// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_LIST_H_ #define V8_LIST_H_ #include <algorithm> #include "src/checks.h" #include "src/vector.h" namespace v8 { namespace internal { template<typename T> class Vector; // ---------------------------------------------------------------------------- // The list is a template for very light-weight lists. We are not // using the STL because we want full control over space and speed of // the code. This implementation is based on code by Robert Griesemer // and Rob Pike. // // The list is parameterized by the type of its elements (T) and by an // allocation policy (P). The policy is used for allocating lists in // the C free store or the zone; see zone.h. // Forward defined as // template <typename T, // class AllocationPolicy = FreeStoreAllocationPolicy> class List; template <typename T, class AllocationPolicy> class List { public: explicit List(AllocationPolicy allocator = AllocationPolicy()) { Initialize(0, allocator); } INLINE(explicit List(int capacity, AllocationPolicy allocator = AllocationPolicy())) { Initialize(capacity, allocator); } INLINE(~List()) { DeleteData(data_); } // Deallocates memory used by the list and leaves the list in a consistent // empty state. void Free() { DeleteData(data_); Initialize(0); } INLINE(void* operator new(size_t size, AllocationPolicy allocator = AllocationPolicy())) { return allocator.New(static_cast<int>(size)); } INLINE(void operator delete(void* p)) { AllocationPolicy::Delete(p); } // Please the MSVC compiler. We should never have to execute this. INLINE(void operator delete(void* p, AllocationPolicy allocator)) { UNREACHABLE(); } // Returns a reference to the element at index i. This reference is // not safe to use after operations that can change the list's // backing store (e.g. Add). inline T& operator[](int i) const { DCHECK_LE(0, i); DCHECK_GT(length_, i); return data_[i]; } inline T& at(int i) const { return operator[](i); } inline T& last() const { return at(length_ - 1); } inline T& first() const { return at(0); } typedef T* iterator; inline iterator begin() const { return &data_[0]; } inline iterator end() const { return &data_[length_]; } INLINE(bool is_empty() const) { return length_ == 0; } INLINE(int length() const) { return length_; } INLINE(int capacity() const) { return capacity_; } Vector<T> ToVector() const { return Vector<T>(data_, length_); } Vector<const T> ToConstVector() const { return Vector<const T>(data_, length_); } // Adds a copy of the given 'element' to the end of the list, // expanding the list if necessary. void Add(const T& element, AllocationPolicy allocator = AllocationPolicy()); // Add all the elements from the argument list to this list. void AddAll(const List<T, AllocationPolicy>& other, AllocationPolicy allocator = AllocationPolicy()); // Add all the elements from the vector to this list. void AddAll(const Vector<T>& other, AllocationPolicy allocator = AllocationPolicy()); // Inserts the element at the specific index. void InsertAt(int index, const T& element, AllocationPolicy allocator = AllocationPolicy()); // Overwrites the element at the specific index. void Set(int index, const T& element); // Added 'count' elements with the value 'value' and returns a // vector that allows access to the elements. The vector is valid // until the next change is made to this list. Vector<T> AddBlock(T value, int count, AllocationPolicy allocator = AllocationPolicy()); // Removes the i'th element without deleting it even if T is a // pointer type; moves all elements above i "down". Returns the // removed element. This function's complexity is linear in the // size of the list. T Remove(int i); // Remove the given element from the list. Returns whether or not // the input is included in the list in the first place. bool RemoveElement(const T& elm); // Removes the last element without deleting it even if T is a // pointer type. Returns the removed element. INLINE(T RemoveLast()) { return Remove(length_ - 1); } // Deletes current list contents and allocates space for 'length' elements. INLINE(void Allocate(int length, AllocationPolicy allocator = AllocationPolicy())); // Clears the list by freeing the storage memory. If you want to keep the // memory, use Rewind(0) instead. Be aware, that even if T is a // pointer type, clearing the list doesn't delete the entries. INLINE(void Clear()); // Drops all but the first 'pos' elements from the list. INLINE(void Rewind(int pos)); // Drop the last 'count' elements from the list. INLINE(void RewindBy(int count)) { Rewind(length_ - count); } // Swaps the contents of the two lists. INLINE(void Swap(List<T, AllocationPolicy>* list)); // Halve the capacity if fill level is less than a quarter. INLINE(void Trim(AllocationPolicy allocator = AllocationPolicy())); bool Contains(const T& elm) const; int CountOccurrences(const T& elm, int start, int end) const; // Iterate through all list entries, starting at index 0. void Iterate(void (*callback)(T* x)); template<class Visitor> void Iterate(Visitor* visitor); // Sort all list entries (using QuickSort) template <typename CompareFunction> void Sort(CompareFunction cmp, size_t start, size_t length); template <typename CompareFunction> void Sort(CompareFunction cmp); void Sort(); template <typename CompareFunction> void StableSort(CompareFunction cmp, size_t start, size_t length); template <typename CompareFunction> void StableSort(CompareFunction cmp); void StableSort(); INLINE(void Initialize(int capacity, AllocationPolicy allocator = AllocationPolicy())) { DCHECK(capacity >= 0); data_ = (capacity > 0) ? NewData(capacity, allocator) : NULL; capacity_ = capacity; length_ = 0; } private: T* data_; int capacity_; int length_; INLINE(T* NewData(int n, AllocationPolicy allocator)) { return static_cast<T*>(allocator.New(n * sizeof(T))); } INLINE(void DeleteData(T* data)) { AllocationPolicy::Delete(data); } // Increase the capacity of a full list, and add an element. // List must be full already. void ResizeAdd(const T& element, AllocationPolicy allocator); // Inlined implementation of ResizeAdd, shared by inlined and // non-inlined versions of ResizeAdd. void ResizeAddInternal(const T& element, AllocationPolicy allocator); // Resize the list. void Resize(int new_capacity, AllocationPolicy allocator); DISALLOW_COPY_AND_ASSIGN(List); }; template<typename T, class P> size_t GetMemoryUsedByList(const List<T, P>& list) { return list.length() * sizeof(T) + sizeof(list); } class Map; class FieldType; class Code; template<typename T> class Handle; typedef List<Map*> MapList; typedef List<Code*> CodeList; typedef List<Handle<Map> > MapHandleList; typedef List<Handle<FieldType> > TypeHandleList; typedef List<Handle<Code> > CodeHandleList; // Perform binary search for an element in an already sorted // list. Returns the index of the element of -1 if it was not found. // |cmp| is a predicate that takes a pointer to an element of the List // and returns +1 if it is greater, -1 if it is less than the element // being searched. template <typename T, class P> int SortedListBSearch(const List<T>& list, P cmp); template <typename T> int SortedListBSearch(const List<T>& list, T elem); } // namespace internal } // namespace v8 #endif // V8_LIST_H_