// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <limits.h> // For LONG_MIN, LONG_MAX. #if V8_TARGET_ARCH_ARM #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/base/utils/random-number-generator.h" #include "src/callable.h" #include "src/codegen/assembler-inl.h" #include "src/codegen/code-factory.h" #include "src/codegen/macro-assembler.h" #include "src/codegen/register-configuration.h" #include "src/debug/debug.h" #include "src/execution/frames-inl.h" #include "src/external-reference-table.h" #include "src/heap/heap-inl.h" // For MemoryChunk. #include "src/init/bootstrapper.h" #include "src/logging/counters.h" #include "src/numbers/double.h" #include "src/objects-inl.h" #include "src/runtime/runtime.h" #include "src/snapshot/embedded-data.h" #include "src/snapshot/snapshot.h" #include "src/wasm/wasm-code-manager.h" // Satisfy cpplint check, but don't include platform-specific header. It is // included recursively via macro-assembler.h. #if 0 #include "src/arm/macro-assembler-arm.h" #endif namespace v8 { namespace internal { int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) const { int bytes = 0; RegList exclusions = 0; if (exclusion1 != no_reg) { exclusions |= exclusion1.bit(); if (exclusion2 != no_reg) { exclusions |= exclusion2.bit(); if (exclusion3 != no_reg) { exclusions |= exclusion3.bit(); } } } RegList list = (kCallerSaved | lr.bit()) & ~exclusions; bytes += NumRegs(list) * kPointerSize; if (fp_mode == kSaveFPRegs) { bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes; } return bytes; } int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { int bytes = 0; RegList exclusions = 0; if (exclusion1 != no_reg) { exclusions |= exclusion1.bit(); if (exclusion2 != no_reg) { exclusions |= exclusion2.bit(); if (exclusion3 != no_reg) { exclusions |= exclusion3.bit(); } } } RegList list = (kCallerSaved | lr.bit()) & ~exclusions; stm(db_w, sp, list); bytes += NumRegs(list) * kPointerSize; if (fp_mode == kSaveFPRegs) { SaveFPRegs(sp, lr); bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes; } return bytes; } int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { int bytes = 0; if (fp_mode == kSaveFPRegs) { RestoreFPRegs(sp, lr); bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes; } RegList exclusions = 0; if (exclusion1 != no_reg) { exclusions |= exclusion1.bit(); if (exclusion2 != no_reg) { exclusions |= exclusion2.bit(); if (exclusion3 != no_reg) { exclusions |= exclusion3.bit(); } } } RegList list = (kCallerSaved | lr.bit()) & ~exclusions; ldm(ia_w, sp, list); bytes += NumRegs(list) * kPointerSize; return bytes; } void TurboAssembler::LoadFromConstantsTable(Register destination, int constant_index) { DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable)); // The ldr call below could end up clobbering ip when the offset does not fit // into 12 bits (and thus needs to be loaded from the constant pool). In that // case, we need to be extra-careful and temporarily use another register as // the target. const uint32_t offset = FixedArray::kHeaderSize + constant_index * kPointerSize - kHeapObjectTag; const bool could_clobber_ip = !is_uint12(offset); Register reg = destination; if (could_clobber_ip) { Push(r7); reg = r7; } LoadRoot(reg, RootIndex::kBuiltinsConstantsTable); ldr(destination, MemOperand(reg, offset)); if (could_clobber_ip) { DCHECK_EQ(reg, r7); Pop(r7); } } void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { ldr(destination, MemOperand(kRootRegister, offset)); } void TurboAssembler::LoadRootRegisterOffset(Register destination, intptr_t offset) { if (offset == 0) { Move(destination, kRootRegister); } else { add(destination, kRootRegister, Operand(offset)); } } void TurboAssembler::Jump(Register target, Condition cond) { bx(target, cond); } void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond) { mov(pc, Operand(target, rmode), LeaveCC, cond); } void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond) { DCHECK(!RelocInfo::IsCodeTarget(rmode)); Jump(static_cast<intptr_t>(target), rmode, cond); } void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond) { DCHECK(RelocInfo::IsCodeTarget(rmode)); DCHECK_IMPLIES(options().isolate_independent_code, Builtins::IsIsolateIndependentBuiltin(*code)); DCHECK_IMPLIES(options().use_pc_relative_calls_and_jumps, Builtins::IsIsolateIndependentBuiltin(*code)); int builtin_index = Builtins::kNoBuiltinId; bool target_is_isolate_independent_builtin = isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) && Builtins::IsIsolateIndependent(builtin_index); if (options().use_pc_relative_calls_and_jumps && target_is_isolate_independent_builtin) { int32_t code_target_index = AddCodeTarget(code); b(code_target_index * kInstrSize, cond, RelocInfo::RELATIVE_CODE_TARGET); return; } else if (root_array_available_ && options().isolate_independent_code) { // This branch is taken only for specific cctests, where we force isolate // creation at runtime. At this point, Code space isn't restricted to a // size s.t. pc-relative calls may be used. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); int offset = code->builtin_index() * kSystemPointerSize + IsolateData::builtin_entry_table_offset(); ldr(scratch, MemOperand(kRootRegister, offset)); Jump(scratch, cond); return; } else if (options().inline_offheap_trampolines && target_is_isolate_independent_builtin) { // Inline the trampoline. RecordCommentForOffHeapTrampoline(builtin_index); EmbeddedData d = EmbeddedData::FromBlob(); Address entry = d.InstructionStartOfBuiltin(builtin_index); // Use ip directly instead of using UseScratchRegisterScope, as we do not // preserve scratch registers across calls. mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); Jump(ip, cond); return; } // 'code' is always generated ARM code, never THUMB code Jump(static_cast<intptr_t>(code.address()), rmode, cond); } void TurboAssembler::Call(Register target, Condition cond) { // Block constant pool for the call instruction sequence. BlockConstPoolScope block_const_pool(this); blx(target, cond); } void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond, TargetAddressStorageMode mode, bool check_constant_pool) { // Check if we have to emit the constant pool before we block it. if (check_constant_pool) MaybeCheckConstPool(); // Block constant pool for the call instruction sequence. BlockConstPoolScope block_const_pool(this); bool old_predictable_code_size = predictable_code_size(); if (mode == NEVER_INLINE_TARGET_ADDRESS) { set_predictable_code_size(true); } // Use ip directly instead of using UseScratchRegisterScope, as we do not // preserve scratch registers across calls. // Call sequence on V7 or later may be : // movw ip, #... @ call address low 16 // movt ip, #... @ call address high 16 // blx ip // @ return address // Or for pre-V7 or values that may be back-patched // to avoid ICache flushes: // ldr ip, [pc, #...] @ call address // blx ip // @ return address mov(ip, Operand(target, rmode)); blx(ip, cond); if (mode == NEVER_INLINE_TARGET_ADDRESS) { set_predictable_code_size(old_predictable_code_size); } } void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, Condition cond, TargetAddressStorageMode mode, bool check_constant_pool) { DCHECK(RelocInfo::IsCodeTarget(rmode)); DCHECK_IMPLIES(options().isolate_independent_code, Builtins::IsIsolateIndependentBuiltin(*code)); DCHECK_IMPLIES(options().use_pc_relative_calls_and_jumps, Builtins::IsIsolateIndependentBuiltin(*code)); int builtin_index = Builtins::kNoBuiltinId; bool target_is_isolate_independent_builtin = isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) && Builtins::IsIsolateIndependent(builtin_index); if (target_is_isolate_independent_builtin && options().use_pc_relative_calls_and_jumps) { int32_t code_target_index = AddCodeTarget(code); bl(code_target_index * kInstrSize, cond, RelocInfo::RELATIVE_CODE_TARGET); return; } else if (root_array_available_ && options().isolate_independent_code) { // This branch is taken only for specific cctests, where we force isolate // creation at runtime. At this point, Code space isn't restricted to a // size s.t. pc-relative calls may be used. int offset = code->builtin_index() * kSystemPointerSize + IsolateData::builtin_entry_table_offset(); ldr(ip, MemOperand(kRootRegister, offset)); Call(ip, cond); return; } else if (target_is_isolate_independent_builtin && options().inline_offheap_trampolines) { // Inline the trampoline. RecordCommentForOffHeapTrampoline(builtin_index); EmbeddedData d = EmbeddedData::FromBlob(); Address entry = d.InstructionStartOfBuiltin(builtin_index); // Use ip directly instead of using UseScratchRegisterScope, as we do not // preserve scratch registers across calls. mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); Call(ip, cond); return; } // 'code' is always generated ARM code, never THUMB code Call(code.address(), rmode, cond, mode); } void TurboAssembler::CallBuiltinPointer(Register builtin_pointer) { STATIC_ASSERT(kSystemPointerSize == 4); STATIC_ASSERT(kSmiShiftSize == 0); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); // The builtin_pointer register contains the builtin index as a Smi. // Untagging is folded into the indexing operand below. mov(builtin_pointer, Operand(builtin_pointer, LSL, kSystemPointerSizeLog2 - kSmiTagSize)); add(builtin_pointer, builtin_pointer, Operand(IsolateData::builtin_entry_table_offset())); ldr(builtin_pointer, MemOperand(kRootRegister, builtin_pointer)); Call(builtin_pointer); } void TurboAssembler::LoadCodeObjectEntry(Register destination, Register code_object) { // Code objects are called differently depending on whether we are generating // builtin code (which will later be embedded into the binary) or compiling // user JS code at runtime. // * Builtin code runs in --jitless mode and thus must not call into on-heap // Code targets. Instead, we dispatch through the builtins entry table. // * Codegen at runtime does not have this restriction and we can use the // shorter, branchless instruction sequence. The assumption here is that // targets are usually generated code and not builtin Code objects. if (options().isolate_independent_code) { DCHECK(root_array_available()); Label if_code_is_off_heap, out; UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(!AreAliased(destination, scratch)); DCHECK(!AreAliased(code_object, scratch)); // Check whether the Code object is an off-heap trampoline. If so, call its // (off-heap) entry point directly without going through the (on-heap) // trampoline. Otherwise, just call the Code object as always. ldr(scratch, FieldMemOperand(code_object, Code::kFlagsOffset)); tst(scratch, Operand(Code::IsOffHeapTrampoline::kMask)); b(ne, &if_code_is_off_heap); // Not an off-heap trampoline, the entry point is at // Code::raw_instruction_start(). add(destination, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); jmp(&out); // An off-heap trampoline, the entry point is loaded from the builtin entry // table. bind(&if_code_is_off_heap); ldr(scratch, FieldMemOperand(code_object, Code::kBuiltinIndexOffset)); lsl(destination, scratch, Operand(kSystemPointerSizeLog2)); add(destination, destination, kRootRegister); ldr(destination, MemOperand(destination, IsolateData::builtin_entry_table_offset())); bind(&out); } else { add(destination, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); } } void TurboAssembler::CallCodeObject(Register code_object) { LoadCodeObjectEntry(code_object, code_object); Call(code_object); } void TurboAssembler::JumpCodeObject(Register code_object) { LoadCodeObjectEntry(code_object, code_object); Jump(code_object); } void TurboAssembler::StoreReturnAddressAndCall(Register target) { // This generates the final instruction sequence for calls to C functions // once an exit frame has been constructed. // // Note that this assumes the caller code (i.e. the Code object currently // being generated) is immovable or that the callee function cannot trigger // GC, since the callee function will return to it. // Compute the return address in lr to return to after the jump below. The pc // is already at '+ 8' from the current instruction; but return is after three // instructions, so add another 4 to pc to get the return address. Assembler::BlockConstPoolScope block_const_pool(this); add(lr, pc, Operand(4)); str(lr, MemOperand(sp)); Call(target); } void TurboAssembler::Ret(Condition cond) { bx(lr, cond); } void TurboAssembler::Drop(int count, Condition cond) { if (count > 0) { add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond); } } void TurboAssembler::Drop(Register count, Condition cond) { add(sp, sp, Operand(count, LSL, kPointerSizeLog2), LeaveCC, cond); } void TurboAssembler::Ret(int drop, Condition cond) { Drop(drop, cond); Ret(cond); } void TurboAssembler::Call(Label* target) { bl(target); } void TurboAssembler::Push(Handle<HeapObject> handle) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); mov(scratch, Operand(handle)); push(scratch); } void TurboAssembler::Push(Smi smi) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); mov(scratch, Operand(smi)); push(scratch); } void TurboAssembler::Move(Register dst, Smi smi) { mov(dst, Operand(smi)); } void TurboAssembler::Move(Register dst, Handle<HeapObject> value) { if (FLAG_embedded_builtins) { if (root_array_available_ && options().isolate_independent_code) { IndirectLoadConstant(dst, value); return; } } mov(dst, Operand(value)); } void TurboAssembler::Move(Register dst, ExternalReference reference) { if (FLAG_embedded_builtins) { if (root_array_available_ && options().isolate_independent_code) { IndirectLoadExternalReference(dst, reference); return; } } mov(dst, Operand(reference)); } void TurboAssembler::Move(Register dst, Register src, Condition cond) { if (dst != src) { mov(dst, src, LeaveCC, cond); } } void TurboAssembler::Move(SwVfpRegister dst, SwVfpRegister src, Condition cond) { if (dst != src) { vmov(dst, src, cond); } } void TurboAssembler::Move(DwVfpRegister dst, DwVfpRegister src, Condition cond) { if (dst != src) { vmov(dst, src, cond); } } void TurboAssembler::Move(QwNeonRegister dst, QwNeonRegister src) { if (dst != src) { vmov(dst, src); } } void TurboAssembler::MovePair(Register dst0, Register src0, Register dst1, Register src1) { DCHECK_NE(dst0, dst1); if (dst0 != src1) { Move(dst0, src0); Move(dst1, src1); } else if (dst1 != src0) { // Swap the order of the moves to resolve the overlap. Move(dst1, src1); Move(dst0, src0); } else { // Worse case scenario, this is a swap. Swap(dst0, src0); } } void TurboAssembler::Swap(Register srcdst0, Register srcdst1) { DCHECK(srcdst0 != srcdst1); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); mov(scratch, srcdst0); mov(srcdst0, srcdst1); mov(srcdst1, scratch); } void TurboAssembler::Swap(DwVfpRegister srcdst0, DwVfpRegister srcdst1) { DCHECK(srcdst0 != srcdst1); DCHECK(VfpRegisterIsAvailable(srcdst0)); DCHECK(VfpRegisterIsAvailable(srcdst1)); if (CpuFeatures::IsSupported(NEON)) { vswp(srcdst0, srcdst1); } else { UseScratchRegisterScope temps(this); DwVfpRegister scratch = temps.AcquireD(); vmov(scratch, srcdst0); vmov(srcdst0, srcdst1); vmov(srcdst1, scratch); } } void TurboAssembler::Swap(QwNeonRegister srcdst0, QwNeonRegister srcdst1) { DCHECK(srcdst0 != srcdst1); vswp(srcdst0, srcdst1); } void MacroAssembler::Mls(Register dst, Register src1, Register src2, Register srcA, Condition cond) { if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatureScope scope(this, ARMv7); mls(dst, src1, src2, srcA, cond); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(srcA != scratch); mul(scratch, src1, src2, LeaveCC, cond); sub(dst, srcA, scratch, LeaveCC, cond); } } void MacroAssembler::And(Register dst, Register src1, const Operand& src2, Condition cond) { if (!src2.IsRegister() && !src2.MustOutputRelocInfo(this) && src2.immediate() == 0) { mov(dst, Operand::Zero(), LeaveCC, cond); } else if (!(src2.InstructionsRequired(this) == 1) && !src2.MustOutputRelocInfo(this) && CpuFeatures::IsSupported(ARMv7) && base::bits::IsPowerOfTwo(src2.immediate() + 1)) { CpuFeatureScope scope(this, ARMv7); ubfx(dst, src1, 0, WhichPowerOf2(static_cast<uint32_t>(src2.immediate()) + 1), cond); } else { and_(dst, src1, src2, LeaveCC, cond); } } void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width, Condition cond) { DCHECK_LT(lsb, 32); if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); and_(dst, src1, Operand(mask), LeaveCC, cond); if (lsb != 0) { mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond); } } else { CpuFeatureScope scope(this, ARMv7); ubfx(dst, src1, lsb, width, cond); } } void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width, Condition cond) { DCHECK_LT(lsb, 32); if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); and_(dst, src1, Operand(mask), LeaveCC, cond); int shift_up = 32 - lsb - width; int shift_down = lsb + shift_up; if (shift_up != 0) { mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond); } if (shift_down != 0) { mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond); } } else { CpuFeatureScope scope(this, ARMv7); sbfx(dst, src1, lsb, width, cond); } } void TurboAssembler::Bfc(Register dst, Register src, int lsb, int width, Condition cond) { DCHECK_LT(lsb, 32); if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); bic(dst, src, Operand(mask)); } else { CpuFeatureScope scope(this, ARMv7); Move(dst, src, cond); bfc(dst, lsb, width, cond); } } void TurboAssembler::LoadRoot(Register destination, RootIndex index, Condition cond) { ldr(destination, MemOperand(kRootRegister, RootRegisterOffsetForRootIndex(index)), cond); } void MacroAssembler::RecordWriteField(Register object, int offset, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kPointerSize. DCHECK(IsAligned(offset, kPointerSize)); if (emit_debug_code()) { Label ok; UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); add(scratch, object, Operand(offset - kHeapObjectTag)); tst(scratch, Operand(kPointerSize - 1)); b(eq, &ok); stop("Unaligned cell in write barrier"); bind(&ok); } RecordWrite(object, Operand(offset - kHeapObjectTag), value, lr_status, save_fp, remembered_set_action, OMIT_SMI_CHECK); bind(&done); } void TurboAssembler::SaveRegisters(RegList registers) { DCHECK_GT(NumRegs(registers), 0); RegList regs = 0; for (int i = 0; i < Register::kNumRegisters; ++i) { if ((registers >> i) & 1u) { regs |= Register::from_code(i).bit(); } } stm(db_w, sp, regs); } void TurboAssembler::RestoreRegisters(RegList registers) { DCHECK_GT(NumRegs(registers), 0); RegList regs = 0; for (int i = 0; i < Register::kNumRegisters; ++i) { if ((registers >> i) & 1u) { regs |= Register::from_code(i).bit(); } } ldm(ia_w, sp, regs); } void TurboAssembler::CallEphemeronKeyBarrier(Register object, Operand offset, SaveFPRegsMode fp_mode) { EphemeronKeyBarrierDescriptor descriptor; RegList registers = descriptor.allocatable_registers(); SaveRegisters(registers); Register object_parameter( descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject)); Register slot_parameter(descriptor.GetRegisterParameter( EphemeronKeyBarrierDescriptor::kSlotAddress)); Register fp_mode_parameter( descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode)); MoveObjectAndSlot(object_parameter, slot_parameter, object, offset); Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier), RelocInfo::CODE_TARGET); RestoreRegisters(registers); } void TurboAssembler::CallRecordWriteStub( Register object, Operand offset, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { CallRecordWriteStub( object, offset, remembered_set_action, fp_mode, isolate()->builtins()->builtin_handle(Builtins::kRecordWrite), kNullAddress); } void TurboAssembler::CallRecordWriteStub( Register object, Operand offset, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, Address wasm_target) { CallRecordWriteStub(object, offset, remembered_set_action, fp_mode, Handle<Code>::null(), wasm_target); } void TurboAssembler::CallRecordWriteStub( Register object, Operand offset, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, Handle<Code> code_target, Address wasm_target) { DCHECK_NE(code_target.is_null(), wasm_target == kNullAddress); // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, // i.e. always emit remember set and save FP registers in RecordWriteStub. If // large performance regression is observed, we should use these values to // avoid unnecessary work. RecordWriteDescriptor descriptor; RegList registers = descriptor.allocatable_registers(); SaveRegisters(registers); Register object_parameter( descriptor.GetRegisterParameter(RecordWriteDescriptor::kObject)); Register slot_parameter( descriptor.GetRegisterParameter(RecordWriteDescriptor::kSlot)); Register remembered_set_parameter( descriptor.GetRegisterParameter(RecordWriteDescriptor::kRememberedSet)); Register fp_mode_parameter( descriptor.GetRegisterParameter(RecordWriteDescriptor::kFPMode)); MoveObjectAndSlot(object_parameter, slot_parameter, object, offset); Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); if (code_target.is_null()) { Call(wasm_target, RelocInfo::WASM_STUB_CALL); } else { Call(code_target, RelocInfo::CODE_TARGET); } RestoreRegisters(registers); } void TurboAssembler::MoveObjectAndSlot(Register dst_object, Register dst_slot, Register object, Operand offset) { DCHECK_NE(dst_object, dst_slot); DCHECK(offset.IsRegister() || offset.IsImmediate()); // If `offset` is a register, it cannot overlap with `object`. DCHECK_IMPLIES(offset.IsRegister(), offset.rm() != object); // If the slot register does not overlap with the object register, we can // overwrite it. if (dst_slot != object) { add(dst_slot, object, offset); Move(dst_object, object); return; } DCHECK_EQ(dst_slot, object); // If the destination object register does not overlap with the offset // register, we can overwrite it. if (!offset.IsRegister() || (offset.rm() != dst_object)) { Move(dst_object, dst_slot); add(dst_slot, dst_slot, offset); return; } DCHECK_EQ(dst_object, offset.rm()); // We only have `dst_slot` and `dst_object` left as distinct registers so we // have to swap them. We write this as a add+sub sequence to avoid using a // scratch register. add(dst_slot, dst_slot, dst_object); sub(dst_object, dst_slot, dst_object); } // The register 'object' contains a heap object pointer. The heap object tag is // shifted away. A scratch register also needs to be available. void MacroAssembler::RecordWrite(Register object, Operand offset, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check) { DCHECK_NE(object, value); if (emit_debug_code()) { { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); add(scratch, object, offset); ldr(scratch, MemOperand(scratch)); cmp(scratch, value); } Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite); } if (remembered_set_action == OMIT_REMEMBERED_SET && !FLAG_incremental_marking) { return; } // First, check if a write barrier is even needed. The tests below // catch stores of smis and stores into the young generation. Label done; if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } CheckPageFlag(value, MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); CheckPageFlag(object, MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); // Record the actual write. if (lr_status == kLRHasNotBeenSaved) { push(lr); } CallRecordWriteStub(object, offset, remembered_set_action, fp_mode); if (lr_status == kLRHasNotBeenSaved) { pop(lr); } bind(&done); } void TurboAssembler::PushCommonFrame(Register marker_reg) { if (marker_reg.is_valid()) { if (marker_reg.code() > fp.code()) { stm(db_w, sp, fp.bit() | lr.bit()); mov(fp, Operand(sp)); Push(marker_reg); } else { stm(db_w, sp, marker_reg.bit() | fp.bit() | lr.bit()); add(fp, sp, Operand(kPointerSize)); } } else { stm(db_w, sp, fp.bit() | lr.bit()); mov(fp, sp); } } void TurboAssembler::PushStandardFrame(Register function_reg) { DCHECK(!function_reg.is_valid() || function_reg.code() < cp.code()); stm(db_w, sp, (function_reg.is_valid() ? function_reg.bit() : 0) | cp.bit() | fp.bit() | lr.bit()); int offset = -StandardFrameConstants::kContextOffset; offset += function_reg.is_valid() ? kPointerSize : 0; add(fp, sp, Operand(offset)); } // Push and pop all registers that can hold pointers. void MacroAssembler::PushSafepointRegisters() { // Safepoints expect a block of contiguous register values starting with r0. DCHECK_EQ(kSafepointSavedRegisters, (1 << kNumSafepointSavedRegisters) - 1); // Safepoints expect a block of kNumSafepointRegisters values on the // stack, so adjust the stack for unsaved registers. const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; DCHECK_GE(num_unsaved, 0); AllocateStackSpace(num_unsaved * kPointerSize); stm(db_w, sp, kSafepointSavedRegisters); } void MacroAssembler::PopSafepointRegisters() { const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; ldm(ia_w, sp, kSafepointSavedRegisters); add(sp, sp, Operand(num_unsaved * kPointerSize)); } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // The registers are pushed starting with the highest encoding, // which means that lowest encodings are closest to the stack pointer. DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters); return reg_code; } void TurboAssembler::VFPCanonicalizeNaN(const DwVfpRegister dst, const DwVfpRegister src, const Condition cond) { // Subtracting 0.0 preserves all inputs except for signalling NaNs, which // become quiet NaNs. We use vsub rather than vadd because vsub preserves -0.0 // inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0. vsub(dst, src, kDoubleRegZero, cond); } void TurboAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1, const SwVfpRegister src2, const Condition cond) { // Compare and move FPSCR flags to the normal condition flags. VFPCompareAndLoadFlags(src1, src2, pc, cond); } void TurboAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1, const float src2, const Condition cond) { // Compare and move FPSCR flags to the normal condition flags. VFPCompareAndLoadFlags(src1, src2, pc, cond); } void TurboAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Compare and move FPSCR flags to the normal condition flags. VFPCompareAndLoadFlags(src1, src2, pc, cond); } void TurboAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1, const double src2, const Condition cond) { // Compare and move FPSCR flags to the normal condition flags. VFPCompareAndLoadFlags(src1, src2, pc, cond); } void TurboAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1, const SwVfpRegister src2, const Register fpscr_flags, const Condition cond) { // Compare and load FPSCR. vcmp(src1, src2, cond); vmrs(fpscr_flags, cond); } void TurboAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1, const float src2, const Register fpscr_flags, const Condition cond) { // Compare and load FPSCR. vcmp(src1, src2, cond); vmrs(fpscr_flags, cond); } void TurboAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1, const DwVfpRegister src2, const Register fpscr_flags, const Condition cond) { // Compare and load FPSCR. vcmp(src1, src2, cond); vmrs(fpscr_flags, cond); } void TurboAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1, const double src2, const Register fpscr_flags, const Condition cond) { // Compare and load FPSCR. vcmp(src1, src2, cond); vmrs(fpscr_flags, cond); } void TurboAssembler::VmovHigh(Register dst, DwVfpRegister src) { if (src.code() < 16) { const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code()); vmov(dst, loc.high()); } else { vmov(NeonS32, dst, src, 1); } } void TurboAssembler::VmovHigh(DwVfpRegister dst, Register src) { if (dst.code() < 16) { const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code()); vmov(loc.high(), src); } else { vmov(NeonS32, dst, 1, src); } } void TurboAssembler::VmovLow(Register dst, DwVfpRegister src) { if (src.code() < 16) { const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code()); vmov(dst, loc.low()); } else { vmov(NeonS32, dst, src, 0); } } void TurboAssembler::VmovLow(DwVfpRegister dst, Register src) { if (dst.code() < 16) { const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code()); vmov(loc.low(), src); } else { vmov(NeonS32, dst, 0, src); } } void TurboAssembler::VmovExtended(Register dst, int src_code) { DCHECK_LE(SwVfpRegister::kNumRegisters, src_code); DCHECK_GT(SwVfpRegister::kNumRegisters * 2, src_code); if (src_code & 0x1) { VmovHigh(dst, DwVfpRegister::from_code(src_code / 2)); } else { VmovLow(dst, DwVfpRegister::from_code(src_code / 2)); } } void TurboAssembler::VmovExtended(int dst_code, Register src) { DCHECK_LE(SwVfpRegister::kNumRegisters, dst_code); DCHECK_GT(SwVfpRegister::kNumRegisters * 2, dst_code); if (dst_code & 0x1) { VmovHigh(DwVfpRegister::from_code(dst_code / 2), src); } else { VmovLow(DwVfpRegister::from_code(dst_code / 2), src); } } void TurboAssembler::VmovExtended(int dst_code, int src_code) { if (src_code == dst_code) return; if (src_code < SwVfpRegister::kNumRegisters && dst_code < SwVfpRegister::kNumRegisters) { // src and dst are both s-registers. vmov(SwVfpRegister::from_code(dst_code), SwVfpRegister::from_code(src_code)); return; } DwVfpRegister dst_d_reg = DwVfpRegister::from_code(dst_code / 2); DwVfpRegister src_d_reg = DwVfpRegister::from_code(src_code / 2); int dst_offset = dst_code & 1; int src_offset = src_code & 1; if (CpuFeatures::IsSupported(NEON)) { UseScratchRegisterScope temps(this); DwVfpRegister scratch = temps.AcquireD(); // On Neon we can shift and insert from d-registers. if (src_offset == dst_offset) { // Offsets are the same, use vdup to copy the source to the opposite lane. vdup(Neon32, scratch, src_d_reg, src_offset); // Here we are extending the lifetime of scratch. src_d_reg = scratch; src_offset = dst_offset ^ 1; } if (dst_offset) { if (dst_d_reg == src_d_reg) { vdup(Neon32, dst_d_reg, src_d_reg, 0); } else { vsli(Neon64, dst_d_reg, src_d_reg, 32); } } else { if (dst_d_reg == src_d_reg) { vdup(Neon32, dst_d_reg, src_d_reg, 1); } else { vsri(Neon64, dst_d_reg, src_d_reg, 32); } } return; } // Without Neon, use the scratch registers to move src and/or dst into // s-registers. UseScratchRegisterScope temps(this); LowDwVfpRegister d_scratch = temps.AcquireLowD(); LowDwVfpRegister d_scratch2 = temps.AcquireLowD(); int s_scratch_code = d_scratch.low().code(); int s_scratch_code2 = d_scratch2.low().code(); if (src_code < SwVfpRegister::kNumRegisters) { // src is an s-register, dst is not. vmov(d_scratch, dst_d_reg); vmov(SwVfpRegister::from_code(s_scratch_code + dst_offset), SwVfpRegister::from_code(src_code)); vmov(dst_d_reg, d_scratch); } else if (dst_code < SwVfpRegister::kNumRegisters) { // dst is an s-register, src is not. vmov(d_scratch, src_d_reg); vmov(SwVfpRegister::from_code(dst_code), SwVfpRegister::from_code(s_scratch_code + src_offset)); } else { // Neither src or dst are s-registers. Both scratch double registers are // available when there are 32 VFP registers. vmov(d_scratch, src_d_reg); vmov(d_scratch2, dst_d_reg); vmov(SwVfpRegister::from_code(s_scratch_code + dst_offset), SwVfpRegister::from_code(s_scratch_code2 + src_offset)); vmov(dst_d_reg, d_scratch2); } } void TurboAssembler::VmovExtended(int dst_code, const MemOperand& src) { if (dst_code < SwVfpRegister::kNumRegisters) { vldr(SwVfpRegister::from_code(dst_code), src); } else { UseScratchRegisterScope temps(this); LowDwVfpRegister scratch = temps.AcquireLowD(); // TODO(bbudge) If Neon supported, use load single lane form of vld1. int dst_s_code = scratch.low().code() + (dst_code & 1); vmov(scratch, DwVfpRegister::from_code(dst_code / 2)); vldr(SwVfpRegister::from_code(dst_s_code), src); vmov(DwVfpRegister::from_code(dst_code / 2), scratch); } } void TurboAssembler::VmovExtended(const MemOperand& dst, int src_code) { if (src_code < SwVfpRegister::kNumRegisters) { vstr(SwVfpRegister::from_code(src_code), dst); } else { // TODO(bbudge) If Neon supported, use store single lane form of vst1. UseScratchRegisterScope temps(this); LowDwVfpRegister scratch = temps.AcquireLowD(); int src_s_code = scratch.low().code() + (src_code & 1); vmov(scratch, DwVfpRegister::from_code(src_code / 2)); vstr(SwVfpRegister::from_code(src_s_code), dst); } } void TurboAssembler::ExtractLane(Register dst, QwNeonRegister src, NeonDataType dt, int lane) { int size = NeonSz(dt); // 0, 1, 2 int byte = lane << size; int double_word = byte >> kDoubleSizeLog2; int double_byte = byte & (kDoubleSize - 1); int double_lane = double_byte >> size; DwVfpRegister double_source = DwVfpRegister::from_code(src.code() * 2 + double_word); vmov(dt, dst, double_source, double_lane); } void TurboAssembler::ExtractLane(Register dst, DwVfpRegister src, NeonDataType dt, int lane) { int size = NeonSz(dt); // 0, 1, 2 int byte = lane << size; int double_byte = byte & (kDoubleSize - 1); int double_lane = double_byte >> size; vmov(dt, dst, src, double_lane); } void TurboAssembler::ExtractLane(SwVfpRegister dst, QwNeonRegister src, int lane) { int s_code = src.code() * 4 + lane; VmovExtended(dst.code(), s_code); } void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src, Register src_lane, NeonDataType dt, int lane) { Move(dst, src); int size = NeonSz(dt); // 0, 1, 2 int byte = lane << size; int double_word = byte >> kDoubleSizeLog2; int double_byte = byte & (kDoubleSize - 1); int double_lane = double_byte >> size; DwVfpRegister double_dst = DwVfpRegister::from_code(dst.code() * 2 + double_word); vmov(dt, double_dst, double_lane, src_lane); } void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src, SwVfpRegister src_lane, int lane) { Move(dst, src); int s_code = dst.code() * 4 + lane; VmovExtended(s_code, src_lane.code()); } void TurboAssembler::LslPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register shift) { DCHECK(!AreAliased(dst_high, src_low)); DCHECK(!AreAliased(dst_high, shift)); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Label less_than_32; Label done; rsb(scratch, shift, Operand(32), SetCC); b(gt, &less_than_32); // If shift >= 32 and_(scratch, shift, Operand(0x1F)); lsl(dst_high, src_low, Operand(scratch)); mov(dst_low, Operand(0)); jmp(&done); bind(&less_than_32); // If shift < 32 lsl(dst_high, src_high, Operand(shift)); orr(dst_high, dst_high, Operand(src_low, LSR, scratch)); lsl(dst_low, src_low, Operand(shift)); bind(&done); } void TurboAssembler::LslPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift) { DCHECK(!AreAliased(dst_high, src_low)); if (shift == 0) { Move(dst_high, src_high); Move(dst_low, src_low); } else if (shift == 32) { Move(dst_high, src_low); Move(dst_low, Operand(0)); } else if (shift >= 32) { shift &= 0x1F; lsl(dst_high, src_low, Operand(shift)); mov(dst_low, Operand(0)); } else { lsl(dst_high, src_high, Operand(shift)); orr(dst_high, dst_high, Operand(src_low, LSR, 32 - shift)); lsl(dst_low, src_low, Operand(shift)); } } void TurboAssembler::LsrPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register shift) { DCHECK(!AreAliased(dst_low, src_high)); DCHECK(!AreAliased(dst_low, shift)); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Label less_than_32; Label done; rsb(scratch, shift, Operand(32), SetCC); b(gt, &less_than_32); // If shift >= 32 and_(scratch, shift, Operand(0x1F)); lsr(dst_low, src_high, Operand(scratch)); mov(dst_high, Operand(0)); jmp(&done); bind(&less_than_32); // If shift < 32 lsr(dst_low, src_low, Operand(shift)); orr(dst_low, dst_low, Operand(src_high, LSL, scratch)); lsr(dst_high, src_high, Operand(shift)); bind(&done); } void TurboAssembler::LsrPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift) { DCHECK(!AreAliased(dst_low, src_high)); if (shift == 32) { mov(dst_low, src_high); mov(dst_high, Operand(0)); } else if (shift > 32) { shift &= 0x1F; lsr(dst_low, src_high, Operand(shift)); mov(dst_high, Operand(0)); } else if (shift == 0) { Move(dst_low, src_low); Move(dst_high, src_high); } else { lsr(dst_low, src_low, Operand(shift)); orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift)); lsr(dst_high, src_high, Operand(shift)); } } void TurboAssembler::AsrPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register shift) { DCHECK(!AreAliased(dst_low, src_high)); DCHECK(!AreAliased(dst_low, shift)); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Label less_than_32; Label done; rsb(scratch, shift, Operand(32), SetCC); b(gt, &less_than_32); // If shift >= 32 and_(scratch, shift, Operand(0x1F)); asr(dst_low, src_high, Operand(scratch)); asr(dst_high, src_high, Operand(31)); jmp(&done); bind(&less_than_32); // If shift < 32 lsr(dst_low, src_low, Operand(shift)); orr(dst_low, dst_low, Operand(src_high, LSL, scratch)); asr(dst_high, src_high, Operand(shift)); bind(&done); } void TurboAssembler::AsrPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift) { DCHECK(!AreAliased(dst_low, src_high)); if (shift == 32) { mov(dst_low, src_high); asr(dst_high, src_high, Operand(31)); } else if (shift > 32) { shift &= 0x1F; asr(dst_low, src_high, Operand(shift)); asr(dst_high, src_high, Operand(31)); } else if (shift == 0) { Move(dst_low, src_low); Move(dst_high, src_high); } else { lsr(dst_low, src_low, Operand(shift)); orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift)); asr(dst_high, src_high, Operand(shift)); } } void TurboAssembler::StubPrologue(StackFrame::Type type) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); mov(scratch, Operand(StackFrame::TypeToMarker(type))); PushCommonFrame(scratch); } void TurboAssembler::Prologue() { PushStandardFrame(r1); } void TurboAssembler::EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { // r0-r3: preserved UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); mov(scratch, Operand(StackFrame::TypeToMarker(type))); PushCommonFrame(scratch); } int TurboAssembler::LeaveFrame(StackFrame::Type type) { // r0: preserved // r1: preserved // r2: preserved // Drop the execution stack down to the frame pointer and restore // the caller frame pointer and return address. mov(sp, fp); int frame_ends = pc_offset(); ldm(ia_w, sp, fp.bit() | lr.bit()); return frame_ends; } #ifdef V8_OS_WIN void TurboAssembler::AllocateStackSpace(Register bytes_scratch) { // "Functions that allocate 4 KB or more on the stack must ensure that each // page prior to the final page is touched in order." Source: // https://docs.microsoft.com/en-us/cpp/build/overview-of-arm-abi-conventions?view=vs-2019#stack UseScratchRegisterScope temps(this); DwVfpRegister scratch = temps.AcquireD(); Label check_offset; Label touch_next_page; jmp(&check_offset); bind(&touch_next_page); sub(sp, sp, Operand(kStackPageSize)); // Just to touch the page, before we increment further. vldr(scratch, MemOperand(sp)); sub(bytes_scratch, bytes_scratch, Operand(kStackPageSize)); bind(&check_offset); cmp(bytes_scratch, Operand(kStackPageSize)); b(gt, &touch_next_page); sub(sp, sp, bytes_scratch); } void TurboAssembler::AllocateStackSpace(int bytes) { UseScratchRegisterScope temps(this); DwVfpRegister scratch = no_dreg; while (bytes > kStackPageSize) { if (scratch == no_dreg) { scratch = temps.AcquireD(); } sub(sp, sp, Operand(kStackPageSize)); vldr(scratch, MemOperand(sp)); bytes -= kStackPageSize; } sub(sp, sp, Operand(bytes)); } #endif void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, StackFrame::Type frame_type) { DCHECK(frame_type == StackFrame::EXIT || frame_type == StackFrame::BUILTIN_EXIT); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); // Set up the frame structure on the stack. DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); mov(scratch, Operand(StackFrame::TypeToMarker(frame_type))); PushCommonFrame(scratch); // Reserve room for saved entry sp. sub(sp, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp)); if (emit_debug_code()) { mov(scratch, Operand::Zero()); str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); } // Save the frame pointer and the context in top. Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); str(fp, MemOperand(scratch)); Move(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); str(cp, MemOperand(scratch)); // Optionally save all double registers. if (save_doubles) { SaveFPRegs(sp, scratch); // Note that d0 will be accessible at // fp - ExitFrameConstants::kFrameSize - // DwVfpRegister::kNumRegisters * kDoubleSize, // since the sp slot and code slot were pushed after the fp. } // Reserve place for the return address and stack space and align the frame // preparing for calling the runtime function. const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); AllocateStackSpace((stack_space + 1) * kPointerSize); if (frame_alignment > 0) { DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); and_(sp, sp, Operand(-frame_alignment)); } // Set the exit frame sp value to point just before the return address // location. add(scratch, sp, Operand(kPointerSize)); str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); } int TurboAssembler::ActivationFrameAlignment() { #if V8_HOST_ARCH_ARM // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one ARM // platform for another ARM platform with a different alignment. return base::OS::ActivationFrameAlignment(); #else // V8_HOST_ARCH_ARM // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif // V8_HOST_ARCH_ARM } void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, bool argument_count_is_length) { ConstantPoolUnavailableScope constant_pool_unavailable(this); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); // Optionally restore all double registers. if (save_doubles) { // Calculate the stack location of the saved doubles and restore them. const int offset = ExitFrameConstants::kFixedFrameSizeFromFp; sub(r3, fp, Operand(offset + DwVfpRegister::kNumRegisters * kDoubleSize)); RestoreFPRegs(r3, scratch); } // Clear top frame. mov(r3, Operand::Zero()); Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); str(r3, MemOperand(scratch)); // Restore current context from top and clear it in debug mode. Move(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); ldr(cp, MemOperand(scratch)); #ifdef DEBUG mov(r3, Operand(Context::kInvalidContext)); Move(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); str(r3, MemOperand(scratch)); #endif // Tear down the exit frame, pop the arguments, and return. mov(sp, Operand(fp)); ldm(ia_w, sp, fp.bit() | lr.bit()); if (argument_count.is_valid()) { if (argument_count_is_length) { add(sp, sp, argument_count); } else { add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2)); } } } void TurboAssembler::MovFromFloatResult(const DwVfpRegister dst) { if (use_eabi_hardfloat()) { Move(dst, d0); } else { vmov(dst, r0, r1); } } // On ARM this is just a synonym to make the purpose clear. void TurboAssembler::MovFromFloatParameter(DwVfpRegister dst) { MovFromFloatResult(dst); } void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1) { #if DEBUG if (callee_args_count.is_reg()) { DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, scratch1)); } else { DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); } #endif // Calculate the end of destination area where we will put the arguments // after we drop current frame. We add kPointerSize to count the receiver // argument which is not included into formal parameters count. Register dst_reg = scratch0; add(dst_reg, fp, Operand(caller_args_count_reg, LSL, kPointerSizeLog2)); add(dst_reg, dst_reg, Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize)); Register src_reg = caller_args_count_reg; // Calculate the end of source area. +kPointerSize is for the receiver. if (callee_args_count.is_reg()) { add(src_reg, sp, Operand(callee_args_count.reg(), LSL, kPointerSizeLog2)); add(src_reg, src_reg, Operand(kPointerSize)); } else { add(src_reg, sp, Operand((callee_args_count.immediate() + 1) * kPointerSize)); } if (FLAG_debug_code) { cmp(src_reg, dst_reg); Check(lo, AbortReason::kStackAccessBelowStackPointer); } // Restore caller's frame pointer and return address now as they will be // overwritten by the copying loop. ldr(lr, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); // Now copy callee arguments to the caller frame going backwards to avoid // callee arguments corruption (source and destination areas could overlap). // Both src_reg and dst_reg are pointing to the word after the one to copy, // so they must be pre-decremented in the loop. Register tmp_reg = scratch1; Label loop, entry; b(&entry); bind(&loop); ldr(tmp_reg, MemOperand(src_reg, -kPointerSize, PreIndex)); str(tmp_reg, MemOperand(dst_reg, -kPointerSize, PreIndex)); bind(&entry); cmp(sp, src_reg); b(ne, &loop); // Leave current frame. mov(sp, dst_reg); } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag) { bool definitely_matches = false; *definitely_mismatches = false; Label regular_invoke; // Check whether the expected and actual arguments count match. If not, // setup registers according to contract with ArgumentsAdaptorTrampoline: // r0: actual arguments count // r1: function (passed through to callee) // r2: expected arguments count // The code below is made a lot easier because the calling code already sets // up actual and expected registers according to the contract if values are // passed in registers. DCHECK(actual.is_immediate() || actual.reg() == r0); DCHECK(expected.is_immediate() || expected.reg() == r2); if (expected.is_immediate()) { DCHECK(actual.is_immediate()); mov(r0, Operand(actual.immediate())); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; mov(r2, Operand(expected.immediate())); } } } else { if (actual.is_immediate()) { mov(r0, Operand(actual.immediate())); cmp(expected.reg(), Operand(actual.immediate())); b(eq, ®ular_invoke); } else { cmp(expected.reg(), Operand(actual.reg())); b(eq, ®ular_invoke); } } if (!definitely_matches) { Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); if (flag == CALL_FUNCTION) { Call(adaptor); if (!*definitely_mismatches) { b(done); } } else { Jump(adaptor, RelocInfo::CODE_TARGET); } bind(®ular_invoke); } } void MacroAssembler::CheckDebugHook(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual) { Label skip_hook; ExternalReference debug_hook_active = ExternalReference::debug_hook_on_function_call_address(isolate()); Move(r4, debug_hook_active); ldrsb(r4, MemOperand(r4)); cmp(r4, Operand(0)); b(eq, &skip_hook); { // Load receiver to pass it later to DebugOnFunctionCall hook. if (actual.is_reg()) { mov(r4, actual.reg()); } else { mov(r4, Operand(actual.immediate())); } ldr(r4, MemOperand(sp, r4, LSL, kPointerSizeLog2)); FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); if (expected.is_reg()) { SmiTag(expected.reg()); Push(expected.reg()); } if (actual.is_reg()) { SmiTag(actual.reg()); Push(actual.reg()); } if (new_target.is_valid()) { Push(new_target); } Push(fun); Push(fun); Push(r4); CallRuntime(Runtime::kDebugOnFunctionCall); Pop(fun); if (new_target.is_valid()) { Pop(new_target); } if (actual.is_reg()) { Pop(actual.reg()); SmiUntag(actual.reg()); } if (expected.is_reg()) { Pop(expected.reg()); SmiUntag(expected.reg()); } } bind(&skip_hook); } void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(function == r1); DCHECK_IMPLIES(new_target.is_valid(), new_target == r3); // On function call, call into the debugger if necessary. CheckDebugHook(function, new_target, expected, actual); // Clear the new.target register if not given. if (!new_target.is_valid()) { LoadRoot(r3, RootIndex::kUndefinedValue); } Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, &done, &definitely_mismatches, flag); if (!definitely_mismatches) { // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. Register code = kJavaScriptCallCodeStartRegister; ldr(code, FieldMemOperand(function, JSFunction::kCodeOffset)); if (flag == CALL_FUNCTION) { CallCodeObject(code); } else { DCHECK(flag == JUMP_FUNCTION); JumpCodeObject(code); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } } void MacroAssembler::InvokeFunction(Register fun, Register new_target, const ParameterCount& actual, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in r1. DCHECK(fun == r1); Register expected_reg = r2; Register temp_reg = r4; ldr(temp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); ldrh(expected_reg, FieldMemOperand(temp_reg, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount expected(expected_reg); InvokeFunctionCode(fun, new_target, expected, actual, flag); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in r1. DCHECK(function == r1); // Get the function and setup the context. ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); InvokeFunctionCode(r1, no_reg, expected, actual, flag); } void MacroAssembler::MaybeDropFrames() { // Check whether we need to drop frames to restart a function on the stack. ExternalReference restart_fp = ExternalReference::debug_restart_fp_address(isolate()); Move(r1, restart_fp); ldr(r1, MemOperand(r1)); tst(r1, r1); Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET, ne); } void MacroAssembler::PushStackHandler() { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); Push(Smi::zero()); // Padding. // Link the current handler as the next handler. Move(r6, ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); ldr(r5, MemOperand(r6)); push(r5); // Set this new handler as the current one. str(sp, MemOperand(r6)); } void MacroAssembler::PopStackHandler() { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); pop(r1); Move(scratch, ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); str(r1, MemOperand(scratch)); add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); } void MacroAssembler::CompareObjectType(Register object, Register map, Register type_reg, InstanceType type) { UseScratchRegisterScope temps(this); const Register temp = type_reg == no_reg ? temps.Acquire() : type_reg; ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(map, temp, type); } void MacroAssembler::CompareInstanceType(Register map, Register type_reg, InstanceType type) { ldrh(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); cmp(type_reg, Operand(type)); } void MacroAssembler::CompareRoot(Register obj, RootIndex index) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(obj != scratch); LoadRoot(scratch, index); cmp(obj, scratch); } void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit, unsigned higher_limit, Label* on_in_range) { if (lower_limit != 0) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); sub(scratch, value, Operand(lower_limit)); cmp(scratch, Operand(higher_limit - lower_limit)); } else { cmp(value, Operand(higher_limit)); } b(ls, on_in_range); } void MacroAssembler::TryDoubleToInt32Exact(Register result, DwVfpRegister double_input, LowDwVfpRegister double_scratch) { DCHECK(double_input != double_scratch); vcvt_s32_f64(double_scratch.low(), double_input); vmov(result, double_scratch.low()); vcvt_f64_s32(double_scratch, double_scratch.low()); VFPCompareAndSetFlags(double_input, double_scratch); } void TurboAssembler::TryInlineTruncateDoubleToI(Register result, DwVfpRegister double_input, Label* done) { UseScratchRegisterScope temps(this); SwVfpRegister single_scratch = SwVfpRegister::no_reg(); if (temps.CanAcquireVfp<SwVfpRegister>()) { single_scratch = temps.AcquireS(); } else { // Re-use the input as a scratch register. However, we can only do this if // the input register is d0-d15 as there are no s32+ registers. DCHECK_LT(double_input.code(), LowDwVfpRegister::kNumRegisters); LowDwVfpRegister double_scratch = LowDwVfpRegister::from_code(double_input.code()); single_scratch = double_scratch.low(); } vcvt_s32_f64(single_scratch, double_input); vmov(result, single_scratch); Register scratch = temps.Acquire(); // If result is not saturated (0x7FFFFFFF or 0x80000000), we are done. sub(scratch, result, Operand(1)); cmp(scratch, Operand(0x7FFFFFFE)); b(lt, done); } void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result, DwVfpRegister double_input, StubCallMode stub_mode) { Label done; TryInlineTruncateDoubleToI(result, double_input, &done); // If we fell through then inline version didn't succeed - call stub instead. push(lr); AllocateStackSpace(kDoubleSize); // Put input on stack. vstr(double_input, MemOperand(sp, 0)); if (stub_mode == StubCallMode::kCallWasmRuntimeStub) { Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL); } else { Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET); } ldr(result, MemOperand(sp, 0)); add(sp, sp, Operand(kDoubleSize)); pop(lr); bind(&done); } void TurboAssembler::CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry) { const Runtime::Function* f = Runtime::FunctionForId(fid); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(r0, Operand(f->nargs)); Move(r1, ExternalReference::Create(f)); DCHECK(!AreAliased(centry, r0, r1)); CallCodeObject(centry); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { // All parameters are on the stack. r0 has the return value after call. // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. CHECK(f->nargs < 0 || f->nargs == num_arguments); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(r0, Operand(num_arguments)); Move(r1, ExternalReference::Create(f)); Handle<Code> code = CodeFactory::CEntry(isolate(), f->result_size, save_doubles); Call(code, RelocInfo::CODE_TARGET); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { const Runtime::Function* function = Runtime::FunctionForId(fid); DCHECK_EQ(1, function->result_size); if (function->nargs >= 0) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(r0, Operand(function->nargs)); } JumpToExternalReference(ExternalReference::Create(fid)); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, bool builtin_exit_frame) { #if defined(__thumb__) // Thumb mode builtin. DCHECK_EQ(builtin.address() & 1, 1); #endif Move(r1, builtin); Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, builtin_exit_frame); Jump(code, RelocInfo::CODE_TARGET); } void MacroAssembler::JumpToInstructionStream(Address entry) { mov(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); Jump(kOffHeapTrampolineRegister); } void MacroAssembler::LoadWeakValue(Register out, Register in, Label* target_if_cleared) { cmp(in, Operand(kClearedWeakHeapObjectLower32)); b(eq, target_if_cleared); and_(out, in, Operand(~kWeakHeapObjectMask)); } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK_GT(value, 0); if (FLAG_native_code_counters && counter->Enabled()) { Move(scratch2, ExternalReference::Create(counter)); ldr(scratch1, MemOperand(scratch2)); add(scratch1, scratch1, Operand(value)); str(scratch1, MemOperand(scratch2)); } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK_GT(value, 0); if (FLAG_native_code_counters && counter->Enabled()) { Move(scratch2, ExternalReference::Create(counter)); ldr(scratch1, MemOperand(scratch2)); sub(scratch1, scratch1, Operand(value)); str(scratch1, MemOperand(scratch2)); } } void TurboAssembler::Assert(Condition cond, AbortReason reason) { if (emit_debug_code()) Check(cond, reason); } void TurboAssembler::AssertUnreachable(AbortReason reason) { if (emit_debug_code()) Abort(reason); } void TurboAssembler::Check(Condition cond, AbortReason reason) { Label L; b(cond, &L); Abort(reason); // will not return here bind(&L); } void TurboAssembler::Abort(AbortReason reason) { Label abort_start; bind(&abort_start); const char* msg = GetAbortReason(reason); #ifdef DEBUG RecordComment("Abort message: "); RecordComment(msg); #endif // Avoid emitting call to builtin if requested. if (trap_on_abort()) { stop(msg); return; } if (should_abort_hard()) { // We don't care if we constructed a frame. Just pretend we did. FrameScope assume_frame(this, StackFrame::NONE); Move32BitImmediate(r0, Operand(static_cast<int>(reason))); PrepareCallCFunction(1, 0, r1); Move(r1, ExternalReference::abort_with_reason()); // Use Call directly to avoid any unneeded overhead. The function won't // return anyway. Call(r1); return; } Move(r1, Smi::FromInt(static_cast<int>(reason))); // Disable stub call restrictions to always allow calls to abort. if (!has_frame()) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } else { Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } // will not return here } void MacroAssembler::LoadGlobalProxy(Register dst) { LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst); } void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { ldr(dst, NativeContextMemOperand()); ldr(dst, ContextMemOperand(dst, index)); } void TurboAssembler::InitializeRootRegister() { ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); mov(kRootRegister, Operand(isolate_root)); } void MacroAssembler::SmiTag(Register reg, SBit s) { add(reg, reg, Operand(reg), s); } void MacroAssembler::SmiTag(Register dst, Register src, SBit s) { add(dst, src, Operand(src), s); } void MacroAssembler::UntagAndJumpIfSmi( Register dst, Register src, Label* smi_case) { STATIC_ASSERT(kSmiTag == 0); SmiUntag(dst, src, SetCC); b(cc, smi_case); // Shifter carry is not set for a smi. } void MacroAssembler::SmiTst(Register value) { tst(value, Operand(kSmiTagMask)); } void TurboAssembler::JumpIfSmi(Register value, Label* smi_label) { tst(value, Operand(kSmiTagMask)); b(eq, smi_label); } void TurboAssembler::JumpIfEqual(Register x, int32_t y, Label* dest) { cmp(x, Operand(y)); b(eq, dest); } void TurboAssembler::JumpIfLessThan(Register x, int32_t y, Label* dest) { cmp(x, Operand(y)); b(lt, dest); } void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label) { tst(value, Operand(kSmiTagMask)); b(ne, not_smi_label); } void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi) { STATIC_ASSERT(kSmiTag == 0); tst(reg1, Operand(kSmiTagMask)); tst(reg2, Operand(kSmiTagMask), ne); b(eq, on_either_smi); } void MacroAssembler::AssertNotSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(ne, AbortReason::kOperandIsASmi); } } void MacroAssembler::AssertSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(eq, AbortReason::kOperandIsNotASmi); } } void MacroAssembler::AssertConstructor(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor); push(object); ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); ldrb(object, FieldMemOperand(object, Map::kBitFieldOffset)); tst(object, Operand(Map::IsConstructorBit::kMask)); pop(object); Check(ne, AbortReason::kOperandIsNotAConstructor); } } void MacroAssembler::AssertFunction(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(ne, AbortReason::kOperandIsASmiAndNotAFunction); push(object); CompareObjectType(object, object, object, JS_FUNCTION_TYPE); pop(object); Check(eq, AbortReason::kOperandIsNotAFunction); } } void MacroAssembler::AssertBoundFunction(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction); push(object); CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE); pop(object); Check(eq, AbortReason::kOperandIsNotABoundFunction); } } void MacroAssembler::AssertGeneratorObject(Register object) { if (!emit_debug_code()) return; tst(object, Operand(kSmiTagMask)); Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject); // Load map Register map = object; push(object); ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); // Check if JSGeneratorObject Label do_check; Register instance_type = object; CompareInstanceType(map, instance_type, JS_GENERATOR_OBJECT_TYPE); b(eq, &do_check); // Check if JSAsyncFunctionObject (See MacroAssembler::CompareInstanceType) cmp(instance_type, Operand(JS_ASYNC_FUNCTION_OBJECT_TYPE)); b(eq, &do_check); // Check if JSAsyncGeneratorObject (See MacroAssembler::CompareInstanceType) cmp(instance_type, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE)); bind(&do_check); // Restore generator object to register and perform assertion pop(object); Check(eq, AbortReason::kOperandIsNotAGeneratorObject); } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, Register scratch) { if (emit_debug_code()) { Label done_checking; AssertNotSmi(object); CompareRoot(object, RootIndex::kUndefinedValue); b(eq, &done_checking); ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(scratch, scratch, ALLOCATION_SITE_TYPE); Assert(eq, AbortReason::kExpectedUndefinedOrCell); bind(&done_checking); } } void TurboAssembler::CheckFor32DRegs(Register scratch) { Move(scratch, ExternalReference::cpu_features()); ldr(scratch, MemOperand(scratch)); tst(scratch, Operand(1u << VFP32DREGS)); } void TurboAssembler::SaveFPRegs(Register location, Register scratch) { CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported); CheckFor32DRegs(scratch); vstm(db_w, location, d16, d31, ne); sub(location, location, Operand(16 * kDoubleSize), LeaveCC, eq); vstm(db_w, location, d0, d15); } void TurboAssembler::RestoreFPRegs(Register location, Register scratch) { CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported); CheckFor32DRegs(scratch); vldm(ia_w, location, d0, d15); vldm(ia_w, location, d16, d31, ne); add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq); } template <typename T> void TurboAssembler::FloatMaxHelper(T result, T left, T right, Label* out_of_line) { // This trivial case is caught sooner, so that the out-of-line code can be // completely avoided. DCHECK(left != right); if (CpuFeatures::IsSupported(ARMv8)) { CpuFeatureScope scope(this, ARMv8); VFPCompareAndSetFlags(left, right); b(vs, out_of_line); vmaxnm(result, left, right); } else { Label done; VFPCompareAndSetFlags(left, right); b(vs, out_of_line); // Avoid a conditional instruction if the result register is unique. bool aliased_result_reg = result == left || result == right; Move(result, right, aliased_result_reg ? mi : al); Move(result, left, gt); b(ne, &done); // Left and right are equal, but check for +/-0. VFPCompareAndSetFlags(left, 0.0); b(eq, out_of_line); // The arguments are equal and not zero, so it doesn't matter which input we // pick. We have already moved one input into the result (if it didn't // already alias) so there's nothing more to do. bind(&done); } } template <typename T> void TurboAssembler::FloatMaxOutOfLineHelper(T result, T left, T right) { DCHECK(left != right); // ARMv8: At least one of left and right is a NaN. // Anything else: At least one of left and right is a NaN, or both left and // right are zeroes with unknown sign. // If left and right are +/-0, select the one with the most positive sign. // If left or right are NaN, vadd propagates the appropriate one. vadd(result, left, right); } template <typename T> void TurboAssembler::FloatMinHelper(T result, T left, T right, Label* out_of_line) { // This trivial case is caught sooner, so that the out-of-line code can be // completely avoided. DCHECK(left != right); if (CpuFeatures::IsSupported(ARMv8)) { CpuFeatureScope scope(this, ARMv8); VFPCompareAndSetFlags(left, right); b(vs, out_of_line); vminnm(result, left, right); } else { Label done; VFPCompareAndSetFlags(left, right); b(vs, out_of_line); // Avoid a conditional instruction if the result register is unique. bool aliased_result_reg = result == left || result == right; Move(result, left, aliased_result_reg ? mi : al); Move(result, right, gt); b(ne, &done); // Left and right are equal, but check for +/-0. VFPCompareAndSetFlags(left, 0.0); // If the arguments are equal and not zero, it doesn't matter which input we // pick. We have already moved one input into the result (if it didn't // already alias) so there's nothing more to do. b(ne, &done); // At this point, both left and right are either 0 or -0. // We could use a single 'vorr' instruction here if we had NEON support. // The algorithm used is -((-L) + (-R)), which is most efficiently expressed // as -((-L) - R). if (left == result) { DCHECK(right != result); vneg(result, left); vsub(result, result, right); vneg(result, result); } else { DCHECK(left != result); vneg(result, right); vsub(result, result, left); vneg(result, result); } bind(&done); } } template <typename T> void TurboAssembler::FloatMinOutOfLineHelper(T result, T left, T right) { DCHECK(left != right); // At least one of left and right is a NaN. Use vadd to propagate the NaN // appropriately. +/-0 is handled inline. vadd(result, left, right); } void TurboAssembler::FloatMax(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right, Label* out_of_line) { FloatMaxHelper(result, left, right, out_of_line); } void TurboAssembler::FloatMin(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right, Label* out_of_line) { FloatMinHelper(result, left, right, out_of_line); } void TurboAssembler::FloatMax(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right, Label* out_of_line) { FloatMaxHelper(result, left, right, out_of_line); } void TurboAssembler::FloatMin(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right, Label* out_of_line) { FloatMinHelper(result, left, right, out_of_line); } void TurboAssembler::FloatMaxOutOfLine(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right) { FloatMaxOutOfLineHelper(result, left, right); } void TurboAssembler::FloatMinOutOfLine(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right) { FloatMinOutOfLineHelper(result, left, right); } void TurboAssembler::FloatMaxOutOfLine(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right) { FloatMaxOutOfLineHelper(result, left, right); } void TurboAssembler::FloatMinOutOfLine(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right) { FloatMinOutOfLineHelper(result, left, right); } static const int kRegisterPassedArguments = 4; int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments) { int stack_passed_words = 0; if (use_eabi_hardfloat()) { // In the hard floating point calling convention, we can use // all double registers to pass doubles. if (num_double_arguments > DoubleRegister::NumRegisters()) { stack_passed_words += 2 * (num_double_arguments - DoubleRegister::NumRegisters()); } } else { // In the soft floating point calling convention, every double // argument is passed using two registers. num_reg_arguments += 2 * num_double_arguments; } // Up to four simple arguments are passed in registers r0..r3. if (num_reg_arguments > kRegisterPassedArguments) { stack_passed_words += num_reg_arguments - kRegisterPassedArguments; } return stack_passed_words; } void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, int num_double_arguments, Register scratch) { int frame_alignment = ActivationFrameAlignment(); int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (frame_alignment > kPointerSize) { UseScratchRegisterScope temps(this); if (!scratch.is_valid()) scratch = temps.Acquire(); // Make stack end at alignment and make room for num_arguments - 4 words // and the original value of sp. mov(scratch, sp); AllocateStackSpace((stack_passed_arguments + 1) * kPointerSize); DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); and_(sp, sp, Operand(-frame_alignment)); str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else if (stack_passed_arguments > 0) { AllocateStackSpace(stack_passed_arguments * kPointerSize); } } void TurboAssembler::MovToFloatParameter(DwVfpRegister src) { DCHECK(src == d0); if (!use_eabi_hardfloat()) { vmov(r0, r1, src); } } // On ARM this is just a synonym to make the purpose clear. void TurboAssembler::MovToFloatResult(DwVfpRegister src) { MovToFloatParameter(src); } void TurboAssembler::MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2) { DCHECK(src1 == d0); DCHECK(src2 == d1); if (!use_eabi_hardfloat()) { vmov(r0, r1, src1); vmov(r2, r3, src2); } } void TurboAssembler::CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Move(scratch, function); CallCFunctionHelper(scratch, num_reg_arguments, num_double_arguments); } void TurboAssembler::CallCFunction(Register function, int num_reg_arguments, int num_double_arguments) { CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); } void TurboAssembler::CallCFunction(ExternalReference function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void TurboAssembler::CallCFunction(Register function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void TurboAssembler::CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments) { DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters); DCHECK(has_frame()); // Make sure that the stack is aligned before calling a C function unless // running in the simulator. The simulator has its own alignment check which // provides more information. #if V8_HOST_ARCH_ARM if (emit_debug_code()) { int frame_alignment = base::OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); Label alignment_as_expected; tst(sp, Operand(frame_alignment_mask)); b(eq, &alignment_as_expected); // Don't use Check here, as it will call Runtime_Abort possibly // re-entering here. stop("Unexpected alignment"); bind(&alignment_as_expected); } } #endif // Save the frame pointer and PC so that the stack layout remains iterable, // even without an ExitFrame which normally exists between JS and C frames. if (isolate() != nullptr) { Register scratch = r4; Push(scratch); Move(scratch, ExternalReference::fast_c_call_caller_pc_address(isolate())); str(pc, MemOperand(scratch)); Move(scratch, ExternalReference::fast_c_call_caller_fp_address(isolate())); str(fp, MemOperand(scratch)); Pop(scratch); } // Just call directly. The function called cannot cause a GC, or // allow preemption, so the return address in the link register // stays correct. Call(function); if (isolate() != nullptr) { // We don't unset the PC; the FP is the source of truth. Register scratch1 = r4; Register scratch2 = r5; Push(scratch1); Push(scratch2); Move(scratch1, ExternalReference::fast_c_call_caller_fp_address(isolate())); mov(scratch2, Operand::Zero()); str(scratch2, MemOperand(scratch1)); Pop(scratch2); Pop(scratch1); } int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (ActivationFrameAlignment() > kPointerSize) { ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { add(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } void TurboAssembler::CheckPageFlag(Register object, int mask, Condition cc, Label* condition_met) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(cc == eq || cc == ne); Bfc(scratch, object, 0, kPageSizeBits); ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); tst(scratch, Operand(mask)); b(cc, condition_met); } Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6) { RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); const RegisterConfiguration* config = RegisterConfiguration::Default(); for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { int code = config->GetAllocatableGeneralCode(i); Register candidate = Register::from_code(code); if (regs & candidate.bit()) continue; return candidate; } UNREACHABLE(); } void TurboAssembler::ComputeCodeStartAddress(Register dst) { // We can use the register pc - 8 for the address of the current instruction. sub(dst, pc, Operand(pc_offset() + Instruction::kPcLoadDelta)); } void TurboAssembler::ResetSpeculationPoisonRegister() { mov(kSpeculationPoisonRegister, Operand(-1)); } void TurboAssembler::CallForDeoptimization(Address target, int deopt_id) { NoRootArrayScope no_root_array(this); // Save the deopt id in r10 (we don't need the roots array from now on). DCHECK_LE(deopt_id, 0xFFFF); if (CpuFeatures::IsSupported(ARMv7)) { // On ARMv7, we can use movw (with a maximum immediate of 0xFFFF) movw(r10, deopt_id); } else { // On ARMv6, we might need two instructions. mov(r10, Operand(deopt_id & 0xFF)); // Set the low byte. if (deopt_id >= 0xFF) { orr(r10, r10, Operand(deopt_id & 0xFF00)); // Set the high byte. } } Call(target, RelocInfo::RUNTIME_ENTRY); CheckConstPool(false, false); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM