNotSuperConstructor, context, prototype, active_function); Unreachable(); } BIND(&out); return result.value(); } TNode<JSReceiver> CodeStubAssembler::SpeciesConstructor( SloppyTNode<Context> context, SloppyTNode<Object> object, SloppyTNode<JSReceiver> default_constructor) { Isolate* isolate = this->isolate(); TVARIABLE(JSReceiver, var_result, default_constructor); // 2. Let C be ? Get(O, "constructor"). TNode<Object> constructor = GetProperty(context, object, isolate->factory()->constructor_string()); // 3. If C is undefined, return defaultConstructor. Label out(this); GotoIf(IsUndefined(constructor), &out); // 4. If Type(C) is not Object, throw a TypeError exception. ThrowIfNotJSReceiver(context, constructor, MessageTemplate::kConstructorNotReceiver); // 5. Let S be ? Get(C, @@species). TNode<Object> species = GetProperty(context, constructor, isolate->factory()->species_symbol()); // 6. If S is either undefined or null, return defaultConstructor. GotoIf(IsNullOrUndefined(species), &out); // 7. If IsConstructor(S) is true, return S. Label throw_error(this); GotoIf(TaggedIsSmi(species), &throw_error); GotoIfNot(IsConstructorMap(LoadMap(CAST(species))), &throw_error); var_result = CAST(species); Goto(&out); // 8. Throw a TypeError exception. BIND(&throw_error); ThrowTypeError(context, MessageTemplate::kSpeciesNotConstructor); BIND(&out); return var_result.value(); } Node* CodeStubAssembler::InstanceOf(Node* object, Node* callable, Node* context) { VARIABLE(var_result, MachineRepresentation::kTagged); Label if_notcallable(this, Label::kDeferred), if_notreceiver(this, Label::kDeferred), if_otherhandler(this), if_nohandler(this, Label::kDeferred), return_true(this), return_false(this), return_result(this, &var_result); // Ensure that the {callable} is actually a JSReceiver. GotoIf(TaggedIsSmi(callable), &if_notreceiver); GotoIfNot(IsJSReceiver(callable), &if_notreceiver); // Load the @@hasInstance property from {callable}. Node* inst_of_handler = GetProperty(context, callable, HasInstanceSymbolConstant()); // Optimize for the likely case where {inst_of_handler} is the builtin // Function.prototype[@@hasInstance] method, and emit a direct call in // that case without any additional checking. Node* native_context = LoadNativeContext(context); Node* function_has_instance = LoadContextElement(native_context, Context::FUNCTION_HAS_INSTANCE_INDEX); GotoIfNot(WordEqual(inst_of_handler, function_has_instance), &if_otherhandler); { // Call to Function.prototype[@@hasInstance] directly. Callable builtin(BUILTIN_CODE(isolate(), FunctionPrototypeHasInstance), CallTrampolineDescriptor{}); Node* result = CallJS(builtin, context, inst_of_handler, callable, object); var_result.Bind(result); Goto(&return_result); } BIND(&if_otherhandler); { // Check if there's actually an {inst_of_handler}. GotoIf(IsNull(inst_of_handler), &if_nohandler); GotoIf(IsUndefined(inst_of_handler), &if_nohandler); // Call the {inst_of_handler} for {callable} and {object}. Node* result = CallJS( CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined), context, inst_of_handler, callable, object); // Convert the {result} to a Boolean. BranchIfToBooleanIsTrue(result, &return_true, &return_false); } BIND(&if_nohandler); { // Ensure that the {callable} is actually Callable. GotoIfNot(IsCallable(callable), &if_notcallable); // Use the OrdinaryHasInstance algorithm. Node* result = CallBuiltin(Builtins::kOrdinaryHasInstance, context, callable, object); var_result.Bind(result); Goto(&return_result); } BIND(&if_notcallable); { ThrowTypeError(context, MessageTemplate::kNonCallableInInstanceOfCheck); } BIND(&if_notreceiver); { ThrowTypeError(context, MessageTemplate::kNonObjectInInstanceOfCheck); } BIND(&return_true); var_result.Bind(TrueConstant()); Goto(&return_result); BIND(&return_false); var_result.Bind(FalseConstant()); Goto(&return_result); BIND(&return_result); return var_result.value(); } TNode<Number> CodeStubAssembler::NumberInc(SloppyTNode<Number> value) { TVARIABLE(Number, var_result); TVARIABLE(Float64T, var_finc_value); Label if_issmi(this), if_isnotsmi(this), do_finc(this), end(this); Branch(TaggedIsSmi(value), &if_issmi, &if_isnotsmi); BIND(&if_issmi); { Label if_overflow(this); TNode<Smi> smi_value = CAST(value); TNode<Smi> one = SmiConstant(1); var_result = TrySmiAdd(smi_value, one, &if_overflow); Goto(&end); BIND(&if_overflow); { var_finc_value = SmiToFloat64(smi_value); Goto(&do_finc); } } BIND(&if_isnotsmi); { TNode<HeapNumber> heap_number_value = CAST(value); // Load the HeapNumber value. var_finc_value = LoadHeapNumberValue(heap_number_value); Goto(&do_finc); } BIND(&do_finc); { TNode<Float64T> finc_value = var_finc_value.value(); TNode<Float64T> one = Float64Constant(1.0); TNode<Float64T> finc_result = Float64Add(finc_value, one); var_result = AllocateHeapNumberWithValue(finc_result); Goto(&end); } BIND(&end); return var_result.value(); } TNode<Number> CodeStubAssembler::NumberDec(SloppyTNode<Number> value) { TVARIABLE(Number, var_result); TVARIABLE(Float64T, var_fdec_value); Label if_issmi(this), if_isnotsmi(this), do_fdec(this), end(this); Branch(TaggedIsSmi(value), &if_issmi, &if_isnotsmi); BIND(&if_issmi); { TNode<Smi> smi_value = CAST(value); TNode<Smi> one = SmiConstant(1); Label if_overflow(this); var_result = TrySmiSub(smi_value, one, &if_overflow); Goto(&end); BIND(&if_overflow); { var_fdec_value = SmiToFloat64(smi_value); Goto(&do_fdec); } } BIND(&if_isnotsmi); { TNode<HeapNumber> heap_number_value = CAST(value); // Load the HeapNumber value. var_fdec_value = LoadHeapNumberValue(heap_number_value); Goto(&do_fdec); } BIND(&do_fdec); { TNode<Float64T> fdec_value = var_fdec_value.value(); TNode<Float64T> minus_one = Float64Constant(-1.0); TNode<Float64T> fdec_result = Float64Add(fdec_value, minus_one); var_result = AllocateHeapNumberWithValue(fdec_result); Goto(&end); } BIND(&end); return var_result.value(); } TNode<Number> CodeStubAssembler::NumberAdd(SloppyTNode<Number> a, SloppyTNode<Number> b) { TVARIABLE(Number, var_result); Label float_add(this, Label::kDeferred), end(this); GotoIf(TaggedIsNotSmi(a), &float_add); GotoIf(TaggedIsNotSmi(b), &float_add); // Try fast Smi addition first. var_result = TrySmiAdd(CAST(a), CAST(b), &float_add); Goto(&end); BIND(&float_add); { var_result = ChangeFloat64ToTagged( Float64Add(ChangeNumberToFloat64(a), ChangeNumberToFloat64(b))); Goto(&end); } BIND(&end); return var_result.value(); } TNode<Number> CodeStubAssembler::NumberSub(SloppyTNode<Number> a, SloppyTNode<Number> b) { TVARIABLE(Number, var_result); Label float_sub(this, Label::kDeferred), end(this); GotoIf(TaggedIsNotSmi(a), &float_sub); GotoIf(TaggedIsNotSmi(b), &float_sub); // Try fast Smi subtraction first. var_result = TrySmiSub(CAST(a), CAST(b), &float_sub); Goto(&end); BIND(&float_sub); { var_result = ChangeFloat64ToTagged( Float64Sub(ChangeNumberToFloat64(a), ChangeNumberToFloat64(b))); Goto(&end); } BIND(&end); return var_result.value(); } void CodeStubAssembler::GotoIfNotNumber(Node* input, Label* is_not_number) { Label is_number(this); GotoIf(TaggedIsSmi(input), &is_number); Branch(IsHeapNumber(input), &is_number, is_not_number); BIND(&is_number); } void CodeStubAssembler::GotoIfNumber(Node* input, Label* is_number) { GotoIf(TaggedIsSmi(input), is_number); GotoIf(IsHeapNumber(input), is_number); } TNode<Number> CodeStubAssembler::BitwiseOp(Node* left32, Node* right32, Operation bitwise_op) { switch (bitwise_op) { case Operation::kBitwiseAnd: return ChangeInt32ToTagged(Signed(Word32And(left32, right32))); case Operation::kBitwiseOr: return ChangeInt32ToTagged(Signed(Word32Or(left32, right32))); case Operation::kBitwiseXor: return ChangeInt32ToTagged(Signed(Word32Xor(left32, right32))); case Operation::kShiftLeft: if (!Word32ShiftIsSafe()) { right32 = Word32And(right32, Int32Constant(0x1F)); } return ChangeInt32ToTagged(Signed(Word32Shl(left32, right32))); case Operation::kShiftRight: if (!Word32ShiftIsSafe()) { right32 = Word32And(right32, Int32Constant(0x1F)); } return ChangeInt32ToTagged(Signed(Word32Sar(left32, right32))); case Operation::kShiftRightLogical: if (!Word32ShiftIsSafe()) { right32 = Word32And(right32, Int32Constant(0x1F)); } return ChangeUint32ToTagged(Unsigned(Word32Shr(left32, right32))); default: break; } UNREACHABLE(); } // ES #sec-createarrayiterator TNode<JSArrayIterator> CodeStubAssembler::CreateArrayIterator( TNode<Context> context, TNode<Object> object, IterationKind kind) { TNode<Context> native_context = LoadNativeContext(context); TNode<Map> iterator_map = CAST(LoadContextElement( native_context, Context::INITIAL_ARRAY_ITERATOR_MAP_INDEX)); Node* iterator = Allocate(JSArrayIterator::kSize); StoreMapNoWriteBarrier(iterator, iterator_map); StoreObjectFieldRoot(iterator, JSArrayIterator::kPropertiesOrHashOffset, RootIndex::kEmptyFixedArray); StoreObjectFieldRoot(iterator, JSArrayIterator::kElementsOffset, RootIndex::kEmptyFixedArray); StoreObjectFieldNoWriteBarrier( iterator, JSArrayIterator::kIteratedObjectOffset, object); StoreObjectFieldNoWriteBarrier(iterator, JSArrayIterator::kNextIndexOffset, SmiConstant(0)); StoreObjectFieldNoWriteBarrier( iterator, JSArrayIterator::kKindOffset, SmiConstant(Smi::FromInt(static_cast<int>(kind)))); return CAST(iterator); } Node* CodeStubAssembler::AllocateJSIteratorResult(Node* context, Node* value, Node* done) { CSA_ASSERT(this, IsBoolean(done)); Node* native_context = LoadNativeContext(context); Node* map = LoadContextElement(native_context, Context::ITERATOR_RESULT_MAP_INDEX); Node* result = Allocate(JSIteratorResult::kSize); StoreMapNoWriteBarrier(result, map); StoreObjectFieldRoot(result, JSIteratorResult::kPropertiesOrHashOffset, RootIndex::kEmptyFixedArray); StoreObjectFieldRoot(result, JSIteratorResult::kElementsOffset, RootIndex::kEmptyFixedArray); StoreObjectFieldNoWriteBarrier(result, JSIteratorResult::kValueOffset, value); StoreObjectFieldNoWriteBarrier(result, JSIteratorResult::kDoneOffset, done); return result; } Node* CodeStubAssembler::AllocateJSIteratorResultForEntry(Node* context, Node* key, Node* value) { Node* native_context = LoadNativeContext(context); Node* length = SmiConstant(2); int const elements_size = FixedArray::SizeFor(2); TNode<FixedArray> elements = UncheckedCast<FixedArray>( Allocate(elements_size + JSArray::kSize + JSIteratorResult::kSize)); StoreObjectFieldRoot(elements, FixedArray::kMapOffset, RootIndex::kFixedArrayMap); StoreObjectFieldNoWriteBarrier(elements, FixedArray::kLengthOffset, length); StoreFixedArrayElement(elements, 0, key); StoreFixedArrayElement(elements, 1, value); Node* array_map = LoadContextElement( native_context, Context::JS_ARRAY_PACKED_ELEMENTS_MAP_INDEX); TNode<HeapObject> array = InnerAllocate(elements, elements_size); StoreMapNoWriteBarrier(array, array_map); StoreObjectFieldRoot(array, JSArray::kPropertiesOrHashOffset, RootIndex::kEmptyFixedArray); StoreObjectFieldNoWriteBarrier(array, JSArray::kElementsOffset, elements); StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); Node* iterator_map = LoadContextElement(native_context, Context::ITERATOR_RESULT_MAP_INDEX); TNode<HeapObject> result = InnerAllocate(array, JSArray::kSize); StoreMapNoWriteBarrier(result, iterator_map); StoreObjectFieldRoot(result, JSIteratorResult::kPropertiesOrHashOffset, RootIndex::kEmptyFixedArray); StoreObjectFieldRoot(result, JSIteratorResult::kElementsOffset, RootIndex::kEmptyFixedArray); StoreObjectFieldNoWriteBarrier(result, JSIteratorResult::kValueOffset, array); StoreObjectFieldRoot(result, JSIteratorResult::kDoneOffset, RootIndex::kFalseValue); return result; } TNode<JSReceiver> CodeStubAssembler::ArraySpeciesCreate(TNode<Context> context, TNode<Object> o, TNode<Number> len) { TNode<JSReceiver> constructor = CAST(CallRuntime(Runtime::kArraySpeciesConstructor, context, o)); return Construct(context, constructor, len); } TNode<JSReceiver> CodeStubAssembler::InternalArrayCreate(TNode<Context> context, TNode<Number> len) { TNode<Context> native_context = LoadNativeContext(context); TNode<JSReceiver> constructor = CAST(LoadContextElement( native_context, Context::INTERNAL_ARRAY_FUNCTION_INDEX)); return Construct(context, constructor, len); } Node* CodeStubAssembler::IsDetachedBuffer(Node* buffer) { CSA_ASSERT(this, HasInstanceType(buffer, JS_ARRAY_BUFFER_TYPE)); TNode<Uint32T> buffer_bit_field = LoadJSArrayBufferBitField(CAST(buffer)); return IsSetWord32<JSArrayBuffer::WasNeuteredBit>(buffer_bit_field); } void CodeStubAssembler::ThrowIfArrayBufferIsDetached( SloppyTNode<Context> context, TNode<JSArrayBuffer> array_buffer, const char* method_name) { Label if_detached(this, Label::kDeferred), if_not_detached(this); Branch(IsDetachedBuffer(array_buffer), &if_detached, &if_not_detached); BIND(&if_detached); ThrowTypeError(context, MessageTemplate::kDetachedOperation, method_name); BIND(&if_not_detached); } void CodeStubAssembler::ThrowIfArrayBufferViewBufferIsDetached( SloppyTNode<Context> context, TNode<JSArrayBufferView> array_buffer_view, const char* method_name) { TNode<JSArrayBuffer> buffer = LoadJSArrayBufferViewBuffer(array_buffer_view); ThrowIfArrayBufferIsDetached(context, buffer, method_name); } TNode<Uint32T> CodeStubAssembler::LoadJSArrayBufferBitField( TNode<JSArrayBuffer> array_buffer) { return LoadObjectField<Uint32T>(array_buffer, JSArrayBuffer::kBitFieldOffset); } TNode<RawPtrT> CodeStubAssembler::LoadJSArrayBufferBackingStore( TNode<JSArrayBuffer> array_buffer) { return LoadObjectField<RawPtrT>(array_buffer, JSArrayBuffer::kBackingStoreOffset); } TNode<JSArrayBuffer> CodeStubAssembler::LoadJSArrayBufferViewBuffer( TNode<JSArrayBufferView> array_buffer_view) { return LoadObjectField<JSArrayBuffer>(array_buffer_view, JSArrayBufferView::kBufferOffset); } TNode<UintPtrT> CodeStubAssembler::LoadJSArrayBufferViewByteLength( TNode<JSArrayBufferView> array_buffer_view) { return LoadObjectField<UintPtrT>(array_buffer_view, JSArrayBufferView::kByteLengthOffset); } TNode<UintPtrT> CodeStubAssembler::LoadJSArrayBufferViewByteOffset( TNode<JSArrayBufferView> array_buffer_view) { return LoadObjectField<UintPtrT>(array_buffer_view, JSArrayBufferView::kByteOffsetOffset); } TNode<Smi> CodeStubAssembler::LoadJSTypedArrayLength( TNode<JSTypedArray> typed_array) { return LoadObjectField<Smi>(typed_array, JSTypedArray::kLengthOffset); } CodeStubArguments::CodeStubArguments( CodeStubAssembler* assembler, Node* argc, Node* fp, CodeStubAssembler::ParameterMode param_mode, ReceiverMode receiver_mode) : assembler_(assembler), argc_mode_(param_mode), receiver_mode_(receiver_mode), argc_(argc), arguments_(), fp_(fp != nullptr ? fp : assembler_->LoadFramePointer()) { Node* offset = assembler_->ElementOffsetFromIndex( argc_, PACKED_ELEMENTS, param_mode, (StandardFrameConstants::kFixedSlotCountAboveFp - 1) * kPointerSize); arguments_ = assembler_->UncheckedCast<RawPtr<Object>>( assembler_->IntPtrAdd(fp_, offset)); } TNode<Object> CodeStubArguments::GetReceiver() const { DCHECK_EQ(receiver_mode_, ReceiverMode::kHasReceiver); return assembler_->UncheckedCast<Object>( assembler_->Load(MachineType::AnyTagged(), arguments_, assembler_->IntPtrConstant(kPointerSize))); } void CodeStubArguments::SetReceiver(TNode<Object> object) const { DCHECK_EQ(receiver_mode_, ReceiverMode::kHasReceiver); assembler_->StoreNoWriteBarrier(MachineRepresentation::kTagged, arguments_, assembler_->IntPtrConstant(kPointerSize), object); } TNode<RawPtr<Object>> CodeStubArguments::AtIndexPtr( Node* index, CodeStubAssembler::ParameterMode mode) const { typedef compiler::Node Node; Node* negated_index = assembler_->IntPtrOrSmiSub( assembler_->IntPtrOrSmiConstant(0, mode), index, mode); Node* offset = assembler_->ElementOffsetFromIndex(negated_index, PACKED_ELEMENTS, mode, 0); return assembler_->UncheckedCast<RawPtr<Object>>(assembler_->IntPtrAdd( assembler_->UncheckedCast<IntPtrT>(arguments_), offset)); } TNode<Object> CodeStubArguments::AtIndex( Node* index, CodeStubAssembler::ParameterMode mode) const { DCHECK_EQ(argc_mode_, mode); CSA_ASSERT(assembler_, assembler_->UintPtrOrSmiLessThan(index, GetLength(mode), mode)); return assembler_->UncheckedCast<Object>( assembler_->Load(MachineType::AnyTagged(), AtIndexPtr(index, mode))); } TNode<Object> CodeStubArguments::AtIndex(int index) const { return AtIndex(assembler_->IntPtrConstant(index)); } TNode<Object> CodeStubArguments::GetOptionalArgumentValue( int index, TNode<Object> default_value) { CodeStubAssembler::TVariable<Object> result(assembler_); CodeStubAssembler::Label argument_missing(assembler_), argument_done(assembler_, &result); assembler_->GotoIf(assembler_->UintPtrOrSmiGreaterThanOrEqual( assembler_->IntPtrOrSmiConstant(index, argc_mode_), argc_, argc_mode_), &argument_missing); result = AtIndex(index); assembler_->Goto(&argument_done); assembler_->BIND(&argument_missing); result = default_value; assembler_->Goto(&argument_done); assembler_->BIND(&argument_done); return result.value(); } TNode<Object> CodeStubArguments::GetOptionalArgumentValue( TNode<IntPtrT> index, TNode<Object> default_value) { CodeStubAssembler::TVariable<Object> result(assembler_); CodeStubAssembler::Label argument_missing(assembler_), argument_done(assembler_, &result); assembler_->GotoIf( assembler_->UintPtrOrSmiGreaterThanOrEqual( assembler_->IntPtrToParameter(index, argc_mode_), argc_, argc_mode_), &argument_missing); result = AtIndex(index); assembler_->Goto(&argument_done); assembler_->BIND(&argument_missing); result = default_value; assembler_->Goto(&argument_done); assembler_->BIND(&argument_done); return result.value(); } void CodeStubArguments::ForEach( const CodeStubAssembler::VariableList& vars, const CodeStubArguments::ForEachBodyFunction& body, Node* first, Node* last, CodeStubAssembler::ParameterMode mode) { assembler_->Comment("CodeStubArguments::ForEach"); if (first == nullptr) { first = assembler_->IntPtrOrSmiConstant(0, mode); } if (last == nullptr) { DCHECK_EQ(mode, argc_mode_); last = argc_; } Node* start = assembler_->IntPtrSub( assembler_->UncheckedCast<IntPtrT>(arguments_), assembler_->ElementOffsetFromIndex(first, PACKED_ELEMENTS, mode)); Node* end = assembler_->IntPtrSub( assembler_->UncheckedCast<IntPtrT>(arguments_), assembler_->ElementOffsetFromIndex(last, PACKED_ELEMENTS, mode)); assembler_->BuildFastLoop(vars, start, end, [this, &body](Node* current) { Node* arg = assembler_->Load( MachineType::AnyTagged(), current); body(arg); }, -kPointerSize, CodeStubAssembler::INTPTR_PARAMETERS, CodeStubAssembler::IndexAdvanceMode::kPost); } void CodeStubArguments::PopAndReturn(Node* value) { Node* pop_count; if (receiver_mode_ == ReceiverMode::kHasReceiver) { pop_count = assembler_->IntPtrOrSmiAdd( argc_, assembler_->IntPtrOrSmiConstant(1, argc_mode_), argc_mode_); } else { pop_count = argc_; } assembler_->PopAndReturn(assembler_->ParameterToIntPtr(pop_count, argc_mode_), value); } Node* CodeStubAssembler::IsFastElementsKind(Node* elements_kind) { STATIC_ASSERT(FIRST_ELEMENTS_KIND == FIRST_FAST_ELEMENTS_KIND); return Uint32LessThanOrEqual(elements_kind, Int32Constant(LAST_FAST_ELEMENTS_KIND)); } TNode<BoolT> CodeStubAssembler::IsDoubleElementsKind( TNode<Int32T> elements_kind) { STATIC_ASSERT(FIRST_ELEMENTS_KIND == FIRST_FAST_ELEMENTS_KIND); STATIC_ASSERT((PACKED_DOUBLE_ELEMENTS & 1) == 0); STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS + 1 == HOLEY_DOUBLE_ELEMENTS); return Word32Equal(Word32Shr(elements_kind, Int32Constant(1)), Int32Constant(PACKED_DOUBLE_ELEMENTS / 2)); } Node* CodeStubAssembler::IsFastSmiOrTaggedElementsKind(Node* elements_kind) { STATIC_ASSERT(FIRST_ELEMENTS_KIND == FIRST_FAST_ELEMENTS_KIND); STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS > TERMINAL_FAST_ELEMENTS_KIND); STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS > TERMINAL_FAST_ELEMENTS_KIND); return Uint32LessThanOrEqual(elements_kind, Int32Constant(TERMINAL_FAST_ELEMENTS_KIND)); } Node* CodeStubAssembler::IsFastSmiElementsKind(Node* elements_kind) { return Uint32LessThanOrEqual(elements_kind, Int32Constant(HOLEY_SMI_ELEMENTS)); } Node* CodeStubAssembler::IsHoleyFastElementsKind(Node* elements_kind) { CSA_ASSERT(this, IsFastElementsKind(elements_kind)); STATIC_ASSERT(HOLEY_SMI_ELEMENTS == (PACKED_SMI_ELEMENTS | 1)); STATIC_ASSERT(HOLEY_ELEMENTS == (PACKED_ELEMENTS | 1)); STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == (PACKED_DOUBLE_ELEMENTS | 1)); return IsSetWord32(elements_kind, 1); } Node* CodeStubAssembler::IsElementsKindGreaterThan( Node* target_kind, ElementsKind reference_kind) { return Int32GreaterThan(target_kind, Int32Constant(reference_kind)); } TNode<BoolT> CodeStubAssembler::IsElementsKindLessThanOrEqual( TNode<Int32T> target_kind, ElementsKind reference_kind) { return Int32LessThanOrEqual(target_kind, Int32Constant(reference_kind)); } Node* CodeStubAssembler::IsDebugActive() { Node* is_debug_active = Load( MachineType::Uint8(), ExternalConstant(ExternalReference::debug_is_active_address(isolate()))); return Word32NotEqual(is_debug_active, Int32Constant(0)); } TNode<BoolT> CodeStubAssembler::IsRuntimeCallStatsEnabled() { TNode<Word32T> flag_value = UncheckedCast<Word32T>(Load( MachineType::Int32(), ExternalConstant(ExternalReference::address_of_runtime_stats_flag()))); return Word32NotEqual(flag_value, Int32Constant(0)); } Node* CodeStubAssembler::IsPromiseHookEnabled() { Node* const promise_hook = Load( MachineType::Pointer(), ExternalConstant(ExternalReference::promise_hook_address(isolate()))); return WordNotEqual(promise_hook, IntPtrConstant(0)); } Node* CodeStubAssembler::HasAsyncEventDelegate() { Node* const async_event_delegate = Load(MachineType::Pointer(), ExternalConstant( ExternalReference::async_event_delegate_address(isolate()))); return WordNotEqual(async_event_delegate, IntPtrConstant(0)); } Node* CodeStubAssembler::IsPromiseHookEnabledOrHasAsyncEventDelegate() { Node* const promise_hook_or_async_event_delegate = Load(MachineType::Uint8(), ExternalConstant( ExternalReference::promise_hook_or_async_event_delegate_address( isolate()))); return Word32NotEqual(promise_hook_or_async_event_delegate, Int32Constant(0)); } Node* CodeStubAssembler:: IsPromiseHookEnabledOrDebugIsActiveOrHasAsyncEventDelegate() { Node* const promise_hook_or_debug_is_active_or_async_event_delegate = Load( MachineType::Uint8(), ExternalConstant( ExternalReference:: promise_hook_or_debug_is_active_or_async_event_delegate_address( isolate()))); return Word32NotEqual(promise_hook_or_debug_is_active_or_async_event_delegate, Int32Constant(0)); } TNode<Code> CodeStubAssembler::LoadBuiltin(TNode<Smi> builtin_id) { CSA_ASSERT(this, SmiGreaterThanOrEqual(builtin_id, SmiConstant(0))); CSA_ASSERT(this, SmiLessThan(builtin_id, SmiConstant(Builtins::builtin_count))); int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize; int index_shift = kPointerSizeLog2 - kSmiShiftBits; TNode<WordT> table_index = index_shift >= 0 ? WordShl(BitcastTaggedToWord(builtin_id), index_shift) : WordSar(BitcastTaggedToWord(builtin_id), -index_shift); return CAST( Load(MachineType::TaggedPointer(), ExternalConstant(ExternalReference::builtins_address(isolate())), table_index)); } TNode<Code> CodeStubAssembler::GetSharedFunctionInfoCode( SloppyTNode<SharedFunctionInfo> shared_info, Label* if_compile_lazy) { TNode<Object> sfi_data = LoadObjectField(shared_info, SharedFunctionInfo::kFunctionDataOffset); TVARIABLE(Code, sfi_code); Label done(this); Label check_instance_type(this); // IsSmi: Is builtin GotoIf(TaggedIsNotSmi(sfi_data), &check_instance_type); if (if_compile_lazy) { GotoIf(SmiEqual(CAST(sfi_data), SmiConstant(Builtins::kCompileLazy)), if_compile_lazy); } sfi_code = LoadBuiltin(CAST(sfi_data)); Goto(&done); // Switch on data's instance type. BIND(&check_instance_type); TNode<Int32T> data_type = LoadInstanceType(CAST(sfi_data)); int32_t case_values[] = {BYTECODE_ARRAY_TYPE, WASM_EXPORTED_FUNCTION_DATA_TYPE, FIXED_ARRAY_TYPE, UNCOMPILED_DATA_WITHOUT_PRE_PARSED_SCOPE_TYPE, UNCOMPILED_DATA_WITH_PRE_PARSED_SCOPE_TYPE, FUNCTION_TEMPLATE_INFO_TYPE}; Label check_is_bytecode_array(this); Label check_is_exported_function_data(this); Label check_is_fixed_array(this); Label check_is_uncompiled_data_without_pre_parsed_scope(this); Label check_is_uncompiled_data_with_pre_parsed_scope(this); Label check_is_function_template_info(this); Label check_is_interpreter_data(this); Label* case_labels[] = {&check_is_bytecode_array, &check_is_exported_function_data, &check_is_fixed_array, &check_is_uncompiled_data_without_pre_parsed_scope, &check_is_uncompiled_data_with_pre_parsed_scope, &check_is_function_template_info}; STATIC_ASSERT(arraysize(case_values) == arraysize(case_labels)); Switch(data_type, &check_is_interpreter_data, case_values, case_labels, arraysize(case_labels)); // IsBytecodeArray: Interpret bytecode BIND(&check_is_bytecode_array); sfi_code = HeapConstant(BUILTIN_CODE(isolate(), InterpreterEntryTrampoline)); Goto(&done); // IsWasmExportedFunctionData: Use the wrapper code BIND(&check_is_exported_function_data); sfi_code = CAST(LoadObjectField( CAST(sfi_data), WasmExportedFunctionData::kWrapperCodeOffset)); Goto(&done); // IsFixedArray: Instantiate using AsmWasmData BIND(&check_is_fixed_array); sfi_code = HeapConstant(BUILTIN_CODE(isolate(), InstantiateAsmJs)); Goto(&done); // IsUncompiledDataWithPreParsedScope | IsUncompiledDataWithoutPreParsedScope: // Compile lazy BIND(&check_is_uncompiled_data_with_pre_parsed_scope); Goto(&check_is_uncompiled_data_without_pre_parsed_scope); BIND(&check_is_uncompiled_data_without_pre_parsed_scope); sfi_code = HeapConstant(BUILTIN_CODE(isolate(), CompileLazy)); Goto(if_compile_lazy ? if_compile_lazy : &done); // IsFunctionTemplateInfo: API call BIND(&check_is_function_template_info); sfi_code = HeapConstant(BUILTIN_CODE(isolate(), HandleApiCall)); Goto(&done); // IsInterpreterData: Interpret bytecode BIND(&check_is_interpreter_data); // This is the default branch, so assert that we have the expected data type. CSA_ASSERT(this, Word32Equal(data_type, Int32Constant(INTERPRETER_DATA_TYPE))); sfi_code = CAST(LoadObjectField( CAST(sfi_data), InterpreterData::kInterpreterTrampolineOffset)); Goto(&done); BIND(&done); return sfi_code.value(); } Node* CodeStubAssembler::AllocateFunctionWithMapAndContext(Node* map, Node* shared_info, Node* context) { CSA_SLOW_ASSERT(this, IsMap(map)); Node* const code = GetSharedFunctionInfoCode(shared_info); // TODO(ishell): All the callers of this function pass map loaded from // Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX. So we can remove // map parameter. CSA_ASSERT(this, Word32BinaryNot(IsConstructorMap(map))); CSA_ASSERT(this, Word32BinaryNot(IsFunctionWithPrototypeSlotMap(map))); Node* const fun = Allocate(JSFunction::kSizeWithoutPrototype); STATIC_ASSERT(JSFunction::kSizeWithoutPrototype == 7 * kPointerSize); StoreMapNoWriteBarrier(fun, map); StoreObjectFieldRoot(fun, JSObject::kPropertiesOrHashOffset, RootIndex::kEmptyFixedArray); StoreObjectFieldRoot(fun, JSObject::kElementsOffset, RootIndex::kEmptyFixedArray); StoreObjectFieldRoot(fun, JSFunction::kFeedbackCellOffset, RootIndex::kManyClosuresCell); StoreObjectFieldNoWriteBarrier(fun, JSFunction::kSharedFunctionInfoOffset, shared_info); StoreObjectFieldNoWriteBarrier(fun, JSFunction::kContextOffset, context); StoreObjectFieldNoWriteBarrier(fun, JSFunction::kCodeOffset, code); return fun; } Node* CodeStubAssembler::MarkerIsFrameType(Node* marker_or_function, StackFrame::Type frame_type) { return WordEqual(marker_or_function, IntPtrConstant(StackFrame::TypeToMarker(frame_type))); } Node* CodeStubAssembler::MarkerIsNotFrameType(Node* marker_or_function, StackFrame::Type frame_type) { return WordNotEqual(marker_or_function, IntPtrConstant(StackFrame::TypeToMarker(frame_type))); } void CodeStubAssembler::CheckPrototypeEnumCache(Node* receiver, Node* receiver_map, Label* if_fast, Label* if_slow) { VARIABLE(var_object, MachineRepresentation::kTagged, receiver); VARIABLE(var_object_map, MachineRepresentation::kTagged, receiver_map); Label loop(this, {&var_object, &var_object_map}), done_loop(this); Goto(&loop); BIND(&loop); { // Check that there are no elements on the current {object}. Label if_no_elements(this); Node* object = var_object.value(); Node* object_map = var_object_map.value(); // The following relies on the elements only aliasing with JSProxy::target, // which is a Javascript value and hence cannot be confused with an elements // backing store. STATIC_ASSERT(JSObject::kElementsOffset == JSProxy::kTargetOffset); Node* object_elements = LoadObjectField(object, JSObject::kElementsOffset); GotoIf(IsEmptyFixedArray(object_elements), &if_no_elements); GotoIf(IsEmptySlowElementDictionary(object_elements), &if_no_elements); // It might still be an empty JSArray. GotoIfNot(IsJSArrayMap(object_map), if_slow); Node* object_length = LoadJSArrayLength(object); Branch(WordEqual(object_length, SmiConstant(0)), &if_no_elements, if_slow); // Continue with the {object}s prototype. BIND(&if_no_elements); object = LoadMapPrototype(object_map); GotoIf(IsNull(object), if_fast); // For all {object}s but the {receiver}, check that the cache is empty. var_object.Bind(object); object_map = LoadMap(object); var_object_map.Bind(object_map); Node* object_enum_length = LoadMapEnumLength(object_map); Branch(WordEqual(object_enum_length, IntPtrConstant(0)), &loop, if_slow); } } Node* CodeStubAssembler::CheckEnumCache(Node* receiver, Label* if_empty, Label* if_runtime) { Label if_fast(this), if_cache(this), if_no_cache(this, Label::kDeferred); Node* receiver_map = LoadMap(receiver); // Check if the enum length field of the {receiver} is properly initialized, // indicating that there is an enum cache. Node* receiver_enum_length = LoadMapEnumLength(receiver_map); Branch(WordEqual(receiver_enum_length, IntPtrConstant(kInvalidEnumCacheSentinel)), &if_no_cache, &if_cache); BIND(&if_no_cache); { // Avoid runtime-call for empty dictionary receivers. GotoIfNot(IsDictionaryMap(receiver_map), if_runtime); TNode<NameDictionary> properties = CAST(LoadSlowProperties(receiver)); TNode<Smi> length = GetNumberOfElements(properties); GotoIfNot(WordEqual(length, SmiConstant(0)), if_runtime); // Check that there are no elements on the {receiver} and its prototype // chain. Given that we do not create an EnumCache for dict-mode objects, // directly jump to {if_empty} if there are no elements and no properties // on the {receiver}. CheckPrototypeEnumCache(receiver, receiver_map, if_empty, if_runtime); } // Check that there are no elements on the fast {receiver} and its // prototype chain. BIND(&if_cache); CheckPrototypeEnumCache(receiver, receiver_map, &if_fast, if_runtime); BIND(&if_fast); return receiver_map; } TNode<IntPtrT> CodeStubAssembler::GetArgumentsLength(CodeStubArguments* args) { return args->GetLength(); } TNode<Object> CodeStubAssembler::GetArgumentValue(CodeStubArguments* args, TNode<IntPtrT> index) { return args->GetOptionalArgumentValue(index); } void CodeStubAssembler::Print(const char* s) { std::string formatted(s); formatted += "\n"; CallRuntime(Runtime::kGlobalPrint, NoContextConstant(), StringConstant(formatted.c_str())); } void CodeStubAssembler::Print(const char* prefix, Node* tagged_value) { if (prefix != nullptr) { std::string formatted(prefix); formatted += ": "; Handle<String> string = isolate()->factory()->NewStringFromAsciiChecked( formatted.c_str(), TENURED); CallRuntime(Runtime::kGlobalPrint, NoContextConstant(), HeapConstant(string)); } CallRuntime(Runtime::kDebugPrint, NoContextConstant(), tagged_value); } void CodeStubAssembler::PerformStackCheck(TNode<Context> context) { Label ok(this), stack_check_interrupt(this, Label::kDeferred); // The instruction sequence below is carefully crafted to hit our pattern // matcher for stack checks within instruction selection. // See StackCheckMatcher::Matched and JSGenericLowering::LowerJSStackCheck. TNode<UintPtrT> sp = UncheckedCast<UintPtrT>(LoadStackPointer()); TNode<UintPtrT> stack_limit = UncheckedCast<UintPtrT>(Load( MachineType::Pointer(), ExternalConstant(ExternalReference::address_of_stack_limit(isolate())))); TNode<BoolT> sp_within_limit = UintPtrLessThan(stack_limit, sp); Branch(sp_within_limit, &ok, &stack_check_interrupt); BIND(&stack_check_interrupt); CallRuntime(Runtime::kStackGuard, context); Goto(&ok); BIND(&ok); } void CodeStubAssembler::InitializeFunctionContext(Node* native_context, Node* context, int slots) { DCHECK_GE(slots, Context::MIN_CONTEXT_SLOTS); StoreMapNoWriteBarrier(context, RootIndex::kFunctionContextMap); StoreObjectFieldNoWriteBarrier(context, FixedArray::kLengthOffset, SmiConstant(slots)); Node* const empty_scope_info = LoadContextElement(native_context, Context::SCOPE_INFO_INDEX); StoreContextElementNoWriteBarrier(context, Context::SCOPE_INFO_INDEX, empty_scope_info); StoreContextElementNoWriteBarrier(context, Context::PREVIOUS_INDEX, UndefinedConstant()); StoreContextElementNoWriteBarrier(context, Context::EXTENSION_INDEX, TheHoleConstant()); StoreContextElementNoWriteBarrier(context, Context::NATIVE_CONTEXT_INDEX, native_context); } TNode<JSArray> CodeStubAssembler::ArrayCreate(TNode<Context> context, TNode<Number> length) { TVARIABLE(JSArray, array); Label allocate_js_array(this); Label done(this), next(this), runtime(this, Label::kDeferred); TNode<Smi> limit = SmiConstant(JSArray::kInitialMaxFastElementArray); CSA_ASSERT_BRANCH(this, [=](Label* ok, Label* not_ok) { BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, length, SmiConstant(0), ok, not_ok); }); // This check also transitively covers the case where length is too big // to be representable by a SMI and so is not usable with // AllocateJSArray. BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, length, limit, &runtime, &next); BIND(&runtime); { TNode<Context> native_context = LoadNativeContext(context); TNode<JSFunction> array_function = CAST(LoadContextElement(native_context, Context::ARRAY_FUNCTION_INDEX)); array = CAST(CallRuntime(Runtime::kNewArray, context, array_function, length, array_function, UndefinedConstant())); Goto(&done); } BIND(&next); CSA_ASSERT(this, TaggedIsSmi(length)); TNode<Map> array_map = CAST(LoadContextElement( context, Context::JS_ARRAY_PACKED_SMI_ELEMENTS_MAP_INDEX)); // TODO(delphick): Consider using // AllocateUninitializedJSArrayWithElements to avoid initializing an // array and then writing over it. array = AllocateJSArray(PACKED_SMI_ELEMENTS, array_map, length, SmiConstant(0), nullptr, ParameterMode::SMI_PARAMETERS); Goto(&done); BIND(&done); return array.value(); } void CodeStubAssembler::SetPropertyLength(TNode<Context> context, TNode<Object> array, TNode<Number> length) { Label fast(this), runtime(this), done(this); // There's no need to set the length, if // 1) the array is a fast JS array and // 2) the new length is equal to the old length. // as the set is not observable. Otherwise fall back to the run-time. // 1) Check that the array has fast elements. // TODO(delphick): Consider changing this since it does an an unnecessary // check for SMIs. // TODO(delphick): Also we could hoist this to after the array construction // and copy the args into array in the same way as the Array constructor. BranchIfFastJSArray(array, context, &fast, &runtime); BIND(&fast); { TNode<JSArray> fast_array = CAST(array); TNode<Smi> length_smi = CAST(length); TNode<Smi> old_length = LoadFastJSArrayLength(fast_array); CSA_ASSERT(this, TaggedIsPositiveSmi(old_length)); // 2) If the created array's length matches the required length, then // there's nothing else to do. Otherwise use the runtime to set the // property as that will insert holes into excess elements or shrink // the backing store as appropriate. Branch(SmiNotEqual(length_smi, old_length), &runtime, &done); } BIND(&runtime); { SetPropertyStrict(context, array, CodeStubAssembler::LengthStringConstant(), length); Goto(&done); } BIND(&done); } void CodeStubAssembler::GotoIfInitialPrototypePropertyModified( TNode<Map> object_map, TNode<Map> initial_prototype_map, int descriptor, RootIndex field_name_root_index, Label* if_modified) { DescriptorIndexAndName index_name{descriptor, field_name_root_index}; GotoIfInitialPrototypePropertiesModified( object_map, initial_prototype_map, Vector<DescriptorIndexAndName>(&index_name, 1), if_modified); } void CodeStubAssembler::GotoIfInitialPrototypePropertiesModified( TNode<Map> object_map, TNode<Map> initial_prototype_map, Vector<DescriptorIndexAndName> properties, Label* if_modified) { TNode<Map> prototype_map = LoadMap(LoadMapPrototype(object_map)); GotoIfNot(WordEqual(prototype_map, initial_prototype_map), if_modified); if (FLAG_track_constant_fields) { // With constant field tracking, we need to make sure that important // properties in the prototype has not been tampered with. We do this by // checking that their slots in the prototype's descriptor array are still // marked as const. TNode<DescriptorArray> descriptors = LoadMapDescriptors(prototype_map); TNode<Uint32T> combined_details; for (int i = 0; i < properties.length(); i++) { // Assert the descriptor index is in-bounds. int descriptor = properties[i].descriptor_index; CSA_ASSERT(this, SmiLessThan(SmiConstant(descriptor), LoadWeakFixedArrayLength(descriptors))); // Assert that the name is correct. This essentially checks that // the descriptor index corresponds to the insertion order in // the bootstrapper. CSA_ASSERT(this, WordEqual(LoadWeakFixedArrayElement( descriptors, DescriptorArray::ToKeyIndex(descriptor)), LoadRoot(properties[i].name_root_index))); TNode<Uint32T> details = DescriptorArrayGetDetails(descriptors, Uint32Constant(descriptor)); if (i == 0) { combined_details = details; } else { combined_details = Unsigned(Word32And(combined_details, details)); } } TNode<Uint32T> constness = DecodeWord32<PropertyDetails::ConstnessField>(combined_details); GotoIfNot( Word32Equal(constness, Int32Constant(static_cast<int>(PropertyConstness::kConst))), if_modified); } } } // namespace internal } // namespace v8