// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/heap/spaces.h"

#include <utility>

#include "src/base/bits.h"
#include "src/base/macros.h"
#include "src/base/platform/semaphore.h"
#include "src/counters.h"
#include "src/heap/array-buffer-tracker.h"
#include "src/heap/concurrent-marking.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact.h"
#include "src/heap/slot-set.h"
#include "src/msan.h"
#include "src/objects-inl.h"
#include "src/snapshot/snapshot.h"
#include "src/v8.h"
#include "src/vm-state-inl.h"

namespace v8 {
namespace internal {

// ----------------------------------------------------------------------------
// HeapObjectIterator

HeapObjectIterator::HeapObjectIterator(PagedSpace* space)
    : cur_addr_(nullptr),
      cur_end_(nullptr),
      space_(space),
      page_range_(space->anchor()->next_page(), space->anchor()),
      current_page_(page_range_.begin()) {}

HeapObjectIterator::HeapObjectIterator(Page* page)
    : cur_addr_(nullptr),
      cur_end_(nullptr),
      space_(reinterpret_cast<PagedSpace*>(page->owner())),
      page_range_(page),
      current_page_(page_range_.begin()) {
#ifdef DEBUG
  Space* owner = page->owner();
  DCHECK(owner == page->heap()->old_space() ||
         owner == page->heap()->map_space() ||
         owner == page->heap()->code_space());
#endif  // DEBUG
}

// We have hit the end of the page and should advance to the next block of
// objects.  This happens at the end of the page.
bool HeapObjectIterator::AdvanceToNextPage() {
  DCHECK_EQ(cur_addr_, cur_end_);
  if (current_page_ == page_range_.end()) return false;
  Page* cur_page = *(current_page_++);
  Heap* heap = space_->heap();

  heap->mark_compact_collector()->sweeper().SweepOrWaitUntilSweepingCompleted(
      cur_page);
  if (cur_page->IsFlagSet(Page::SWEEP_TO_ITERATE))
    heap->minor_mark_compact_collector()->MakeIterable(
        cur_page, MarkingTreatmentMode::CLEAR,
        FreeSpaceTreatmentMode::IGNORE_FREE_SPACE);
  cur_addr_ = cur_page->area_start();
  cur_end_ = cur_page->area_end();
  DCHECK(cur_page->SweepingDone());
  return true;
}

PauseAllocationObserversScope::PauseAllocationObserversScope(Heap* heap)
    : heap_(heap) {
  AllSpaces spaces(heap_);
  for (Space* space = spaces.next(); space != nullptr; space = spaces.next()) {
    space->PauseAllocationObservers();
  }
}

PauseAllocationObserversScope::~PauseAllocationObserversScope() {
  AllSpaces spaces(heap_);
  for (Space* space = spaces.next(); space != nullptr; space = spaces.next()) {
    space->ResumeAllocationObservers();
  }
}

// -----------------------------------------------------------------------------
// CodeRange

CodeRange::CodeRange(Isolate* isolate)
    : isolate_(isolate),
      free_list_(0),
      allocation_list_(0),
      current_allocation_block_index_(0) {}

bool CodeRange::SetUp(size_t requested) {
  DCHECK(!virtual_memory_.IsReserved());

  if (requested == 0) {
    // When a target requires the code range feature, we put all code objects
    // in a kMaximalCodeRangeSize range of virtual address space, so that
    // they can call each other with near calls.
    if (kRequiresCodeRange) {
      requested = kMaximalCodeRangeSize;
    } else {
      return true;
    }
  }

  if (requested <= kMinimumCodeRangeSize) {
    requested = kMinimumCodeRangeSize;
  }

  const size_t reserved_area =
      kReservedCodeRangePages * MemoryAllocator::GetCommitPageSize();
  if (requested < (kMaximalCodeRangeSize - reserved_area))
    requested += reserved_area;

  DCHECK(!kRequiresCodeRange || requested <= kMaximalCodeRangeSize);

  VirtualMemory reservation;
  if (!AlignedAllocVirtualMemory(
          requested,
          Max(kCodeRangeAreaAlignment,
              static_cast<size_t>(base::OS::AllocateAlignment())),
          base::OS::GetRandomMmapAddr(), &reservation)) {
    return false;
  }

  // We are sure that we have mapped a block of requested addresses.
  DCHECK(reservation.size() == requested);
  Address base = reinterpret_cast<Address>(reservation.address());

  // On some platforms, specifically Win64, we need to reserve some pages at
  // the beginning of an executable space.
  if (reserved_area > 0) {
    if (!reservation.Commit(base, reserved_area, true)) return false;

    base += reserved_area;
  }
  Address aligned_base = ::RoundUp(base, MemoryChunk::kAlignment);
  size_t size = reservation.size() - (aligned_base - base) - reserved_area;
  allocation_list_.emplace_back(aligned_base, size);
  current_allocation_block_index_ = 0;

  LOG(isolate_, NewEvent("CodeRange", reservation.address(), requested));
  virtual_memory_.TakeControl(&reservation);
  return true;
}

bool CodeRange::CompareFreeBlockAddress(const FreeBlock& left,
                                        const FreeBlock& right) {
  return left.start < right.start;
}


bool CodeRange::GetNextAllocationBlock(size_t requested) {
  for (current_allocation_block_index_++;
       current_allocation_block_index_ < allocation_list_.size();
       current_allocation_block_index_++) {
    if (requested <= allocation_list_[current_allocation_block_index_].size) {
      return true;  // Found a large enough allocation block.
    }
  }

  // Sort and merge the free blocks on the free list and the allocation list.
  free_list_.insert(free_list_.end(), allocation_list_.begin(),
                    allocation_list_.end());
  allocation_list_.clear();
  std::sort(free_list_.begin(), free_list_.end(), &CompareFreeBlockAddress);
  for (size_t i = 0; i < free_list_.size();) {
    FreeBlock merged = free_list_[i];
    i++;
    // Add adjacent free blocks to the current merged block.
    while (i < free_list_.size() &&
           free_list_[i].start == merged.start + merged.size) {
      merged.size += free_list_[i].size;
      i++;
    }
    if (merged.size > 0) {
      allocation_list_.push_back(merged);
    }
  }
  free_list_.clear();

  for (current_allocation_block_index_ = 0;
       current_allocation_block_index_ < allocation_list_.size();
       current_allocation_block_index_++) {
    if (requested <= allocation_list_[current_allocation_block_index_].size) {
      return true;  // Found a large enough allocation block.
    }
  }
  current_allocation_block_index_ = 0;
  // Code range is full or too fragmented.
  return false;
}


Address CodeRange::AllocateRawMemory(const size_t requested_size,
                                     const size_t commit_size,
                                     size_t* allocated) {
  // request_size includes guards while committed_size does not. Make sure
  // callers know about the invariant.
  CHECK_LE(commit_size,
           requested_size - 2 * MemoryAllocator::CodePageGuardSize());
  FreeBlock current;
  if (!ReserveBlock(requested_size, &current)) {
    *allocated = 0;
    return nullptr;
  }
  *allocated = current.size;
  DCHECK(*allocated <= current.size);
  DCHECK(IsAddressAligned(current.start, MemoryChunk::kAlignment));
  if (!isolate_->heap()->memory_allocator()->CommitExecutableMemory(
          &virtual_memory_, current.start, commit_size, *allocated)) {
    *allocated = 0;
    ReleaseBlock(&current);
    return nullptr;
  }
  return current.start;
}


bool CodeRange::CommitRawMemory(Address start, size_t length) {
  return isolate_->heap()->memory_allocator()->CommitMemory(start, length,
                                                            EXECUTABLE);
}


bool CodeRange::UncommitRawMemory(Address start, size_t length) {
  return virtual_memory_.Uncommit(start, length);
}


void CodeRange::FreeRawMemory(Address address, size_t length) {
  DCHECK(IsAddressAligned(address, MemoryChunk::kAlignment));
  base::LockGuard<base::Mutex> guard(&code_range_mutex_);
  free_list_.emplace_back(address, length);
  virtual_memory_.Uncommit(address, length);
}

bool CodeRange::ReserveBlock(const size_t requested_size, FreeBlock* block) {
  base::LockGuard<base::Mutex> guard(&code_range_mutex_);
  DCHECK(allocation_list_.empty() ||
         current_allocation_block_index_ < allocation_list_.size());
  if (allocation_list_.empty() ||
      requested_size > allocation_list_[current_allocation_block_index_].size) {
    // Find an allocation block large enough.
    if (!GetNextAllocationBlock(requested_size)) return false;
  }
  // Commit the requested memory at the start of the current allocation block.
  size_t aligned_requested = ::RoundUp(requested_size, MemoryChunk::kAlignment);
  *block = allocation_list_[current_allocation_block_index_];
  // Don't leave a small free block, useless for a large object or chunk.
  if (aligned_requested < (block->size - Page::kPageSize)) {
    block->size = aligned_requested;
  }
  DCHECK(IsAddressAligned(block->start, MemoryChunk::kAlignment));
  allocation_list_[current_allocation_block_index_].start += block->size;
  allocation_list_[current_allocation_block_index_].size -= block->size;
  return true;
}


void CodeRange::ReleaseBlock(const FreeBlock* block) {
  base::LockGuard<base::Mutex> guard(&code_range_mutex_);
  free_list_.push_back(*block);
}


// -----------------------------------------------------------------------------
// MemoryAllocator
//

MemoryAllocator::MemoryAllocator(Isolate* isolate)
    : isolate_(isolate),
      code_range_(nullptr),
      capacity_(0),
      size_(0),
      size_executable_(0),
      lowest_ever_allocated_(reinterpret_cast<void*>(-1)),
      highest_ever_allocated_(reinterpret_cast<void*>(0)),
      unmapper_(isolate->heap(), this) {}

bool MemoryAllocator::SetUp(size_t capacity, size_t code_range_size) {
  capacity_ = ::RoundUp(capacity, Page::kPageSize);

  size_ = 0;
  size_executable_ = 0;

  code_range_ = new CodeRange(isolate_);
  if (!code_range_->SetUp(code_range_size)) return false;

  return true;
}


void MemoryAllocator::TearDown() {
  unmapper()->TearDown();

  // Check that spaces were torn down before MemoryAllocator.
  DCHECK_EQ(size_.Value(), 0u);
  // TODO(gc) this will be true again when we fix FreeMemory.
  // DCHECK_EQ(0, size_executable_);
  capacity_ = 0;

  if (last_chunk_.IsReserved()) {
    last_chunk_.Release();
  }

  delete code_range_;
  code_range_ = nullptr;
}

class MemoryAllocator::Unmapper::UnmapFreeMemoryTask : public CancelableTask {
 public:
  explicit UnmapFreeMemoryTask(Isolate* isolate, Unmapper* unmapper)
      : CancelableTask(isolate), unmapper_(unmapper) {}

 private:
  void RunInternal() override {
    unmapper_->PerformFreeMemoryOnQueuedChunks<FreeMode::kUncommitPooled>();
    unmapper_->pending_unmapping_tasks_semaphore_.Signal();
  }

  Unmapper* const unmapper_;
  DISALLOW_COPY_AND_ASSIGN(UnmapFreeMemoryTask);
};

void MemoryAllocator::Unmapper::FreeQueuedChunks() {
  ReconsiderDelayedChunks();
  if (heap_->use_tasks() && FLAG_concurrent_sweeping) {
    if (concurrent_unmapping_tasks_active_ >= kMaxUnmapperTasks) {
      // kMaxUnmapperTasks are already running. Avoid creating any more.
      return;
    }
    UnmapFreeMemoryTask* task = new UnmapFreeMemoryTask(heap_->isolate(), this);
    DCHECK_LT(concurrent_unmapping_tasks_active_, kMaxUnmapperTasks);
    task_ids_[concurrent_unmapping_tasks_active_++] = task->id();
    V8::GetCurrentPlatform()->CallOnBackgroundThread(
        task, v8::Platform::kShortRunningTask);
  } else {
    PerformFreeMemoryOnQueuedChunks<FreeMode::kUncommitPooled>();
  }
}

void MemoryAllocator::Unmapper::WaitUntilCompleted() {
  for (int i = 0; i < concurrent_unmapping_tasks_active_; i++) {
    if (heap_->isolate()->cancelable_task_manager()->TryAbort(task_ids_[i]) !=
        CancelableTaskManager::kTaskAborted) {
      pending_unmapping_tasks_semaphore_.Wait();
    }
    concurrent_unmapping_tasks_active_ = 0;
  }
}

template <MemoryAllocator::Unmapper::FreeMode mode>
void MemoryAllocator::Unmapper::PerformFreeMemoryOnQueuedChunks() {
  MemoryChunk* chunk = nullptr;
  // Regular chunks.
  while ((chunk = GetMemoryChunkSafe<kRegular>()) != nullptr) {
    bool pooled = chunk->IsFlagSet(MemoryChunk::POOLED);
    allocator_->PerformFreeMemory(chunk);
    if (pooled) AddMemoryChunkSafe<kPooled>(chunk);
  }
  if (mode == MemoryAllocator::Unmapper::FreeMode::kReleasePooled) {
    // The previous loop uncommitted any pages marked as pooled and added them
    // to the pooled list. In case of kReleasePooled we need to free them
    // though.
    while ((chunk = GetMemoryChunkSafe<kPooled>()) != nullptr) {
      allocator_->Free<MemoryAllocator::kAlreadyPooled>(chunk);
    }
  }
  // Non-regular chunks.
  while ((chunk = GetMemoryChunkSafe<kNonRegular>()) != nullptr) {
    allocator_->PerformFreeMemory(chunk);
  }
}

void MemoryAllocator::Unmapper::TearDown() {
  CHECK_EQ(0, concurrent_unmapping_tasks_active_);
  ReconsiderDelayedChunks();
  CHECK(delayed_regular_chunks_.empty());
  PerformFreeMemoryOnQueuedChunks<FreeMode::kReleasePooled>();
  for (int i = 0; i < kNumberOfChunkQueues; i++) {
    DCHECK(chunks_[i].empty());
  }
}

void MemoryAllocator::Unmapper::ReconsiderDelayedChunks() {
  std::list<MemoryChunk*> delayed_chunks(std::move(delayed_regular_chunks_));
  // Move constructed, so the permanent list should be empty.
  DCHECK(delayed_regular_chunks_.empty());
  for (auto it = delayed_chunks.begin(); it != delayed_chunks.end(); ++it) {
    AddMemoryChunkSafe<kRegular>(*it);
  }
}

int MemoryAllocator::Unmapper::NumberOfChunks() {
  base::LockGuard<base::Mutex> guard(&mutex_);
  size_t result = 0;
  for (int i = 0; i < kNumberOfChunkQueues; i++) {
    result += chunks_[i].size();
  }
  return static_cast<int>(result);
}

bool MemoryAllocator::CanFreeMemoryChunk(MemoryChunk* chunk) {
  MarkCompactCollector* mc = isolate_->heap()->mark_compact_collector();
  // We cannot free a memory chunk in new space while the sweeper is running
  // because the memory chunk can be in the queue of a sweeper task.
  // Chunks in old generation are unmapped if they are empty.
  DCHECK(chunk->InNewSpace() || chunk->SweepingDone());
  return !chunk->InNewSpace() || mc == nullptr ||
         !mc->sweeper().sweeping_in_progress();
}

bool MemoryAllocator::CommitMemory(Address base, size_t size,
                                   Executability executable) {
  if (!base::OS::CommitRegion(base, size, executable == EXECUTABLE)) {
    return false;
  }
  UpdateAllocatedSpaceLimits(base, base + size);
  return true;
}

void MemoryAllocator::FreeMemory(VirtualMemory* reservation,
                                 Executability executable) {
  // TODO(gc) make code_range part of memory allocator?
  // Code which is part of the code-range does not have its own VirtualMemory.
  DCHECK(code_range() == nullptr ||
         !code_range()->contains(static_cast<Address>(reservation->address())));
  DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid() ||
         reservation->size() <= Page::kPageSize);

  reservation->Release();
}


void MemoryAllocator::FreeMemory(Address base, size_t size,
                                 Executability executable) {
  // TODO(gc) make code_range part of memory allocator?
  if (code_range() != nullptr &&
      code_range()->contains(static_cast<Address>(base))) {
    DCHECK(executable == EXECUTABLE);
    code_range()->FreeRawMemory(base, size);
  } else {
    DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid());
    bool result = base::OS::ReleaseRegion(base, size);
    USE(result);
    DCHECK(result);
  }
}

Address MemoryAllocator::ReserveAlignedMemory(size_t size, size_t alignment,
                                              void* hint,
                                              VirtualMemory* controller) {
  VirtualMemory reservation;
  if (!AlignedAllocVirtualMemory(size, alignment, hint, &reservation))
    return nullptr;

  const Address base =
      ::RoundUp(static_cast<Address>(reservation.address()), alignment);
  if (base + size != reservation.end()) {
    const Address unused_start = ::RoundUp(base + size, GetCommitPageSize());
    reservation.ReleasePartial(unused_start);
  }
  size_.Increment(reservation.size());
  controller->TakeControl(&reservation);
  return base;
}

Address MemoryAllocator::AllocateAlignedMemory(
    size_t reserve_size, size_t commit_size, size_t alignment,
    Executability executable, void* hint, VirtualMemory* controller) {
  DCHECK(commit_size <= reserve_size);
  VirtualMemory reservation;
  Address base =
      ReserveAlignedMemory(reserve_size, alignment, hint, &reservation);
  if (base == nullptr) return nullptr;

  if (executable == EXECUTABLE) {
    if (!CommitExecutableMemory(&reservation, base, commit_size,
                                reserve_size)) {
      base = nullptr;
    }
  } else {
    if (reservation.Commit(base, commit_size, false)) {
      UpdateAllocatedSpaceLimits(base, base + commit_size);
    } else {
      base = nullptr;
    }
  }

  if (base == nullptr) {
    // Failed to commit the body. Release the mapping and any partially
    // committed regions inside it.
    reservation.Release();
    size_.Decrement(reserve_size);
    return nullptr;
  }

  controller->TakeControl(&reservation);
  return base;
}

void Page::InitializeAsAnchor(Space* space) {
  set_owner(space);
  set_next_chunk(this);
  set_prev_chunk(this);
  SetFlags(0, static_cast<uintptr_t>(~0));
  SetFlag(ANCHOR);
}

Heap* MemoryChunk::synchronized_heap() {
  return reinterpret_cast<Heap*>(
      base::Acquire_Load(reinterpret_cast<base::AtomicWord*>(&heap_)));
}

void MemoryChunk::InitializationMemoryFence() {
  base::SeqCst_MemoryFence();
#ifdef THREAD_SANITIZER
  // Since TSAN does not process memory fences, we use the following annotation
  // to tell TSAN that there is no data race when emitting a
  // InitializationMemoryFence. Note that the other thread still needs to
  // perform MemoryChunk::synchronized_heap().
  base::Release_Store(reinterpret_cast<base::AtomicWord*>(&heap_),
                      reinterpret_cast<base::AtomicWord>(heap_));
#endif
}

void MemoryChunk::SetReadAndExecutable() {
  DCHECK(IsFlagSet(MemoryChunk::IS_EXECUTABLE));
  DCHECK(owner()->identity() == CODE_SPACE || owner()->identity() == LO_SPACE);
  // Decrementing the write_unprotect_counter_ and changing the page
  // protection mode has to be atomic.
  base::LockGuard<base::Mutex> guard(page_protection_change_mutex_);
  if (write_unprotect_counter_ == 0) {
    // This is a corner case that may happen when we have a
    // CodeSpaceMemoryModificationScope open and this page was newly
    // added.
    return;
  }
  write_unprotect_counter_--;
  DCHECK_LE(write_unprotect_counter_, 1);
  if (write_unprotect_counter_ == 0) {
    Address protect_start =
        address() + MemoryAllocator::CodePageAreaStartOffset();
    size_t protect_size = size() - MemoryAllocator::CodePageAreaStartOffset();
    DCHECK(
        IsAddressAligned(protect_start, MemoryAllocator::GetCommitPageSize()));
    base::OS::SetReadAndExecutable(protect_start, protect_size);
  }
}

void MemoryChunk::SetReadAndWritable() {
  DCHECK(IsFlagSet(MemoryChunk::IS_EXECUTABLE));
  DCHECK(owner()->identity() == CODE_SPACE || owner()->identity() == LO_SPACE);
  // Incrementing the write_unprotect_counter_ and changing the page
  // protection mode has to be atomic.
  base::LockGuard<base::Mutex> guard(page_protection_change_mutex_);
  write_unprotect_counter_++;
  DCHECK_LE(write_unprotect_counter_, 2);
  if (write_unprotect_counter_ == 1) {
    Address unprotect_start =
        address() + MemoryAllocator::CodePageAreaStartOffset();
    size_t unprotect_size = size() - MemoryAllocator::CodePageAreaStartOffset();
    DCHECK(IsAddressAligned(unprotect_start,
                            MemoryAllocator::GetCommitPageSize()));
    base::OS::SetReadAndWritable(unprotect_start, unprotect_size, false);
  }
}

MemoryChunk* MemoryChunk::Initialize(Heap* heap, Address base, size_t size,
                                     Address area_start, Address area_end,
                                     Executability executable, Space* owner,
                                     VirtualMemory* reservation) {
  MemoryChunk* chunk = FromAddress(base);

  DCHECK(base == chunk->address());

  chunk->heap_ = heap;
  chunk->size_ = size;
  chunk->area_start_ = area_start;
  chunk->area_end_ = area_end;
  chunk->flags_ = Flags(NO_FLAGS);
  chunk->set_owner(owner);
  chunk->InitializeReservedMemory();
  base::AsAtomicPointer::Release_Store(&chunk->slot_set_[OLD_TO_NEW], nullptr);
  base::AsAtomicPointer::Release_Store(&chunk->slot_set_[OLD_TO_OLD], nullptr);
  base::AsAtomicPointer::Release_Store(&chunk->typed_slot_set_[OLD_TO_NEW],
                                       nullptr);
  base::AsAtomicPointer::Release_Store(&chunk->typed_slot_set_[OLD_TO_OLD],
                                       nullptr);
  chunk->invalidated_slots_ = nullptr;
  chunk->skip_list_ = nullptr;
  chunk->progress_bar_ = 0;
  chunk->high_water_mark_.SetValue(static_cast<intptr_t>(area_start - base));
  chunk->concurrent_sweeping_state().SetValue(kSweepingDone);
  chunk->page_protection_change_mutex_ = new base::Mutex();
  chunk->write_unprotect_counter_ = 0;
  chunk->mutex_ = new base::RecursiveMutex();
  chunk->allocated_bytes_ = chunk->area_size();
  chunk->wasted_memory_ = 0;
  chunk->young_generation_bitmap_ = nullptr;
  chunk->set_next_chunk(nullptr);
  chunk->set_prev_chunk(nullptr);
  chunk->local_tracker_ = nullptr;

  heap->incremental_marking()->non_atomic_marking_state()->ClearLiveness(chunk);

  DCHECK_EQ(kFlagsOffset, OFFSET_OF(MemoryChunk, flags_));

  if (executable == EXECUTABLE) {
    chunk->SetFlag(IS_EXECUTABLE);
  }

  if (reservation != nullptr) {
    chunk->reservation_.TakeControl(reservation);
  }
  return chunk;
}

Page* PagedSpace::InitializePage(MemoryChunk* chunk, Executability executable) {
  Page* page = static_cast<Page*>(chunk);
  DCHECK_GE(Page::kAllocatableMemory, page->area_size());
  // Make sure that categories are initialized before freeing the area.
  page->InitializeFreeListCategories();
  page->ResetAllocatedBytes();
  heap()->incremental_marking()->SetOldSpacePageFlags(page);
  page->InitializationMemoryFence();
  return page;
}

Page* SemiSpace::InitializePage(MemoryChunk* chunk, Executability executable) {
  DCHECK_EQ(executable, Executability::NOT_EXECUTABLE);
  bool in_to_space = (id() != kFromSpace);
  chunk->SetFlag(in_to_space ? MemoryChunk::IN_TO_SPACE
                             : MemoryChunk::IN_FROM_SPACE);
  DCHECK(!chunk->IsFlagSet(in_to_space ? MemoryChunk::IN_FROM_SPACE
                                       : MemoryChunk::IN_TO_SPACE));
  Page* page = static_cast<Page*>(chunk);
  heap()->incremental_marking()->SetNewSpacePageFlags(page);
  page->AllocateLocalTracker();
  if (FLAG_minor_mc) {
    page->AllocateYoungGenerationBitmap();
    heap()
        ->minor_mark_compact_collector()
        ->non_atomic_marking_state()
        ->ClearLiveness(page);
  }
  page->InitializationMemoryFence();
  return page;
}

LargePage* LargePage::Initialize(Heap* heap, MemoryChunk* chunk,
                                 Executability executable, Space* owner) {
  if (executable && chunk->size() > LargePage::kMaxCodePageSize) {
    STATIC_ASSERT(LargePage::kMaxCodePageSize <= TypedSlotSet::kMaxOffset);
    FATAL("Code page is too large.");
  }
  heap->incremental_marking()->SetOldSpacePageFlags(chunk);

  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(chunk->area_start(), chunk->area_size());

  // Initialize the owner field for each contained page (except the first, which
  // is initialized by MemoryChunk::Initialize).
  for (Address addr = chunk->address() + Page::kPageSize + Page::kOwnerOffset;
       addr < chunk->area_end(); addr += Page::kPageSize) {
    // Clear out kPageHeaderTag.
    Memory::Address_at(addr) = 0;
  }
  LargePage* page = static_cast<LargePage*>(chunk);
  page->InitializationMemoryFence();
  return page;
}

Page* Page::ConvertNewToOld(Page* old_page) {
  DCHECK(!old_page->is_anchor());
  DCHECK(old_page->InNewSpace());
  OldSpace* old_space = old_page->heap()->old_space();
  old_page->set_owner(old_space);
  old_page->SetFlags(0, static_cast<uintptr_t>(~0));
  Page* new_page = old_space->InitializePage(old_page, NOT_EXECUTABLE);
  old_space->AddPage(new_page);
  return new_page;
}

// Commit MemoryChunk area to the requested size.
bool MemoryChunk::CommitArea(size_t requested) {
  size_t guard_size =
      IsFlagSet(IS_EXECUTABLE) ? MemoryAllocator::CodePageGuardSize() : 0;
  size_t header_size = area_start() - address() - guard_size;
  size_t commit_size =
      ::RoundUp(header_size + requested, MemoryAllocator::GetCommitPageSize());
  size_t committed_size = ::RoundUp(header_size + (area_end() - area_start()),
                                    MemoryAllocator::GetCommitPageSize());

  if (commit_size > committed_size) {
    // Commit size should be less or equal than the reserved size.
    DCHECK(commit_size <= size() - 2 * guard_size);
    // Append the committed area.
    Address start = address() + committed_size + guard_size;
    size_t length = commit_size - committed_size;
    if (reservation_.IsReserved()) {
      Executability executable =
          IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
      if (!heap()->memory_allocator()->CommitMemory(start, length,
                                                    executable)) {
        return false;
      }
    } else {
      CodeRange* code_range = heap_->memory_allocator()->code_range();
      DCHECK(code_range->valid() && IsFlagSet(IS_EXECUTABLE));
      if (!code_range->CommitRawMemory(start, length)) return false;
    }

    if (Heap::ShouldZapGarbage()) {
      heap_->memory_allocator()->ZapBlock(start, length);
    }
  } else if (commit_size < committed_size) {
    DCHECK_LT(0, commit_size);
    // Shrink the committed area.
    size_t length = committed_size - commit_size;
    Address start = address() + committed_size + guard_size - length;
    if (reservation_.IsReserved()) {
      if (!reservation_.Uncommit(start, length)) return false;
    } else {
      CodeRange* code_range = heap_->memory_allocator()->code_range();
      DCHECK(code_range->valid() && IsFlagSet(IS_EXECUTABLE));
      if (!code_range->UncommitRawMemory(start, length)) return false;
    }
  }

  area_end_ = area_start_ + requested;
  return true;
}

size_t MemoryChunk::CommittedPhysicalMemory() {
  if (!base::OS::HasLazyCommits() || owner()->identity() == LO_SPACE)
    return size();
  return high_water_mark_.Value();
}

void MemoryChunk::InsertAfter(MemoryChunk* other) {
  MemoryChunk* other_next = other->next_chunk();

  set_next_chunk(other_next);
  set_prev_chunk(other);
  other_next->set_prev_chunk(this);
  other->set_next_chunk(this);
}


void MemoryChunk::Unlink() {
  MemoryChunk* next_element = next_chunk();
  MemoryChunk* prev_element = prev_chunk();
  next_element->set_prev_chunk(prev_element);
  prev_element->set_next_chunk(next_element);
  set_prev_chunk(nullptr);
  set_next_chunk(nullptr);
}

MemoryChunk* MemoryAllocator::AllocateChunk(size_t reserve_area_size,
                                            size_t commit_area_size,
                                            Executability executable,
                                            Space* owner) {
  DCHECK_LE(commit_area_size, reserve_area_size);

  size_t chunk_size;
  Heap* heap = isolate_->heap();
  Address base = nullptr;
  VirtualMemory reservation;
  Address area_start = nullptr;
  Address area_end = nullptr;
  void* address_hint = heap->GetRandomMmapAddr();

  //
  // MemoryChunk layout:
  //
  //             Executable
  // +----------------------------+<- base aligned with MemoryChunk::kAlignment
  // |           Header           |
  // +----------------------------+<- base + CodePageGuardStartOffset
  // |           Guard            |
  // +----------------------------+<- area_start_
  // |           Area             |
  // +----------------------------+<- area_end_ (area_start + commit_area_size)
  // |   Committed but not used   |
  // +----------------------------+<- aligned at OS page boundary
  // | Reserved but not committed |
  // +----------------------------+<- aligned at OS page boundary
  // |           Guard            |
  // +----------------------------+<- base + chunk_size
  //
  //           Non-executable
  // +----------------------------+<- base aligned with MemoryChunk::kAlignment
  // |          Header            |
  // +----------------------------+<- area_start_ (base + kObjectStartOffset)
  // |           Area             |
  // +----------------------------+<- area_end_ (area_start + commit_area_size)
  // |  Committed but not used    |
  // +----------------------------+<- aligned at OS page boundary
  // | Reserved but not committed |
  // +----------------------------+<- base + chunk_size
  //

  if (executable == EXECUTABLE) {
    chunk_size = ::RoundUp(CodePageAreaStartOffset() + reserve_area_size,
                           GetCommitPageSize()) +
                 CodePageGuardSize();

    // Size of header (not executable) plus area (executable).
    size_t commit_size = ::RoundUp(
        CodePageGuardStartOffset() + commit_area_size, GetCommitPageSize());
    // Allocate executable memory either from code range or from the
    // OS.
#ifdef V8_TARGET_ARCH_MIPS64
    // Use code range only for large object space on mips64 to keep address
    // range within 256-MB memory region.
    if (code_range()->valid() && reserve_area_size > CodePageAreaSize()) {
#else
    if (code_range()->valid()) {
#endif
      base =
          code_range()->AllocateRawMemory(chunk_size, commit_size, &chunk_size);
      DCHECK(
          IsAligned(reinterpret_cast<intptr_t>(base), MemoryChunk::kAlignment));
      if (base == nullptr) return nullptr;
      size_.Increment(chunk_size);
      // Update executable memory size.
      size_executable_.Increment(chunk_size);
    } else {
      base = AllocateAlignedMemory(chunk_size, commit_size,
                                   MemoryChunk::kAlignment, executable,
                                   address_hint, &reservation);
      if (base == nullptr) return nullptr;
      // Update executable memory size.
      size_executable_.Increment(reservation.size());
    }

    if (Heap::ShouldZapGarbage()) {
      ZapBlock(base, CodePageGuardStartOffset());
      ZapBlock(base + CodePageAreaStartOffset(), commit_area_size);
    }

    area_start = base + CodePageAreaStartOffset();
    area_end = area_start + commit_area_size;
  } else {
    chunk_size = ::RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size,
                           GetCommitPageSize());
    size_t commit_size =
        ::RoundUp(MemoryChunk::kObjectStartOffset + commit_area_size,
                  GetCommitPageSize());
    base =
        AllocateAlignedMemory(chunk_size, commit_size, MemoryChunk::kAlignment,
                              executable, address_hint, &reservation);

    if (base == nullptr) return nullptr;

    if (Heap::ShouldZapGarbage()) {
      ZapBlock(base, Page::kObjectStartOffset + commit_area_size);
    }

    area_start = base + Page::kObjectStartOffset;
    area_end = area_start + commit_area_size;
  }

  // Use chunk_size for statistics and callbacks because we assume that they
  // treat reserved but not-yet committed memory regions of chunks as allocated.
  isolate_->counters()->memory_allocated()->Increment(
      static_cast<int>(chunk_size));

  LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size));

  // We cannot use the last chunk in the address space because we would
  // overflow when comparing top and limit if this chunk is used for a
  // linear allocation area.
  if ((reinterpret_cast<uintptr_t>(base) + chunk_size) == 0u) {
    CHECK(!last_chunk_.IsReserved());
    last_chunk_.TakeControl(&reservation);
    UncommitBlock(reinterpret_cast<Address>(last_chunk_.address()),
                  last_chunk_.size());
    size_.Decrement(chunk_size);
    if (executable == EXECUTABLE) {
      size_executable_.Decrement(chunk_size);
    }
    CHECK(last_chunk_.IsReserved());
    return AllocateChunk(reserve_area_size, commit_area_size, executable,
                         owner);
  }

  return MemoryChunk::Initialize(heap, base, chunk_size, area_start, area_end,
                                 executable, owner, &reservation);
}

void Page::ResetAllocatedBytes() { allocated_bytes_ = area_size(); }

void Page::ResetFreeListStatistics() {
  wasted_memory_ = 0;
}

size_t Page::AvailableInFreeList() {
  size_t sum = 0;
  ForAllFreeListCategories([&sum](FreeListCategory* category) {
    sum += category->available();
  });
  return sum;
}

size_t Page::ShrinkToHighWaterMark() {
  // Shrinking only makes sense outside of the CodeRange, where we don't care
  // about address space fragmentation.
  VirtualMemory* reservation = reserved_memory();
  if (!reservation->IsReserved()) return 0;

  // Shrink pages to high water mark. The water mark points either to a filler
  // or the area_end.
  HeapObject* filler = HeapObject::FromAddress(HighWaterMark());
  if (filler->address() == area_end()) return 0;
  CHECK(filler->IsFiller());
  if (!filler->IsFreeSpace()) return 0;

#ifdef DEBUG
  // Check the the filler is indeed the last filler on the page.
  HeapObjectIterator it(this);
  HeapObject* filler2 = nullptr;
  for (HeapObject* obj = it.Next(); obj != nullptr; obj = it.Next()) {
    filler2 = HeapObject::FromAddress(obj->address() + obj->Size());
  }
  if (filler2 == nullptr || filler2->address() == area_end()) return 0;
  DCHECK(filler2->IsFiller());
  // The deserializer might leave behind fillers. In this case we need to
  // iterate even further.
  while ((filler2->address() + filler2->Size()) != area_end()) {
    filler2 = HeapObject::FromAddress(filler2->address() + filler2->Size());
    DCHECK(filler2->IsFiller());
  }
  DCHECK_EQ(filler->address(), filler2->address());
#endif  // DEBUG

  size_t unused = RoundDown(
      static_cast<size_t>(area_end() - filler->address() - FreeSpace::kSize),
      MemoryAllocator::GetCommitPageSize());
  if (unused > 0) {
    DCHECK_EQ(0u, unused % MemoryAllocator::GetCommitPageSize());
    if (FLAG_trace_gc_verbose) {
      PrintIsolate(heap()->isolate(), "Shrinking page %p: end %p -> %p\n",
                   reinterpret_cast<void*>(this),
                   reinterpret_cast<void*>(area_end()),
                   reinterpret_cast<void*>(area_end() - unused));
    }
    heap()->CreateFillerObjectAt(
        filler->address(),
        static_cast<int>(area_end() - filler->address() - unused),
        ClearRecordedSlots::kNo);
    heap()->memory_allocator()->PartialFreeMemory(
        this, address() + size() - unused, unused, area_end() - unused);
    CHECK(filler->IsFiller());
    CHECK_EQ(filler->address() + filler->Size(), area_end());
  }
  return unused;
}

void Page::CreateBlackArea(Address start, Address end) {
  DCHECK(heap()->incremental_marking()->black_allocation());
  DCHECK_EQ(Page::FromAddress(start), this);
  DCHECK_NE(start, end);
  DCHECK_EQ(Page::FromAddress(end - 1), this);
  IncrementalMarking::MarkingState* marking_state =
      heap()->incremental_marking()->marking_state();
  marking_state->bitmap(this)->SetRange(AddressToMarkbitIndex(start),
                                        AddressToMarkbitIndex(end));
  marking_state->IncrementLiveBytes(this, static_cast<int>(end - start));
}

void Page::DestroyBlackArea(Address start, Address end) {
  DCHECK(heap()->incremental_marking()->black_allocation());
  DCHECK_EQ(Page::FromAddress(start), this);
  DCHECK_NE(start, end);
  DCHECK_EQ(Page::FromAddress(end - 1), this);
  IncrementalMarking::MarkingState* marking_state =
      heap()->incremental_marking()->marking_state();
  marking_state->bitmap(this)->ClearRange(AddressToMarkbitIndex(start),
                                          AddressToMarkbitIndex(end));
  marking_state->IncrementLiveBytes(this, -static_cast<int>(end - start));
}

void MemoryAllocator::PartialFreeMemory(MemoryChunk* chunk, Address start_free,
                                        size_t bytes_to_free,
                                        Address new_area_end) {
  VirtualMemory* reservation = chunk->reserved_memory();
  DCHECK(reservation->IsReserved());
  chunk->size_ -= bytes_to_free;
  chunk->area_end_ = new_area_end;
  if (chunk->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) {
    DCHECK_EQ(0, reinterpret_cast<uintptr_t>(chunk->area_end_) %
                     static_cast<uintptr_t>(GetCommitPageSize()));
    DCHECK_EQ(chunk->address() + chunk->size(),
              chunk->area_end() + CodePageGuardSize());
    reservation->Guard(chunk->area_end_);
  }
  // On e.g. Windows, a reservation may be larger than a page and releasing
  // partially starting at |start_free| will also release the potentially
  // unused part behind the current page.
  const size_t released_bytes = reservation->ReleasePartial(start_free);
  DCHECK_GE(size_.Value(), released_bytes);
  size_.Decrement(released_bytes);
  isolate_->counters()->memory_allocated()->Decrement(
      static_cast<int>(released_bytes));
}

void MemoryAllocator::PreFreeMemory(MemoryChunk* chunk) {
  DCHECK(!chunk->IsFlagSet(MemoryChunk::PRE_FREED));
  LOG(isolate_, DeleteEvent("MemoryChunk", chunk));

  isolate_->heap()->RememberUnmappedPage(reinterpret_cast<Address>(chunk),
                                         chunk->IsEvacuationCandidate());

  VirtualMemory* reservation = chunk->reserved_memory();
  const size_t size =
      reservation->IsReserved() ? reservation->size() : chunk->size();
  DCHECK_GE(size_.Value(), static_cast<size_t>(size));
  size_.Decrement(size);
  isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
  if (chunk->executable() == EXECUTABLE) {
    DCHECK_GE(size_executable_.Value(), size);
    size_executable_.Decrement(size);
  }

  chunk->SetFlag(MemoryChunk::PRE_FREED);
}


void MemoryAllocator::PerformFreeMemory(MemoryChunk* chunk) {
  DCHECK(chunk->IsFlagSet(MemoryChunk::PRE_FREED));
  chunk->ReleaseAllocatedMemory();

  VirtualMemory* reservation = chunk->reserved_memory();
  if (chunk->IsFlagSet(MemoryChunk::POOLED)) {
    UncommitBlock(reinterpret_cast<Address>(chunk), MemoryChunk::kPageSize);
  } else {
    if (reservation->IsReserved()) {
      FreeMemory(reservation, chunk->executable());
    } else {
      FreeMemory(chunk->address(), chunk->size(), chunk->executable());
    }
  }
}

template <MemoryAllocator::FreeMode mode>
void MemoryAllocator::Free(MemoryChunk* chunk) {
  switch (mode) {
    case kFull:
      PreFreeMemory(chunk);
      PerformFreeMemory(chunk);
      break;
    case kAlreadyPooled:
      // Pooled pages cannot be touched anymore as their memory is uncommitted.
      FreeMemory(chunk->address(), static_cast<size_t>(MemoryChunk::kPageSize),
                 Executability::NOT_EXECUTABLE);
      break;
    case kPooledAndQueue:
      DCHECK_EQ(chunk->size(), static_cast<size_t>(MemoryChunk::kPageSize));
      DCHECK_EQ(chunk->executable(), NOT_EXECUTABLE);
      chunk->SetFlag(MemoryChunk::POOLED);
    // Fall through to kPreFreeAndQueue.
    case kPreFreeAndQueue:
      PreFreeMemory(chunk);
      // The chunks added to this queue will be freed by a concurrent thread.
      unmapper()->AddMemoryChunkSafe(chunk);
      break;
  }
}

template void MemoryAllocator::Free<MemoryAllocator::kFull>(MemoryChunk* chunk);

template void MemoryAllocator::Free<MemoryAllocator::kAlreadyPooled>(
    MemoryChunk* chunk);

template void MemoryAllocator::Free<MemoryAllocator::kPreFreeAndQueue>(
    MemoryChunk* chunk);

template void MemoryAllocator::Free<MemoryAllocator::kPooledAndQueue>(
    MemoryChunk* chunk);

template <MemoryAllocator::AllocationMode alloc_mode, typename SpaceType>
Page* MemoryAllocator::AllocatePage(size_t size, SpaceType* owner,
                                    Executability executable) {
  MemoryChunk* chunk = nullptr;
  if (alloc_mode == kPooled) {
    DCHECK_EQ(size, static_cast<size_t>(MemoryChunk::kAllocatableMemory));
    DCHECK_EQ(executable, NOT_EXECUTABLE);
    chunk = AllocatePagePooled(owner);
  }
  if (chunk == nullptr) {
    chunk = AllocateChunk(size, size, executable, owner);
  }
  if (chunk == nullptr) return nullptr;
  return owner->InitializePage(chunk, executable);
}

template Page*
MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, PagedSpace>(
    size_t size, PagedSpace* owner, Executability executable);
template Page*
MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, SemiSpace>(
    size_t size, SemiSpace* owner, Executability executable);
template Page*
MemoryAllocator::AllocatePage<MemoryAllocator::kPooled, SemiSpace>(
    size_t size, SemiSpace* owner, Executability executable);

LargePage* MemoryAllocator::AllocateLargePage(size_t size,
                                              LargeObjectSpace* owner,
                                              Executability executable) {
  MemoryChunk* chunk = AllocateChunk(size, size, executable, owner);
  if (chunk == nullptr) return nullptr;
  return LargePage::Initialize(isolate_->heap(), chunk, executable, owner);
}

template <typename SpaceType>
MemoryChunk* MemoryAllocator::AllocatePagePooled(SpaceType* owner) {
  MemoryChunk* chunk = unmapper()->TryGetPooledMemoryChunkSafe();
  if (chunk == nullptr) return nullptr;
  const int size = MemoryChunk::kPageSize;
  const Address start = reinterpret_cast<Address>(chunk);
  const Address area_start = start + MemoryChunk::kObjectStartOffset;
  const Address area_end = start + size;
  if (!CommitBlock(reinterpret_cast<Address>(chunk), size, NOT_EXECUTABLE)) {
    return nullptr;
  }
  VirtualMemory reservation(start, size);
  MemoryChunk::Initialize(isolate_->heap(), start, size, area_start, area_end,
                          NOT_EXECUTABLE, owner, &reservation);
  size_.Increment(size);
  return chunk;
}

bool MemoryAllocator::CommitBlock(Address start, size_t size,
                                  Executability executable) {
  if (!CommitMemory(start, size, executable)) return false;

  if (Heap::ShouldZapGarbage()) {
    ZapBlock(start, size);
  }

  isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
  return true;
}


bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
  if (!base::OS::UncommitRegion(start, size)) return false;
  isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
  return true;
}


void MemoryAllocator::ZapBlock(Address start, size_t size) {
  for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
    Memory::Address_at(start + s) = kZapValue;
  }
}

#ifdef DEBUG
void MemoryAllocator::ReportStatistics() {
  size_t size = Size();
  float pct = static_cast<float>(capacity_ - size) / capacity_;
  PrintF("  capacity: %zu , used: %" PRIuS ", available: %%%d\n\n",
         capacity_, size, static_cast<int>(pct * 100));
}
#endif

size_t MemoryAllocator::CodePageGuardStartOffset() {
  // We are guarding code pages: the first OS page after the header
  // will be protected as non-writable.
  return ::RoundUp(Page::kObjectStartOffset, GetCommitPageSize());
}

size_t MemoryAllocator::CodePageGuardSize() {
  return static_cast<int>(GetCommitPageSize());
}

size_t MemoryAllocator::CodePageAreaStartOffset() {
  // We are guarding code pages: the first OS page after the header
  // will be protected as non-writable.
  return CodePageGuardStartOffset() + CodePageGuardSize();
}

size_t MemoryAllocator::CodePageAreaEndOffset() {
  // We are guarding code pages: the last OS page will be protected as
  // non-writable.
  return Page::kPageSize - static_cast<int>(GetCommitPageSize());
}

intptr_t MemoryAllocator::GetCommitPageSize() {
  if (FLAG_v8_os_page_size != 0) {
    DCHECK(base::bits::IsPowerOfTwo(FLAG_v8_os_page_size));
    return FLAG_v8_os_page_size * KB;
  } else {
    return base::OS::CommitPageSize();
  }
}

bool MemoryAllocator::CommitExecutableMemory(VirtualMemory* vm, Address start,
                                             size_t commit_size,
                                             size_t reserved_size) {
  // Commit page header (not executable).
  Address header = start;
  size_t header_size = CodePageGuardStartOffset();
  if (vm->Commit(header, header_size, false)) {
    // Create guard page after the header.
    if (vm->Guard(start + CodePageGuardStartOffset())) {
      // Commit page body (executable).
      Address body = start + CodePageAreaStartOffset();
      size_t body_size = commit_size - CodePageGuardStartOffset();
      if (vm->Commit(body, body_size, true)) {
        // Create guard page before the end.
        if (vm->Guard(start + reserved_size - CodePageGuardSize())) {
          UpdateAllocatedSpaceLimits(start, start + CodePageAreaStartOffset() +
                                                commit_size -
                                                CodePageGuardStartOffset());
          return true;
        }
        vm->Uncommit(body, body_size);
      }
    }
    vm->Uncommit(header, header_size);
  }
  return false;
}


// -----------------------------------------------------------------------------
// MemoryChunk implementation

bool MemoryChunk::contains_array_buffers() {
  return local_tracker() != nullptr && !local_tracker()->IsEmpty();
}

void MemoryChunk::ReleaseAllocatedMemory() {
  if (skip_list_ != nullptr) {
    delete skip_list_;
    skip_list_ = nullptr;
  }
  if (mutex_ != nullptr) {
    delete mutex_;
    mutex_ = nullptr;
  }
  if (page_protection_change_mutex_ != nullptr) {
    delete page_protection_change_mutex_;
    page_protection_change_mutex_ = nullptr;
  }
  ReleaseSlotSet<OLD_TO_NEW>();
  ReleaseSlotSet<OLD_TO_OLD>();
  ReleaseTypedSlotSet<OLD_TO_NEW>();
  ReleaseTypedSlotSet<OLD_TO_OLD>();
  ReleaseInvalidatedSlots();
  if (local_tracker_ != nullptr) ReleaseLocalTracker();
  if (young_generation_bitmap_ != nullptr) ReleaseYoungGenerationBitmap();
}

static SlotSet* AllocateAndInitializeSlotSet(size_t size, Address page_start) {
  size_t pages = (size + Page::kPageSize - 1) / Page::kPageSize;
  DCHECK_LT(0, pages);
  SlotSet* slot_set = new SlotSet[pages];
  for (size_t i = 0; i < pages; i++) {
    slot_set[i].SetPageStart(page_start + i * Page::kPageSize);
  }
  return slot_set;
}

template SlotSet* MemoryChunk::AllocateSlotSet<OLD_TO_NEW>();
template SlotSet* MemoryChunk::AllocateSlotSet<OLD_TO_OLD>();

template <RememberedSetType type>
SlotSet* MemoryChunk::AllocateSlotSet() {
  SlotSet* slot_set = AllocateAndInitializeSlotSet(size_, address());
  SlotSet* old_slot_set = base::AsAtomicPointer::Release_CompareAndSwap(
      &slot_set_[type], nullptr, slot_set);
  if (old_slot_set != nullptr) {
    delete[] slot_set;
    slot_set = old_slot_set;
  }
  DCHECK(slot_set);
  return slot_set;
}

template void MemoryChunk::ReleaseSlotSet<OLD_TO_NEW>();
template void MemoryChunk::ReleaseSlotSet<OLD_TO_OLD>();

template <RememberedSetType type>
void MemoryChunk::ReleaseSlotSet() {
  SlotSet* slot_set = slot_set_[type];
  if (slot_set) {
    slot_set_[type] = nullptr;
    delete[] slot_set;
  }
}

template TypedSlotSet* MemoryChunk::AllocateTypedSlotSet<OLD_TO_NEW>();
template TypedSlotSet* MemoryChunk::AllocateTypedSlotSet<OLD_TO_OLD>();

template <RememberedSetType type>
TypedSlotSet* MemoryChunk::AllocateTypedSlotSet() {
  TypedSlotSet* typed_slot_set = new TypedSlotSet(address());
  TypedSlotSet* old_value = base::AsAtomicPointer::Release_CompareAndSwap(
      &typed_slot_set_[type], nullptr, typed_slot_set);
  if (old_value != nullptr) {
    delete typed_slot_set;
    typed_slot_set = old_value;
  }
  DCHECK(typed_slot_set);
  return typed_slot_set;
}

template void MemoryChunk::ReleaseTypedSlotSet<OLD_TO_NEW>();
template void MemoryChunk::ReleaseTypedSlotSet<OLD_TO_OLD>();

template <RememberedSetType type>
void MemoryChunk::ReleaseTypedSlotSet() {
  TypedSlotSet* typed_slot_set = typed_slot_set_[type];
  if (typed_slot_set) {
    typed_slot_set_[type] = nullptr;
    delete typed_slot_set;
  }
}

InvalidatedSlots* MemoryChunk::AllocateInvalidatedSlots() {
  DCHECK_NULL(invalidated_slots_);
  invalidated_slots_ = new InvalidatedSlots();
  return invalidated_slots_;
}

void MemoryChunk::ReleaseInvalidatedSlots() {
  if (invalidated_slots_) {
    delete invalidated_slots_;
    invalidated_slots_ = nullptr;
  }
}

void MemoryChunk::RegisterObjectWithInvalidatedSlots(HeapObject* object,
                                                     int size) {
  if (!ShouldSkipEvacuationSlotRecording()) {
    if (invalidated_slots() == nullptr) {
      AllocateInvalidatedSlots();
    }
    int old_size = (*invalidated_slots())[object];
    (*invalidated_slots())[object] = std::max(old_size, size);
  }
}

void MemoryChunk::AllocateLocalTracker() {
  DCHECK_NULL(local_tracker_);
  local_tracker_ = new LocalArrayBufferTracker(heap());
}

void MemoryChunk::ReleaseLocalTracker() {
  DCHECK_NOT_NULL(local_tracker_);
  delete local_tracker_;
  local_tracker_ = nullptr;
}

void MemoryChunk::AllocateYoungGenerationBitmap() {
  DCHECK_NULL(young_generation_bitmap_);
  young_generation_bitmap_ = static_cast<Bitmap*>(calloc(1, Bitmap::kSize));
}

void MemoryChunk::ReleaseYoungGenerationBitmap() {
  DCHECK_NOT_NULL(young_generation_bitmap_);
  free(young_generation_bitmap_);
  young_generation_bitmap_ = nullptr;
}

// -----------------------------------------------------------------------------
// PagedSpace implementation

STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::NEW_SPACE) ==
              ObjectSpace::kObjectSpaceNewSpace);
STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::OLD_SPACE) ==
              ObjectSpace::kObjectSpaceOldSpace);
STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::CODE_SPACE) ==
              ObjectSpace::kObjectSpaceCodeSpace);
STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::MAP_SPACE) ==
              ObjectSpace::kObjectSpaceMapSpace);

void Space::AddAllocationObserver(AllocationObserver* observer) {
  allocation_observers_.push_back(observer);
  StartNextInlineAllocationStep();
}

void Space::RemoveAllocationObserver(AllocationObserver* observer) {
  auto it = std::find(allocation_observers_.begin(),
                      allocation_observers_.end(), observer);
  DCHECK(allocation_observers_.end() != it);
  allocation_observers_.erase(it);
  StartNextInlineAllocationStep();
}

void Space::PauseAllocationObservers() { allocation_observers_paused_ = true; }

void Space::ResumeAllocationObservers() {
  allocation_observers_paused_ = false;
}

void Space::AllocationStep(int bytes_since_last, Address soon_object,
                           int size) {
  if (!allocation_observers_paused_) {
    heap()->CreateFillerObjectAt(soon_object, size, ClearRecordedSlots::kNo);
    for (AllocationObserver* observer : allocation_observers_) {
      observer->AllocationStep(bytes_since_last, soon_object, size);
    }
  }
}

intptr_t Space::GetNextInlineAllocationStepSize() {
  intptr_t next_step = 0;
  for (AllocationObserver* observer : allocation_observers_) {
    next_step = next_step ? Min(next_step, observer->bytes_to_next_step())
                          : observer->bytes_to_next_step();
  }
  DCHECK(allocation_observers_.size() == 0 || next_step != 0);
  return next_step;
}

PagedSpace::PagedSpace(Heap* heap, AllocationSpace space,
                       Executability executable)
    : Space(heap, space, executable),
      anchor_(this),
      free_list_(this),
      locked_page_(nullptr),
      top_on_previous_step_(0) {
  area_size_ = MemoryAllocator::PageAreaSize(space);
  accounting_stats_.Clear();

  allocation_info_.Reset(nullptr, nullptr);
}


bool PagedSpace::SetUp() { return true; }


bool PagedSpace::HasBeenSetUp() { return true; }


void PagedSpace::TearDown() {
  for (auto it = begin(); it != end();) {
    Page* page = *(it++);  // Will be erased.
    ArrayBufferTracker::FreeAll(page);
    heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page);
  }
  anchor_.set_next_page(&anchor_);
  anchor_.set_prev_page(&anchor_);
  accounting_stats_.Clear();
}

void PagedSpace::RefillFreeList() {
  // Any PagedSpace might invoke RefillFreeList. We filter all but our old
  // generation spaces out.
  if (identity() != OLD_SPACE && identity() != CODE_SPACE &&
      identity() != MAP_SPACE) {
    return;
  }
  MarkCompactCollector* collector = heap()->mark_compact_collector();
  size_t added = 0;
  {
    Page* p = nullptr;
    while ((p = collector->sweeper().GetSweptPageSafe(this)) != nullptr) {
      // Only during compaction pages can actually change ownership. This is
      // safe because there exists no other competing action on the page links
      // during compaction.
      if (is_local()) {
        DCHECK_NE(this, p->owner());
        PagedSpace* owner = reinterpret_cast<PagedSpace*>(p->owner());
        base::LockGuard<base::Mutex> guard(owner->mutex());
        owner->RefineAllocatedBytesAfterSweeping(p);
        owner->RemovePage(p);
        added += AddPage(p);
      } else {
        base::LockGuard<base::Mutex> guard(mutex());
        DCHECK_EQ(this, p->owner());
        RefineAllocatedBytesAfterSweeping(p);
        added += RelinkFreeListCategories(p);
      }
      added += p->wasted_memory();
      if (is_local() && (added > kCompactionMemoryWanted)) break;
    }
  }
}

void PagedSpace::MergeCompactionSpace(CompactionSpace* other) {
  base::LockGuard<base::Mutex> guard(mutex());

  DCHECK(identity() == other->identity());
  // Unmerged fields:
  //   area_size_
  //   anchor_

  other->EmptyAllocationInfo();

  // The linear allocation area of {other} should be destroyed now.
  DCHECK_NULL(other->top());
  DCHECK_NULL(other->limit());

  // Move over pages.
  for (auto it = other->begin(); it != other->end();) {
    Page* p = *(it++);
    // Relinking requires the category to be unlinked.
    other->RemovePage(p);
    AddPage(p);
    DCHECK_EQ(p->AvailableInFreeList(),
              p->AvailableInFreeListFromAllocatedBytes());
  }
  DCHECK_EQ(0u, other->Size());
  DCHECK_EQ(0u, other->Capacity());
}


size_t PagedSpace::CommittedPhysicalMemory() {
  if (!base::OS::HasLazyCommits()) return CommittedMemory();
  MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
  size_t size = 0;
  for (Page* page : *this) {
    size += page->CommittedPhysicalMemory();
  }
  return size;
}

bool PagedSpace::ContainsSlow(Address addr) {
  Page* p = Page::FromAddress(addr);
  for (Page* page : *this) {
    if (page == p) return true;
  }
  return false;
}

void PagedSpace::RefineAllocatedBytesAfterSweeping(Page* page) {
  CHECK(page->SweepingDone());
  auto marking_state =
      heap()->incremental_marking()->non_atomic_marking_state();
  // The live_byte on the page was accounted in the space allocated
  // bytes counter. After sweeping allocated_bytes() contains the
  // accurate live byte count on the page.
  size_t old_counter = marking_state->live_bytes(page);
  size_t new_counter = page->allocated_bytes();
  DCHECK_GE(old_counter, new_counter);
  if (old_counter > new_counter) {
    DecreaseAllocatedBytes(old_counter - new_counter, page);
    // Give the heap a chance to adjust counters in response to the
    // more precise and smaller old generation size.
    heap()->NotifyRefinedOldGenerationSize(old_counter - new_counter);
  }
  marking_state->SetLiveBytes(page, 0);
}

Page* PagedSpace::RemovePageSafe(int size_in_bytes) {
  base::LockGuard<base::Mutex> guard(mutex());
  // Check for pages that still contain free list entries. Bail out for smaller
  // categories.
  const int minimum_category =
      static_cast<int>(FreeList::SelectFreeListCategoryType(size_in_bytes));
  Page* page = free_list()->GetPageForCategoryType(kHuge);
  if (!page && static_cast<int>(kLarge) >= minimum_category)
    page = free_list()->GetPageForCategoryType(kLarge);
  if (!page && static_cast<int>(kMedium) >= minimum_category)
    page = free_list()->GetPageForCategoryType(kMedium);
  if (!page && static_cast<int>(kSmall) >= minimum_category)
    page = free_list()->GetPageForCategoryType(kSmall);
  if (!page && static_cast<int>(kTiny) >= minimum_category)
    page = free_list()->GetPageForCategoryType(kTiny);
  if (!page && static_cast<int>(kTiniest) >= minimum_category)
    page = free_list()->GetPageForCategoryType(kTiniest);
  if (!page) return nullptr;
  RemovePage(page);
  return page;
}

size_t PagedSpace::AddPage(Page* page) {
  CHECK(page->SweepingDone());
  page->set_owner(this);
  page->InsertAfter(anchor()->prev_page());
  AccountCommitted(page->size());
  IncreaseCapacity(page->area_size());
  IncreaseAllocatedBytes(page->allocated_bytes(), page);
  return RelinkFreeListCategories(page);
}

void PagedSpace::RemovePage(Page* page) {
  CHECK(page->SweepingDone());
  page->Unlink();
  UnlinkFreeListCategories(page);
  DecreaseAllocatedBytes(page->allocated_bytes(), page);
  DecreaseCapacity(page->area_size());
  AccountUncommitted(page->size());
}

size_t PagedSpace::ShrinkPageToHighWaterMark(Page* page) {
  size_t unused = page->ShrinkToHighWaterMark();
  accounting_stats_.DecreaseCapacity(static_cast<intptr_t>(unused));
  AccountUncommitted(unused);
  return unused;
}

void PagedSpace::ShrinkImmortalImmovablePages() {
  DCHECK(!heap()->deserialization_complete());
  MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
  EmptyAllocationInfo();
  ResetFreeList();

  for (Page* page : *this) {
    DCHECK(page->IsFlagSet(Page::NEVER_EVACUATE));
    ShrinkPageToHighWaterMark(page);
  }
}

bool PagedSpace::Expand() {
  // Always lock against the main space as we can only adjust capacity and
  // pages concurrently for the main paged space.
  base::LockGuard<base::Mutex> guard(heap()->paged_space(identity())->mutex());

  const int size = AreaSize();

  if (!heap()->CanExpandOldGeneration(size)) return false;

  Page* page =
      heap()->memory_allocator()->AllocatePage(size, this, executable());
  if (page == nullptr) return false;
  // Pages created during bootstrapping may contain immortal immovable objects.
  if (!heap()->deserialization_complete()) page->MarkNeverEvacuate();
  AddPage(page);
  Free(page->area_start(), page->area_size());
  DCHECK(Capacity() <= heap()->MaxOldGenerationSize());
  return true;
}


int PagedSpace::CountTotalPages() {
  int count = 0;
  for (Page* page : *this) {
    count++;
    USE(page);
  }
  return count;
}


void PagedSpace::ResetFreeListStatistics() {
  for (Page* page : *this) {
    page->ResetFreeListStatistics();
  }
}

void PagedSpace::SetAllocationInfo(Address top, Address limit) {
  SetTopAndLimit(top, limit);
  if (top != nullptr && top != limit &&
      heap()->incremental_marking()->black_allocation()) {
    Page::FromAllocationAreaAddress(top)->CreateBlackArea(top, limit);
  }
}

void PagedSpace::DecreaseLimit(Address new_limit) {
  Address old_limit = limit();
  DCHECK_LE(top(), new_limit);
  DCHECK_GE(old_limit, new_limit);
  if (new_limit != old_limit) {
    SetTopAndLimit(top(), new_limit);
    Free(new_limit, old_limit - new_limit);
    if (heap()->incremental_marking()->black_allocation()) {
      Page::FromAllocationAreaAddress(new_limit)->DestroyBlackArea(new_limit,
                                                                   old_limit);
    }
  }
}

Address PagedSpace::ComputeLimit(Address start, Address end,
                                 size_t size_in_bytes) {
  DCHECK_GE(end - start, size_in_bytes);

  if (heap()->inline_allocation_disabled()) {
    // Keep the linear allocation area to fit exactly the requested size.
    return start + size_in_bytes;
  } else if (!allocation_observers_paused_ && !allocation_observers_.empty() &&
             identity() == OLD_SPACE && !is_local()) {
    // Generated code may allocate inline from the linear allocation area for
    // Old Space. To make sure we can observe these allocations, we use a lower
    // limit.
    size_t step = RoundSizeDownToObjectAlignment(
        static_cast<int>(GetNextInlineAllocationStepSize()));
    return Max(start + size_in_bytes, Min(start + step, end));
  } else {
    // The entire node can be used as the linear allocation area.
    return end;
  }
}

void PagedSpace::StartNextInlineAllocationStep() {
  if (!allocation_observers_paused_ && SupportsInlineAllocation()) {
    top_on_previous_step_ = allocation_observers_.empty() ? 0 : top();
    DecreaseLimit(ComputeLimit(top(), limit(), 0));
  }
}

void PagedSpace::MarkAllocationInfoBlack() {
  DCHECK(heap()->incremental_marking()->black_allocation());
  Address current_top = top();
  Address current_limit = limit();
  if (current_top != nullptr && current_top != current_limit) {
    Page::FromAllocationAreaAddress(current_top)
        ->CreateBlackArea(current_top, current_limit);
  }
}

void PagedSpace::UnmarkAllocationInfo() {
  Address current_top = top();
  Address current_limit = limit();
  if (current_top != nullptr && current_top != current_limit) {
    Page::FromAllocationAreaAddress(current_top)
        ->DestroyBlackArea(current_top, current_limit);
  }
}

// Empty space allocation info, returning unused area to free list.
void PagedSpace::EmptyAllocationInfo() {
  // Mark the old linear allocation area with a free space map so it can be
  // skipped when scanning the heap.
  Address current_top = top();
  Address current_limit = limit();
  if (current_top == nullptr) {
    DCHECK_NULL(current_limit);
    return;
  }

  if (heap()->incremental_marking()->black_allocation()) {
    Page* page = Page::FromAllocationAreaAddress(current_top);

    // Clear the bits in the unused black area.
    if (current_top != current_limit) {
      IncrementalMarking::MarkingState* marking_state =
          heap()->incremental_marking()->marking_state();
      marking_state->bitmap(page)->ClearRange(
          page->AddressToMarkbitIndex(current_top),
          page->AddressToMarkbitIndex(current_limit));
      marking_state->IncrementLiveBytes(
          page, -static_cast<int>(current_limit - current_top));
    }
  }

  if (top_on_previous_step_) {
    DCHECK(current_top >= top_on_previous_step_);
    AllocationStep(static_cast<int>(current_top - top_on_previous_step_),
                   nullptr, 0);
    top_on_previous_step_ = 0;
  }
  SetTopAndLimit(nullptr, nullptr);
  DCHECK_GE(current_limit, current_top);
  Free(current_top, current_limit - current_top);
}

void PagedSpace::ReleasePage(Page* page) {
  DCHECK_EQ(
      0, heap()->incremental_marking()->non_atomic_marking_state()->live_bytes(
             page));
  DCHECK_EQ(page->owner(), this);

  free_list_.EvictFreeListItems(page);
  DCHECK(!free_list_.ContainsPageFreeListItems(page));

  if (Page::FromAllocationAreaAddress(allocation_info_.top()) == page) {
    DCHECK(!top_on_previous_step_);
    allocation_info_.Reset(nullptr, nullptr);
  }

  // If page is still in a list, unlink it from that list.
  if (page->next_chunk() != nullptr) {
    DCHECK_NOT_NULL(page->prev_chunk());
    page->Unlink();
  }
  AccountUncommitted(page->size());
  accounting_stats_.DecreaseCapacity(page->area_size());
  heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page);
}

void PagedSpace::SetReadAndExecutable() {
  DCHECK(identity() == CODE_SPACE);
  for (Page* page : *this) {
    page->SetReadAndExecutable();
  }
}

void PagedSpace::SetReadAndWritable() {
  DCHECK(identity() == CODE_SPACE);
  for (Page* page : *this) {
    page->SetReadAndWritable();
  }
}

std::unique_ptr<ObjectIterator> PagedSpace::GetObjectIterator() {
  return std::unique_ptr<ObjectIterator>(new HeapObjectIterator(this));
}

#ifdef DEBUG
void PagedSpace::Print() {}
#endif

#ifdef VERIFY_HEAP
void PagedSpace::Verify(ObjectVisitor* visitor) {
  bool allocation_pointer_found_in_space =
      (allocation_info_.top() == allocation_info_.limit());
  for (Page* page : *this) {
    CHECK(page->owner() == this);
    if (page == Page::FromAllocationAreaAddress(allocation_info_.top())) {
      allocation_pointer_found_in_space = true;
    }
    CHECK(page->SweepingDone());
    HeapObjectIterator it(page);
    Address end_of_previous_object = page->area_start();
    Address top = page->area_end();
    for (HeapObject* object = it.Next(); object != nullptr;
         object = it.Next()) {
      CHECK(end_of_previous_object <= object->address());

      // The first word should be a map, and we expect all map pointers to
      // be in map space.
      Map* map = object->map();
      CHECK(map->IsMap());
      CHECK(heap()->map_space()->Contains(map));

      // Perform space-specific object verification.
      VerifyObject(object);

      // The object itself should look OK.
      object->ObjectVerify();

      if (!FLAG_verify_heap_skip_remembered_set) {
        heap()->VerifyRememberedSetFor(object);
      }

      // All the interior pointers should be contained in the heap.
      int size = object->Size();
      object->IterateBody(map->instance_type(), size, visitor);
      CHECK(object->address() + size <= top);
      end_of_previous_object = object->address() + size;
    }
  }
  CHECK(allocation_pointer_found_in_space);
#ifdef DEBUG
  VerifyCountersAfterSweeping();
#endif
}

void PagedSpace::VerifyLiveBytes() {
  IncrementalMarking::MarkingState* marking_state =
      heap()->incremental_marking()->marking_state();
  for (Page* page : *this) {
    CHECK(page->SweepingDone());
    HeapObjectIterator it(page);
    int black_size = 0;
    for (HeapObject* object = it.Next(); object != nullptr;
         object = it.Next()) {
      // All the interior pointers should be contained in the heap.
      if (marking_state->IsBlack(object)) {
        black_size += object->Size();
      }
    }
    CHECK_LE(black_size, marking_state->live_bytes(page));
  }
}
#endif  // VERIFY_HEAP

#ifdef DEBUG
void PagedSpace::VerifyCountersAfterSweeping() {
  size_t total_capacity = 0;
  size_t total_allocated = 0;
  for (Page* page : *this) {
    DCHECK(page->SweepingDone());
    total_capacity += page->area_size();
    HeapObjectIterator it(page);
    size_t real_allocated = 0;
    for (HeapObject* object = it.Next(); object != nullptr;
         object = it.Next()) {
      if (!object->IsFiller()) {
        real_allocated += object->Size();
      }
    }
    total_allocated += page->allocated_bytes();
    // The real size can be smaller than the accounted size if array trimming,
    // object slack tracking happened after sweeping.
    DCHECK_LE(real_allocated, accounting_stats_.AllocatedOnPage(page));
    DCHECK_EQ(page->allocated_bytes(), accounting_stats_.AllocatedOnPage(page));
  }
  DCHECK_EQ(total_capacity, accounting_stats_.Capacity());
  DCHECK_EQ(total_allocated, accounting_stats_.Size());
}

void PagedSpace::VerifyCountersBeforeConcurrentSweeping() {
  // We need to refine the counters on pages that are already swept and have
  // not been moved over to the actual space. Otherwise, the AccountingStats
  // are just an over approximation.
  RefillFreeList();

  size_t total_capacity = 0;
  size_t total_allocated = 0;
  auto marking_state =
      heap()->incremental_marking()->non_atomic_marking_state();
  for (Page* page : *this) {
    size_t page_allocated =
        page->SweepingDone()
            ? page->allocated_bytes()
            : static_cast<size_t>(marking_state->live_bytes(page));
    total_capacity += page->area_size();
    total_allocated += page_allocated;
    DCHECK_EQ(page_allocated, accounting_stats_.AllocatedOnPage(page));
  }
  DCHECK_EQ(total_capacity, accounting_stats_.Capacity());
  DCHECK_EQ(total_allocated, accounting_stats_.Size());
}
#endif

// -----------------------------------------------------------------------------
// NewSpace implementation

bool NewSpace::SetUp(size_t initial_semispace_capacity,
                     size_t maximum_semispace_capacity) {
  DCHECK(initial_semispace_capacity <= maximum_semispace_capacity);
  DCHECK(base::bits::IsPowerOfTwo(
      static_cast<uint32_t>(maximum_semispace_capacity)));

  to_space_.SetUp(initial_semispace_capacity, maximum_semispace_capacity);
  from_space_.SetUp(initial_semispace_capacity, maximum_semispace_capacity);
  if (!to_space_.Commit()) {
    return false;
  }
  DCHECK(!from_space_.is_committed());  // No need to use memory yet.
  ResetAllocationInfo();

  // Allocate and set up the histogram arrays if necessary.
  allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
  promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
#define SET_NAME(name)                        \
  allocated_histogram_[name].set_name(#name); \
  promoted_histogram_[name].set_name(#name);
  INSTANCE_TYPE_LIST(SET_NAME)
#undef SET_NAME

  return true;
}


void NewSpace::TearDown() {
  if (allocated_histogram_) {
    DeleteArray(allocated_histogram_);
    allocated_histogram_ = nullptr;
  }
  if (promoted_histogram_) {
    DeleteArray(promoted_histogram_);
    promoted_histogram_ = nullptr;
  }

  allocation_info_.Reset(nullptr, nullptr);

  to_space_.TearDown();
  from_space_.TearDown();
}

void NewSpace::Flip() { SemiSpace::Swap(&from_space_, &to_space_); }


void NewSpace::Grow() {
  // Double the semispace size but only up to maximum capacity.
  DCHECK(TotalCapacity() < MaximumCapacity());
  size_t new_capacity =
      Min(MaximumCapacity(),
          static_cast<size_t>(FLAG_semi_space_growth_factor) * TotalCapacity());
  if (to_space_.GrowTo(new_capacity)) {
    // Only grow from space if we managed to grow to-space.
    if (!from_space_.GrowTo(new_capacity)) {
      // If we managed to grow to-space but couldn't grow from-space,
      // attempt to shrink to-space.
      if (!to_space_.ShrinkTo(from_space_.current_capacity())) {
        // We are in an inconsistent state because we could not
        // commit/uncommit memory from new space.
        CHECK(false);
      }
    }
  }
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}


void NewSpace::Shrink() {
  size_t new_capacity = Max(InitialTotalCapacity(), 2 * Size());
  size_t rounded_new_capacity = ::RoundUp(new_capacity, Page::kPageSize);
  if (rounded_new_capacity < TotalCapacity() &&
      to_space_.ShrinkTo(rounded_new_capacity)) {
    // Only shrink from-space if we managed to shrink to-space.
    from_space_.Reset();
    if (!from_space_.ShrinkTo(rounded_new_capacity)) {
      // If we managed to shrink to-space but couldn't shrink from
      // space, attempt to grow to-space again.
      if (!to_space_.GrowTo(from_space_.current_capacity())) {
        // We are in an inconsistent state because we could not
        // commit/uncommit memory from new space.
        CHECK(false);
      }
    }
  }
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}

bool NewSpace::Rebalance() {
  // Order here is important to make use of the page pool.
  return to_space_.EnsureCurrentCapacity() &&
         from_space_.EnsureCurrentCapacity();
}

bool SemiSpace::EnsureCurrentCapacity() {
  if (is_committed()) {
    const int expected_pages =
        static_cast<int>(current_capacity_ / Page::kPageSize);
    int actual_pages = 0;
    Page* current_page = anchor()->next_page();
    while (current_page != anchor()) {
      actual_pages++;
      current_page = current_page->next_page();
      if (actual_pages > expected_pages) {
        Page* to_remove = current_page->prev_page();
        // Make sure we don't overtake the actual top pointer.
        CHECK_NE(to_remove, current_page_);
        to_remove->Unlink();
        // Clear new space flags to avoid this page being treated as a new
        // space page that is potentially being swept.
        to_remove->SetFlags(0, Page::kIsInNewSpaceMask);
        heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
            to_remove);
      }
    }
    IncrementalMarking::NonAtomicMarkingState* marking_state =
        heap()->incremental_marking()->non_atomic_marking_state();
    while (actual_pages < expected_pages) {
      actual_pages++;
      current_page =
          heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
              Page::kAllocatableMemory, this, executable());
      if (current_page == nullptr) return false;
      DCHECK_NOT_NULL(current_page);
      current_page->InsertAfter(anchor());
      marking_state->ClearLiveness(current_page);
      current_page->SetFlags(anchor()->prev_page()->GetFlags(),
                             static_cast<uintptr_t>(Page::kCopyAllFlags));
      heap()->CreateFillerObjectAt(current_page->area_start(),
                                   static_cast<int>(current_page->area_size()),
                                   ClearRecordedSlots::kNo);
    }
  }
  return true;
}

AllocationInfo LocalAllocationBuffer::Close() {
  if (IsValid()) {
    heap_->CreateFillerObjectAt(
        allocation_info_.top(),
        static_cast<int>(allocation_info_.limit() - allocation_info_.top()),
        ClearRecordedSlots::kNo);
    const AllocationInfo old_info = allocation_info_;
    allocation_info_ = AllocationInfo(nullptr, nullptr);
    return old_info;
  }
  return AllocationInfo(nullptr, nullptr);
}


LocalAllocationBuffer::LocalAllocationBuffer(Heap* heap,
                                             AllocationInfo allocation_info)
    : heap_(heap), allocation_info_(allocation_info) {
  if (IsValid()) {
    heap_->CreateFillerObjectAt(
        allocation_info_.top(),
        static_cast<int>(allocation_info_.limit() - allocation_info_.top()),
        ClearRecordedSlots::kNo);
  }
}


LocalAllocationBuffer::LocalAllocationBuffer(
    const LocalAllocationBuffer& other) {
  *this = other;
}


LocalAllocationBuffer& LocalAllocationBuffer::operator=(
    const LocalAllocationBuffer& other) {
  Close();
  heap_ = other.heap_;
  allocation_info_ = other.allocation_info_;

  // This is needed since we (a) cannot yet use move-semantics, and (b) want
  // to make the use of the class easy by it as value and (c) implicitly call
  // {Close} upon copy.
  const_cast<LocalAllocationBuffer&>(other)
      .allocation_info_.Reset(nullptr, nullptr);
  return *this;
}


void NewSpace::UpdateAllocationInfo() {
  MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
  allocation_info_.Reset(to_space_.page_low(), to_space_.page_high());
  original_top_.SetValue(top());
  original_limit_.SetValue(limit());
  UpdateInlineAllocationLimit(0);
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}


void NewSpace::ResetAllocationInfo() {
  Address old_top = allocation_info_.top();
  to_space_.Reset();
  UpdateAllocationInfo();
  // Clear all mark-bits in the to-space.
  IncrementalMarking::NonAtomicMarkingState* marking_state =
      heap()->incremental_marking()->non_atomic_marking_state();
  for (Page* p : to_space_) {
    marking_state->ClearLiveness(p);
    // Concurrent marking may have local live bytes for this page.
    heap()->concurrent_marking()->ClearLiveness(p);
  }
  InlineAllocationStep(old_top, allocation_info_.top(), nullptr, 0);
}


void NewSpace::UpdateInlineAllocationLimit(int size_in_bytes) {
  if (heap()->inline_allocation_disabled()) {
    // Lowest limit when linear allocation was disabled.
    Address high = to_space_.page_high();
    Address new_top = allocation_info_.top() + size_in_bytes;
    allocation_info_.set_limit(Min(new_top, high));
  } else if (allocation_observers_paused_ || top_on_previous_step_ == 0) {
    // Normal limit is the end of the current page.
    allocation_info_.set_limit(to_space_.page_high());
  } else {
    // Lower limit during incremental marking.
    Address high = to_space_.page_high();
    Address new_top = allocation_info_.top() + size_in_bytes;
    Address new_limit = new_top + GetNextInlineAllocationStepSize() - 1;
    allocation_info_.set_limit(Min(new_limit, high));
  }
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}


bool NewSpace::AddFreshPage() {
  Address top = allocation_info_.top();
  DCHECK(!Page::IsAtObjectStart(top));
  if (!to_space_.AdvancePage()) {
    // No more pages left to advance.
    return false;
  }

  // Clear remainder of current page.
  Address limit = Page::FromAllocationAreaAddress(top)->area_end();
  int remaining_in_page = static_cast<int>(limit - top);
  heap()->CreateFillerObjectAt(top, remaining_in_page, ClearRecordedSlots::kNo);
  UpdateAllocationInfo();

  return true;
}


bool NewSpace::AddFreshPageSynchronized() {
  base::LockGuard<base::Mutex> guard(&mutex_);
  return AddFreshPage();
}


bool NewSpace::EnsureAllocation(int size_in_bytes,
                                AllocationAlignment alignment) {
  Address old_top = allocation_info_.top();
  Address high = to_space_.page_high();
  int filler_size = Heap::GetFillToAlign(old_top, alignment);
  int aligned_size_in_bytes = size_in_bytes + filler_size;

  if (old_top + aligned_size_in_bytes > high) {
    // Not enough room in the page, try to allocate a new one.
    if (!AddFreshPage()) {
      return false;
    }

    InlineAllocationStep(old_top, allocation_info_.top(), nullptr, 0);

    old_top = allocation_info_.top();
    high = to_space_.page_high();
    filler_size = Heap::GetFillToAlign(old_top, alignment);
  }

  DCHECK(old_top + aligned_size_in_bytes <= high);

  if (allocation_info_.limit() < high) {
    // Either the limit has been lowered because linear allocation was disabled
    // or because incremental marking wants to get a chance to do a step,
    // or because idle scavenge job wants to get a chance to post a task.
    // Set the new limit accordingly.
    Address new_top = old_top + aligned_size_in_bytes;
    Address soon_object = old_top + filler_size;
    InlineAllocationStep(new_top, new_top, soon_object, size_in_bytes);
    UpdateInlineAllocationLimit(aligned_size_in_bytes);
  }
  return true;
}


void NewSpace::StartNextInlineAllocationStep() {
  if (!allocation_observers_paused_) {
    top_on_previous_step_ =
        !allocation_observers_.empty() ? allocation_info_.top() : 0;
    UpdateInlineAllocationLimit(0);
  }
}

void NewSpace::PauseAllocationObservers() {
  // Do a step to account for memory allocated so far.
  InlineAllocationStep(top(), top(), nullptr, 0);
  Space::PauseAllocationObservers();
  top_on_previous_step_ = 0;
  UpdateInlineAllocationLimit(0);
}

void PagedSpace::PauseAllocationObservers() {
  // Do a step to account for memory allocated so far.
  if (top_on_previous_step_) {
    int bytes_allocated = static_cast<int>(top() - top_on_previous_step_);
    AllocationStep(bytes_allocated, nullptr, 0);
  }
  Space::PauseAllocationObservers();
  top_on_previous_step_ = 0;
}

void NewSpace::ResumeAllocationObservers() {
  DCHECK_NULL(top_on_previous_step_);
  Space::ResumeAllocationObservers();
  StartNextInlineAllocationStep();
}

// TODO(ofrobots): refactor into SpaceWithLinearArea
void PagedSpace::ResumeAllocationObservers() {
  DCHECK_NULL(top_on_previous_step_);
  Space::ResumeAllocationObservers();
  StartNextInlineAllocationStep();
}

void NewSpace::InlineAllocationStep(Address top, Address new_top,
                                    Address soon_object, size_t size) {
  if (top_on_previous_step_) {
    int bytes_allocated = static_cast<int>(top - top_on_previous_step_);
    for (AllocationObserver* observer : allocation_observers_) {
      observer->AllocationStep(bytes_allocated, soon_object, size);
    }
    top_on_previous_step_ = new_top;
  }
}

std::unique_ptr<ObjectIterator> NewSpace::GetObjectIterator() {
  return std::unique_ptr<ObjectIterator>(new SemiSpaceIterator(this));
}

#ifdef VERIFY_HEAP
// We do not use the SemiSpaceIterator because verification doesn't assume
// that it works (it depends on the invariants we are checking).
void NewSpace::Verify() {
  // The allocation pointer should be in the space or at the very end.
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);

  // There should be objects packed in from the low address up to the
  // allocation pointer.
  Address current = to_space_.first_page()->area_start();
  CHECK_EQ(current, to_space_.space_start());

  while (current != top()) {
    if (!Page::IsAlignedToPageSize(current)) {
      // The allocation pointer should not be in the middle of an object.
      CHECK(!Page::FromAllocationAreaAddress(current)->ContainsLimit(top()) ||
            current < top());

      HeapObject* object = HeapObject::FromAddress(current);

      // The first word should be a map, and we expect all map pointers to
      // be in map space.
      Map* map = object->map();
      CHECK(map->IsMap());
      CHECK(heap()->map_space()->Contains(map));

      // The object should not be code or a map.
      CHECK(!object->IsMap());
      CHECK(!object->IsAbstractCode());

      // The object itself should look OK.
      object->ObjectVerify();

      // All the interior pointers should be contained in the heap.
      VerifyPointersVisitor visitor;
      int size = object->Size();
      object->IterateBody(map->instance_type(), size, &visitor);

      current += size;
    } else {
      // At end of page, switch to next page.
      Page* page = Page::FromAllocationAreaAddress(current)->next_page();
      // Next page should be valid.
      CHECK(!page->is_anchor());
      current = page->area_start();
    }
  }

  // Check semi-spaces.
  CHECK_EQ(from_space_.id(), kFromSpace);
  CHECK_EQ(to_space_.id(), kToSpace);
  from_space_.Verify();
  to_space_.Verify();
}
#endif

// -----------------------------------------------------------------------------
// SemiSpace implementation

void SemiSpace::SetUp(size_t initial_capacity, size_t maximum_capacity) {
  DCHECK_GE(maximum_capacity, static_cast<size_t>(Page::kPageSize));
  minimum_capacity_ = RoundDown(initial_capacity, Page::kPageSize);
  current_capacity_ = minimum_capacity_;
  maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize);
  committed_ = false;
}


void SemiSpace::TearDown() {
  // Properly uncommit memory to keep the allocator counters in sync.
  if (is_committed()) {
    for (Page* p : *this) {
      ArrayBufferTracker::FreeAll(p);
    }
    Uncommit();
  }
  current_capacity_ = maximum_capacity_ = 0;
}


bool SemiSpace::Commit() {
  DCHECK(!is_committed());
  Page* current = anchor();
  const int num_pages = static_cast<int>(current_capacity_ / Page::kPageSize);
  for (int pages_added = 0; pages_added < num_pages; pages_added++) {
    Page* new_page =
        heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
            Page::kAllocatableMemory, this, executable());
    if (new_page == nullptr) {
      RewindPages(current, pages_added);
      return false;
    }
    new_page->InsertAfter(current);
    current = new_page;
  }
  Reset();
  AccountCommitted(current_capacity_);
  if (age_mark_ == nullptr) {
    age_mark_ = first_page()->area_start();
  }
  committed_ = true;
  return true;
}


bool SemiSpace::Uncommit() {
  DCHECK(is_committed());
  for (auto it = begin(); it != end();) {
    Page* p = *(it++);
    heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(p);
  }
  anchor()->set_next_page(anchor());
  anchor()->set_prev_page(anchor());
  AccountUncommitted(current_capacity_);
  committed_ = false;
  heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
  return true;
}


size_t SemiSpace::CommittedPhysicalMemory() {
  if (!is_committed()) return 0;
  size_t size = 0;
  for (Page* p : *this) {
    size += p->CommittedPhysicalMemory();
  }
  return size;
}

bool SemiSpace::GrowTo(size_t new_capacity) {
  if (!is_committed()) {
    if (!Commit()) return false;
  }
  DCHECK_EQ(new_capacity & Page::kPageAlignmentMask, 0u);
  DCHECK_LE(new_capacity, maximum_capacity_);
  DCHECK_GT(new_capacity, current_capacity_);
  const size_t delta = new_capacity - current_capacity_;
  DCHECK(IsAligned(delta, base::OS::AllocateAlignment()));
  const int delta_pages = static_cast<int>(delta / Page::kPageSize);
  Page* last_page = anchor()->prev_page();
  DCHECK_NE(last_page, anchor());
  IncrementalMarking::NonAtomicMarkingState* marking_state =
      heap()->incremental_marking()->non_atomic_marking_state();
  for (int pages_added = 0; pages_added < delta_pages; pages_added++) {
    Page* new_page =
        heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
            Page::kAllocatableMemory, this, executable());
    if (new_page == nullptr) {
      RewindPages(last_page, pages_added);
      return false;
    }
    new_page->InsertAfter(last_page);
    marking_state->ClearLiveness(new_page);
    // Duplicate the flags that was set on the old page.
    new_page->SetFlags(last_page->GetFlags(), Page::kCopyOnFlipFlagsMask);
    last_page = new_page;
  }
  AccountCommitted(delta);
  current_capacity_ = new_capacity;
  return true;
}

void SemiSpace::RewindPages(Page* start, int num_pages) {
  Page* new_last_page = nullptr;
  Page* last_page = start;
  while (num_pages > 0) {
    DCHECK_NE(last_page, anchor());
    new_last_page = last_page->prev_page();
    last_page->prev_page()->set_next_page(last_page->next_page());
    last_page->next_page()->set_prev_page(last_page->prev_page());
    last_page = new_last_page;
    num_pages--;
  }
}

bool SemiSpace::ShrinkTo(size_t new_capacity) {
  DCHECK_EQ(new_capacity & Page::kPageAlignmentMask, 0u);
  DCHECK_GE(new_capacity, minimum_capacity_);
  DCHECK_LT(new_capacity, current_capacity_);
  if (is_committed()) {
    const size_t delta = current_capacity_ - new_capacity;
    DCHECK(IsAligned(delta, base::OS::AllocateAlignment()));
    int delta_pages = static_cast<int>(delta / Page::kPageSize);
    Page* new_last_page;
    Page* last_page;
    while (delta_pages > 0) {
      last_page = anchor()->prev_page();
      new_last_page = last_page->prev_page();
      new_last_page->set_next_page(anchor());
      anchor()->set_prev_page(new_last_page);
      heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
          last_page);
      delta_pages--;
    }
    AccountUncommitted(delta);
    heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
  }
  current_capacity_ = new_capacity;
  return true;
}

void SemiSpace::FixPagesFlags(intptr_t flags, intptr_t mask) {
  anchor_.set_owner(this);
  anchor_.prev_page()->set_next_page(&anchor_);
  anchor_.next_page()->set_prev_page(&anchor_);

  for (Page* page : *this) {
    page->set_owner(this);
    page->SetFlags(flags, mask);
    if (id_ == kToSpace) {
      page->ClearFlag(MemoryChunk::IN_FROM_SPACE);
      page->SetFlag(MemoryChunk::IN_TO_SPACE);
      page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
      heap()->incremental_marking()->non_atomic_marking_state()->SetLiveBytes(
          page, 0);
    } else {
      page->SetFlag(MemoryChunk::IN_FROM_SPACE);
      page->ClearFlag(MemoryChunk::IN_TO_SPACE);
    }
    DCHECK(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) ||
           page->IsFlagSet(MemoryChunk::IN_FROM_SPACE));
  }
}


void SemiSpace::Reset() {
  DCHECK_NE(anchor_.next_page(), &anchor_);
  current_page_ = anchor_.next_page();
  pages_used_ = 0;
}

void SemiSpace::RemovePage(Page* page) {
  if (current_page_ == page) {
    current_page_ = page->prev_page();
  }
  page->Unlink();
}

void SemiSpace::PrependPage(Page* page) {
  page->SetFlags(current_page()->GetFlags(),
                 static_cast<uintptr_t>(Page::kCopyAllFlags));
  page->set_owner(this);
  page->InsertAfter(anchor());
  pages_used_++;
}

void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
  // We won't be swapping semispaces without data in them.
  DCHECK_NE(from->anchor_.next_page(), &from->anchor_);
  DCHECK_NE(to->anchor_.next_page(), &to->anchor_);

  intptr_t saved_to_space_flags = to->current_page()->GetFlags();

  // We swap all properties but id_.
  std::swap(from->current_capacity_, to->current_capacity_);
  std::swap(from->maximum_capacity_, to->maximum_capacity_);
  std::swap(from->minimum_capacity_, to->minimum_capacity_);
  std::swap(from->age_mark_, to->age_mark_);
  std::swap(from->committed_, to->committed_);
  std::swap(from->anchor_, to->anchor_);
  std::swap(from->current_page_, to->current_page_);

  to->FixPagesFlags(saved_to_space_flags, Page::kCopyOnFlipFlagsMask);
  from->FixPagesFlags(0, 0);
}

void SemiSpace::set_age_mark(Address mark) {
  DCHECK_EQ(Page::FromAllocationAreaAddress(mark)->owner(), this);
  age_mark_ = mark;
  // Mark all pages up to the one containing mark.
  for (Page* p : PageRange(space_start(), mark)) {
    p->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
  }
}

std::unique_ptr<ObjectIterator> SemiSpace::GetObjectIterator() {
  // Use the NewSpace::NewObjectIterator to iterate the ToSpace.
  UNREACHABLE();
}

#ifdef DEBUG
void SemiSpace::Print() {}
#endif

#ifdef VERIFY_HEAP
void SemiSpace::Verify() {
  bool is_from_space = (id_ == kFromSpace);
  Page* page = anchor_.next_page();
  CHECK(anchor_.owner() == this);
  while (page != &anchor_) {
    CHECK_EQ(page->owner(), this);
    CHECK(page->InNewSpace());
    CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE
                                        : MemoryChunk::IN_TO_SPACE));
    CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE
                                         : MemoryChunk::IN_FROM_SPACE));
    CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING));
    if (!is_from_space) {
      // The pointers-from-here-are-interesting flag isn't updated dynamically
      // on from-space pages, so it might be out of sync with the marking state.
      if (page->heap()->incremental_marking()->IsMarking()) {
        CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
      } else {
        CHECK(
            !page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
      }
    }
    CHECK_EQ(page->prev_page()->next_page(), page);
    page = page->next_page();
  }
}
#endif

#ifdef DEBUG
void SemiSpace::AssertValidRange(Address start, Address end) {
  // Addresses belong to same semi-space
  Page* page = Page::FromAllocationAreaAddress(start);
  Page* end_page = Page::FromAllocationAreaAddress(end);
  SemiSpace* space = reinterpret_cast<SemiSpace*>(page->owner());
  DCHECK_EQ(space, end_page->owner());
  // Start address is before end address, either on same page,
  // or end address is on a later page in the linked list of
  // semi-space pages.
  if (page == end_page) {
    DCHECK_LE(start, end);
  } else {
    while (page != end_page) {
      page = page->next_page();
      DCHECK_NE(page, space->anchor());
    }
  }
}
#endif


// -----------------------------------------------------------------------------
// SemiSpaceIterator implementation.

SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
  Initialize(space->bottom(), space->top());
}


void SemiSpaceIterator::Initialize(Address start, Address end) {
  SemiSpace::AssertValidRange(start, end);
  current_ = start;
  limit_ = end;
}

#ifdef DEBUG
// heap_histograms is shared, always clear it before using it.
static void ClearHistograms(Isolate* isolate) {
// We reset the name each time, though it hasn't changed.
#define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name);
  INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
#undef DEF_TYPE_NAME

#define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear();
  INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
#undef CLEAR_HISTOGRAM

  isolate->js_spill_information()->Clear();
}

static int CollectHistogramInfo(HeapObject* obj) {
  Isolate* isolate = obj->GetIsolate();
  InstanceType type = obj->map()->instance_type();
  DCHECK(0 <= type && type <= LAST_TYPE);
  DCHECK_NOT_NULL(isolate->heap_histograms()[type].name());
  isolate->heap_histograms()[type].increment_number(1);
  isolate->heap_histograms()[type].increment_bytes(obj->Size());

  if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
    JSObject::cast(obj)
        ->IncrementSpillStatistics(isolate->js_spill_information());
  }

  return obj->Size();
}


static void ReportHistogram(Isolate* isolate, bool print_spill) {
  PrintF("\n  Object Histogram:\n");
  for (int i = 0; i <= LAST_TYPE; i++) {
    if (isolate->heap_histograms()[i].number() > 0) {
      PrintF("    %-34s%10d (%10d bytes)\n",
             isolate->heap_histograms()[i].name(),
             isolate->heap_histograms()[i].number(),
             isolate->heap_histograms()[i].bytes());
    }
  }
  PrintF("\n");

  // Summarize string types.
  int string_number = 0;
  int string_bytes = 0;
#define INCREMENT(type, size, name, camel_name)               \
  string_number += isolate->heap_histograms()[type].number(); \
  string_bytes += isolate->heap_histograms()[type].bytes();
  STRING_TYPE_LIST(INCREMENT)
#undef INCREMENT
  if (string_number > 0) {
    PrintF("    %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
           string_bytes);
  }

  if (FLAG_collect_heap_spill_statistics && print_spill) {
    isolate->js_spill_information()->Print();
  }
}
#endif  // DEBUG


// Support for statistics gathering for --heap-stats and --log-gc.
void NewSpace::ClearHistograms() {
  for (int i = 0; i <= LAST_TYPE; i++) {
    allocated_histogram_[i].clear();
    promoted_histogram_[i].clear();
  }
}


// Because the copying collector does not touch garbage objects, we iterate
// the new space before a collection to get a histogram of allocated objects.
// This only happens when --log-gc flag is set.
void NewSpace::CollectStatistics() {
  ClearHistograms();
  SemiSpaceIterator it(this);
  for (HeapObject* obj = it.Next(); obj != nullptr; obj = it.Next())
    RecordAllocation(obj);
}


static void DoReportStatistics(Isolate* isolate, HistogramInfo* info,
                               const char* description) {
  LOG(isolate, HeapSampleBeginEvent("NewSpace", description));
  // Lump all the string types together.
  int string_number = 0;
  int string_bytes = 0;
#define INCREMENT(type, size, name, camel_name) \
  string_number += info[type].number();         \
  string_bytes += info[type].bytes();
  STRING_TYPE_LIST(INCREMENT)
#undef INCREMENT
  if (string_number > 0) {
    LOG(isolate,
        HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
  }

  // Then do the other types.
  for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
    if (info[i].number() > 0) {
      LOG(isolate, HeapSampleItemEvent(info[i].name(), info[i].number(),
                                       info[i].bytes()));
    }
  }
  LOG(isolate, HeapSampleEndEvent("NewSpace", description));
}


void NewSpace::ReportStatistics() {
#ifdef DEBUG
  if (FLAG_heap_stats) {
    float pct = static_cast<float>(Available()) / TotalCapacity();
    PrintF("  capacity: %" PRIuS ", available: %" PRIuS ", %%%d\n",
           TotalCapacity(), Available(), static_cast<int>(pct * 100));
    PrintF("\n  Object Histogram:\n");
    for (int i = 0; i <= LAST_TYPE; i++) {
      if (allocated_histogram_[i].number() > 0) {
        PrintF("    %-34s%10d (%10d bytes)\n", allocated_histogram_[i].name(),
               allocated_histogram_[i].number(),
               allocated_histogram_[i].bytes());
      }
    }
    PrintF("\n");
  }
#endif  // DEBUG

  if (FLAG_log_gc) {
    Isolate* isolate = heap()->isolate();
    DoReportStatistics(isolate, allocated_histogram_, "allocated");
    DoReportStatistics(isolate, promoted_histogram_, "promoted");
  }
}


void NewSpace::RecordAllocation(HeapObject* obj) {
  InstanceType type = obj->map()->instance_type();
  DCHECK(0 <= type && type <= LAST_TYPE);
  allocated_histogram_[type].increment_number(1);
  allocated_histogram_[type].increment_bytes(obj->Size());
}


void NewSpace::RecordPromotion(HeapObject* obj) {
  InstanceType type = obj->map()->instance_type();
  DCHECK(0 <= type && type <= LAST_TYPE);
  promoted_histogram_[type].increment_number(1);
  promoted_histogram_[type].increment_bytes(obj->Size());
}


size_t NewSpace::CommittedPhysicalMemory() {
  if (!base::OS::HasLazyCommits()) return CommittedMemory();
  MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
  size_t size = to_space_.CommittedPhysicalMemory();
  if (from_space_.is_committed()) {
    size += from_space_.CommittedPhysicalMemory();
  }
  return size;
}


// -----------------------------------------------------------------------------
// Free lists for old object spaces implementation


void FreeListCategory::Reset() {
  set_top(nullptr);
  set_prev(nullptr);
  set_next(nullptr);
  available_ = 0;
}

FreeSpace* FreeListCategory::PickNodeFromList(size_t* node_size) {
  DCHECK(page()->CanAllocate());

  FreeSpace* node = top();
  if (node == nullptr) return nullptr;
  set_top(node->next());
  *node_size = node->Size();
  available_ -= *node_size;
  return node;
}

FreeSpace* FreeListCategory::TryPickNodeFromList(size_t minimum_size,
                                                 size_t* node_size) {
  DCHECK(page()->CanAllocate());

  FreeSpace* node = PickNodeFromList(node_size);
  if ((node != nullptr) && (*node_size < minimum_size)) {
    Free(node, *node_size, kLinkCategory);
    *node_size = 0;
    return nullptr;
  }
  return node;
}

FreeSpace* FreeListCategory::SearchForNodeInList(size_t minimum_size,
                                                 size_t* node_size) {
  DCHECK(page()->CanAllocate());

  FreeSpace* prev_non_evac_node = nullptr;
  for (FreeSpace* cur_node = top(); cur_node != nullptr;
       cur_node = cur_node->next()) {
    size_t size = cur_node->size();
    if (size >= minimum_size) {
      DCHECK_GE(available_, size);
      available_ -= size;
      if (cur_node == top()) {
        set_top(cur_node->next());
      }
      if (prev_non_evac_node != nullptr) {
        prev_non_evac_node->set_next(cur_node->next());
      }
      *node_size = size;
      return cur_node;
    }

    prev_non_evac_node = cur_node;
  }
  return nullptr;
}

void FreeListCategory::Free(FreeSpace* free_space, size_t size_in_bytes,
                            FreeMode mode) {
  CHECK(page()->CanAllocate());
  free_space->set_next(top());
  set_top(free_space);
  available_ += size_in_bytes;
  if ((mode == kLinkCategory) && (prev() == nullptr) && (next() == nullptr)) {
    owner()->AddCategory(this);
  }
}


void FreeListCategory::RepairFreeList(Heap* heap) {
  FreeSpace* n = top();
  while (n != nullptr) {
    Map** map_location = reinterpret_cast<Map**>(n->address());
    if (*map_location == nullptr) {
      *map_location = heap->free_space_map();
    } else {
      DCHECK(*map_location == heap->free_space_map());
    }
    n = n->next();
  }
}

void FreeListCategory::Relink() {
  DCHECK(!is_linked());
  owner()->AddCategory(this);
}

void FreeListCategory::Invalidate() {
  Reset();
  type_ = kInvalidCategory;
}

FreeList::FreeList(PagedSpace* owner) : owner_(owner), wasted_bytes_(0) {
  for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
    categories_[i] = nullptr;
  }
  Reset();
}


void FreeList::Reset() {
  ForAllFreeListCategories(
      [](FreeListCategory* category) { category->Reset(); });
  for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
    categories_[i] = nullptr;
  }
  ResetStats();
}

size_t FreeList::Free(Address start, size_t size_in_bytes, FreeMode mode) {
  if (size_in_bytes == 0) return 0;

  owner()->heap()->CreateFillerObjectAt(start, static_cast<int>(size_in_bytes),
                                        ClearRecordedSlots::kNo);

  Page* page = Page::FromAddress(start);
  page->DecreaseAllocatedBytes(size_in_bytes);

  // Blocks have to be a minimum size to hold free list items.
  if (size_in_bytes < kMinBlockSize) {
    page->add_wasted_memory(size_in_bytes);
    wasted_bytes_.Increment(size_in_bytes);
    return size_in_bytes;
  }

  FreeSpace* free_space = FreeSpace::cast(HeapObject::FromAddress(start));
  // Insert other blocks at the head of a free list of the appropriate
  // magnitude.
  FreeListCategoryType type = SelectFreeListCategoryType(size_in_bytes);
  page->free_list_category(type)->Free(free_space, size_in_bytes, mode);
  DCHECK_EQ(page->AvailableInFreeList(),
            page->AvailableInFreeListFromAllocatedBytes());
  return 0;
}

FreeSpace* FreeList::FindNodeIn(FreeListCategoryType type, size_t* node_size) {
  FreeListCategoryIterator it(this, type);
  FreeSpace* node = nullptr;
  while (it.HasNext()) {
    FreeListCategory* current = it.Next();
    node = current->PickNodeFromList(node_size);
    if (node != nullptr) {
      DCHECK(IsVeryLong() || Available() == SumFreeLists());
      return node;
    }
    RemoveCategory(current);
  }
  return node;
}

FreeSpace* FreeList::TryFindNodeIn(FreeListCategoryType type, size_t* node_size,
                                   size_t minimum_size) {
  if (categories_[type] == nullptr) return nullptr;
  FreeSpace* node =
      categories_[type]->TryPickNodeFromList(minimum_size, node_size);
  if (node != nullptr) {
    DCHECK(IsVeryLong() || Available() == SumFreeLists());
  }
  return node;
}

FreeSpace* FreeList::SearchForNodeInList(FreeListCategoryType type,
                                         size_t* node_size,
                                         size_t minimum_size) {
  FreeListCategoryIterator it(this, type);
  FreeSpace* node = nullptr;
  while (it.HasNext()) {
    FreeListCategory* current = it.Next();
    node = current->SearchForNodeInList(minimum_size, node_size);
    if (node != nullptr) {
      DCHECK(IsVeryLong() || Available() == SumFreeLists());
      return node;
    }
    if (current->is_empty()) {
      RemoveCategory(current);
    }
  }
  return node;
}

FreeSpace* FreeList::FindNodeFor(size_t size_in_bytes, size_t* node_size) {
  FreeSpace* node = nullptr;

  // First try the allocation fast path: try to allocate the minimum element
  // size of a free list category. This operation is constant time.
  FreeListCategoryType type =
      SelectFastAllocationFreeListCategoryType(size_in_bytes);
  for (int i = type; i < kHuge && node == nullptr; i++) {
    node = FindNodeIn(static_cast<FreeListCategoryType>(i), node_size);
  }

  if (node == nullptr) {
    // Next search the huge list for free list nodes. This takes linear time in
    // the number of huge elements.
    node = SearchForNodeInList(kHuge, node_size, size_in_bytes);
  }

  if (node == nullptr && type != kHuge) {
    // We didn't find anything in the huge list. Now search the best fitting
    // free list for a node that has at least the requested size.
    type = SelectFreeListCategoryType(size_in_bytes);
    node = TryFindNodeIn(type, node_size, size_in_bytes);
  }

  if (node != nullptr) {
    Page::FromAddress(node->address())->IncreaseAllocatedBytes(*node_size);
  }

  DCHECK(IsVeryLong() || Available() == SumFreeLists());
  return node;
}

bool FreeList::Allocate(size_t size_in_bytes) {
  DCHECK_GE(kMaxBlockSize, size_in_bytes);
  DCHECK(IsAligned(size_in_bytes, kPointerSize));
  DCHECK_LE(owner_->top(), owner_->limit());
#ifdef DEBUG
  if (owner_->top() != owner_->limit()) {
    DCHECK_EQ(Page::FromAddress(owner_->top()),
              Page::FromAddress(owner_->limit() - 1));
  }
#endif
  // Don't free list allocate if there is linear space available.
  DCHECK_LT(static_cast<size_t>(owner_->limit() - owner_->top()),
            size_in_bytes);

  // Mark the old linear allocation area with a free space map so it can be
  // skipped when scanning the heap.  This also puts it back in the free list
  // if it is big enough.
  owner_->EmptyAllocationInfo();

  if (!owner_->is_local()) {
    owner_->heap()->StartIncrementalMarkingIfAllocationLimitIsReached(
        Heap::kNoGCFlags, kGCCallbackScheduleIdleGarbageCollection);
  }

  size_t new_node_size = 0;
  FreeSpace* new_node = FindNodeFor(size_in_bytes, &new_node_size);
  if (new_node == nullptr) return false;

  DCHECK_GE(new_node_size, size_in_bytes);

#ifdef DEBUG
  for (size_t i = 0; i < size_in_bytes / kPointerSize; i++) {
    reinterpret_cast<Object**>(new_node->address())[i] =
        Smi::FromInt(kCodeZapValue);
  }
#endif

  // The old-space-step might have finished sweeping and restarted marking.
  // Verify that it did not turn the page of the new node into an evacuation
  // candidate.
  DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_node));

  // Memory in the linear allocation area is counted as allocated.  We may free
  // a little of this again immediately - see below.
  owner_->IncreaseAllocatedBytes(new_node_size,
                                 Page::FromAddress(new_node->address()));

  Address start = new_node->address();
  Address end = new_node->address() + new_node_size;
  Address limit = owner_->ComputeLimit(start, end, size_in_bytes);
  DCHECK_LE(limit, end);
  DCHECK_LE(size_in_bytes, limit - start);
  if (limit != end) {
    owner_->Free(limit, end - limit);
  }
  owner_->SetAllocationInfo(start, limit);

  return true;
}

size_t FreeList::EvictFreeListItems(Page* page) {
  size_t sum = 0;
  page->ForAllFreeListCategories(
      [this, &sum](FreeListCategory* category) {
        DCHECK_EQ(this, category->owner());
        sum += category->available();
        RemoveCategory(category);
        category->Invalidate();
      });
  return sum;
}

bool FreeList::ContainsPageFreeListItems(Page* page) {
  bool contained = false;
  page->ForAllFreeListCategories(
      [this, &contained](FreeListCategory* category) {
        if (category->owner() == this && category->is_linked()) {
          contained = true;
        }
      });
  return contained;
}

void FreeList::RepairLists(Heap* heap) {
  ForAllFreeListCategories(
      [heap](FreeListCategory* category) { category->RepairFreeList(heap); });
}

bool FreeList::AddCategory(FreeListCategory* category) {
  FreeListCategoryType type = category->type_;
  FreeListCategory* top = categories_[type];

  if (category->is_empty()) return false;
  if (top == category) return false;

  // Common double-linked list insertion.
  if (top != nullptr) {
    top->set_prev(category);
  }
  category->set_next(top);
  categories_[type] = category;
  return true;
}

void FreeList::RemoveCategory(FreeListCategory* category) {
  FreeListCategoryType type = category->type_;
  FreeListCategory* top = categories_[type];

  // Common double-linked list removal.
  if (top == category) {
    categories_[type] = category->next();
  }
  if (category->prev() != nullptr) {
    category->prev()->set_next(category->next());
  }
  if (category->next() != nullptr) {
    category->next()->set_prev(category->prev());
  }
  category->set_next(nullptr);
  category->set_prev(nullptr);
}

void FreeList::PrintCategories(FreeListCategoryType type) {
  FreeListCategoryIterator it(this, type);
  PrintF("FreeList[%p, top=%p, %d] ", static_cast<void*>(this),
         static_cast<void*>(categories_[type]), type);
  while (it.HasNext()) {
    FreeListCategory* current = it.Next();
    PrintF("%p -> ", static_cast<void*>(current));
  }
  PrintF("null\n");
}


#ifdef DEBUG
size_t FreeListCategory::SumFreeList() {
  size_t sum = 0;
  FreeSpace* cur = top();
  while (cur != nullptr) {
    DCHECK(cur->map() == cur->GetHeap()->root(Heap::kFreeSpaceMapRootIndex));
    sum += cur->relaxed_read_size();
    cur = cur->next();
  }
  return sum;
}

int FreeListCategory::FreeListLength() {
  int length = 0;
  FreeSpace* cur = top();
  while (cur != nullptr) {
    length++;
    cur = cur->next();
    if (length == kVeryLongFreeList) return length;
  }
  return length;
}

bool FreeList::IsVeryLong() {
  int len = 0;
  for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
    FreeListCategoryIterator it(this, static_cast<FreeListCategoryType>(i));
    while (it.HasNext()) {
      len += it.Next()->FreeListLength();
      if (len >= FreeListCategory::kVeryLongFreeList) return true;
    }
  }
  return false;
}


// This can take a very long time because it is linear in the number of entries
// on the free list, so it should not be called if FreeListLength returns
// kVeryLongFreeList.
size_t FreeList::SumFreeLists() {
  size_t sum = 0;
  ForAllFreeListCategories(
      [&sum](FreeListCategory* category) { sum += category->SumFreeList(); });
  return sum;
}
#endif


// -----------------------------------------------------------------------------
// OldSpace implementation

void PagedSpace::PrepareForMarkCompact() {
  // We don't have a linear allocation area while sweeping.  It will be restored
  // on the first allocation after the sweep.
  EmptyAllocationInfo();

  // Clear the free list before a full GC---it will be rebuilt afterward.
  free_list_.Reset();
}

size_t PagedSpace::SizeOfObjects() {
  CHECK_GE(limit(), top());
  DCHECK_GE(Size(), static_cast<size_t>(limit() - top()));
  return Size() - (limit() - top());
}

// After we have booted, we have created a map which represents free space
// on the heap.  If there was already a free list then the elements on it
// were created with the wrong FreeSpaceMap (normally nullptr), so we need to
// fix them.
void PagedSpace::RepairFreeListsAfterDeserialization() {
  free_list_.RepairLists(heap());
  // Each page may have a small free space that is not tracked by a free list.
  // Those free spaces still contain null as their map pointer.
  // Overwrite them with new fillers.
  for (Page* page : *this) {
    int size = static_cast<int>(page->wasted_memory());
    if (size == 0) {
      // If there is no wasted memory then all free space is in the free list.
      continue;
    }
    Address start = page->HighWaterMark();
    Address end = page->area_end();
    CHECK_EQ(size, static_cast<int>(end - start));
    heap()->CreateFillerObjectAt(start, size, ClearRecordedSlots::kNo);
  }
}

bool PagedSpace::SweepAndRetryAllocation(int size_in_bytes) {
  MarkCompactCollector* collector = heap()->mark_compact_collector();
  if (collector->sweeping_in_progress()) {
    // Wait for the sweeper threads here and complete the sweeping phase.
    collector->EnsureSweepingCompleted();

    // After waiting for the sweeper threads, there may be new free-list
    // entries.
    return free_list_.Allocate(size_in_bytes);
  }
  return false;
}

bool CompactionSpace::SweepAndRetryAllocation(int size_in_bytes) {
  MarkCompactCollector* collector = heap()->mark_compact_collector();
  if (FLAG_concurrent_sweeping && collector->sweeping_in_progress()) {
    collector->sweeper().ParallelSweepSpace(identity(), 0);
    RefillFreeList();
    return free_list_.Allocate(size_in_bytes);
  }
  return false;
}

bool PagedSpace::SlowAllocateRaw(int size_in_bytes) {
  VMState<GC> state(heap()->isolate());
  RuntimeCallTimerScope runtime_timer(
      heap()->isolate(), &RuntimeCallStats::GC_Custom_SlowAllocateRaw);
  return RawSlowAllocateRaw(size_in_bytes);
}

bool CompactionSpace::SlowAllocateRaw(int size_in_bytes) {
  return RawSlowAllocateRaw(size_in_bytes);
}

bool PagedSpace::RawSlowAllocateRaw(int size_in_bytes) {
  // Allocation in this space has failed.
  DCHECK_GE(size_in_bytes, 0);
  const int kMaxPagesToSweep = 1;

  MarkCompactCollector* collector = heap()->mark_compact_collector();
  // Sweeping is still in progress.
  if (collector->sweeping_in_progress()) {
    if (FLAG_concurrent_sweeping && !is_local() &&
        !collector->sweeper().AreSweeperTasksRunning()) {
      collector->EnsureSweepingCompleted();
    }

    // First try to refill the free-list, concurrent sweeper threads
    // may have freed some objects in the meantime.
    RefillFreeList();

    // Retry the free list allocation.
    if (free_list_.Allocate(static_cast<size_t>(size_in_bytes))) return true;

    if (locked_page_ != nullptr) {
      DCHECK_EQ(locked_page_->owner()->identity(), identity());
      collector->sweeper().ParallelSweepPage(locked_page_, identity());
      locked_page_ = nullptr;
      if (free_list_.Allocate(static_cast<size_t>(size_in_bytes))) return true;
    }

    // If sweeping is still in progress try to sweep pages.
    int max_freed = collector->sweeper().ParallelSweepSpace(
        identity(), size_in_bytes, kMaxPagesToSweep);
    RefillFreeList();
    if (max_freed >= size_in_bytes) {
      if (free_list_.Allocate(static_cast<size_t>(size_in_bytes))) return true;
    }
  } else if (is_local()) {
    // Sweeping not in progress and we are on a {CompactionSpace}. This can
    // only happen when we are evacuating for the young generation.
    PagedSpace* main_space = heap()->paged_space(identity());
    Page* page = main_space->RemovePageSafe(size_in_bytes);
    if (page != nullptr) {
      AddPage(page);
      if (free_list_.Allocate(static_cast<size_t>(size_in_bytes))) return true;
    }
  }

  if (heap()->ShouldExpandOldGenerationOnSlowAllocation() && Expand()) {
    DCHECK((CountTotalPages() > 1) ||
           (static_cast<size_t>(size_in_bytes) <= free_list_.Available()));
    return free_list_.Allocate(static_cast<size_t>(size_in_bytes));
  }

  // If sweeper threads are active, wait for them at that point and steal
  // elements form their free-lists. Allocation may still fail their which
  // would indicate that there is not enough memory for the given allocation.
  return SweepAndRetryAllocation(size_in_bytes);
}

#ifdef DEBUG
void PagedSpace::ReportStatistics() {
  int pct = static_cast<int>(Available() * 100 / Capacity());
  PrintF("  capacity: %" PRIuS ", waste: %" PRIuS
         ", available: %" PRIuS ", %%%d\n",
         Capacity(), Waste(), Available(), pct);

  heap()->mark_compact_collector()->EnsureSweepingCompleted();
  ClearHistograms(heap()->isolate());
  HeapObjectIterator obj_it(this);
  for (HeapObject* obj = obj_it.Next(); obj != nullptr; obj = obj_it.Next())
    CollectHistogramInfo(obj);
  ReportHistogram(heap()->isolate(), true);
}
#endif


// -----------------------------------------------------------------------------
// MapSpace implementation

#ifdef VERIFY_HEAP
void MapSpace::VerifyObject(HeapObject* object) { CHECK(object->IsMap()); }
#endif

Address LargePage::GetAddressToShrink(Address object_address,
                                      size_t object_size) {
  if (executable() == EXECUTABLE) {
    return 0;
  }
  size_t used_size = ::RoundUp((object_address - address()) + object_size,
                               MemoryAllocator::GetCommitPageSize());
  if (used_size < CommittedPhysicalMemory()) {
    return address() + used_size;
  }
  return 0;
}

void LargePage::ClearOutOfLiveRangeSlots(Address free_start) {
  RememberedSet<OLD_TO_NEW>::RemoveRange(this, free_start, area_end(),
                                         SlotSet::FREE_EMPTY_BUCKETS);
  RememberedSet<OLD_TO_OLD>::RemoveRange(this, free_start, area_end(),
                                         SlotSet::FREE_EMPTY_BUCKETS);
  RememberedSet<OLD_TO_NEW>::RemoveRangeTyped(this, free_start, area_end());
  RememberedSet<OLD_TO_OLD>::RemoveRangeTyped(this, free_start, area_end());
}

// -----------------------------------------------------------------------------
// LargeObjectIterator

LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
  current_ = space->first_page_;
}


HeapObject* LargeObjectIterator::Next() {
  if (current_ == nullptr) return nullptr;

  HeapObject* object = current_->GetObject();
  current_ = current_->next_page();
  return object;
}


// -----------------------------------------------------------------------------
// LargeObjectSpace

LargeObjectSpace::LargeObjectSpace(Heap* heap, AllocationSpace id)
    : Space(heap, id, NOT_EXECUTABLE),  // Managed on a per-allocation basis
      first_page_(nullptr),
      size_(0),
      page_count_(0),
      objects_size_(0),
      chunk_map_(1024) {}

LargeObjectSpace::~LargeObjectSpace() {}

bool LargeObjectSpace::SetUp() {
  return true;
}

void LargeObjectSpace::TearDown() {
  while (first_page_ != nullptr) {
    LargePage* page = first_page_;
    first_page_ = first_page_->next_page();
    LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address()));
    heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page);
  }
  SetUp();
}


AllocationResult LargeObjectSpace::AllocateRaw(int object_size,
                                               Executability executable) {
  // Check if we want to force a GC before growing the old space further.
  // If so, fail the allocation.
  if (!heap()->CanExpandOldGeneration(object_size) ||
      !heap()->ShouldExpandOldGenerationOnSlowAllocation()) {
    return AllocationResult::Retry(identity());
  }

  LargePage* page = heap()->memory_allocator()->AllocateLargePage(
      object_size, this, executable);
  if (page == nullptr) return AllocationResult::Retry(identity());
  DCHECK_GE(page->area_size(), static_cast<size_t>(object_size));

  size_ += static_cast<int>(page->size());
  AccountCommitted(page->size());
  objects_size_ += object_size;
  page_count_++;
  page->set_next_page(first_page_);
  first_page_ = page;

  InsertChunkMapEntries(page);

  HeapObject* object = page->GetObject();

  if (Heap::ShouldZapGarbage()) {
    // Make the object consistent so the heap can be verified in OldSpaceStep.
    // We only need to do this in debug builds or if verify_heap is on.
    reinterpret_cast<Object**>(object->address())[0] =
        heap()->fixed_array_map();
    reinterpret_cast<Object**>(object->address())[1] = Smi::kZero;
  }

  heap()->StartIncrementalMarkingIfAllocationLimitIsReached(
      Heap::kNoGCFlags, kGCCallbackScheduleIdleGarbageCollection);
  heap()->CreateFillerObjectAt(object->address(), object_size,
                               ClearRecordedSlots::kNo);
  if (heap()->incremental_marking()->black_allocation()) {
    heap()->incremental_marking()->marking_state()->WhiteToBlack(object);
  }
  AllocationStep(object_size, object->address(), object_size);
  DCHECK_IMPLIES(
      heap()->incremental_marking()->black_allocation(),
      heap()->incremental_marking()->marking_state()->IsBlack(object));
  return object;
}


size_t LargeObjectSpace::CommittedPhysicalMemory() {
  // On a platform that provides lazy committing of memory, we over-account
  // the actually committed memory. There is no easy way right now to support
  // precise accounting of committed memory in large object space.
  return CommittedMemory();
}


// GC support
Object* LargeObjectSpace::FindObject(Address a) {
  LargePage* page = FindPage(a);
  if (page != nullptr) {
    return page->GetObject();
  }
  return Smi::kZero;  // Signaling not found.
}

LargePage* LargeObjectSpace::FindPageThreadSafe(Address a) {
  base::LockGuard<base::Mutex> guard(&chunk_map_mutex_);
  return FindPage(a);
}

LargePage* LargeObjectSpace::FindPage(Address a) {
  const Address key = MemoryChunk::FromAddress(a)->address();
  auto it = chunk_map_.find(reinterpret_cast<Address>(key));
  if (it != chunk_map_.end()) {
    LargePage* page = it->second;
    DCHECK(LargePage::IsValid(page));
    if (page->Contains(a)) {
      return page;
    }
  }
  return nullptr;
}


void LargeObjectSpace::ClearMarkingStateOfLiveObjects() {
  IncrementalMarking::NonAtomicMarkingState* marking_state =
      heap()->incremental_marking()->non_atomic_marking_state();
  LargeObjectIterator it(this);
  for (HeapObject* obj = it.Next(); obj != nullptr; obj = it.Next()) {
    if (marking_state->IsBlackOrGrey(obj)) {
      Marking::MarkWhite(marking_state->MarkBitFrom(obj));
      MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
      RememberedSet<OLD_TO_NEW>::FreeEmptyBuckets(chunk);
      chunk->ResetProgressBar();
      marking_state->SetLiveBytes(chunk, 0);
    }
    DCHECK(marking_state->IsWhite(obj));
  }
}

void LargeObjectSpace::InsertChunkMapEntries(LargePage* page) {
  // There may be concurrent access on the chunk map. We have to take the lock
  // here.
  base::LockGuard<base::Mutex> guard(&chunk_map_mutex_);
  for (Address current = reinterpret_cast<Address>(page);
       current < reinterpret_cast<Address>(page) + page->size();
       current += MemoryChunk::kPageSize) {
    chunk_map_[current] = page;
  }
}

void LargeObjectSpace::RemoveChunkMapEntries(LargePage* page) {
  RemoveChunkMapEntries(page, page->address());
}

void LargeObjectSpace::RemoveChunkMapEntries(LargePage* page,
                                             Address free_start) {
  for (Address current = reinterpret_cast<Address>(::RoundUp(
           reinterpret_cast<uintptr_t>(free_start), MemoryChunk::kPageSize));
       current < reinterpret_cast<Address>(page) + page->size();
       current += MemoryChunk::kPageSize) {
    chunk_map_.erase(current);
  }
}

void LargeObjectSpace::FreeUnmarkedObjects() {
  LargePage* previous = nullptr;
  LargePage* current = first_page_;
  IncrementalMarking::NonAtomicMarkingState* marking_state =
      heap()->incremental_marking()->non_atomic_marking_state();
  objects_size_ = 0;
  while (current != nullptr) {
    HeapObject* object = current->GetObject();
    DCHECK(!marking_state->IsGrey(object));
    if (marking_state->IsBlack(object)) {
      Address free_start;
      size_t size = static_cast<size_t>(object->Size());
      objects_size_ += size;
      if ((free_start = current->GetAddressToShrink(object->address(), size)) !=
          0) {
        DCHECK(!current->IsFlagSet(Page::IS_EXECUTABLE));
        current->ClearOutOfLiveRangeSlots(free_start);
        RemoveChunkMapEntries(current, free_start);
        const size_t bytes_to_free =
            current->size() - (free_start - current->address());
        heap()->memory_allocator()->PartialFreeMemory(
            current, free_start, bytes_to_free,
            current->area_start() + object->Size());
        size_ -= bytes_to_free;
        AccountUncommitted(bytes_to_free);
      }
      previous = current;
      current = current->next_page();
    } else {
      LargePage* page = current;
      // Cut the chunk out from the chunk list.
      current = current->next_page();
      if (previous == nullptr) {
        first_page_ = current;
      } else {
        previous->set_next_page(current);
      }

      // Free the chunk.
      size_ -= static_cast<int>(page->size());
      AccountUncommitted(page->size());
      page_count_--;

      RemoveChunkMapEntries(page);
      heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page);
    }
  }
}


bool LargeObjectSpace::Contains(HeapObject* object) {
  Address address = object->address();
  MemoryChunk* chunk = MemoryChunk::FromAddress(address);

  bool owned = (chunk->owner() == this);

  SLOW_DCHECK(!owned || FindObject(address)->IsHeapObject());

  return owned;
}

std::unique_ptr<ObjectIterator> LargeObjectSpace::GetObjectIterator() {
  return std::unique_ptr<ObjectIterator>(new LargeObjectIterator(this));
}

#ifdef VERIFY_HEAP
// We do not assume that the large object iterator works, because it depends
// on the invariants we are checking during verification.
void LargeObjectSpace::Verify() {
  for (LargePage* chunk = first_page_; chunk != nullptr;
       chunk = chunk->next_page()) {
    // Each chunk contains an object that starts at the large object page's
    // object area start.
    HeapObject* object = chunk->GetObject();
    Page* page = Page::FromAddress(object->address());
    CHECK(object->address() == page->area_start());

    // The first word should be a map, and we expect all map pointers to be
    // in map space.
    Map* map = object->map();
    CHECK(map->IsMap());
    CHECK(heap()->map_space()->Contains(map));

    // We have only code, sequential strings, external strings (sequential
    // strings that have been morphed into external strings), thin strings
    // (sequential strings that have been morphed into thin strings), fixed
    // arrays, fixed double arrays, byte arrays, feedback vectors and free space
    // (right after allocation) in the large object space.
    CHECK(object->IsAbstractCode() || object->IsSeqString() ||
          object->IsExternalString() || object->IsThinString() ||
          object->IsFixedArray() || object->IsFixedDoubleArray() ||
          object->IsPropertyArray() || object->IsByteArray() ||
          object->IsFeedbackVector() || object->IsFreeSpace());

    // The object itself should look OK.
    object->ObjectVerify();

    if (!FLAG_verify_heap_skip_remembered_set) {
      heap()->VerifyRememberedSetFor(object);
    }

    // Byte arrays and strings don't have interior pointers.
    if (object->IsAbstractCode()) {
      VerifyPointersVisitor code_visitor;
      object->IterateBody(map->instance_type(), object->Size(), &code_visitor);
    } else if (object->IsFixedArray()) {
      FixedArray* array = FixedArray::cast(object);
      for (int j = 0; j < array->length(); j++) {
        Object* element = array->get(j);
        if (element->IsHeapObject()) {
          HeapObject* element_object = HeapObject::cast(element);
          CHECK(heap()->Contains(element_object));
          CHECK(element_object->map()->IsMap());
        }
      }
    } else if (object->IsPropertyArray()) {
      PropertyArray* array = PropertyArray::cast(object);
      for (int j = 0; j < array->length(); j++) {
        Object* property = array->get(j);
        if (property->IsHeapObject()) {
          HeapObject* property_object = HeapObject::cast(property);
          CHECK(heap()->Contains(property_object));
          CHECK(property_object->map()->IsMap());
        }
      }
    }
  }
}
#endif

#ifdef DEBUG
void LargeObjectSpace::Print() {
  OFStream os(stdout);
  LargeObjectIterator it(this);
  for (HeapObject* obj = it.Next(); obj != nullptr; obj = it.Next()) {
    obj->Print(os);
  }
}


void LargeObjectSpace::ReportStatistics() {
  PrintF("  size: %" PRIuS "\n", size_);
  int num_objects = 0;
  ClearHistograms(heap()->isolate());
  LargeObjectIterator it(this);
  for (HeapObject* obj = it.Next(); obj != nullptr; obj = it.Next()) {
    num_objects++;
    CollectHistogramInfo(obj);
  }

  PrintF(
      "  number of objects %d, "
      "size of objects %" PRIuS "\n",
      num_objects, objects_size_);
  if (num_objects > 0) ReportHistogram(heap()->isolate(), false);
}


void Page::Print() {
  // Make a best-effort to print the objects in the page.
  PrintF("Page@%p in %s\n", static_cast<void*>(this->address()),
         AllocationSpaceName(this->owner()->identity()));
  printf(" --------------------------------------\n");
  HeapObjectIterator objects(this);
  unsigned mark_size = 0;
  for (HeapObject* object = objects.Next(); object != nullptr;
       object = objects.Next()) {
    bool is_marked =
        heap()->incremental_marking()->marking_state()->IsBlackOrGrey(object);
    PrintF(" %c ", (is_marked ? '!' : ' '));  // Indent a little.
    if (is_marked) {
      mark_size += object->Size();
    }
    object->ShortPrint();
    PrintF("\n");
  }
  printf(" --------------------------------------\n");
  printf(" Marked: %x, LiveCount: %" V8PRIdPTR "\n", mark_size,
         heap()->incremental_marking()->marking_state()->live_bytes(this));
}

#endif  // DEBUG
}  // namespace internal
}  // namespace v8