// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #include "src/accessors.h" #include "src/api.h" #include "src/arguments.h" #include "src/base/bits.h" #include "src/codegen.h" #include "src/conversions.h" #include "src/execution.h" #include "src/ic/call-optimization.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic-inl.h" #include "src/ic/ic-compiler.h" #include "src/ic/stub-cache.h" #include "src/prototype.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { char IC::TransitionMarkFromState(IC::State state) { switch (state) { case UNINITIALIZED: return '0'; case PREMONOMORPHIC: return '.'; case MONOMORPHIC: return '1'; case PROTOTYPE_FAILURE: return '^'; case POLYMORPHIC: return 'P'; case MEGAMORPHIC: return 'N'; case GENERIC: return 'G'; // We never see the debugger states here, because the state is // computed from the original code - not the patched code. Let // these cases fall through to the unreachable code below. case DEBUG_STUB: break; // Type-vector-based ICs resolve state to one of the above. case DEFAULT: break; } UNREACHABLE(); return 0; } const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) { if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW"; if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) { return ".IGNORE_OOB"; } if (IsGrowStoreMode(mode)) return ".GROW"; return ""; } #ifdef DEBUG #define TRACE_GENERIC_IC(isolate, type, reason) \ do { \ if (FLAG_trace_ic) { \ PrintF("[%s patching generic stub in ", type); \ JavaScriptFrame::PrintTop(isolate, stdout, false, true); \ PrintF(" (%s)]\n", reason); \ } \ } while (false) #else #define TRACE_GENERIC_IC(isolate, type, reason) \ do { \ if (FLAG_trace_ic) { \ PrintF("[%s patching generic stub in ", type); \ PrintF("(see below) (%s)]\n", reason); \ } \ } while (false) #endif // DEBUG void IC::TraceIC(const char* type, Handle<Object> name) { if (FLAG_trace_ic) { State new_state = UseVector() ? nexus()->StateFromFeedback() : raw_target()->ic_state(); TraceIC(type, name, state(), new_state); } } void IC::TraceIC(const char* type, Handle<Object> name, State old_state, State new_state) { if (FLAG_trace_ic) { Code* new_target = raw_target(); PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type); // TODO(jkummerow): Add support for "apply". The logic is roughly: // marker = [fp_ + kMarkerOffset]; // if marker is smi and marker.value == INTERNAL and // the frame's code == builtin(Builtins::kFunctionApply): // then print "apply from" and advance one frame Object* maybe_function = Memory::Object_at(fp_ + JavaScriptFrameConstants::kFunctionOffset); if (maybe_function->IsJSFunction()) { JSFunction* function = JSFunction::cast(maybe_function); JavaScriptFrame::PrintFunctionAndOffset(function, function->code(), pc(), stdout, true); } ExtraICState extra_state = new_target->extra_ic_state(); const char* modifier = ""; if (new_target->kind() == Code::KEYED_STORE_IC) { modifier = GetTransitionMarkModifier( KeyedStoreIC::GetKeyedAccessStoreMode(extra_state)); } PrintF(" (%c->%c%s) ", TransitionMarkFromState(old_state), TransitionMarkFromState(new_state), modifier); #ifdef OBJECT_PRINT OFStream os(stdout); name->Print(os); #else name->ShortPrint(stdout); #endif PrintF("]\n"); } } #define TRACE_IC(type, name) TraceIC(type, name) IC::IC(FrameDepth depth, Isolate* isolate, FeedbackNexus* nexus, bool for_queries_only) : isolate_(isolate), target_set_(false), vector_set_(false), target_maps_set_(false), nexus_(nexus) { // To improve the performance of the (much used) IC code, we unfold a few // levels of the stack frame iteration code. This yields a ~35% speedup when // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag. const Address entry = Isolate::c_entry_fp(isolate->thread_local_top()); Address constant_pool = NULL; if (FLAG_enable_ool_constant_pool) { constant_pool = Memory::Address_at(entry + ExitFrameConstants::kConstantPoolOffset); } Address* pc_address = reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset); Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset); // If there's another JavaScript frame on the stack or a // StubFailureTrampoline, we need to look one frame further down the stack to // find the frame pointer and the return address stack slot. if (depth == EXTRA_CALL_FRAME) { if (FLAG_enable_ool_constant_pool) { constant_pool = Memory::Address_at(fp + StandardFrameConstants::kConstantPoolOffset); } const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset; pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset); fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); } #ifdef DEBUG StackFrameIterator it(isolate); for (int i = 0; i < depth + 1; i++) it.Advance(); StackFrame* frame = it.frame(); DCHECK(fp == frame->fp() && pc_address == frame->pc_address()); #endif fp_ = fp; if (FLAG_enable_ool_constant_pool) { raw_constant_pool_ = handle( ConstantPoolArray::cast(reinterpret_cast<Object*>(constant_pool)), isolate); } pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address); target_ = handle(raw_target(), isolate); kind_ = target_->kind(); state_ = (!for_queries_only && UseVector()) ? nexus->StateFromFeedback() : target_->ic_state(); old_state_ = state_; extra_ic_state_ = target_->extra_ic_state(); } SharedFunctionInfo* IC::GetSharedFunctionInfo() const { // Compute the JavaScript frame for the frame pointer of this IC // structure. We need this to be able to find the function // corresponding to the frame. StackFrameIterator it(isolate()); while (it.frame()->fp() != this->fp()) it.Advance(); JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame()); // Find the function on the stack and both the active code for the // function and the original code. JSFunction* function = frame->function(); return function->shared(); } Code* IC::GetCode() const { HandleScope scope(isolate()); Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate()); Code* code = shared->code(); return code; } Code* IC::GetOriginalCode() const { HandleScope scope(isolate()); Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate()); DCHECK(Debug::HasDebugInfo(shared)); Code* original_code = Debug::GetDebugInfo(shared)->original_code(); DCHECK(original_code->IsCode()); return original_code; } static void LookupForRead(LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return; case LookupIterator::INTERCEPTOR: { // If there is a getter, return; otherwise loop to perform the lookup. Handle<JSObject> holder = it->GetHolder<JSObject>(); if (!holder->GetNamedInterceptor()->getter()->IsUndefined()) { return; } break; } case LookupIterator::ACCESS_CHECK: // PropertyHandlerCompiler::CheckPrototypes() knows how to emit // access checks for global proxies. if (it->GetHolder<JSObject>()->IsJSGlobalProxy() && it->HasAccess(v8::ACCESS_GET)) { break; } return; case LookupIterator::ACCESSOR: case LookupIterator::DATA: return; } } } bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver, Handle<String> name) { if (!IsNameCompatibleWithPrototypeFailure(name)) return false; Handle<Map> receiver_map = TypeToMap(*receiver_type(), isolate()); if (UseVector()) { maybe_handler_ = nexus()->FindHandlerForMap(receiver_map); } else { maybe_handler_ = target()->FindHandlerForMap(*receiver_map); } // The current map wasn't handled yet. There's no reason to stay monomorphic, // *unless* we're moving from a deprecated map to its replacement, or // to a more general elements kind. // TODO(verwaest): Check if the current map is actually what the old map // would transition to. if (maybe_handler_.is_null()) { if (!receiver_map->IsJSObjectMap()) return false; Map* first_map = FirstTargetMap(); if (first_map == NULL) return false; Handle<Map> old_map(first_map); if (old_map->is_deprecated()) return true; if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(), receiver_map->elements_kind())) { return true; } return false; } CacheHolderFlag flag; Handle<Map> ic_holder_map( GetICCacheHolder(*receiver_type(), isolate(), &flag)); DCHECK(flag != kCacheOnReceiver || receiver->IsJSObject()); DCHECK(flag != kCacheOnPrototype || !receiver->IsJSReceiver()); DCHECK(flag != kCacheOnPrototypeReceiverIsDictionary); if (state() == MONOMORPHIC) { int index = ic_holder_map->IndexInCodeCache(*name, *target()); if (index >= 0) { ic_holder_map->RemoveFromCodeCache(*name, *target(), index); } } if (receiver->IsGlobalObject()) { Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver); LookupIterator it(global, name, LookupIterator::OWN_SKIP_INTERCEPTOR); if (it.state() == LookupIterator::ACCESS_CHECK) return false; if (!it.IsFound()) return false; Handle<PropertyCell> cell = it.GetPropertyCell(); return cell->type()->IsConstant(); } return true; } bool IC::IsNameCompatibleWithPrototypeFailure(Handle<Object> name) { if (target()->is_keyed_stub()) { // Determine whether the failure is due to a name failure. if (!name->IsName()) return false; Name* stub_name = UseVector() ? nexus()->FindFirstName() : target()->FindFirstName(); if (*name != stub_name) return false; } return true; } void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) { update_receiver_type(receiver); if (!name->IsString()) return; if (state() != MONOMORPHIC && state() != POLYMORPHIC) return; if (receiver->IsUndefined() || receiver->IsNull()) return; // Remove the target from the code cache if it became invalid // because of changes in the prototype chain to avoid hitting it // again. if (TryRemoveInvalidPrototypeDependentStub(receiver, Handle<String>::cast(name))) { MarkPrototypeFailure(name); return; } // The builtins object is special. It only changes when JavaScript // builtins are loaded lazily. It is important to keep inline // caches for the builtins object monomorphic. Therefore, if we get // an inline cache miss for the builtins object after lazily loading // JavaScript builtins, we return uninitialized as the state to // force the inline cache back to monomorphic state. if (receiver->IsJSBuiltinsObject()) state_ = PREMONOMORPHIC; } MaybeHandle<Object> IC::TypeError(const char* type, Handle<Object> object, Handle<Object> key) { HandleScope scope(isolate()); Handle<Object> args[2] = {key, object}; THROW_NEW_ERROR(isolate(), NewTypeError(type, HandleVector(args, 2)), Object); } MaybeHandle<Object> IC::ReferenceError(const char* type, Handle<Name> name) { HandleScope scope(isolate()); THROW_NEW_ERROR(isolate(), NewReferenceError(type, HandleVector(&name, 1)), Object); } static void ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state, int* polymorphic_delta, int* generic_delta) { switch (old_state) { case UNINITIALIZED: case PREMONOMORPHIC: if (new_state == UNINITIALIZED || new_state == PREMONOMORPHIC) break; if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) { *polymorphic_delta = 1; } else if (new_state == MEGAMORPHIC || new_state == GENERIC) { *generic_delta = 1; } break; case MONOMORPHIC: case POLYMORPHIC: if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) break; *polymorphic_delta = -1; if (new_state == MEGAMORPHIC || new_state == GENERIC) { *generic_delta = 1; } break; case MEGAMORPHIC: case GENERIC: if (new_state == MEGAMORPHIC || new_state == GENERIC) break; *generic_delta = -1; if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) { *polymorphic_delta = 1; } break; case PROTOTYPE_FAILURE: case DEBUG_STUB: case DEFAULT: UNREACHABLE(); } } void IC::OnTypeFeedbackChanged(Isolate* isolate, Address address, State old_state, State new_state, bool target_remains_ic_stub) { Code* host = isolate->inner_pointer_to_code_cache()->GetCacheEntry(address)->code; if (host->kind() != Code::FUNCTION) return; if (FLAG_type_info_threshold > 0 && target_remains_ic_stub && // Not all Code objects have TypeFeedbackInfo. host->type_feedback_info()->IsTypeFeedbackInfo()) { int polymorphic_delta = 0; // "Polymorphic" here includes monomorphic. int generic_delta = 0; // "Generic" here includes megamorphic. ComputeTypeInfoCountDelta(old_state, new_state, &polymorphic_delta, &generic_delta); TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info()); info->change_ic_with_type_info_count(polymorphic_delta); info->change_ic_generic_count(generic_delta); } if (host->type_feedback_info()->IsTypeFeedbackInfo()) { TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info()); info->change_own_type_change_checksum(); } host->set_profiler_ticks(0); isolate->runtime_profiler()->NotifyICChanged(); // TODO(2029): When an optimized function is patched, it would // be nice to propagate the corresponding type information to its // unoptimized version for the benefit of later inlining. } // static void IC::OnTypeFeedbackChanged(Isolate* isolate, Code* host, TypeFeedbackVector* vector, State old_state, State new_state) { if (host->kind() != Code::FUNCTION) return; if (FLAG_type_info_threshold > 0) { int polymorphic_delta = 0; // "Polymorphic" here includes monomorphic. int generic_delta = 0; // "Generic" here includes megamorphic. ComputeTypeInfoCountDelta(old_state, new_state, &polymorphic_delta, &generic_delta); vector->change_ic_with_type_info_count(polymorphic_delta); vector->change_ic_generic_count(generic_delta); } TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info()); info->change_own_type_change_checksum(); host->set_profiler_ticks(0); isolate->runtime_profiler()->NotifyICChanged(); // TODO(2029): When an optimized function is patched, it would // be nice to propagate the corresponding type information to its // unoptimized version for the benefit of later inlining. } void IC::PostPatching(Address address, Code* target, Code* old_target) { // Type vector based ICs update these statistics at a different time because // they don't always patch on state change. if (ICUseVector(target->kind())) return; Isolate* isolate = target->GetHeap()->isolate(); State old_state = UNINITIALIZED; State new_state = UNINITIALIZED; bool target_remains_ic_stub = false; if (old_target->is_inline_cache_stub() && target->is_inline_cache_stub()) { old_state = old_target->ic_state(); new_state = target->ic_state(); target_remains_ic_stub = true; } OnTypeFeedbackChanged(isolate, address, old_state, new_state, target_remains_ic_stub); } void IC::Clear(Isolate* isolate, Address address, ConstantPoolArray* constant_pool) { Code* target = GetTargetAtAddress(address, constant_pool); // Don't clear debug break inline cache as it will remove the break point. if (target->is_debug_stub()) return; switch (target->kind()) { case Code::LOAD_IC: if (FLAG_vector_ics) return; return LoadIC::Clear(isolate, address, target, constant_pool); case Code::KEYED_LOAD_IC: if (FLAG_vector_ics) return; return KeyedLoadIC::Clear(isolate, address, target, constant_pool); case Code::STORE_IC: return StoreIC::Clear(isolate, address, target, constant_pool); case Code::KEYED_STORE_IC: return KeyedStoreIC::Clear(isolate, address, target, constant_pool); case Code::COMPARE_IC: return CompareIC::Clear(isolate, address, target, constant_pool); case Code::COMPARE_NIL_IC: return CompareNilIC::Clear(address, target, constant_pool); case Code::CALL_IC: // CallICs are vector-based and cleared differently. case Code::BINARY_OP_IC: case Code::TO_BOOLEAN_IC: // Clearing these is tricky and does not // make any performance difference. return; default: UNREACHABLE(); } } void KeyedLoadIC::Clear(Isolate* isolate, Address address, Code* target, ConstantPoolArray* constant_pool) { DCHECK(!FLAG_vector_ics); if (IsCleared(target)) return; // Make sure to also clear the map used in inline fast cases. If we // do not clear these maps, cached code can keep objects alive // through the embedded maps. SetTargetAtAddress(address, *pre_monomorphic_stub(isolate), constant_pool); } void KeyedLoadIC::Clear(Isolate* isolate, Code* host, KeyedLoadICNexus* nexus) { if (IsCleared(nexus)) return; // Make sure to also clear the map used in inline fast cases. If we // do not clear these maps, cached code can keep objects alive // through the embedded maps. State state = nexus->StateFromFeedback(); nexus->ConfigurePremonomorphic(); OnTypeFeedbackChanged(isolate, host, nexus->vector(), state, PREMONOMORPHIC); } void CallIC::Clear(Isolate* isolate, Code* host, CallICNexus* nexus) { // Determine our state. Object* feedback = nexus->vector()->Get(nexus->slot()); State state = nexus->StateFromFeedback(); if (state != UNINITIALIZED && !feedback->IsAllocationSite()) { nexus->ConfigureUninitialized(); // The change in state must be processed. OnTypeFeedbackChanged(isolate, host, nexus->vector(), state, UNINITIALIZED); } } void LoadIC::Clear(Isolate* isolate, Address address, Code* target, ConstantPoolArray* constant_pool) { DCHECK(!FLAG_vector_ics); if (IsCleared(target)) return; Code* code = PropertyICCompiler::FindPreMonomorphic(isolate, Code::LOAD_IC, target->extra_ic_state()); SetTargetAtAddress(address, code, constant_pool); } void LoadIC::Clear(Isolate* isolate, Code* host, LoadICNexus* nexus) { if (IsCleared(nexus)) return; State state = nexus->StateFromFeedback(); nexus->ConfigurePremonomorphic(); OnTypeFeedbackChanged(isolate, host, nexus->vector(), state, PREMONOMORPHIC); } void StoreIC::Clear(Isolate* isolate, Address address, Code* target, ConstantPoolArray* constant_pool) { if (IsCleared(target)) return; Code* code = PropertyICCompiler::FindPreMonomorphic(isolate, Code::STORE_IC, target->extra_ic_state()); SetTargetAtAddress(address, code, constant_pool); } void KeyedStoreIC::Clear(Isolate* isolate, Address address, Code* target, ConstantPoolArray* constant_pool) { if (IsCleared(target)) return; SetTargetAtAddress( address, *pre_monomorphic_stub( isolate, StoreIC::GetStrictMode(target->extra_ic_state())), constant_pool); } void CompareIC::Clear(Isolate* isolate, Address address, Code* target, ConstantPoolArray* constant_pool) { DCHECK(CodeStub::GetMajorKey(target) == CodeStub::CompareIC); CompareICStub stub(target->stub_key(), isolate); // Only clear CompareICs that can retain objects. if (stub.state() != CompareICState::KNOWN_OBJECT) return; SetTargetAtAddress(address, GetRawUninitialized(isolate, stub.op()), constant_pool); PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK); } // static Handle<Code> KeyedLoadIC::generic_stub(Isolate* isolate) { if (FLAG_compiled_keyed_generic_loads) { return KeyedLoadGenericStub(isolate).GetCode(); } else { return isolate->builtins()->KeyedLoadIC_Generic(); } } static bool MigrateDeprecated(Handle<Object> object) { if (!object->IsJSObject()) return false; Handle<JSObject> receiver = Handle<JSObject>::cast(object); if (!receiver->map()->is_deprecated()) return false; JSObject::MigrateInstance(Handle<JSObject>::cast(object)); return true; } void IC::ConfigureVectorState(IC::State new_state) { DCHECK(UseVector()); if (kind() == Code::LOAD_IC) { LoadICNexus* nexus = casted_nexus<LoadICNexus>(); if (new_state == PREMONOMORPHIC) { nexus->ConfigurePremonomorphic(); } else if (new_state == MEGAMORPHIC) { nexus->ConfigureMegamorphic(); } else { UNREACHABLE(); } } else if (kind() == Code::KEYED_LOAD_IC) { KeyedLoadICNexus* nexus = casted_nexus<KeyedLoadICNexus>(); if (new_state == GENERIC) { nexus->ConfigureGeneric(); } else if (new_state == PREMONOMORPHIC) { nexus->ConfigurePremonomorphic(); } else { UNREACHABLE(); } } else { UNREACHABLE(); } vector_set_ = true; OnTypeFeedbackChanged(isolate(), get_host(), *vector(), saved_state(), new_state); } void IC::ConfigureVectorState(Handle<Name> name, Handle<HeapType> type, Handle<Code> handler) { DCHECK(UseVector()); if (kind() == Code::LOAD_IC) { LoadICNexus* nexus = casted_nexus<LoadICNexus>(); nexus->ConfigureMonomorphic(type, handler); } else { DCHECK(kind() == Code::KEYED_LOAD_IC); KeyedLoadICNexus* nexus = casted_nexus<KeyedLoadICNexus>(); nexus->ConfigureMonomorphic(name, type, handler); } vector_set_ = true; OnTypeFeedbackChanged(isolate(), get_host(), *vector(), saved_state(), MONOMORPHIC); } void IC::ConfigureVectorState(Handle<Name> name, TypeHandleList* types, CodeHandleList* handlers) { DCHECK(UseVector()); if (kind() == Code::LOAD_IC) { LoadICNexus* nexus = casted_nexus<LoadICNexus>(); nexus->ConfigurePolymorphic(types, handlers); } else { DCHECK(kind() == Code::KEYED_LOAD_IC); KeyedLoadICNexus* nexus = casted_nexus<KeyedLoadICNexus>(); nexus->ConfigurePolymorphic(name, types, handlers); } vector_set_ = true; OnTypeFeedbackChanged(isolate(), get_host(), *vector(), saved_state(), POLYMORPHIC); } MaybeHandle<Object> LoadIC::Load(Handle<Object> object, Handle<Name> name) { // If the object is undefined or null it's illegal to try to get any // of its properties; throw a TypeError in that case. if (object->IsUndefined() || object->IsNull()) { return TypeError("non_object_property_load", object, name); } // Check if the name is trivially convertible to an index and get // the element or char if so. uint32_t index; if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) { // Rewrite to the generic keyed load stub. if (FLAG_use_ic) { if (UseVector()) { ConfigureVectorState(GENERIC); } else { set_target(*KeyedLoadIC::generic_stub(isolate())); } TRACE_IC("LoadIC", name); TRACE_GENERIC_IC(isolate(), "LoadIC", "name as array index"); } Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Runtime::GetElementOrCharAt(isolate(), object, index), Object); return result; } bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic; if (FLAG_harmony_scoping && object->IsGlobalObject() && name->IsString()) { // Look up in script context table. Handle<String> str_name = Handle<String>::cast(name); Handle<GlobalObject> global = Handle<GlobalObject>::cast(object); Handle<ScriptContextTable> script_contexts( global->native_context()->script_context_table()); ScriptContextTable::LookupResult lookup_result; if (ScriptContextTable::Lookup(script_contexts, str_name, &lookup_result)) { if (use_ic && LoadScriptContextFieldStub::Accepted(&lookup_result)) { LoadScriptContextFieldStub stub(isolate(), &lookup_result); PatchCache(name, stub.GetCode()); } return FixedArray::get(ScriptContextTable::GetContext( script_contexts, lookup_result.context_index), lookup_result.slot_index); } } // Named lookup in the object. LookupIterator it(object, name); LookupForRead(&it); if (it.IsFound() || !IsUndeclaredGlobal(object)) { // Update inline cache and stub cache. if (use_ic) UpdateCaches(&it); // Get the property. Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::GetProperty(&it), Object); if (it.IsFound()) { return result; } else if (!IsUndeclaredGlobal(object)) { LOG(isolate(), SuspectReadEvent(*name, *object)); return result; } } return ReferenceError("not_defined", name); } static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps, Handle<Map> new_receiver_map) { DCHECK(!new_receiver_map.is_null()); for (int current = 0; current < receiver_maps->length(); ++current) { if (!receiver_maps->at(current).is_null() && receiver_maps->at(current).is_identical_to(new_receiver_map)) { return false; } } receiver_maps->Add(new_receiver_map); return true; } bool IC::UpdatePolymorphicIC(Handle<Name> name, Handle<Code> code) { if (!code->is_handler()) return false; if (target()->is_keyed_stub() && state() != PROTOTYPE_FAILURE) return false; Handle<HeapType> type = receiver_type(); TypeHandleList types; CodeHandleList handlers; TargetTypes(&types); int number_of_types = types.length(); int deprecated_types = 0; int handler_to_overwrite = -1; for (int i = 0; i < number_of_types; i++) { Handle<HeapType> current_type = types.at(i); if (current_type->IsClass() && current_type->AsClass()->Map()->is_deprecated()) { // Filter out deprecated maps to ensure their instances get migrated. ++deprecated_types; } else if (type->NowIs(current_type)) { // If the receiver type is already in the polymorphic IC, this indicates // there was a prototoype chain failure. In that case, just overwrite the // handler. handler_to_overwrite = i; } else if (handler_to_overwrite == -1 && current_type->IsClass() && type->IsClass() && IsTransitionOfMonomorphicTarget(*current_type->AsClass()->Map(), *type->AsClass()->Map())) { handler_to_overwrite = i; } } int number_of_valid_types = number_of_types - deprecated_types - (handler_to_overwrite != -1); if (number_of_valid_types >= 4) return false; if (number_of_types == 0 && state() != MONOMORPHIC && state() != POLYMORPHIC) { return false; } if (UseVector()) { if (!nexus()->FindHandlers(&handlers, types.length())) return false; } else { if (!target()->FindHandlers(&handlers, types.length())) return false; } number_of_valid_types++; if (number_of_valid_types > 1 && target()->is_keyed_stub()) return false; Handle<Code> ic; if (number_of_valid_types == 1) { if (UseVector()) { ConfigureVectorState(name, receiver_type(), code); } else { ic = PropertyICCompiler::ComputeMonomorphic(kind(), name, type, code, extra_ic_state()); } } else { if (handler_to_overwrite >= 0) { handlers.Set(handler_to_overwrite, code); if (!type->NowIs(types.at(handler_to_overwrite))) { types.Set(handler_to_overwrite, type); } } else { types.Add(type); handlers.Add(code); } if (UseVector()) { ConfigureVectorState(name, &types, &handlers); } else { ic = PropertyICCompiler::ComputePolymorphic(kind(), &types, &handlers, number_of_valid_types, name, extra_ic_state()); } } if (!UseVector()) set_target(*ic); return true; } Handle<HeapType> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) { return object->IsJSGlobalObject() ? HeapType::Constant(Handle<JSGlobalObject>::cast(object), isolate) : HeapType::NowOf(object, isolate); } Handle<Map> IC::TypeToMap(HeapType* type, Isolate* isolate) { if (type->Is(HeapType::Number())) return isolate->factory()->heap_number_map(); if (type->Is(HeapType::Boolean())) return isolate->factory()->boolean_map(); if (type->IsConstant()) { return handle( Handle<JSGlobalObject>::cast(type->AsConstant()->Value())->map()); } DCHECK(type->IsClass()); return type->AsClass()->Map(); } template <class T> typename T::TypeHandle IC::MapToType(Handle<Map> map, typename T::Region* region) { if (map->instance_type() == HEAP_NUMBER_TYPE) { return T::Number(region); } else if (map->instance_type() == ODDBALL_TYPE) { // The only oddballs that can be recorded in ICs are booleans. return T::Boolean(region); } else { return T::Class(map, region); } } template Type* IC::MapToType<Type>(Handle<Map> map, Zone* zone); template Handle<HeapType> IC::MapToType<HeapType>(Handle<Map> map, Isolate* region); void IC::UpdateMonomorphicIC(Handle<Code> handler, Handle<Name> name) { DCHECK(handler->is_handler()); if (UseVector()) { ConfigureVectorState(name, receiver_type(), handler); } else { Handle<Code> ic = PropertyICCompiler::ComputeMonomorphic( kind(), name, receiver_type(), handler, extra_ic_state()); set_target(*ic); } } void IC::CopyICToMegamorphicCache(Handle<Name> name) { TypeHandleList types; CodeHandleList handlers; TargetTypes(&types); if (!target()->FindHandlers(&handlers, types.length())) return; for (int i = 0; i < types.length(); i++) { UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i)); } } bool IC::IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map) { if (source_map == NULL) return true; if (target_map == NULL) return false; ElementsKind target_elements_kind = target_map->elements_kind(); bool more_general_transition = IsMoreGeneralElementsKindTransition( source_map->elements_kind(), target_elements_kind); Map* transitioned_map = more_general_transition ? source_map->LookupElementsTransitionMap(target_elements_kind) : NULL; return transitioned_map == target_map; } void IC::PatchCache(Handle<Name> name, Handle<Code> code) { switch (state()) { case UNINITIALIZED: case PREMONOMORPHIC: UpdateMonomorphicIC(code, name); break; case PROTOTYPE_FAILURE: case MONOMORPHIC: case POLYMORPHIC: if (!target()->is_keyed_stub() || state() == PROTOTYPE_FAILURE) { if (UpdatePolymorphicIC(name, code)) break; // For keyed stubs, we can't know whether old handlers were for the // same key. CopyICToMegamorphicCache(name); } if (UseVector()) { ConfigureVectorState(kind() == Code::KEYED_LOAD_IC ? GENERIC : MEGAMORPHIC); } else { set_target(*megamorphic_stub()); } // Fall through. case MEGAMORPHIC: UpdateMegamorphicCache(*receiver_type(), *name, *code); // Indicate that we've handled this case. if (UseVector()) { vector_set_ = true; } else { target_set_ = true; } break; case DEBUG_STUB: break; case DEFAULT: UNREACHABLE(); break; case GENERIC: // The generic keyed store stub re-uses store handlers, which can miss. // That's ok, no reason to do anything. DCHECK(target()->kind() == Code::KEYED_STORE_IC); break; } } Handle<Code> LoadIC::initialize_stub(Isolate* isolate, ExtraICState extra_state) { if (FLAG_vector_ics) { return LoadICTrampolineStub(isolate, LoadICState(extra_state)).GetCode(); } return PropertyICCompiler::ComputeLoad(isolate, UNINITIALIZED, extra_state); } Handle<Code> LoadIC::initialize_stub_in_optimized_code( Isolate* isolate, ExtraICState extra_state) { if (FLAG_vector_ics) { return VectorLoadStub(isolate, LoadICState(extra_state)).GetCode(); } return initialize_stub(isolate, extra_state); } Handle<Code> KeyedLoadIC::initialize_stub(Isolate* isolate) { if (FLAG_vector_ics) { return KeyedLoadICTrampolineStub(isolate).GetCode(); } return isolate->builtins()->KeyedLoadIC_Initialize(); } Handle<Code> KeyedLoadIC::initialize_stub_in_optimized_code(Isolate* isolate) { if (FLAG_vector_ics) { return VectorKeyedLoadStub(isolate).GetCode(); } return initialize_stub(isolate); } Handle<Code> LoadIC::megamorphic_stub() { if (kind() == Code::LOAD_IC) { MegamorphicLoadStub stub(isolate(), LoadICState(extra_ic_state())); return stub.GetCode(); } else { DCHECK_EQ(Code::KEYED_LOAD_IC, kind()); return KeyedLoadIC::generic_stub(isolate()); } } Handle<Code> LoadIC::pre_monomorphic_stub(Isolate* isolate, ExtraICState extra_state) { DCHECK(!FLAG_vector_ics); return PropertyICCompiler::ComputeLoad(isolate, PREMONOMORPHIC, extra_state); } Handle<Code> KeyedLoadIC::pre_monomorphic_stub(Isolate* isolate) { return isolate->builtins()->KeyedLoadIC_PreMonomorphic(); } Handle<Code> LoadIC::pre_monomorphic_stub() const { if (kind() == Code::LOAD_IC) { return LoadIC::pre_monomorphic_stub(isolate(), extra_ic_state()); } else { DCHECK_EQ(Code::KEYED_LOAD_IC, kind()); return KeyedLoadIC::pre_monomorphic_stub(isolate()); } } Handle<Code> LoadIC::SimpleFieldLoad(FieldIndex index) { LoadFieldStub stub(isolate(), index); return stub.GetCode(); } void LoadIC::UpdateCaches(LookupIterator* lookup) { if (state() == UNINITIALIZED) { // This is the first time we execute this inline cache. Set the target to // the pre monomorphic stub to delay setting the monomorphic state. if (UseVector()) { ConfigureVectorState(PREMONOMORPHIC); } else { set_target(*pre_monomorphic_stub()); } TRACE_IC("LoadIC", lookup->name()); return; } Handle<Code> code; if (lookup->state() == LookupIterator::JSPROXY || lookup->state() == LookupIterator::ACCESS_CHECK) { code = slow_stub(); } else if (!lookup->IsFound()) { if (kind() == Code::LOAD_IC) { code = NamedLoadHandlerCompiler::ComputeLoadNonexistent(lookup->name(), receiver_type()); // TODO(jkummerow/verwaest): Introduce a builtin that handles this case. if (code.is_null()) code = slow_stub(); } else { code = slow_stub(); } } else { code = ComputeHandler(lookup); } PatchCache(lookup->name(), code); TRACE_IC("LoadIC", lookup->name()); } void IC::UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) { // Megamorphic state isn't implemented for keyed loads currently. if (kind() == Code::KEYED_LOAD_IC) return; Map* map = *TypeToMap(type, isolate()); isolate()->stub_cache()->Set(name, map, code); } Handle<Code> IC::ComputeHandler(LookupIterator* lookup, Handle<Object> value) { bool receiver_is_holder = lookup->GetReceiver().is_identical_to(lookup->GetHolder<JSObject>()); CacheHolderFlag flag; Handle<Map> stub_holder_map = IC::GetHandlerCacheHolder( *receiver_type(), receiver_is_holder, isolate(), &flag); Handle<Code> code = PropertyHandlerCompiler::Find( lookup->name(), stub_holder_map, kind(), flag, lookup->is_dictionary_holder() ? Code::NORMAL : Code::FAST); // Use the cached value if it exists, and if it is different from the // handler that just missed. if (!code.is_null()) { if (!maybe_handler_.is_null() && !maybe_handler_.ToHandleChecked().is_identical_to(code)) { return code; } if (maybe_handler_.is_null()) { // maybe_handler_ is only populated for MONOMORPHIC and POLYMORPHIC ICs. // In MEGAMORPHIC case, check if the handler in the megamorphic stub // cache (which just missed) is different from the cached handler. if (state() == MEGAMORPHIC && lookup->GetReceiver()->IsHeapObject()) { Map* map = Handle<HeapObject>::cast(lookup->GetReceiver())->map(); Code* megamorphic_cached_code = isolate()->stub_cache()->Get(*lookup->name(), map, code->flags()); if (megamorphic_cached_code != *code) return code; } else { return code; } } } code = CompileHandler(lookup, value, flag); DCHECK(code->is_handler()); // TODO(mvstanton): we'd only like to cache code on the map when it's custom // code compiled for this map, otherwise it's already cached in the global // code // cache. We are also guarding against installing code with flags that don't // match the desired CacheHolderFlag computed above, which would lead to // invalid lookups later. if (code->type() != Code::NORMAL && Code::ExtractCacheHolderFromFlags(code->flags()) == flag) { Map::UpdateCodeCache(stub_holder_map, lookup->name(), code); } return code; } Handle<Code> LoadIC::CompileHandler(LookupIterator* lookup, Handle<Object> unused, CacheHolderFlag cache_holder) { Handle<Object> receiver = lookup->GetReceiver(); if (receiver->IsString() && Name::Equals(isolate()->factory()->length_string(), lookup->name())) { FieldIndex index = FieldIndex::ForInObjectOffset(String::kLengthOffset); return SimpleFieldLoad(index); } if (receiver->IsStringWrapper() && Name::Equals(isolate()->factory()->length_string(), lookup->name())) { StringLengthStub string_length_stub(isolate()); return string_length_stub.GetCode(); } // Use specialized code for getting prototype of functions. if (receiver->IsJSFunction() && Name::Equals(isolate()->factory()->prototype_string(), lookup->name()) && Handle<JSFunction>::cast(receiver)->should_have_prototype() && !Handle<JSFunction>::cast(receiver) ->map() ->has_non_instance_prototype()) { Handle<Code> stub; FunctionPrototypeStub function_prototype_stub(isolate()); return function_prototype_stub.GetCode(); } Handle<HeapType> type = receiver_type(); Handle<JSObject> holder = lookup->GetHolder<JSObject>(); bool receiver_is_holder = receiver.is_identical_to(holder); switch (lookup->state()) { case LookupIterator::INTERCEPTOR: { DCHECK(!holder->GetNamedInterceptor()->getter()->IsUndefined()); NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, cache_holder); // Perform a lookup behind the interceptor. Copy the LookupIterator since // the original iterator will be used to fetch the value. LookupIterator it = *lookup; it.Next(); LookupForRead(&it); return compiler.CompileLoadInterceptor(&it); } case LookupIterator::ACCESSOR: { // Use simple field loads for some well-known callback properties. if (receiver_is_holder) { DCHECK(receiver->IsJSObject()); Handle<JSObject> js_receiver = Handle<JSObject>::cast(receiver); int object_offset; if (Accessors::IsJSObjectFieldAccessor<HeapType>(type, lookup->name(), &object_offset)) { FieldIndex index = FieldIndex::ForInObjectOffset(object_offset, js_receiver->map()); return SimpleFieldLoad(index); } } Handle<Object> accessors = lookup->GetAccessors(); if (accessors->IsExecutableAccessorInfo()) { Handle<ExecutableAccessorInfo> info = Handle<ExecutableAccessorInfo>::cast(accessors); if (v8::ToCData<Address>(info->getter()) == 0) break; if (!ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), info, type)) { break; } if (!holder->HasFastProperties()) break; NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, cache_holder); return compiler.CompileLoadCallback(lookup->name(), info); } if (accessors->IsAccessorPair()) { Handle<Object> getter(Handle<AccessorPair>::cast(accessors)->getter(), isolate()); if (!getter->IsJSFunction()) break; if (!holder->HasFastProperties()) break; Handle<JSFunction> function = Handle<JSFunction>::cast(getter); if (!receiver->IsJSObject() && !function->IsBuiltin() && function->shared()->strict_mode() == SLOPPY) { // Calling sloppy non-builtins with a value as the receiver // requires boxing. break; } CallOptimization call_optimization(function); NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, cache_holder); if (call_optimization.is_simple_api_call() && call_optimization.IsCompatibleReceiver(receiver, holder)) { return compiler.CompileLoadCallback(lookup->name(), call_optimization); } return compiler.CompileLoadViaGetter(lookup->name(), function); } break; } case LookupIterator::DATA: { if (lookup->is_dictionary_holder()) { if (kind() != Code::LOAD_IC) break; if (holder->IsGlobalObject()) { NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, cache_holder); Handle<PropertyCell> cell = lookup->GetPropertyCell(); Handle<Code> code = compiler.CompileLoadGlobal( cell, lookup->name(), lookup->IsConfigurable()); // TODO(verwaest): Move caching of these NORMAL stubs outside as well. CacheHolderFlag flag; Handle<Map> stub_holder_map = GetHandlerCacheHolder( *type, receiver_is_holder, isolate(), &flag); Map::UpdateCodeCache(stub_holder_map, lookup->name(), code); return code; } // There is only one shared stub for loading normalized // properties. It does not traverse the prototype chain, so the // property must be found in the object for the stub to be // applicable. if (!receiver_is_holder) break; return isolate()->builtins()->LoadIC_Normal(); } // -------------- Fields -------------- if (lookup->property_details().type() == DATA) { FieldIndex field = lookup->GetFieldIndex(); if (receiver_is_holder) { return SimpleFieldLoad(field); } NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, cache_holder); return compiler.CompileLoadField(lookup->name(), field); } // -------------- Constant properties -------------- DCHECK(lookup->property_details().type() == DATA_CONSTANT); if (receiver_is_holder) { LoadConstantStub stub(isolate(), lookup->GetConstantIndex()); return stub.GetCode(); } NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, cache_holder); return compiler.CompileLoadConstant(lookup->name(), lookup->GetConstantIndex()); } case LookupIterator::ACCESS_CHECK: case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); } return slow_stub(); } static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) { // This helper implements a few common fast cases for converting // non-smi keys of keyed loads/stores to a smi or a string. if (key->IsHeapNumber()) { double value = Handle<HeapNumber>::cast(key)->value(); if (std::isnan(value)) { key = isolate->factory()->nan_string(); } else { int int_value = FastD2I(value); if (value == int_value && Smi::IsValid(int_value)) { key = Handle<Smi>(Smi::FromInt(int_value), isolate); } } } else if (key->IsUndefined()) { key = isolate->factory()->undefined_string(); } return key; } Handle<Code> KeyedLoadIC::LoadElementStub(Handle<HeapObject> receiver) { Handle<Code> null_handle; Handle<Map> receiver_map(receiver->map(), isolate()); MapHandleList target_receiver_maps; TargetMaps(&target_receiver_maps); if (target_receiver_maps.length() == 0) { if (FLAG_vector_ics) { Handle<Code> handler = PropertyICCompiler::ComputeKeyedLoadMonomorphicHandler(receiver_map); ConfigureVectorState(Handle<Name>::null(), receiver_type(), handler); return null_handle; } return PropertyICCompiler::ComputeKeyedLoadMonomorphic(receiver_map); } // The first time a receiver is seen that is a transitioned version of the // previous monomorphic receiver type, assume the new ElementsKind is the // monomorphic type. This benefits global arrays that only transition // once, and all call sites accessing them are faster if they remain // monomorphic. If this optimistic assumption is not true, the IC will // miss again and it will become polymorphic and support both the // untransitioned and transitioned maps. if (state() == MONOMORPHIC && !receiver->IsString() && IsMoreGeneralElementsKindTransition( target_receiver_maps.at(0)->elements_kind(), Handle<JSObject>::cast(receiver)->GetElementsKind())) { if (FLAG_vector_ics) { Handle<Code> handler = PropertyICCompiler::ComputeKeyedLoadMonomorphicHandler(receiver_map); ConfigureVectorState(Handle<Name>::null(), receiver_type(), handler); return null_handle; } return PropertyICCompiler::ComputeKeyedLoadMonomorphic(receiver_map); } DCHECK(state() != GENERIC); // Determine the list of receiver maps that this call site has seen, // adding the map that was just encountered. if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) { // If the miss wasn't due to an unseen map, a polymorphic stub // won't help, use the generic stub. TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "same map added twice"); return generic_stub(); } // If the maximum number of receiver maps has been exceeded, use the generic // version of the IC. if (target_receiver_maps.length() > kMaxKeyedPolymorphism) { TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "max polymorph exceeded"); return generic_stub(); } if (FLAG_vector_ics) { CodeHandleList handlers(target_receiver_maps.length()); ElementHandlerCompiler compiler(isolate()); compiler.CompileElementHandlers(&target_receiver_maps, &handlers); TypeHandleList types(target_receiver_maps.length()); for (int i = 0; i < target_receiver_maps.length(); i++) { types.Add(HeapType::Class(target_receiver_maps.at(i), isolate())); } ConfigureVectorState(Handle<Name>::null(), &types, &handlers); return null_handle; } return PropertyICCompiler::ComputeKeyedLoadPolymorphic(&target_receiver_maps); } MaybeHandle<Object> KeyedLoadIC::Load(Handle<Object> object, Handle<Object> key) { if (MigrateDeprecated(object)) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Runtime::GetObjectProperty(isolate(), object, key), Object); return result; } Handle<Object> load_handle; Handle<Code> stub = generic_stub(); // Check for non-string values that can be converted into an // internalized string directly or is representable as a smi. key = TryConvertKey(key, isolate()); if (key->IsInternalizedString() || key->IsSymbol()) { ASSIGN_RETURN_ON_EXCEPTION(isolate(), load_handle, LoadIC::Load(object, Handle<Name>::cast(key)), Object); } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) { if (object->IsJSObject() || (object->IsString() && key->IsNumber())) { Handle<HeapObject> receiver = Handle<HeapObject>::cast(object); if (object->IsString() || !Object::ToSmi(isolate(), key).is_null()) { stub = LoadElementStub(receiver); } } } if (!UseVector()) { if (!is_target_set()) { Code* generic = *generic_stub(); if (*stub == generic) { TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic"); } set_target(*stub); TRACE_IC("LoadIC", key); } } else { if (!is_vector_set() || stub.is_null()) { Code* generic = *generic_stub(); if (!stub.is_null() && *stub == generic) { ConfigureVectorState(GENERIC); TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic"); } TRACE_IC("LoadIC", key); } } if (!load_handle.is_null()) return load_handle; Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Runtime::GetObjectProperty(isolate(), object, key), Object); return result; } bool StoreIC::LookupForWrite(LookupIterator* it, Handle<Object> value, JSReceiver::StoreFromKeyed store_mode) { // Disable ICs for non-JSObjects for now. Handle<Object> receiver = it->GetReceiver(); if (!receiver->IsJSObject()) return false; DCHECK(!Handle<JSObject>::cast(receiver)->map()->is_deprecated()); for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return false; case LookupIterator::INTERCEPTOR: { Handle<JSObject> holder = it->GetHolder<JSObject>(); InterceptorInfo* info = holder->GetNamedInterceptor(); if (it->HolderIsReceiverOrHiddenPrototype()) { if (!info->setter()->IsUndefined()) return true; } else if (!info->getter()->IsUndefined() || !info->query()->IsUndefined()) { return false; } break; } case LookupIterator::ACCESS_CHECK: if (it->GetHolder<JSObject>()->IsAccessCheckNeeded()) return false; break; case LookupIterator::ACCESSOR: return !it->IsReadOnly(); case LookupIterator::DATA: { if (it->IsReadOnly()) return false; Handle<JSObject> holder = it->GetHolder<JSObject>(); if (receiver.is_identical_to(holder)) { it->PrepareForDataProperty(value); // The previous receiver map might just have been deprecated, // so reload it. update_receiver_type(receiver); return true; } // Receiver != holder. PrototypeIterator iter(it->isolate(), receiver); if (receiver->IsJSGlobalProxy()) { return it->GetHolder<Object>().is_identical_to( PrototypeIterator::GetCurrent(iter)); } it->PrepareTransitionToDataProperty(value, NONE, store_mode); return it->IsCacheableTransition(); } } } it->PrepareTransitionToDataProperty(value, NONE, store_mode); return it->IsCacheableTransition(); } MaybeHandle<Object> StoreIC::Store(Handle<Object> object, Handle<Name> name, Handle<Object> value, JSReceiver::StoreFromKeyed store_mode) { if (FLAG_harmony_scoping && object->IsGlobalObject() && name->IsString()) { // Look up in script context table. Handle<String> str_name = Handle<String>::cast(name); Handle<GlobalObject> global = Handle<GlobalObject>::cast(object); Handle<ScriptContextTable> script_contexts( global->native_context()->script_context_table()); ScriptContextTable::LookupResult lookup_result; if (ScriptContextTable::Lookup(script_contexts, str_name, &lookup_result)) { Handle<Context> script_context = ScriptContextTable::GetContext( script_contexts, lookup_result.context_index); if (lookup_result.mode == CONST) { return TypeError("harmony_const_assign", object, name); } if (FLAG_use_ic && StoreScriptContextFieldStub::Accepted(&lookup_result)) { StoreScriptContextFieldStub stub(isolate(), &lookup_result); PatchCache(name, stub.GetCode()); } script_context->set(lookup_result.slot_index, *value); return value; } } // TODO(verwaest): Let SetProperty do the migration, since storing a property // might deprecate the current map again, if value does not fit. if (MigrateDeprecated(object) || object->IsJSProxy()) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::SetProperty(object, name, value, strict_mode()), Object); return result; } // If the object is undefined or null it's illegal to try to set any // properties on it; throw a TypeError in that case. if (object->IsUndefined() || object->IsNull()) { return TypeError("non_object_property_store", object, name); } // Check if the given name is an array index. uint32_t index; if (name->AsArrayIndex(&index)) { // Ignore other stores where the receiver is not a JSObject. // TODO(1475): Must check prototype chains of object wrappers. if (!object->IsJSObject()) return value; Handle<JSObject> receiver = Handle<JSObject>::cast(object); Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, JSObject::SetElement(receiver, index, value, NONE, strict_mode()), Object); return value; } // Observed objects are always modified through the runtime. if (object->IsHeapObject() && Handle<HeapObject>::cast(object)->map()->is_observed()) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::SetProperty(object, name, value, strict_mode(), store_mode), Object); return result; } LookupIterator it(object, name); if (FLAG_use_ic) UpdateCaches(&it, value, store_mode); // Set the property. Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::SetProperty(&it, value, strict_mode(), store_mode), Object); return result; } Handle<Code> CallIC::initialize_stub(Isolate* isolate, int argc, CallICState::CallType call_type) { CallICStub stub(isolate, CallICState(argc, call_type)); Handle<Code> code = stub.GetCode(); return code; } Handle<Code> StoreIC::initialize_stub(Isolate* isolate, StrictMode strict_mode) { ExtraICState extra_state = ComputeExtraICState(strict_mode); Handle<Code> ic = PropertyICCompiler::ComputeStore(isolate, UNINITIALIZED, extra_state); return ic; } Handle<Code> StoreIC::megamorphic_stub() { if (kind() == Code::STORE_IC) { return PropertyICCompiler::ComputeStore(isolate(), MEGAMORPHIC, extra_ic_state()); } else { DCHECK(kind() == Code::KEYED_STORE_IC); if (strict_mode() == STRICT) { return isolate()->builtins()->KeyedStoreIC_Megamorphic_Strict(); } else { return isolate()->builtins()->KeyedStoreIC_Megamorphic(); } } } Handle<Code> StoreIC::slow_stub() const { if (kind() == Code::STORE_IC) { return isolate()->builtins()->StoreIC_Slow(); } else { DCHECK(kind() == Code::KEYED_STORE_IC); return isolate()->builtins()->KeyedStoreIC_Slow(); } } Handle<Code> StoreIC::pre_monomorphic_stub(Isolate* isolate, StrictMode strict_mode) { ExtraICState state = ComputeExtraICState(strict_mode); return PropertyICCompiler::ComputeStore(isolate, PREMONOMORPHIC, state); } void StoreIC::UpdateCaches(LookupIterator* lookup, Handle<Object> value, JSReceiver::StoreFromKeyed store_mode) { if (state() == UNINITIALIZED) { // This is the first time we execute this inline cache. Set the target to // the pre monomorphic stub to delay setting the monomorphic state. set_target(*pre_monomorphic_stub()); TRACE_IC("StoreIC", lookup->name()); return; } bool use_ic = LookupForWrite(lookup, value, store_mode); if (!use_ic) { TRACE_GENERIC_IC(isolate(), "StoreIC", "LookupForWrite said 'false'"); } Handle<Code> code = use_ic ? ComputeHandler(lookup, value) : slow_stub(); PatchCache(lookup->name(), code); TRACE_IC("StoreIC", lookup->name()); } Handle<Code> StoreIC::CompileHandler(LookupIterator* lookup, Handle<Object> value, CacheHolderFlag cache_holder) { DCHECK_NE(LookupIterator::JSPROXY, lookup->state()); // This is currently guaranteed by checks in StoreIC::Store. Handle<JSObject> receiver = Handle<JSObject>::cast(lookup->GetReceiver()); Handle<JSObject> holder = lookup->GetHolder<JSObject>(); DCHECK(!receiver->IsAccessCheckNeeded()); switch (lookup->state()) { case LookupIterator::TRANSITION: { Handle<Map> transition = lookup->transition_map(); // Currently not handled by CompileStoreTransition. if (!holder->HasFastProperties()) { TRACE_GENERIC_IC(isolate(), "StoreIC", "transition from slow"); break; } DCHECK(lookup->IsCacheableTransition()); NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); return compiler.CompileStoreTransition(transition, lookup->name()); } case LookupIterator::INTERCEPTOR: { DCHECK(!holder->GetNamedInterceptor()->setter()->IsUndefined()); NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); return compiler.CompileStoreInterceptor(lookup->name()); } case LookupIterator::ACCESSOR: { if (!holder->HasFastProperties()) { TRACE_GENERIC_IC(isolate(), "StoreIC", "accessor on slow map"); break; } Handle<Object> accessors = lookup->GetAccessors(); if (accessors->IsExecutableAccessorInfo()) { Handle<ExecutableAccessorInfo> info = Handle<ExecutableAccessorInfo>::cast(accessors); if (v8::ToCData<Address>(info->setter()) == 0) { TRACE_GENERIC_IC(isolate(), "StoreIC", "setter == 0"); break; } if (!ExecutableAccessorInfo::IsCompatibleReceiverType( isolate(), info, receiver_type())) { TRACE_GENERIC_IC(isolate(), "StoreIC", "incompatible receiver type"); break; } NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); return compiler.CompileStoreCallback(receiver, lookup->name(), info); } else if (accessors->IsAccessorPair()) { Handle<Object> setter(Handle<AccessorPair>::cast(accessors)->setter(), isolate()); if (!setter->IsJSFunction()) { TRACE_GENERIC_IC(isolate(), "StoreIC", "setter not a function"); break; } Handle<JSFunction> function = Handle<JSFunction>::cast(setter); CallOptimization call_optimization(function); NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); if (call_optimization.is_simple_api_call() && call_optimization.IsCompatibleReceiver(receiver, holder)) { return compiler.CompileStoreCallback(receiver, lookup->name(), call_optimization); } return compiler.CompileStoreViaSetter(receiver, lookup->name(), Handle<JSFunction>::cast(setter)); } break; } case LookupIterator::DATA: { if (lookup->is_dictionary_holder()) { if (holder->IsGlobalObject()) { Handle<PropertyCell> cell = lookup->GetPropertyCell(); Handle<HeapType> union_type = PropertyCell::UpdatedType(cell, value); StoreGlobalStub stub(isolate(), union_type->IsConstant(), receiver->IsJSGlobalProxy()); Handle<Code> code = stub.GetCodeCopyFromTemplate( Handle<GlobalObject>::cast(holder), cell); // TODO(verwaest): Move caching of these NORMAL stubs outside as well. HeapObject::UpdateMapCodeCache(receiver, lookup->name(), code); return code; } DCHECK(holder.is_identical_to(receiver)); return isolate()->builtins()->StoreIC_Normal(); } // -------------- Fields -------------- if (lookup->property_details().type() == DATA) { bool use_stub = true; if (lookup->representation().IsHeapObject()) { // Only use a generic stub if no types need to be tracked. Handle<HeapType> field_type = lookup->GetFieldType(); HeapType::Iterator<Map> it = field_type->Classes(); use_stub = it.Done(); } if (use_stub) { StoreFieldStub stub(isolate(), lookup->GetFieldIndex(), lookup->representation()); return stub.GetCode(); } NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); return compiler.CompileStoreField(lookup); } // -------------- Constant properties -------------- DCHECK(lookup->property_details().type() == DATA_CONSTANT); TRACE_GENERIC_IC(isolate(), "StoreIC", "constant property"); break; } case LookupIterator::ACCESS_CHECK: case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: UNREACHABLE(); } return slow_stub(); } Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver, KeyedAccessStoreMode store_mode) { // Don't handle megamorphic property accesses for INTERCEPTORS or // ACCESSOR_CONSTANT // via megamorphic stubs, since they don't have a map in their relocation info // and so the stubs can't be harvested for the object needed for a map check. if (target()->type() != Code::NORMAL) { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "non-NORMAL target type"); return megamorphic_stub(); } Handle<Map> receiver_map(receiver->map(), isolate()); MapHandleList target_receiver_maps; TargetMaps(&target_receiver_maps); if (target_receiver_maps.length() == 0) { Handle<Map> monomorphic_map = ComputeTransitionedMap(receiver_map, store_mode); store_mode = GetNonTransitioningStoreMode(store_mode); return PropertyICCompiler::ComputeKeyedStoreMonomorphic( monomorphic_map, strict_mode(), store_mode); } // There are several special cases where an IC that is MONOMORPHIC can still // transition to a different GetNonTransitioningStoreMode IC that handles a // superset of the original IC. Handle those here if the receiver map hasn't // changed or it has transitioned to a more general kind. KeyedAccessStoreMode old_store_mode = KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state()); Handle<Map> previous_receiver_map = target_receiver_maps.at(0); if (state() == MONOMORPHIC) { Handle<Map> transitioned_receiver_map = receiver_map; if (IsTransitionStoreMode(store_mode)) { transitioned_receiver_map = ComputeTransitionedMap(receiver_map, store_mode); } if ((receiver_map.is_identical_to(previous_receiver_map) && IsTransitionStoreMode(store_mode)) || IsTransitionOfMonomorphicTarget(*previous_receiver_map, *transitioned_receiver_map)) { // If the "old" and "new" maps are in the same elements map family, or // if they at least come from the same origin for a transitioning store, // stay MONOMORPHIC and use the map for the most generic ElementsKind. store_mode = GetNonTransitioningStoreMode(store_mode); return PropertyICCompiler::ComputeKeyedStoreMonomorphic( transitioned_receiver_map, strict_mode(), store_mode); } else if (*previous_receiver_map == receiver->map() && old_store_mode == STANDARD_STORE && (store_mode == STORE_AND_GROW_NO_TRANSITION || store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS || store_mode == STORE_NO_TRANSITION_HANDLE_COW)) { // A "normal" IC that handles stores can switch to a version that can // grow at the end of the array, handle OOB accesses or copy COW arrays // and still stay MONOMORPHIC. return PropertyICCompiler::ComputeKeyedStoreMonomorphic( receiver_map, strict_mode(), store_mode); } } DCHECK(state() != GENERIC); bool map_added = AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map); if (IsTransitionStoreMode(store_mode)) { Handle<Map> transitioned_receiver_map = ComputeTransitionedMap(receiver_map, store_mode); map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps, transitioned_receiver_map); } if (!map_added) { // If the miss wasn't due to an unseen map, a polymorphic stub // won't help, use the megamorphic stub which can handle everything. TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "same map added twice"); return megamorphic_stub(); } // If the maximum number of receiver maps has been exceeded, use the // megamorphic version of the IC. if (target_receiver_maps.length() > kMaxKeyedPolymorphism) { return megamorphic_stub(); } // Make sure all polymorphic handlers have the same store mode, otherwise the // megamorphic stub must be used. store_mode = GetNonTransitioningStoreMode(store_mode); if (old_store_mode != STANDARD_STORE) { if (store_mode == STANDARD_STORE) { store_mode = old_store_mode; } else if (store_mode != old_store_mode) { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "store mode mismatch"); return megamorphic_stub(); } } // If the store mode isn't the standard mode, make sure that all polymorphic // receivers are either external arrays, or all "normal" arrays. Otherwise, // use the megamorphic stub. if (store_mode != STANDARD_STORE) { int external_arrays = 0; for (int i = 0; i < target_receiver_maps.length(); ++i) { if (target_receiver_maps[i]->has_external_array_elements() || target_receiver_maps[i]->has_fixed_typed_array_elements()) { external_arrays++; } } if (external_arrays != 0 && external_arrays != target_receiver_maps.length()) { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "unsupported combination of external and normal arrays"); return megamorphic_stub(); } } return PropertyICCompiler::ComputeKeyedStorePolymorphic( &target_receiver_maps, store_mode, strict_mode()); } Handle<Map> KeyedStoreIC::ComputeTransitionedMap( Handle<Map> map, KeyedAccessStoreMode store_mode) { switch (store_mode) { case STORE_TRANSITION_SMI_TO_OBJECT: case STORE_TRANSITION_DOUBLE_TO_OBJECT: case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT: case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT: return Map::TransitionElementsTo(map, FAST_ELEMENTS); case STORE_TRANSITION_SMI_TO_DOUBLE: case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE: return Map::TransitionElementsTo(map, FAST_DOUBLE_ELEMENTS); case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT: case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT: case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT: case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT: return Map::TransitionElementsTo(map, FAST_HOLEY_ELEMENTS); case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE: case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE: return Map::TransitionElementsTo(map, FAST_HOLEY_DOUBLE_ELEMENTS); case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS: DCHECK(map->has_external_array_elements()); // Fall through case STORE_NO_TRANSITION_HANDLE_COW: case STANDARD_STORE: case STORE_AND_GROW_NO_TRANSITION: return map; } UNREACHABLE(); return MaybeHandle<Map>().ToHandleChecked(); } bool IsOutOfBoundsAccess(Handle<JSObject> receiver, int index) { if (receiver->IsJSArray()) { return JSArray::cast(*receiver)->length()->IsSmi() && index >= Smi::cast(JSArray::cast(*receiver)->length())->value(); } return index >= receiver->elements()->length(); } KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver, Handle<Object> key, Handle<Object> value) { Handle<Smi> smi_key = Object::ToSmi(isolate(), key).ToHandleChecked(); int index = smi_key->value(); bool oob_access = IsOutOfBoundsAccess(receiver, index); // Don't consider this a growing store if the store would send the receiver to // dictionary mode. bool allow_growth = receiver->IsJSArray() && oob_access && !receiver->WouldConvertToSlowElements(key); if (allow_growth) { // Handle growing array in stub if necessary. if (receiver->HasFastSmiElements()) { if (value->IsHeapNumber()) { if (receiver->HasFastHoleyElements()) { return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE; } else { return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE; } } if (value->IsHeapObject()) { if (receiver->HasFastHoleyElements()) { return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT; } else { return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT; } } } else if (receiver->HasFastDoubleElements()) { if (!value->IsSmi() && !value->IsHeapNumber()) { if (receiver->HasFastHoleyElements()) { return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT; } else { return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT; } } } return STORE_AND_GROW_NO_TRANSITION; } else { // Handle only in-bounds elements accesses. if (receiver->HasFastSmiElements()) { if (value->IsHeapNumber()) { if (receiver->HasFastHoleyElements()) { return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE; } else { return STORE_TRANSITION_SMI_TO_DOUBLE; } } else if (value->IsHeapObject()) { if (receiver->HasFastHoleyElements()) { return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT; } else { return STORE_TRANSITION_SMI_TO_OBJECT; } } } else if (receiver->HasFastDoubleElements()) { if (!value->IsSmi() && !value->IsHeapNumber()) { if (receiver->HasFastHoleyElements()) { return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT; } else { return STORE_TRANSITION_DOUBLE_TO_OBJECT; } } } if (!FLAG_trace_external_array_abuse && receiver->map()->has_external_array_elements() && oob_access) { return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS; } Heap* heap = receiver->GetHeap(); if (receiver->elements()->map() == heap->fixed_cow_array_map()) { return STORE_NO_TRANSITION_HANDLE_COW; } else { return STANDARD_STORE; } } } MaybeHandle<Object> KeyedStoreIC::Store(Handle<Object> object, Handle<Object> key, Handle<Object> value) { // TODO(verwaest): Let SetProperty do the migration, since storing a property // might deprecate the current map again, if value does not fit. if (MigrateDeprecated(object)) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Runtime::SetObjectProperty(isolate(), object, key, value, strict_mode()), Object); return result; } // Check for non-string values that can be converted into an // internalized string directly or is representable as a smi. key = TryConvertKey(key, isolate()); Handle<Object> store_handle; Handle<Code> stub = megamorphic_stub(); if (key->IsInternalizedString() || key->IsSymbol()) { ASSIGN_RETURN_ON_EXCEPTION( isolate(), store_handle, StoreIC::Store(object, Handle<Name>::cast(key), value, JSReceiver::MAY_BE_STORE_FROM_KEYED), Object); if (!is_target_set()) { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "unhandled internalized string key"); TRACE_IC("StoreIC", key); set_target(*stub); } return store_handle; } bool use_ic = FLAG_use_ic && !object->IsStringWrapper() && !object->IsAccessCheckNeeded() && !object->IsJSGlobalProxy() && !(object->IsJSObject() && JSObject::cast(*object)->map()->is_observed()); if (use_ic && !object->IsSmi()) { // Don't use ICs for maps of the objects in Array's prototype chain. We // expect to be able to trap element sets to objects with those maps in // the runtime to enable optimization of element hole access. Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object); if (heap_object->map()->IsMapInArrayPrototypeChain()) { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "map in array prototype"); use_ic = false; } } if (use_ic) { DCHECK(!object->IsAccessCheckNeeded()); if (object->IsJSObject()) { Handle<JSObject> receiver = Handle<JSObject>::cast(object); bool key_is_smi_like = !Object::ToSmi(isolate(), key).is_null(); if (receiver->elements()->map() == isolate()->heap()->sloppy_arguments_elements_map()) { if (strict_mode() == SLOPPY) { stub = sloppy_arguments_stub(); } else { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "arguments receiver"); } } else if (key_is_smi_like && !(target().is_identical_to(sloppy_arguments_stub()))) { // We should go generic if receiver isn't a dictionary, but our // prototype chain does have dictionary elements. This ensures that // other non-dictionary receivers in the polymorphic case benefit // from fast path keyed stores. if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) { KeyedAccessStoreMode store_mode = GetStoreMode(receiver, key, value); stub = StoreElementStub(receiver, store_mode); } else { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "dictionary prototype"); } } else { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "non-smi-like key"); } } else { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "non-JSObject receiver"); } } if (store_handle.is_null()) { ASSIGN_RETURN_ON_EXCEPTION( isolate(), store_handle, Runtime::SetObjectProperty(isolate(), object, key, value, strict_mode()), Object); } DCHECK(!is_target_set()); Code* megamorphic = *megamorphic_stub(); if (*stub == megamorphic) { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic"); } if (*stub == *slow_stub()) { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "slow stub"); } DCHECK(!stub.is_null()); set_target(*stub); TRACE_IC("StoreIC", key); return store_handle; } bool CallIC::DoCustomHandler(Handle<Object> receiver, Handle<Object> function, const CallICState& callic_state) { DCHECK(FLAG_use_ic && function->IsJSFunction()); // Are we the array function? Handle<JSFunction> array_function = Handle<JSFunction>(isolate()->native_context()->array_function()); if (array_function.is_identical_to(Handle<JSFunction>::cast(function))) { // Alter the slot. CallICNexus* nexus = casted_nexus<CallICNexus>(); nexus->ConfigureMonomorphicArray(); CallIC_ArrayStub stub(isolate(), callic_state); set_target(*stub.GetCode()); Handle<String> name; if (array_function->shared()->name()->IsString()) { name = Handle<String>(String::cast(array_function->shared()->name()), isolate()); } TRACE_IC("CallIC", name); OnTypeFeedbackChanged(isolate(), get_host(), nexus->vector(), state(), MONOMORPHIC); return true; } return false; } void CallIC::PatchMegamorphic(Handle<Object> function) { CallICState callic_state(target()->extra_ic_state()); // We are going generic. CallICNexus* nexus = casted_nexus<CallICNexus>(); nexus->ConfigureGeneric(); CallICStub stub(isolate(), callic_state); Handle<Code> code = stub.GetCode(); set_target(*code); Handle<Object> name = isolate()->factory()->empty_string(); if (function->IsJSFunction()) { Handle<JSFunction> js_function = Handle<JSFunction>::cast(function); name = handle(js_function->shared()->name(), isolate()); } TRACE_IC("CallIC", name); OnTypeFeedbackChanged(isolate(), get_host(), nexus->vector(), state(), GENERIC); } void CallIC::HandleMiss(Handle<Object> receiver, Handle<Object> function) { CallICState callic_state(target()->extra_ic_state()); Handle<Object> name = isolate()->factory()->empty_string(); CallICNexus* nexus = casted_nexus<CallICNexus>(); Object* feedback = nexus->GetFeedback(); // Hand-coded MISS handling is easier if CallIC slots don't contain smis. DCHECK(!feedback->IsSmi()); if (feedback->IsJSFunction() || !function->IsJSFunction()) { // We are going generic. nexus->ConfigureGeneric(); } else { // The feedback is either uninitialized or an allocation site. // It might be an allocation site because if we re-compile the full code // to add deoptimization support, we call with the default call-ic, and // merely need to patch the target to match the feedback. // TODO(mvstanton): the better approach is to dispense with patching // altogether, which is in progress. DCHECK(feedback == *TypeFeedbackVector::UninitializedSentinel(isolate()) || feedback->IsAllocationSite()); // Do we want to install a custom handler? if (FLAG_use_ic && DoCustomHandler(receiver, function, callic_state)) { return; } nexus->ConfigureMonomorphic(Handle<JSFunction>::cast(function)); } if (function->IsJSFunction()) { Handle<JSFunction> js_function = Handle<JSFunction>::cast(function); name = handle(js_function->shared()->name(), isolate()); } IC::State new_state = nexus->StateFromFeedback(); OnTypeFeedbackChanged(isolate(), get_host(), *vector(), state(), new_state); TRACE_IC("CallIC", name); } #undef TRACE_IC // ---------------------------------------------------------------------------- // Static IC stub generators. // // Used from ic-<arch>.cc. RUNTIME_FUNCTION(CallIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); DCHECK(args.length() == 4); Handle<Object> receiver = args.at<Object>(0); Handle<Object> function = args.at<Object>(1); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(2); Handle<Smi> slot = args.at<Smi>(3); FeedbackVectorICSlot vector_slot = vector->ToICSlot(slot->value()); CallICNexus nexus(vector, vector_slot); CallIC ic(isolate, &nexus); ic.HandleMiss(receiver, function); return *function; } RUNTIME_FUNCTION(CallIC_Customization_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); DCHECK(args.length() == 4); Handle<Object> function = args.at<Object>(1); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(2); Handle<Smi> slot = args.at<Smi>(3); FeedbackVectorICSlot vector_slot = vector->ToICSlot(slot->value()); CallICNexus nexus(vector, vector_slot); // A miss on a custom call ic always results in going megamorphic. CallIC ic(isolate, &nexus); ic.PatchMegamorphic(function); return *function; } // Used from ic-<arch>.cc. RUNTIME_FUNCTION(LoadIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Name> key = args.at<Name>(1); Handle<Object> result; if (FLAG_vector_ics) { DCHECK(args.length() == 4); Handle<Smi> slot = args.at<Smi>(2); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(3); FeedbackVectorICSlot vector_slot = vector->ToICSlot(slot->value()); // A monomorphic or polymorphic KeyedLoadIC with a string key can call the // LoadIC miss handler if the handler misses. Since the vector Nexus is // set up outside the IC, handle that here. if (vector->GetKind(vector_slot) == Code::LOAD_IC) { LoadICNexus nexus(vector, vector_slot); LoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); } else { DCHECK(vector->GetKind(vector_slot) == Code::KEYED_LOAD_IC); KeyedLoadICNexus nexus(vector, vector_slot); KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); } } else { DCHECK(args.length() == 2); LoadIC ic(IC::NO_EXTRA_FRAME, isolate); ic.UpdateState(receiver, key); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); } return *result; } // Used from ic-<arch>.cc RUNTIME_FUNCTION(KeyedLoadIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); Handle<Object> result; if (FLAG_vector_ics) { DCHECK(args.length() == 4); Handle<Smi> slot = args.at<Smi>(2); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(3); FeedbackVectorICSlot vector_slot = vector->ToICSlot(slot->value()); KeyedLoadICNexus nexus(vector, vector_slot); KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); } else { DCHECK(args.length() == 2); KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate); ic.UpdateState(receiver, key); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); } return *result; } RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); Handle<Object> result; if (FLAG_vector_ics) { DCHECK(args.length() == 4); Handle<Smi> slot = args.at<Smi>(2); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(3); FeedbackVectorICSlot vector_slot = vector->ToICSlot(slot->value()); KeyedLoadICNexus nexus(vector, vector_slot); KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); } else { DCHECK(args.length() == 2); KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate); ic.UpdateState(receiver, key); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); } return *result; } // Used from ic-<arch>.cc. RUNTIME_FUNCTION(StoreIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); DCHECK(args.length() == 3); StoreIC ic(IC::NO_EXTRA_FRAME, isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Name> key = args.at<Name>(1); ic.UpdateState(receiver, key); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, ic.Store(receiver, key, args.at<Object>(2))); return *result; } RUNTIME_FUNCTION(StoreIC_MissFromStubFailure) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); DCHECK(args.length() == 3 || args.length() == 4); StoreIC ic(IC::EXTRA_CALL_FRAME, isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Name> key = args.at<Name>(1); ic.UpdateState(receiver, key); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, ic.Store(receiver, key, args.at<Object>(2))); return *result; } // Used from ic-<arch>.cc. RUNTIME_FUNCTION(KeyedStoreIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); DCHECK(args.length() == 3); KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); ic.UpdateState(receiver, key); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, ic.Store(receiver, key, args.at<Object>(2))); return *result; } RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); DCHECK(args.length() == 3); KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); ic.UpdateState(receiver, key); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, ic.Store(receiver, key, args.at<Object>(2))); return *result; } RUNTIME_FUNCTION(StoreIC_Slow) { HandleScope scope(isolate); DCHECK(args.length() == 3); StoreIC ic(IC::NO_EXTRA_FRAME, isolate); Handle<Object> object = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); Handle<Object> value = args.at<Object>(2); StrictMode strict_mode = ic.strict_mode(); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Runtime::SetObjectProperty(isolate, object, key, value, strict_mode)); return *result; } RUNTIME_FUNCTION(KeyedStoreIC_Slow) { HandleScope scope(isolate); DCHECK(args.length() == 3); KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate); Handle<Object> object = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); Handle<Object> value = args.at<Object>(2); StrictMode strict_mode = ic.strict_mode(); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Runtime::SetObjectProperty(isolate, object, key, value, strict_mode)); return *result; } RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); DCHECK(args.length() == 4); KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate); Handle<Object> value = args.at<Object>(0); Handle<Map> map = args.at<Map>(1); Handle<Object> key = args.at<Object>(2); Handle<Object> object = args.at<Object>(3); StrictMode strict_mode = ic.strict_mode(); if (object->IsJSObject()) { JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), map->elements_kind()); } Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Runtime::SetObjectProperty(isolate, object, key, value, strict_mode)); return *result; } MaybeHandle<Object> BinaryOpIC::Transition( Handle<AllocationSite> allocation_site, Handle<Object> left, Handle<Object> right) { BinaryOpICState state(isolate(), target()->extra_ic_state()); // Compute the actual result using the builtin for the binary operation. Object* builtin = isolate()->js_builtins_object()->javascript_builtin( TokenToJSBuiltin(state.op())); Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate()); Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Execution::Call(isolate(), function, left, 1, &right), Object); if (result->IsHeapNumber()) { // If the result of this BinaryOpIC is used as left or right hand side of // another binary operation, full-codegen.cc might have decided that its // safe to reuse the double box returned by this BinaryOpIC, but the builtin // above does not know or care about this fact and might return a canonical // value (i.e. the global minus zero constant), which we would then // overwrite in the surrounding binary operation. So to be safe, we need to // take a copy of heap numbers here. result = isolate()->factory()->NewHeapNumber(result->Number()); } DCHECK(!result.is_identical_to(isolate()->factory()->nan_value())); DCHECK(!result.is_identical_to(isolate()->factory()->infinity_value())); DCHECK(!result.is_identical_to(isolate()->factory()->minus_zero_value())); // Execution::Call can execute arbitrary JavaScript, hence potentially // update the state of this very IC, so we must update the stored state. UpdateTarget(); // Compute the new state. BinaryOpICState old_state(isolate(), target()->extra_ic_state()); state.Update(left, right, result); // Check if we have a string operation here. Handle<Code> target; if (!allocation_site.is_null() || state.ShouldCreateAllocationMementos()) { // Setup the allocation site on-demand. if (allocation_site.is_null()) { allocation_site = isolate()->factory()->NewAllocationSite(); } // Install the stub with an allocation site. BinaryOpICWithAllocationSiteStub stub(isolate(), state); target = stub.GetCodeCopyFromTemplate(allocation_site); // Sanity check the trampoline stub. DCHECK_EQ(*allocation_site, target->FindFirstAllocationSite()); } else { // Install the generic stub. BinaryOpICStub stub(isolate(), state); target = stub.GetCode(); // Sanity check the generic stub. DCHECK_EQ(NULL, target->FindFirstAllocationSite()); } set_target(*target); if (FLAG_trace_ic) { OFStream os(stdout); os << "[BinaryOpIC" << old_state << " => " << state << " @ " << static_cast<void*>(*target) << " <- "; JavaScriptFrame::PrintTop(isolate(), stdout, false, true); if (!allocation_site.is_null()) { os << " using allocation site " << static_cast<void*>(*allocation_site); } os << "]" << std::endl; } // Patch the inlined smi code as necessary. if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) { PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK); } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) { PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK); } return result; } RUNTIME_FUNCTION(BinaryOpIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); DCHECK_EQ(2, args.length()); Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft); Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight); BinaryOpIC ic(isolate); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, ic.Transition(Handle<AllocationSite>::null(), left, right)); return *result; } RUNTIME_FUNCTION(BinaryOpIC_MissWithAllocationSite) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); DCHECK_EQ(3, args.length()); Handle<AllocationSite> allocation_site = args.at<AllocationSite>(BinaryOpWithAllocationSiteStub::kAllocationSite); Handle<Object> left = args.at<Object>(BinaryOpWithAllocationSiteStub::kLeft); Handle<Object> right = args.at<Object>(BinaryOpWithAllocationSiteStub::kRight); BinaryOpIC ic(isolate); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, ic.Transition(allocation_site, left, right)); return *result; } Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) { CompareICStub stub(isolate, op, CompareICState::UNINITIALIZED, CompareICState::UNINITIALIZED, CompareICState::UNINITIALIZED); Code* code = NULL; CHECK(stub.FindCodeInCache(&code)); return code; } Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) { CompareICStub stub(isolate, op, CompareICState::UNINITIALIZED, CompareICState::UNINITIALIZED, CompareICState::UNINITIALIZED); return stub.GetCode(); } Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) { HandleScope scope(isolate()); CompareICStub old_stub(target()->stub_key(), isolate()); CompareICState::State new_left = CompareICState::NewInputState(old_stub.left(), x); CompareICState::State new_right = CompareICState::NewInputState(old_stub.right(), y); CompareICState::State state = CompareICState::TargetState( old_stub.state(), old_stub.left(), old_stub.right(), op_, HasInlinedSmiCode(address()), x, y); CompareICStub stub(isolate(), op_, new_left, new_right, state); if (state == CompareICState::KNOWN_OBJECT) { stub.set_known_map( Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate())); } Handle<Code> new_target = stub.GetCode(); set_target(*new_target); if (FLAG_trace_ic) { PrintF("[CompareIC in "); JavaScriptFrame::PrintTop(isolate(), stdout, false, true); PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n", CompareICState::GetStateName(old_stub.left()), CompareICState::GetStateName(old_stub.right()), CompareICState::GetStateName(old_stub.state()), CompareICState::GetStateName(new_left), CompareICState::GetStateName(new_right), CompareICState::GetStateName(state), Token::Name(op_), static_cast<void*>(*stub.GetCode())); } // Activate inlined smi code. if (old_stub.state() == CompareICState::UNINITIALIZED) { PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK); } return *new_target; } // Used from CompareICStub::GenerateMiss in code-stubs-<arch>.cc. RUNTIME_FUNCTION(CompareIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); DCHECK(args.length() == 3); CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2))); return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1)); } void CompareNilIC::Clear(Address address, Code* target, ConstantPoolArray* constant_pool) { if (IsCleared(target)) return; ExtraICState state = target->extra_ic_state(); CompareNilICStub stub(target->GetIsolate(), state, HydrogenCodeStub::UNINITIALIZED); stub.ClearState(); Code* code = NULL; CHECK(stub.FindCodeInCache(&code)); SetTargetAtAddress(address, code, constant_pool); } Handle<Object> CompareNilIC::DoCompareNilSlow(Isolate* isolate, NilValue nil, Handle<Object> object) { if (object->IsNull() || object->IsUndefined()) { return handle(Smi::FromInt(true), isolate); } return handle(Smi::FromInt(object->IsUndetectableObject()), isolate); } Handle<Object> CompareNilIC::CompareNil(Handle<Object> object) { ExtraICState extra_ic_state = target()->extra_ic_state(); CompareNilICStub stub(isolate(), extra_ic_state); // Extract the current supported types from the patched IC and calculate what // types must be supported as a result of the miss. bool already_monomorphic = stub.IsMonomorphic(); stub.UpdateStatus(object); NilValue nil = stub.nil_value(); // Find or create the specialized stub to support the new set of types. Handle<Code> code; if (stub.IsMonomorphic()) { Handle<Map> monomorphic_map(already_monomorphic && FirstTargetMap() != NULL ? FirstTargetMap() : HeapObject::cast(*object)->map()); code = PropertyICCompiler::ComputeCompareNil(monomorphic_map, &stub); } else { code = stub.GetCode(); } set_target(*code); return DoCompareNilSlow(isolate(), nil, object); } RUNTIME_FUNCTION(CompareNilIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); Handle<Object> object = args.at<Object>(0); CompareNilIC ic(isolate); return *ic.CompareNil(object); } RUNTIME_FUNCTION(Unreachable) { UNREACHABLE(); CHECK(false); return isolate->heap()->undefined_value(); } Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) { switch (op) { default: UNREACHABLE(); case Token::ADD: return Builtins::ADD; break; case Token::SUB: return Builtins::SUB; break; case Token::MUL: return Builtins::MUL; break; case Token::DIV: return Builtins::DIV; break; case Token::MOD: return Builtins::MOD; break; case Token::BIT_OR: return Builtins::BIT_OR; break; case Token::BIT_AND: return Builtins::BIT_AND; break; case Token::BIT_XOR: return Builtins::BIT_XOR; break; case Token::SAR: return Builtins::SAR; break; case Token::SHR: return Builtins::SHR; break; case Token::SHL: return Builtins::SHL; break; } } Handle<Object> ToBooleanIC::ToBoolean(Handle<Object> object) { ToBooleanStub stub(isolate(), target()->extra_ic_state()); bool to_boolean_value = stub.UpdateStatus(object); Handle<Code> code = stub.GetCode(); set_target(*code); return handle(Smi::FromInt(to_boolean_value ? 1 : 0), isolate()); } RUNTIME_FUNCTION(ToBooleanIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); DCHECK(args.length() == 1); HandleScope scope(isolate); Handle<Object> object = args.at<Object>(0); ToBooleanIC ic(isolate); return *ic.ToBoolean(object); } RUNTIME_FUNCTION(StoreCallbackProperty) { Handle<JSObject> receiver = args.at<JSObject>(0); Handle<JSObject> holder = args.at<JSObject>(1); Handle<ExecutableAccessorInfo> callback = args.at<ExecutableAccessorInfo>(2); Handle<Name> name = args.at<Name>(3); Handle<Object> value = args.at<Object>(4); HandleScope scope(isolate); DCHECK(callback->IsCompatibleReceiver(*receiver)); Address setter_address = v8::ToCData<Address>(callback->setter()); v8::AccessorNameSetterCallback fun = FUNCTION_CAST<v8::AccessorNameSetterCallback>(setter_address); DCHECK(fun != NULL); LOG(isolate, ApiNamedPropertyAccess("store", *receiver, *name)); PropertyCallbackArguments custom_args(isolate, callback->data(), *receiver, *holder); custom_args.Call(fun, v8::Utils::ToLocal(name), v8::Utils::ToLocal(value)); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); return *value; } /** * Attempts to load a property with an interceptor (which must be present), * but doesn't search the prototype chain. * * Returns |Heap::no_interceptor_result_sentinel()| if interceptor doesn't * provide any value for the given name. */ RUNTIME_FUNCTION(LoadPropertyWithInterceptorOnly) { DCHECK(args.length() == NamedLoadHandlerCompiler::kInterceptorArgsLength); Handle<Name> name = args.at<Name>(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex); Handle<InterceptorInfo> interceptor_info = args.at<InterceptorInfo>( NamedLoadHandlerCompiler::kInterceptorArgsInfoIndex); if (name->IsSymbol() && !interceptor_info->can_intercept_symbols()) return isolate->heap()->no_interceptor_result_sentinel(); Address getter_address = v8::ToCData<Address>(interceptor_info->getter()); v8::GenericNamedPropertyGetterCallback getter = FUNCTION_CAST<v8::GenericNamedPropertyGetterCallback>(getter_address); DCHECK(getter != NULL); Handle<JSObject> receiver = args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex); Handle<JSObject> holder = args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex); PropertyCallbackArguments callback_args(isolate, interceptor_info->data(), *receiver, *holder); { // Use the interceptor getter. HandleScope scope(isolate); v8::Handle<v8::Value> r = callback_args.Call(getter, v8::Utils::ToLocal(name)); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); if (!r.IsEmpty()) { Handle<Object> result = v8::Utils::OpenHandle(*r); result->VerifyApiCallResultType(); return *v8::Utils::OpenHandle(*r); } } return isolate->heap()->no_interceptor_result_sentinel(); } static Object* ThrowReferenceError(Isolate* isolate, Name* name) { // If the load is non-contextual, just return the undefined result. // Note that both keyed and non-keyed loads may end up here. HandleScope scope(isolate); LoadIC ic(IC::NO_EXTRA_FRAME, isolate, true); if (ic.contextual_mode() != CONTEXTUAL) { return isolate->heap()->undefined_value(); } // Throw a reference error. Handle<Name> name_handle(name); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError("not_defined", HandleVector(&name_handle, 1))); } /** * Loads a property with an interceptor performing post interceptor * lookup if interceptor failed. */ RUNTIME_FUNCTION(LoadPropertyWithInterceptor) { HandleScope scope(isolate); DCHECK(args.length() == NamedLoadHandlerCompiler::kInterceptorArgsLength); Handle<Name> name = args.at<Name>(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex); Handle<JSObject> receiver = args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex); Handle<JSObject> holder = args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex); Handle<Object> result; LookupIterator it(receiver, name, holder); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, JSObject::GetProperty(&it)); if (it.IsFound()) return *result; return ThrowReferenceError(isolate, Name::cast(args[0])); } RUNTIME_FUNCTION(StorePropertyWithInterceptor) { HandleScope scope(isolate); DCHECK(args.length() == 3); StoreIC ic(IC::NO_EXTRA_FRAME, isolate); Handle<JSObject> receiver = args.at<JSObject>(0); Handle<Name> name = args.at<Name>(1); Handle<Object> value = args.at<Object>(2); #ifdef DEBUG PrototypeIterator iter(isolate, receiver, PrototypeIterator::START_AT_RECEIVER); bool found = false; for (; !iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN); iter.Advance()) { Handle<Object> current = PrototypeIterator::GetCurrent(iter); if (current->IsJSObject() && Handle<JSObject>::cast(current)->HasNamedInterceptor()) { found = true; break; } } DCHECK(found); #endif Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSObject::SetProperty(receiver, name, value, ic.strict_mode())); return *result; } RUNTIME_FUNCTION(LoadElementWithInterceptor) { HandleScope scope(isolate); Handle<JSObject> receiver = args.at<JSObject>(0); DCHECK(args.smi_at(1) >= 0); uint32_t index = args.smi_at(1); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSObject::GetElementWithInterceptor(receiver, receiver, index)); return *result; } RUNTIME_FUNCTION(LoadIC_MissFromStubFailure) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Name> key = args.at<Name>(1); Handle<Object> result; if (FLAG_vector_ics) { DCHECK(args.length() == 4); Handle<Smi> slot = args.at<Smi>(2); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(3); FeedbackVectorICSlot vector_slot = vector->ToICSlot(slot->value()); // A monomorphic or polymorphic KeyedLoadIC with a string key can call the // LoadIC miss handler if the handler misses. Since the vector Nexus is // set up outside the IC, handle that here. if (vector->GetKind(vector_slot) == Code::LOAD_IC) { LoadICNexus nexus(vector, vector_slot); LoadIC ic(IC::EXTRA_CALL_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); } else { DCHECK(vector->GetKind(vector_slot) == Code::KEYED_LOAD_IC); KeyedLoadICNexus nexus(vector, vector_slot); KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); } } else { DCHECK(args.length() == 2); LoadIC ic(IC::EXTRA_CALL_FRAME, isolate); ic.UpdateState(receiver, key); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); } return *result; } static const Address IC_utilities[] = { #define ADDR(name) FUNCTION_ADDR(name), IC_UTIL_LIST(ADDR) NULL #undef ADDR }; Address IC::AddressFromUtilityId(IC::UtilityId id) { return IC_utilities[id]; } } } // namespace v8::internal