// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
#define V8_ARM64_MACRO_ASSEMBLER_ARM64_H_

#include <vector>

#include "src/arm64/assembler-arm64.h"
#include "src/bailout-reason.h"
#include "src/base/bits.h"
#include "src/globals.h"
#include "src/turbo-assembler.h"

// Simulator specific helpers.
#if USE_SIMULATOR
  // TODO(all): If possible automatically prepend an indicator like
  // UNIMPLEMENTED or LOCATION.
  #define ASM_UNIMPLEMENTED(message)                                         \
  __ Debug(message, __LINE__, NO_PARAM)
  #define ASM_UNIMPLEMENTED_BREAK(message)                                   \
  __ Debug(message, __LINE__,                                                \
           FLAG_ignore_asm_unimplemented_break ? NO_PARAM : BREAK)
#if DEBUG
#define ASM_LOCATION(message) __ Debug("LOCATION: " message, __LINE__, NO_PARAM)
#define ASM_LOCATION_IN_ASSEMBLER(message) \
  Debug("LOCATION: " message, __LINE__, NO_PARAM)
#else
#define ASM_LOCATION(message)
#define ASM_LOCATION_IN_ASSEMBLER(message)
#endif
#else
#define ASM_UNIMPLEMENTED(message)
#define ASM_UNIMPLEMENTED_BREAK(message)
#define ASM_LOCATION(message)
#define ASM_LOCATION_IN_ASSEMBLER(message)
#endif


namespace v8 {
namespace internal {

// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = x0;
constexpr Register kReturnRegister1 = x1;
constexpr Register kReturnRegister2 = x2;
constexpr Register kJSFunctionRegister = x1;
constexpr Register kContextRegister = cp;
constexpr Register kAllocateSizeRegister = x1;
constexpr Register kSpeculationPoisonRegister = x18;
constexpr Register kInterpreterAccumulatorRegister = x0;
constexpr Register kInterpreterBytecodeOffsetRegister = x19;
constexpr Register kInterpreterBytecodeArrayRegister = x20;
constexpr Register kInterpreterDispatchTableRegister = x21;

constexpr Register kJavaScriptCallArgCountRegister = x0;
constexpr Register kJavaScriptCallCodeStartRegister = x2;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = x3;
constexpr Register kJavaScriptCallExtraArg1Register = x2;

constexpr Register kOffHeapTrampolineRegister = ip0;
constexpr Register kRuntimeCallFunctionRegister = x1;
constexpr Register kRuntimeCallArgCountRegister = x0;
constexpr Register kWasmInstanceRegister = x7;

#define LS_MACRO_LIST(V)                                     \
  V(Ldrb, Register&, rt, LDRB_w)                             \
  V(Strb, Register&, rt, STRB_w)                             \
  V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
  V(Ldrh, Register&, rt, LDRH_w)                             \
  V(Strh, Register&, rt, STRH_w)                             \
  V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
  V(Ldr, CPURegister&, rt, LoadOpFor(rt))                    \
  V(Str, CPURegister&, rt, StoreOpFor(rt))                   \
  V(Ldrsw, Register&, rt, LDRSW_x)

#define LSPAIR_MACRO_LIST(V)                             \
  V(Ldp, CPURegister&, rt, rt2, LoadPairOpFor(rt, rt2))  \
  V(Stp, CPURegister&, rt, rt2, StorePairOpFor(rt, rt2)) \
  V(Ldpsw, CPURegister&, rt, rt2, LDPSW_x)

#define LDA_STL_MACRO_LIST(V) \
  V(Ldarb, ldarb)             \
  V(Ldarh, ldarh)             \
  V(Ldar, ldar)               \
  V(Ldaxrb, ldaxrb)           \
  V(Ldaxrh, ldaxrh)           \
  V(Ldaxr, ldaxr)             \
  V(Stlrb, stlrb)             \
  V(Stlrh, stlrh)             \
  V(Stlr, stlr)

#define STLX_MACRO_LIST(V) \
  V(Stlxrb, stlxrb)        \
  V(Stlxrh, stlxrh)        \
  V(Stlxr, stlxr)

// ----------------------------------------------------------------------------
// Static helper functions

// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset);

// ----------------------------------------------------------------------------
// MacroAssembler

enum BranchType {
  // Copies of architectural conditions.
  // The associated conditions can be used in place of those, the code will
  // take care of reinterpreting them with the correct type.
  integer_eq = eq,
  integer_ne = ne,
  integer_hs = hs,
  integer_lo = lo,
  integer_mi = mi,
  integer_pl = pl,
  integer_vs = vs,
  integer_vc = vc,
  integer_hi = hi,
  integer_ls = ls,
  integer_ge = ge,
  integer_lt = lt,
  integer_gt = gt,
  integer_le = le,
  integer_al = al,
  integer_nv = nv,

  // These two are *different* from the architectural codes al and nv.
  // 'always' is used to generate unconditional branches.
  // 'never' is used to not generate a branch (generally as the inverse
  // branch type of 'always).
  always, never,
  // cbz and cbnz
  reg_zero, reg_not_zero,
  // tbz and tbnz
  reg_bit_clear, reg_bit_set,

  // Aliases.
  kBranchTypeFirstCondition = eq,
  kBranchTypeLastCondition = nv,
  kBranchTypeFirstUsingReg = reg_zero,
  kBranchTypeFirstUsingBit = reg_bit_clear
};

inline BranchType InvertBranchType(BranchType type) {
  if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
    return static_cast<BranchType>(
        NegateCondition(static_cast<Condition>(type)));
  } else {
    return static_cast<BranchType>(type ^ 1);
  }
}

enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
enum TargetAddressStorageMode {
  CAN_INLINE_TARGET_ADDRESS,
  NEVER_INLINE_TARGET_ADDRESS
};
enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };

// The macro assembler supports moving automatically pre-shifted immediates for
// arithmetic and logical instructions, and then applying a post shift in the
// instruction to undo the modification, in order to reduce the code emitted for
// an operation. For example:
//
//  Add(x0, x0, 0x1f7de) => movz x16, 0xfbef; add x0, x0, x16, lsl #1.
//
// This optimisation can be only partially applied when the stack pointer is an
// operand or destination, so this enumeration is used to control the shift.
enum PreShiftImmMode {
  kNoShift,          // Don't pre-shift.
  kLimitShiftForSP,  // Limit pre-shift for add/sub extend use.
  kAnyShift          // Allow any pre-shift.
};

class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
 public:
  TurboAssembler(Isolate* isolate, const AssemblerOptions& options,
                 void* buffer, int buffer_size,
                 CodeObjectRequired create_code_object)
      : TurboAssemblerBase(isolate, options, buffer, buffer_size,
                           create_code_object) {}

#if DEBUG
  void set_allow_macro_instructions(bool value) {
    allow_macro_instructions_ = value;
  }
  bool allow_macro_instructions() const { return allow_macro_instructions_; }
#endif

  // We should not use near calls or jumps for JS->WASM calls and calls to
  // external references, since the code spaces are not guaranteed to be close
  // to each other.
  bool CanUseNearCallOrJump(RelocInfo::Mode rmode) {
    return rmode != RelocInfo::JS_TO_WASM_CALL &&
           rmode != RelocInfo::EXTERNAL_REFERENCE;
  }

  // Activation support.
  void EnterFrame(StackFrame::Type type);
  void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
    // Out-of-line constant pool not implemented on arm64.
    UNREACHABLE();
  }
  void LeaveFrame(StackFrame::Type type);

  inline void InitializeRootRegister();

  void Mov(const Register& rd, const Operand& operand,
           DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
  void Mov(const Register& rd, ExternalReference reference);
  void Mov(const Register& rd, uint64_t imm);
  inline void Mov(const Register& rd, const Register& rm);
  void Mov(const VRegister& vd, int vd_index, const VRegister& vn,
           int vn_index) {
    DCHECK(allow_macro_instructions());
    mov(vd, vd_index, vn, vn_index);
  }
  void Mov(const VRegister& vd, const VRegister& vn, int index) {
    DCHECK(allow_macro_instructions());
    mov(vd, vn, index);
  }
  void Mov(const VRegister& vd, int vd_index, const Register& rn) {
    DCHECK(allow_macro_instructions());
    mov(vd, vd_index, rn);
  }
  void Mov(const Register& rd, const VRegister& vn, int vn_index) {
    DCHECK(allow_macro_instructions());
    mov(rd, vn, vn_index);
  }

  // This is required for compatibility with architecture independent code.
  // Remove if not needed.
  void Move(Register dst, Register src);
  void Move(Register dst, Handle<HeapObject> value);
  void Move(Register dst, Smi* src);

  // Register swap. Note that the register operands should be distinct.
  void Swap(Register lhs, Register rhs);
  void Swap(VRegister lhs, VRegister rhs);

// NEON by element instructions.
#define NEON_BYELEMENT_MACRO_LIST(V) \
  V(fmla, Fmla)                      \
  V(fmls, Fmls)                      \
  V(fmul, Fmul)                      \
  V(fmulx, Fmulx)                    \
  V(mul, Mul)                        \
  V(mla, Mla)                        \
  V(mls, Mls)                        \
  V(sqdmulh, Sqdmulh)                \
  V(sqrdmulh, Sqrdmulh)              \
  V(sqdmull, Sqdmull)                \
  V(sqdmull2, Sqdmull2)              \
  V(sqdmlal, Sqdmlal)                \
  V(sqdmlal2, Sqdmlal2)              \
  V(sqdmlsl, Sqdmlsl)                \
  V(sqdmlsl2, Sqdmlsl2)              \
  V(smull, Smull)                    \
  V(smull2, Smull2)                  \
  V(smlal, Smlal)                    \
  V(smlal2, Smlal2)                  \
  V(smlsl, Smlsl)                    \
  V(smlsl2, Smlsl2)                  \
  V(umull, Umull)                    \
  V(umull2, Umull2)                  \
  V(umlal, Umlal)                    \
  V(umlal2, Umlal2)                  \
  V(umlsl, Umlsl)                    \
  V(umlsl2, Umlsl2)

#define DEFINE_MACRO_ASM_FUNC(ASM, MASM)                                   \
  void MASM(const VRegister& vd, const VRegister& vn, const VRegister& vm, \
            int vm_index) {                                                \
    DCHECK(allow_macro_instructions());                                    \
    ASM(vd, vn, vm, vm_index);                                             \
  }
  NEON_BYELEMENT_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC

// NEON 2 vector register instructions.
#define NEON_2VREG_MACRO_LIST(V) \
  V(abs, Abs)                    \
  V(addp, Addp)                  \
  V(addv, Addv)                  \
  V(cls, Cls)                    \
  V(clz, Clz)                    \
  V(cnt, Cnt)                    \
  V(faddp, Faddp)                \
  V(fcvtas, Fcvtas)              \
  V(fcvtau, Fcvtau)              \
  V(fcvtms, Fcvtms)              \
  V(fcvtmu, Fcvtmu)              \
  V(fcvtns, Fcvtns)              \
  V(fcvtnu, Fcvtnu)              \
  V(fcvtps, Fcvtps)              \
  V(fcvtpu, Fcvtpu)              \
  V(fmaxnmp, Fmaxnmp)            \
  V(fmaxnmv, Fmaxnmv)            \
  V(fmaxp, Fmaxp)                \
  V(fmaxv, Fmaxv)                \
  V(fminnmp, Fminnmp)            \
  V(fminnmv, Fminnmv)            \
  V(fminp, Fminp)                \
  V(fminv, Fminv)                \
  V(fneg, Fneg)                  \
  V(frecpe, Frecpe)              \
  V(frecpx, Frecpx)              \
  V(frinta, Frinta)              \
  V(frinti, Frinti)              \
  V(frintm, Frintm)              \
  V(frintn, Frintn)              \
  V(frintp, Frintp)              \
  V(frintx, Frintx)              \
  V(frintz, Frintz)              \
  V(frsqrte, Frsqrte)            \
  V(fsqrt, Fsqrt)                \
  V(mov, Mov)                    \
  V(mvn, Mvn)                    \
  V(neg, Neg)                    \
  V(not_, Not)                   \
  V(rbit, Rbit)                  \
  V(rev16, Rev16)                \
  V(rev32, Rev32)                \
  V(rev64, Rev64)                \
  V(sadalp, Sadalp)              \
  V(saddlp, Saddlp)              \
  V(saddlv, Saddlv)              \
  V(smaxv, Smaxv)                \
  V(sminv, Sminv)                \
  V(sqabs, Sqabs)                \
  V(sqneg, Sqneg)                \
  V(sqxtn2, Sqxtn2)              \
  V(sqxtn, Sqxtn)                \
  V(sqxtun2, Sqxtun2)            \
  V(sqxtun, Sqxtun)              \
  V(suqadd, Suqadd)              \
  V(sxtl2, Sxtl2)                \
  V(sxtl, Sxtl)                  \
  V(uadalp, Uadalp)              \
  V(uaddlp, Uaddlp)              \
  V(uaddlv, Uaddlv)              \
  V(umaxv, Umaxv)                \
  V(uminv, Uminv)                \
  V(uqxtn2, Uqxtn2)              \
  V(uqxtn, Uqxtn)                \
  V(urecpe, Urecpe)              \
  V(ursqrte, Ursqrte)            \
  V(usqadd, Usqadd)              \
  V(uxtl2, Uxtl2)                \
  V(uxtl, Uxtl)                  \
  V(xtn2, Xtn2)                  \
  V(xtn, Xtn)

#define DEFINE_MACRO_ASM_FUNC(ASM, MASM)                \
  void MASM(const VRegister& vd, const VRegister& vn) { \
    DCHECK(allow_macro_instructions());                 \
    ASM(vd, vn);                                        \
  }
  NEON_2VREG_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC
#undef NEON_2VREG_MACRO_LIST

// NEON 2 vector register with immediate instructions.
#define NEON_2VREG_FPIMM_MACRO_LIST(V) \
  V(fcmeq, Fcmeq)                      \
  V(fcmge, Fcmge)                      \
  V(fcmgt, Fcmgt)                      \
  V(fcmle, Fcmle)                      \
  V(fcmlt, Fcmlt)

#define DEFINE_MACRO_ASM_FUNC(ASM, MASM)                            \
  void MASM(const VRegister& vd, const VRegister& vn, double imm) { \
    DCHECK(allow_macro_instructions());                             \
    ASM(vd, vn, imm);                                               \
  }
  NEON_2VREG_FPIMM_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC

// NEON 3 vector register instructions.
#define NEON_3VREG_MACRO_LIST(V) \
  V(add, Add)                    \
  V(addhn2, Addhn2)              \
  V(addhn, Addhn)                \
  V(addp, Addp)                  \
  V(and_, And)                   \
  V(bic, Bic)                    \
  V(bif, Bif)                    \
  V(bit, Bit)                    \
  V(bsl, Bsl)                    \
  V(cmeq, Cmeq)                  \
  V(cmge, Cmge)                  \
  V(cmgt, Cmgt)                  \
  V(cmhi, Cmhi)                  \
  V(cmhs, Cmhs)                  \
  V(cmtst, Cmtst)                \
  V(eor, Eor)                    \
  V(fabd, Fabd)                  \
  V(facge, Facge)                \
  V(facgt, Facgt)                \
  V(faddp, Faddp)                \
  V(fcmeq, Fcmeq)                \
  V(fcmge, Fcmge)                \
  V(fcmgt, Fcmgt)                \
  V(fmaxnmp, Fmaxnmp)            \
  V(fmaxp, Fmaxp)                \
  V(fminnmp, Fminnmp)            \
  V(fminp, Fminp)                \
  V(fmla, Fmla)                  \
  V(fmls, Fmls)                  \
  V(fmulx, Fmulx)                \
  V(frecps, Frecps)              \
  V(frsqrts, Frsqrts)            \
  V(mla, Mla)                    \
  V(mls, Mls)                    \
  V(mul, Mul)                    \
  V(orn, Orn)                    \
  V(orr, Orr)                    \
  V(pmull2, Pmull2)              \
  V(pmull, Pmull)                \
  V(pmul, Pmul)                  \
  V(raddhn2, Raddhn2)            \
  V(raddhn, Raddhn)              \
  V(rsubhn2, Rsubhn2)            \
  V(rsubhn, Rsubhn)              \
  V(sabal2, Sabal2)              \
  V(sabal, Sabal)                \
  V(saba, Saba)                  \
  V(sabdl2, Sabdl2)              \
  V(sabdl, Sabdl)                \
  V(sabd, Sabd)                  \
  V(saddl2, Saddl2)              \
  V(saddl, Saddl)                \
  V(saddw2, Saddw2)              \
  V(saddw, Saddw)                \
  V(shadd, Shadd)                \
  V(shsub, Shsub)                \
  V(smaxp, Smaxp)                \
  V(smax, Smax)                  \
  V(sminp, Sminp)                \
  V(smin, Smin)                  \
  V(smlal2, Smlal2)              \
  V(smlal, Smlal)                \
  V(smlsl2, Smlsl2)              \
  V(smlsl, Smlsl)                \
  V(smull2, Smull2)              \
  V(smull, Smull)                \
  V(sqadd, Sqadd)                \
  V(sqdmlal2, Sqdmlal2)          \
  V(sqdmlal, Sqdmlal)            \
  V(sqdmlsl2, Sqdmlsl2)          \
  V(sqdmlsl, Sqdmlsl)            \
  V(sqdmulh, Sqdmulh)            \
  V(sqdmull2, Sqdmull2)          \
  V(sqdmull, Sqdmull)            \
  V(sqrdmulh, Sqrdmulh)          \
  V(sqrshl, Sqrshl)              \
  V(sqshl, Sqshl)                \
  V(sqsub, Sqsub)                \
  V(srhadd, Srhadd)              \
  V(srshl, Srshl)                \
  V(sshl, Sshl)                  \
  V(ssubl2, Ssubl2)              \
  V(ssubl, Ssubl)                \
  V(ssubw2, Ssubw2)              \
  V(ssubw, Ssubw)                \
  V(subhn2, Subhn2)              \
  V(subhn, Subhn)                \
  V(sub, Sub)                    \
  V(trn1, Trn1)                  \
  V(trn2, Trn2)                  \
  V(uabal2, Uabal2)              \
  V(uabal, Uabal)                \
  V(uaba, Uaba)                  \
  V(uabdl2, Uabdl2)              \
  V(uabdl, Uabdl)                \
  V(uabd, Uabd)                  \
  V(uaddl2, Uaddl2)              \
  V(uaddl, Uaddl)                \
  V(uaddw2, Uaddw2)              \
  V(uaddw, Uaddw)                \
  V(uhadd, Uhadd)                \
  V(uhsub, Uhsub)                \
  V(umaxp, Umaxp)                \
  V(umax, Umax)                  \
  V(uminp, Uminp)                \
  V(umin, Umin)                  \
  V(umlal2, Umlal2)              \
  V(umlal, Umlal)                \
  V(umlsl2, Umlsl2)              \
  V(umlsl, Umlsl)                \
  V(umull2, Umull2)              \
  V(umull, Umull)                \
  V(uqadd, Uqadd)                \
  V(uqrshl, Uqrshl)              \
  V(uqshl, Uqshl)                \
  V(uqsub, Uqsub)                \
  V(urhadd, Urhadd)              \
  V(urshl, Urshl)                \
  V(ushl, Ushl)                  \
  V(usubl2, Usubl2)              \
  V(usubl, Usubl)                \
  V(usubw2, Usubw2)              \
  V(usubw, Usubw)                \
  V(uzp1, Uzp1)                  \
  V(uzp2, Uzp2)                  \
  V(zip1, Zip1)                  \
  V(zip2, Zip2)

#define DEFINE_MACRO_ASM_FUNC(ASM, MASM)                                     \
  void MASM(const VRegister& vd, const VRegister& vn, const VRegister& vm) { \
    DCHECK(allow_macro_instructions());                                      \
    ASM(vd, vn, vm);                                                         \
  }
  NEON_3VREG_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC

  void Bic(const VRegister& vd, const int imm8, const int left_shift = 0) {
    DCHECK(allow_macro_instructions());
    bic(vd, imm8, left_shift);
  }

  // This is required for compatibility in architecture independent code.
  inline void jmp(Label* L);

  void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
  inline void B(Label* label);
  inline void B(Condition cond, Label* label);
  void B(Label* label, Condition cond);

  void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
  void Tbz(const Register& rt, unsigned bit_pos, Label* label);

  void Cbnz(const Register& rt, Label* label);
  void Cbz(const Register& rt, Label* label);

  inline void Dmb(BarrierDomain domain, BarrierType type);
  inline void Dsb(BarrierDomain domain, BarrierType type);
  inline void Isb();
  inline void Csdb();

  bool AllowThisStubCall(CodeStub* stub);
  void CallStubDelayed(CodeStub* stub);

  // Call a runtime routine. This expects {centry} to contain a fitting CEntry
  // builtin for the target runtime function and uses an indirect call.
  void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry);

  // Removes current frame and its arguments from the stack preserving
  // the arguments and a return address pushed to the stack for the next call.
  // Both |callee_args_count| and |caller_args_count_reg| do not include
  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
  // is trashed.
  void PrepareForTailCall(const ParameterCount& callee_args_count,
                          Register caller_args_count_reg, Register scratch0,
                          Register scratch1);

  inline void SmiUntag(Register dst, Register src);
  inline void SmiUntag(Register dst, const MemOperand& src);
  inline void SmiUntag(Register smi);

  // Calls Abort(msg) if the condition cond is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cond, AbortReason reason);

  // Like Assert(), but without condition.
  // Use --debug_code to enable.
  void AssertUnreachable(AbortReason reason);

  void AssertSmi(Register object,
                 AbortReason reason = AbortReason::kOperandIsNotASmi);

  // Like Assert(), but always enabled.
  void Check(Condition cond, AbortReason reason);

  inline void Debug(const char* message, uint32_t code, Instr params = BREAK);

  // Print a message to stderr and abort execution.
  void Abort(AbortReason reason);

  // Remaining instructions are simple pass-through calls to the assembler.
  inline void Asr(const Register& rd, const Register& rn, unsigned shift);
  inline void Asr(const Register& rd, const Register& rn, const Register& rm);

  // Try to move an immediate into the destination register in a single
  // instruction. Returns true for success, and updates the contents of dst.
  // Returns false, otherwise.
  bool TryOneInstrMoveImmediate(const Register& dst, int64_t imm);

  inline void Bind(Label* label);

  static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);

  CPURegList* TmpList() { return &tmp_list_; }
  CPURegList* FPTmpList() { return &fptmp_list_; }

  static CPURegList DefaultTmpList();
  static CPURegList DefaultFPTmpList();

  // Move macros.
  inline void Mvn(const Register& rd, uint64_t imm);
  void Mvn(const Register& rd, const Operand& operand);
  static bool IsImmMovn(uint64_t imm, unsigned reg_size);
  static bool IsImmMovz(uint64_t imm, unsigned reg_size);

  void LogicalMacro(const Register& rd, const Register& rn,
                    const Operand& operand, LogicalOp op);
  void AddSubMacro(const Register& rd, const Register& rn,
                   const Operand& operand, FlagsUpdate S, AddSubOp op);
  inline void Orr(const Register& rd, const Register& rn,
                  const Operand& operand);
  void Orr(const VRegister& vd, const int imm8, const int left_shift = 0) {
    DCHECK(allow_macro_instructions());
    orr(vd, imm8, left_shift);
  }
  inline void Orn(const Register& rd, const Register& rn,
                  const Operand& operand);
  inline void Eor(const Register& rd, const Register& rn,
                  const Operand& operand);
  inline void Eon(const Register& rd, const Register& rn,
                  const Operand& operand);
  inline void And(const Register& rd, const Register& rn,
                  const Operand& operand);
  inline void Ands(const Register& rd, const Register& rn,
                   const Operand& operand);
  inline void Tst(const Register& rn, const Operand& operand);
  inline void Bic(const Register& rd, const Register& rn,
                  const Operand& operand);
  inline void Blr(const Register& xn);
  inline void Cmp(const Register& rn, const Operand& operand);
  inline void Subs(const Register& rd, const Register& rn,
                   const Operand& operand);
  void Csel(const Register& rd, const Register& rn, const Operand& operand,
            Condition cond);

  // Emits a runtime assert that the stack pointer is aligned.
  void AssertSpAligned();

  // Copy slot_count stack slots from the stack offset specified by src to
  // the stack offset specified by dst. The offsets and count are expressed in
  // slot-sized units. Offset dst must be less than src, or the gap between
  // them must be greater than or equal to slot_count, otherwise the result is
  // unpredictable. The function may corrupt its register arguments. The
  // registers must not alias each other.
  void CopySlots(int dst, Register src, Register slot_count);
  void CopySlots(Register dst, Register src, Register slot_count);

  // Copy count double words from the address in register src to the address
  // in register dst. There are two modes for this function:
  // 1) Address dst must be less than src, or the gap between them must be
  //    greater than or equal to count double words, otherwise the result is
  //    unpredictable. This is the default mode.
  // 2) Address src must be less than dst, or the gap between them must be
  //    greater than or equal to count double words, otherwise the result is
  //    undpredictable. In this mode, src and dst specify the last (highest)
  //    address of the regions to copy from and to.
  // The case where src == dst is not supported.
  // The function may corrupt its register arguments. The registers must not
  // alias each other.
  enum CopyDoubleWordsMode { kDstLessThanSrc, kSrcLessThanDst };
  void CopyDoubleWords(Register dst, Register src, Register count,
                       CopyDoubleWordsMode mode = kDstLessThanSrc);

  // Calculate the address of a double word-sized slot at slot_offset from the
  // stack pointer, and write it to dst. Positive slot_offsets are at addresses
  // greater than sp, with slot zero at sp.
  void SlotAddress(Register dst, int slot_offset);
  void SlotAddress(Register dst, Register slot_offset);

  // Load a literal from the inline constant pool.
  inline void Ldr(const CPURegister& rt, const Operand& imm);

  // Claim or drop stack space without actually accessing memory.
  //
  // In debug mode, both of these will write invalid data into the claimed or
  // dropped space.
  //
  // The stack pointer must be aligned to 16 bytes and the size claimed or
  // dropped must be a multiple of 16 bytes.
  //
  // Note that unit_size must be specified in bytes. For variants which take a
  // Register count, the unit size must be a power of two.
  inline void Claim(int64_t count, uint64_t unit_size = kXRegSize);
  inline void Claim(const Register& count, uint64_t unit_size = kXRegSize);
  inline void Drop(int64_t count, uint64_t unit_size = kXRegSize);
  inline void Drop(const Register& count, uint64_t unit_size = kXRegSize);

  // Drop 'count' arguments from the stack, rounded up to a multiple of two,
  // without actually accessing memory.
  // We assume the size of the arguments is the pointer size.
  // An optional mode argument is passed, which can indicate we need to
  // explicitly add the receiver to the count.
  enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver };
  inline void DropArguments(const Register& count,
                            ArgumentsCountMode mode = kCountIncludesReceiver);
  inline void DropArguments(int64_t count,
                            ArgumentsCountMode mode = kCountIncludesReceiver);

  // Drop 'count' slots from stack, rounded up to a multiple of two, without
  // actually accessing memory.
  inline void DropSlots(int64_t count);

  // Push a single argument, with padding, to the stack.
  inline void PushArgument(const Register& arg);

  // Add and sub macros.
  inline void Add(const Register& rd, const Register& rn,
                  const Operand& operand);
  inline void Adds(const Register& rd, const Register& rn,
                   const Operand& operand);
  inline void Sub(const Register& rd, const Register& rn,
                  const Operand& operand);

  // Abort execution if argument is not a positive or zero integer, enabled via
  // --debug-code.
  void AssertPositiveOrZero(Register value);

#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
  inline void FN(const REGTYPE REG, const MemOperand& addr);
  LS_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION

  // Push or pop up to 4 registers of the same width to or from the stack.
  //
  // If an argument register is 'NoReg', all further arguments are also assumed
  // to be 'NoReg', and are thus not pushed or popped.
  //
  // Arguments are ordered such that "Push(a, b);" is functionally equivalent
  // to "Push(a); Push(b);".
  //
  // It is valid to push the same register more than once, and there is no
  // restriction on the order in which registers are specified.
  //
  // It is not valid to pop into the same register more than once in one
  // operation, not even into the zero register.
  //
  // The stack pointer must be aligned to 16 bytes on entry and the total size
  // of the specified registers must also be a multiple of 16 bytes.
  //
  // Other than the registers passed into Pop, the stack pointer and (possibly)
  // the system stack pointer, these methods do not modify any other registers.
  void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
            const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
  void Push(const CPURegister& src0, const CPURegister& src1,
            const CPURegister& src2, const CPURegister& src3,
            const CPURegister& src4, const CPURegister& src5 = NoReg,
            const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
  void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
           const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
  void Pop(const CPURegister& dst0, const CPURegister& dst1,
           const CPURegister& dst2, const CPURegister& dst3,
           const CPURegister& dst4, const CPURegister& dst5 = NoReg,
           const CPURegister& dst6 = NoReg, const CPURegister& dst7 = NoReg);
  void Push(const Register& src0, const VRegister& src1);

  // This is a convenience method for pushing a single Handle<Object>.
  inline void Push(Handle<HeapObject> object);
  inline void Push(Smi* smi);

  // Aliases of Push and Pop, required for V8 compatibility.
  inline void push(Register src) { Push(src); }
  inline void pop(Register dst) { Pop(dst); }

  void SaveRegisters(RegList registers);
  void RestoreRegisters(RegList registers);

  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode);

  // Alternative forms of Push and Pop, taking a RegList or CPURegList that
  // specifies the registers that are to be pushed or popped. Higher-numbered
  // registers are associated with higher memory addresses (as in the A32 push
  // and pop instructions).
  //
  // (Push|Pop)SizeRegList allow you to specify the register size as a
  // parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
  // kSRegSizeInBits are supported.
  //
  // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
  void PushCPURegList(CPURegList registers);
  void PopCPURegList(CPURegList registers);

  // Calculate how much stack space (in bytes) are required to store caller
  // registers excluding those specified in the arguments.
  int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
                                      Register exclusion) const;

  // Push caller saved registers on the stack, and return the number of bytes
  // stack pointer is adjusted.
  int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion = no_reg);

  // Restore caller saved registers from the stack, and return the number of
  // bytes stack pointer is adjusted.
  int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion = no_reg);

  // Move an immediate into register dst, and return an Operand object for use
  // with a subsequent instruction that accepts a shift. The value moved into
  // dst is not necessarily equal to imm; it may have had a shifting operation
  // applied to it that will be subsequently undone by the shift applied in the
  // Operand.
  Operand MoveImmediateForShiftedOp(const Register& dst, int64_t imm,
                                    PreShiftImmMode mode);

  void CheckPageFlagSet(const Register& object, const Register& scratch,
                        int mask, Label* if_any_set);

  void CheckPageFlagClear(const Register& object, const Register& scratch,
                          int mask, Label* if_all_clear);

  // Perform necessary maintenance operations before a push or after a pop.
  //
  // Note that size is specified in bytes.
  void PushPreamble(Operand total_size);
  void PopPostamble(Operand total_size);

  void PushPreamble(int count, int size);
  void PopPostamble(int count, int size);

  // Test the bits of register defined by bit_pattern, and branch if ANY of
  // those bits are set. May corrupt the status flags.
  inline void TestAndBranchIfAnySet(const Register& reg,
                                    const uint64_t bit_pattern, Label* label);

  // Test the bits of register defined by bit_pattern, and branch if ALL of
  // those bits are clear (ie. not set.) May corrupt the status flags.
  inline void TestAndBranchIfAllClear(const Register& reg,
                                      const uint64_t bit_pattern, Label* label);

  inline void Brk(int code);

  inline void JumpIfSmi(Register value, Label* smi_label,
                        Label* not_smi_label = nullptr);

  inline void JumpIfEqual(Register x, int32_t y, Label* dest);
  inline void JumpIfLessThan(Register x, int32_t y, Label* dest);

  inline void Fmov(VRegister fd, VRegister fn);
  inline void Fmov(VRegister fd, Register rn);
  // Provide explicit double and float interfaces for FP immediate moves, rather
  // than relying on implicit C++ casts. This allows signalling NaNs to be
  // preserved when the immediate matches the format of fd. Most systems convert
  // signalling NaNs to quiet NaNs when converting between float and double.
  inline void Fmov(VRegister fd, double imm);
  inline void Fmov(VRegister fd, float imm);
  // Provide a template to allow other types to be converted automatically.
  template <typename T>
  void Fmov(VRegister fd, T imm) {
    DCHECK(allow_macro_instructions());
    Fmov(fd, static_cast<double>(imm));
  }
  inline void Fmov(Register rd, VRegister fn);

  void Movi(const VRegister& vd, uint64_t imm, Shift shift = LSL,
            int shift_amount = 0);
  void Movi(const VRegister& vd, uint64_t hi, uint64_t lo);

  void LoadFromConstantsTable(Register destination,
                              int constant_index) override;
  void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
  void LoadRootRelative(Register destination, int32_t offset) override;

  void Jump(Register target, Condition cond = al);
  void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
  void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);

  void Call(Register target);
  void Call(Address target, RelocInfo::Mode rmode);
  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
  void Call(ExternalReference target);

  // Generate an indirect call (for when a direct call's range is not adequate).
  void IndirectCall(Address target, RelocInfo::Mode rmode);

  void CallForDeoptimization(Address target, int deopt_id,
                             RelocInfo::Mode rmode);

  // Calls a C function.
  // The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_reg_arguments);
  void CallCFunction(ExternalReference function, int num_reg_arguments,
                     int num_double_arguments);
  void CallCFunction(Register function, int num_reg_arguments,
                     int num_double_arguments);

  // Performs a truncating conversion of a floating point number as used by
  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
  // Exits with 'result' holding the answer.
  void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
                         DoubleRegister double_input, StubCallMode stub_mode);

  inline void Mul(const Register& rd, const Register& rn, const Register& rm);

  inline void Fcvtzs(const Register& rd, const VRegister& fn);
  void Fcvtzs(const VRegister& vd, const VRegister& vn, int fbits = 0) {
    DCHECK(allow_macro_instructions());
    fcvtzs(vd, vn, fbits);
  }

  inline void Fcvtzu(const Register& rd, const VRegister& fn);
  void Fcvtzu(const VRegister& vd, const VRegister& vn, int fbits = 0) {
    DCHECK(allow_macro_instructions());
    fcvtzu(vd, vn, fbits);
  }

  inline void Madd(const Register& rd, const Register& rn, const Register& rm,
                   const Register& ra);
  inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
  inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
  inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
  inline void Msub(const Register& rd, const Register& rn, const Register& rm,
                   const Register& ra);

  inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
  inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
  inline void Umull(const Register& rd, const Register& rn, const Register& rm);
  inline void Smull(const Register& rd, const Register& rn, const Register& rm);

  inline void Sxtb(const Register& rd, const Register& rn);
  inline void Sxth(const Register& rd, const Register& rn);
  inline void Sxtw(const Register& rd, const Register& rn);
  inline void Ubfiz(const Register& rd, const Register& rn, unsigned lsb,
                    unsigned width);
  inline void Ubfx(const Register& rd, const Register& rn, unsigned lsb,
                   unsigned width);
  inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
  inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
  inline void Ror(const Register& rd, const Register& rs, unsigned shift);
  inline void Ror(const Register& rd, const Register& rn, const Register& rm);
  inline void Cmn(const Register& rn, const Operand& operand);
  inline void Fadd(const VRegister& fd, const VRegister& fn,
                   const VRegister& fm);
  inline void Fcmp(const VRegister& fn, const VRegister& fm);
  inline void Fcmp(const VRegister& fn, double value);
  inline void Fabs(const VRegister& fd, const VRegister& fn);
  inline void Fmul(const VRegister& fd, const VRegister& fn,
                   const VRegister& fm);
  inline void Fsub(const VRegister& fd, const VRegister& fn,
                   const VRegister& fm);
  inline void Fdiv(const VRegister& fd, const VRegister& fn,
                   const VRegister& fm);
  inline void Fmax(const VRegister& fd, const VRegister& fn,
                   const VRegister& fm);
  inline void Fmin(const VRegister& fd, const VRegister& fn,
                   const VRegister& fm);
  inline void Rbit(const Register& rd, const Register& rn);

  enum AdrHint {
    // The target must be within the immediate range of adr.
    kAdrNear,
    // The target may be outside of the immediate range of adr. Additional
    // instructions may be emitted.
    kAdrFar
  };
  void Adr(const Register& rd, Label* label, AdrHint = kAdrNear);

  // Add/sub with carry macros.
  inline void Adc(const Register& rd, const Register& rn,
                  const Operand& operand);

  // Conditional macros.
  inline void Ccmp(const Register& rn, const Operand& operand, StatusFlags nzcv,
                   Condition cond);

  inline void Clz(const Register& rd, const Register& rn);

  // Poke 'src' onto the stack. The offset is in bytes. The stack pointer must
  // be 16 byte aligned.
  void Poke(const CPURegister& src, const Operand& offset);

  // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
  // The stack pointer must be aligned to 16 bytes.
  void Peek(const CPURegister& dst, const Operand& offset);

  // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
  // with 'src2' at a higher address than 'src1'. The offset is in bytes. The
  // stack pointer must be 16 byte aligned.
  void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);

  inline void Sbfx(const Register& rd, const Register& rn, unsigned lsb,
                   unsigned width);

  inline void Bfi(const Register& rd, const Register& rn, unsigned lsb,
                  unsigned width);

  inline void Scvtf(const VRegister& fd, const Register& rn,
                    unsigned fbits = 0);
  void Scvtf(const VRegister& vd, const VRegister& vn, int fbits = 0) {
    DCHECK(allow_macro_instructions());
    scvtf(vd, vn, fbits);
  }
  inline void Ucvtf(const VRegister& fd, const Register& rn,
                    unsigned fbits = 0);
  void Ucvtf(const VRegister& vd, const VRegister& vn, int fbits = 0) {
    DCHECK(allow_macro_instructions());
    ucvtf(vd, vn, fbits);
  }

  void AssertFPCRState(Register fpcr = NoReg);
  void CanonicalizeNaN(const VRegister& dst, const VRegister& src);
  void CanonicalizeNaN(const VRegister& reg) { CanonicalizeNaN(reg, reg); }

  inline void CmovX(const Register& rd, const Register& rn, Condition cond);
  inline void Cset(const Register& rd, Condition cond);
  inline void Csetm(const Register& rd, Condition cond);
  inline void Fccmp(const VRegister& fn, const VRegister& fm, StatusFlags nzcv,
                    Condition cond);
  inline void Csinc(const Register& rd, const Register& rn, const Register& rm,
                    Condition cond);

  inline void Fcvt(const VRegister& fd, const VRegister& fn);

  int ActivationFrameAlignment();

  void Ins(const VRegister& vd, int vd_index, const VRegister& vn,
           int vn_index) {
    DCHECK(allow_macro_instructions());
    ins(vd, vd_index, vn, vn_index);
  }
  void Ins(const VRegister& vd, int vd_index, const Register& rn) {
    DCHECK(allow_macro_instructions());
    ins(vd, vd_index, rn);
  }

  inline void Bl(Label* label);
  inline void Br(const Register& xn);

  inline void Uxtb(const Register& rd, const Register& rn);
  inline void Uxth(const Register& rd, const Register& rn);
  inline void Uxtw(const Register& rd, const Register& rn);

  void Dup(const VRegister& vd, const VRegister& vn, int index) {
    DCHECK(allow_macro_instructions());
    dup(vd, vn, index);
  }
  void Dup(const VRegister& vd, const Register& rn) {
    DCHECK(allow_macro_instructions());
    dup(vd, rn);
  }

#define DECLARE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
  inline void FN(const REGTYPE REG, const REGTYPE REG2, const MemOperand& addr);
  LSPAIR_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION

#define NEON_2VREG_SHIFT_MACRO_LIST(V) \
  V(rshrn, Rshrn)                      \
  V(rshrn2, Rshrn2)                    \
  V(shl, Shl)                          \
  V(shll, Shll)                        \
  V(shll2, Shll2)                      \
  V(shrn, Shrn)                        \
  V(shrn2, Shrn2)                      \
  V(sli, Sli)                          \
  V(sqrshrn, Sqrshrn)                  \
  V(sqrshrn2, Sqrshrn2)                \
  V(sqrshrun, Sqrshrun)                \
  V(sqrshrun2, Sqrshrun2)              \
  V(sqshl, Sqshl)                      \
  V(sqshlu, Sqshlu)                    \
  V(sqshrn, Sqshrn)                    \
  V(sqshrn2, Sqshrn2)                  \
  V(sqshrun, Sqshrun)                  \
  V(sqshrun2, Sqshrun2)                \
  V(sri, Sri)                          \
  V(srshr, Srshr)                      \
  V(srsra, Srsra)                      \
  V(sshll, Sshll)                      \
  V(sshll2, Sshll2)                    \
  V(sshr, Sshr)                        \
  V(ssra, Ssra)                        \
  V(uqrshrn, Uqrshrn)                  \
  V(uqrshrn2, Uqrshrn2)                \
  V(uqshl, Uqshl)                      \
  V(uqshrn, Uqshrn)                    \
  V(uqshrn2, Uqshrn2)                  \
  V(urshr, Urshr)                      \
  V(ursra, Ursra)                      \
  V(ushll, Ushll)                      \
  V(ushll2, Ushll2)                    \
  V(ushr, Ushr)                        \
  V(usra, Usra)

#define DEFINE_MACRO_ASM_FUNC(ASM, MASM)                           \
  void MASM(const VRegister& vd, const VRegister& vn, int shift) { \
    DCHECK(allow_macro_instructions());                            \
    ASM(vd, vn, shift);                                            \
  }
  NEON_2VREG_SHIFT_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC

  void Umov(const Register& rd, const VRegister& vn, int vn_index) {
    DCHECK(allow_macro_instructions());
    umov(rd, vn, vn_index);
  }
  void Tbl(const VRegister& vd, const VRegister& vn, const VRegister& vm) {
    DCHECK(allow_macro_instructions());
    tbl(vd, vn, vm);
  }
  void Tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
           const VRegister& vm) {
    DCHECK(allow_macro_instructions());
    tbl(vd, vn, vn2, vm);
  }
  void Tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
           const VRegister& vn3, const VRegister& vm) {
    DCHECK(allow_macro_instructions());
    tbl(vd, vn, vn2, vn3, vm);
  }
  void Tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
           const VRegister& vn3, const VRegister& vn4, const VRegister& vm) {
    DCHECK(allow_macro_instructions());
    tbl(vd, vn, vn2, vn3, vn4, vm);
  }
  void Ext(const VRegister& vd, const VRegister& vn, const VRegister& vm,
           int index) {
    DCHECK(allow_macro_instructions());
    ext(vd, vn, vm, index);
  }

  void Smov(const Register& rd, const VRegister& vn, int vn_index) {
    DCHECK(allow_macro_instructions());
    smov(rd, vn, vn_index);
  }

// Load-acquire/store-release macros.
#define DECLARE_FUNCTION(FN, OP) \
  inline void FN(const Register& rt, const Register& rn);
  LDA_STL_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION

  // Load an object from the root table.
  void LoadRoot(Register destination, Heap::RootListIndex index) override;

  inline void Ret(const Register& xn = lr);

  // Perform a conversion from a double to a signed int64. If the input fits in
  // range of the 64-bit result, execution branches to done. Otherwise,
  // execution falls through, and the sign of the result can be used to
  // determine if overflow was towards positive or negative infinity.
  //
  // On successful conversion, the least significant 32 bits of the result are
  // equivalent to the ECMA-262 operation "ToInt32".
  //
  // Only public for the test code in test-code-stubs-arm64.cc.
  void TryConvertDoubleToInt64(Register result, DoubleRegister input,
                               Label* done);

  inline void Mrs(const Register& rt, SystemRegister sysreg);

  // Generates function prologue code.
  void Prologue();

  void Cmgt(const VRegister& vd, const VRegister& vn, int imm) {
    DCHECK(allow_macro_instructions());
    cmgt(vd, vn, imm);
  }
  void Cmge(const VRegister& vd, const VRegister& vn, int imm) {
    DCHECK(allow_macro_instructions());
    cmge(vd, vn, imm);
  }
  void Cmeq(const VRegister& vd, const VRegister& vn, int imm) {
    DCHECK(allow_macro_instructions());
    cmeq(vd, vn, imm);
  }

  inline void Neg(const Register& rd, const Operand& operand);
  inline void Negs(const Register& rd, const Operand& operand);

  // Compute rd = abs(rm).
  // This function clobbers the condition flags. On output the overflow flag is
  // set iff the negation overflowed.
  //
  // If rm is the minimum representable value, the result is not representable.
  // Handlers for each case can be specified using the relevant labels.
  void Abs(const Register& rd, const Register& rm,
           Label* is_not_representable = nullptr,
           Label* is_representable = nullptr);

  inline void Cls(const Register& rd, const Register& rn);
  inline void Cneg(const Register& rd, const Register& rn, Condition cond);
  inline void Rev16(const Register& rd, const Register& rn);
  inline void Rev32(const Register& rd, const Register& rn);
  inline void Fcvtns(const Register& rd, const VRegister& fn);
  inline void Fcvtnu(const Register& rd, const VRegister& fn);
  inline void Fcvtms(const Register& rd, const VRegister& fn);
  inline void Fcvtmu(const Register& rd, const VRegister& fn);
  inline void Fcvtas(const Register& rd, const VRegister& fn);
  inline void Fcvtau(const Register& rd, const VRegister& fn);

  // Compute the start of the generated instruction stream from the current PC.
  // This is an alternative to embedding the {CodeObject} handle as a reference.
  void ComputeCodeStartAddress(const Register& rd);

  void ResetSpeculationPoisonRegister();

 protected:
  // The actual Push and Pop implementations. These don't generate any code
  // other than that required for the push or pop. This allows
  // (Push|Pop)CPURegList to bundle together run-time assertions for a large
  // block of registers.
  //
  // Note that size is per register, and is specified in bytes.
  void PushHelper(int count, int size, const CPURegister& src0,
                  const CPURegister& src1, const CPURegister& src2,
                  const CPURegister& src3);
  void PopHelper(int count, int size, const CPURegister& dst0,
                 const CPURegister& dst1, const CPURegister& dst2,
                 const CPURegister& dst3);

  void ConditionalCompareMacro(const Register& rn, const Operand& operand,
                               StatusFlags nzcv, Condition cond,
                               ConditionalCompareOp op);

  void AddSubWithCarryMacro(const Register& rd, const Register& rn,
                            const Operand& operand, FlagsUpdate S,
                            AddSubWithCarryOp op);

  // Call Printf. On a native build, a simple call will be generated, but if the
  // simulator is being used then a suitable pseudo-instruction is used. The
  // arguments and stack must be prepared by the caller as for a normal AAPCS64
  // call to 'printf'.
  //
  // The 'args' argument should point to an array of variable arguments in their
  // proper PCS registers (and in calling order). The argument registers can
  // have mixed types. The format string (x0) should not be included.
  void CallPrintf(int arg_count = 0, const CPURegister* args = nullptr);

 private:
#if DEBUG
  // Tell whether any of the macro instruction can be used. When false the
  // MacroAssembler will assert if a method which can emit a variable number
  // of instructions is called.
  bool allow_macro_instructions_ = true;
#endif


  // Scratch registers available for use by the MacroAssembler.
  CPURegList tmp_list_ = DefaultTmpList();
  CPURegList fptmp_list_ = DefaultFPTmpList();

  // Helps resolve branching to labels potentially out of range.
  // If the label is not bound, it registers the information necessary to later
  // be able to emit a veneer for this branch if necessary.
  // If the label is bound, it returns true if the label (or the previous link
  // in the label chain) is out of range. In that case the caller is responsible
  // for generating appropriate code.
  // Otherwise it returns false.
  // This function also checks wether veneers need to be emitted.
  bool NeedExtraInstructionsOrRegisterBranch(Label* label,
                                             ImmBranchType branch_type);

  void Movi16bitHelper(const VRegister& vd, uint64_t imm);
  void Movi32bitHelper(const VRegister& vd, uint64_t imm);
  void Movi64bitHelper(const VRegister& vd, uint64_t imm);

  void LoadStoreMacro(const CPURegister& rt, const MemOperand& addr,
                      LoadStoreOp op);

  void LoadStorePairMacro(const CPURegister& rt, const CPURegister& rt2,
                          const MemOperand& addr, LoadStorePairOp op);

  static bool IsNearCallOffset(int64_t offset);
  void JumpHelper(int64_t offset, RelocInfo::Mode rmode, Condition cond = al);
};

class MacroAssembler : public TurboAssembler {
 public:
  MacroAssembler(Isolate* isolate, void* buffer, int size,
                 CodeObjectRequired create_code_object)
      : MacroAssembler(isolate, AssemblerOptions::Default(isolate), buffer,
                       size, create_code_object) {}
  MacroAssembler(Isolate* isolate, const AssemblerOptions& options,
                 void* buffer, int size, CodeObjectRequired create_code_object);

  // Instruction set functions ------------------------------------------------
  // Logical macros.
  inline void Bics(const Register& rd, const Register& rn,
                   const Operand& operand);

  inline void Adcs(const Register& rd, const Register& rn,
                   const Operand& operand);
  inline void Sbc(const Register& rd, const Register& rn,
                  const Operand& operand);
  inline void Sbcs(const Register& rd, const Register& rn,
                   const Operand& operand);
  inline void Ngc(const Register& rd, const Operand& operand);
  inline void Ngcs(const Register& rd, const Operand& operand);

  inline void Ccmn(const Register& rn, const Operand& operand, StatusFlags nzcv,
                   Condition cond);

#define DECLARE_FUNCTION(FN, OP) \
  inline void FN(const Register& rs, const Register& rt, const Register& rn);
  STLX_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION

  // Branch type inversion relies on these relations.
  STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) &&
                (reg_bit_clear == (reg_bit_set ^ 1)) &&
                (always == (never ^ 1)));

  inline void Bfxil(const Register& rd, const Register& rn, unsigned lsb,
                    unsigned width);
  inline void Cinc(const Register& rd, const Register& rn, Condition cond);
  inline void Cinv(const Register& rd, const Register& rn, Condition cond);
  inline void CzeroX(const Register& rd, Condition cond);
  inline void Csinv(const Register& rd, const Register& rn, const Register& rm,
                    Condition cond);
  inline void Csneg(const Register& rd, const Register& rn, const Register& rm,
                    Condition cond);
  inline void Extr(const Register& rd, const Register& rn, const Register& rm,
                   unsigned lsb);
  inline void Fcsel(const VRegister& fd, const VRegister& fn,
                    const VRegister& fm, Condition cond);
  void Fcvtl(const VRegister& vd, const VRegister& vn) {
    DCHECK(allow_macro_instructions());
    fcvtl(vd, vn);
  }
  void Fcvtl2(const VRegister& vd, const VRegister& vn) {
    DCHECK(allow_macro_instructions());
    fcvtl2(vd, vn);
  }
  void Fcvtn(const VRegister& vd, const VRegister& vn) {
    DCHECK(allow_macro_instructions());
    fcvtn(vd, vn);
  }
  void Fcvtn2(const VRegister& vd, const VRegister& vn) {
    DCHECK(allow_macro_instructions());
    fcvtn2(vd, vn);
  }
  void Fcvtxn(const VRegister& vd, const VRegister& vn) {
    DCHECK(allow_macro_instructions());
    fcvtxn(vd, vn);
  }
  void Fcvtxn2(const VRegister& vd, const VRegister& vn) {
    DCHECK(allow_macro_instructions());
    fcvtxn2(vd, vn);
  }
  inline void Fmadd(const VRegister& fd, const VRegister& fn,
                    const VRegister& fm, const VRegister& fa);
  inline void Fmaxnm(const VRegister& fd, const VRegister& fn,
                     const VRegister& fm);
  inline void Fminnm(const VRegister& fd, const VRegister& fn,
                     const VRegister& fm);
  inline void Fmsub(const VRegister& fd, const VRegister& fn,
                    const VRegister& fm, const VRegister& fa);
  inline void Fnmadd(const VRegister& fd, const VRegister& fn,
                     const VRegister& fm, const VRegister& fa);
  inline void Fnmsub(const VRegister& fd, const VRegister& fn,
                     const VRegister& fm, const VRegister& fa);
  inline void Hint(SystemHint code);
  inline void Hlt(int code);
  inline void Ldnp(const CPURegister& rt, const CPURegister& rt2,
                   const MemOperand& src);
  inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
  inline void Msr(SystemRegister sysreg, const Register& rt);
  inline void Nop() { nop(); }
  void Mvni(const VRegister& vd, const int imm8, Shift shift = LSL,
            const int shift_amount = 0) {
    DCHECK(allow_macro_instructions());
    mvni(vd, imm8, shift, shift_amount);
  }
  inline void Rev(const Register& rd, const Register& rn);
  inline void Sbfiz(const Register& rd, const Register& rn, unsigned lsb,
                    unsigned width);
  inline void Smaddl(const Register& rd, const Register& rn, const Register& rm,
                     const Register& ra);
  inline void Smsubl(const Register& rd, const Register& rn, const Register& rm,
                     const Register& ra);
  inline void Smulh(const Register& rd, const Register& rn, const Register& rm);
  inline void Stnp(const CPURegister& rt, const CPURegister& rt2,
                   const MemOperand& dst);
  inline void Umaddl(const Register& rd, const Register& rn, const Register& rm,
                     const Register& ra);
  inline void Umsubl(const Register& rd, const Register& rn, const Register& rm,
                     const Register& ra);

  void Cmle(const VRegister& vd, const VRegister& vn, int imm) {
    DCHECK(allow_macro_instructions());
    cmle(vd, vn, imm);
  }
  void Cmlt(const VRegister& vd, const VRegister& vn, int imm) {
    DCHECK(allow_macro_instructions());
    cmlt(vd, vn, imm);
  }

  void Ld1(const VRegister& vt, const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld1(vt, src);
  }
  void Ld1(const VRegister& vt, const VRegister& vt2, const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld1(vt, vt2, src);
  }
  void Ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld1(vt, vt2, vt3, src);
  }
  void Ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const VRegister& vt4, const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld1(vt, vt2, vt3, vt4, src);
  }
  void Ld1(const VRegister& vt, int lane, const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld1(vt, lane, src);
  }
  void Ld1r(const VRegister& vt, const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld1r(vt, src);
  }
  void Ld2(const VRegister& vt, const VRegister& vt2, const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld2(vt, vt2, src);
  }
  void Ld2(const VRegister& vt, const VRegister& vt2, int lane,
           const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld2(vt, vt2, lane, src);
  }
  void Ld2r(const VRegister& vt, const VRegister& vt2, const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld2r(vt, vt2, src);
  }
  void Ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld3(vt, vt2, vt3, src);
  }
  void Ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           int lane, const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld3(vt, vt2, vt3, lane, src);
  }
  void Ld3r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
            const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld3r(vt, vt2, vt3, src);
  }
  void Ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const VRegister& vt4, const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld4(vt, vt2, vt3, vt4, src);
  }
  void Ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const VRegister& vt4, int lane, const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld4(vt, vt2, vt3, vt4, lane, src);
  }
  void Ld4r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
            const VRegister& vt4, const MemOperand& src) {
    DCHECK(allow_macro_instructions());
    ld4r(vt, vt2, vt3, vt4, src);
  }
  void St1(const VRegister& vt, const MemOperand& dst) {
    DCHECK(allow_macro_instructions());
    st1(vt, dst);
  }
  void St1(const VRegister& vt, const VRegister& vt2, const MemOperand& dst) {
    DCHECK(allow_macro_instructions());
    st1(vt, vt2, dst);
  }
  void St1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const MemOperand& dst) {
    DCHECK(allow_macro_instructions());
    st1(vt, vt2, vt3, dst);
  }
  void St1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const VRegister& vt4, const MemOperand& dst) {
    DCHECK(allow_macro_instructions());
    st1(vt, vt2, vt3, vt4, dst);
  }
  void St1(const VRegister& vt, int lane, const MemOperand& dst) {
    DCHECK(allow_macro_instructions());
    st1(vt, lane, dst);
  }
  void St2(const VRegister& vt, const VRegister& vt2, const MemOperand& dst) {
    DCHECK(allow_macro_instructions());
    st2(vt, vt2, dst);
  }
  void St3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const MemOperand& dst) {
    DCHECK(allow_macro_instructions());
    st3(vt, vt2, vt3, dst);
  }
  void St4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const VRegister& vt4, const MemOperand& dst) {
    DCHECK(allow_macro_instructions());
    st4(vt, vt2, vt3, vt4, dst);
  }
  void St2(const VRegister& vt, const VRegister& vt2, int lane,
           const MemOperand& dst) {
    DCHECK(allow_macro_instructions());
    st2(vt, vt2, lane, dst);
  }
  void St3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           int lane, const MemOperand& dst) {
    DCHECK(allow_macro_instructions());
    st3(vt, vt2, vt3, lane, dst);
  }
  void St4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const VRegister& vt4, int lane, const MemOperand& dst) {
    DCHECK(allow_macro_instructions());
    st4(vt, vt2, vt3, vt4, lane, dst);
  }
  void Tbx(const VRegister& vd, const VRegister& vn, const VRegister& vm) {
    DCHECK(allow_macro_instructions());
    tbx(vd, vn, vm);
  }
  void Tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
           const VRegister& vm) {
    DCHECK(allow_macro_instructions());
    tbx(vd, vn, vn2, vm);
  }
  void Tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
           const VRegister& vn3, const VRegister& vm) {
    DCHECK(allow_macro_instructions());
    tbx(vd, vn, vn2, vn3, vm);
  }
  void Tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
           const VRegister& vn3, const VRegister& vn4, const VRegister& vm) {
    DCHECK(allow_macro_instructions());
    tbx(vd, vn, vn2, vn3, vn4, vm);
  }

  void LoadObject(Register result, Handle<Object> object);

  inline void PushSizeRegList(RegList registers, unsigned reg_size,
      CPURegister::RegisterType type = CPURegister::kRegister) {
    PushCPURegList(CPURegList(type, reg_size, registers));
  }
  inline void PopSizeRegList(RegList registers, unsigned reg_size,
      CPURegister::RegisterType type = CPURegister::kRegister) {
    PopCPURegList(CPURegList(type, reg_size, registers));
  }
  inline void PushXRegList(RegList regs) {
    PushSizeRegList(regs, kXRegSizeInBits);
  }
  inline void PopXRegList(RegList regs) {
    PopSizeRegList(regs, kXRegSizeInBits);
  }
  inline void PushWRegList(RegList regs) {
    PushSizeRegList(regs, kWRegSizeInBits);
  }
  inline void PopWRegList(RegList regs) {
    PopSizeRegList(regs, kWRegSizeInBits);
  }
  inline void PushDRegList(RegList regs) {
    PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kVRegister);
  }
  inline void PopDRegList(RegList regs) {
    PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kVRegister);
  }
  inline void PushSRegList(RegList regs) {
    PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kVRegister);
  }
  inline void PopSRegList(RegList regs) {
    PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kVRegister);
  }

  // Push the specified register 'count' times.
  void PushMultipleTimes(CPURegister src, Register count);

  // Sometimes callers need to push or pop multiple registers in a way that is
  // difficult to structure efficiently for fixed Push or Pop calls. This scope
  // allows push requests to be queued up, then flushed at once. The
  // MacroAssembler will try to generate the most efficient sequence required.
  //
  // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
  // register sizes and types.
  class PushPopQueue {
   public:
    explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }

    ~PushPopQueue() {
      DCHECK(queued_.empty());
    }

    void Queue(const CPURegister& rt) {
      size_ += rt.SizeInBytes();
      queued_.push_back(rt);
    }

    enum PreambleDirective {
      WITH_PREAMBLE,
      SKIP_PREAMBLE
    };
    void PushQueued(PreambleDirective preamble_directive = WITH_PREAMBLE);
    void PopQueued();

   private:
    MacroAssembler* masm_;
    int size_;
    std::vector<CPURegister> queued_;
  };

  // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
  // values peeked will be adjacent, with the value in 'dst2' being from a
  // higher address than 'dst1'. The offset is in bytes. The stack pointer must
  // be aligned to 16 bytes.
  void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);

  // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
  // register.
  inline void ClaimBySMI(const Register& count_smi,
                         uint64_t unit_size = kXRegSize);
  inline void DropBySMI(const Register& count_smi,
                        uint64_t unit_size = kXRegSize);

  // Compare a register with an operand, and branch to label depending on the
  // condition. May corrupt the status flags.
  inline void CompareAndBranch(const Register& lhs,
                               const Operand& rhs,
                               Condition cond,
                               Label* label);

  // Insert one or more instructions into the instruction stream that encode
  // some caller-defined data. The instructions used will be executable with no
  // side effects.
  inline void InlineData(uint64_t data);

  // Insert an instrumentation enable marker into the instruction stream.
  inline void EnableInstrumentation();

  // Insert an instrumentation disable marker into the instruction stream.
  inline void DisableInstrumentation();

  // Insert an instrumentation event marker into the instruction stream. These
  // will be picked up by the instrumentation system to annotate an instruction
  // profile. The argument marker_name must be a printable two character string;
  // it will be encoded in the event marker.
  inline void AnnotateInstrumentation(const char* marker_name);

  // Preserve the callee-saved registers (as defined by AAPCS64).
  //
  // Higher-numbered registers are pushed before lower-numbered registers, and
  // thus get higher addresses.
  // Floating-point registers are pushed before general-purpose registers, and
  // thus get higher addresses.
  //
  // Note that registers are not checked for invalid values. Use this method
  // only if you know that the GC won't try to examine the values on the stack.
  void PushCalleeSavedRegisters();

  // Restore the callee-saved registers (as defined by AAPCS64).
  //
  // Higher-numbered registers are popped after lower-numbered registers, and
  // thus come from higher addresses.
  // Floating-point registers are popped after general-purpose registers, and
  // thus come from higher addresses.
  void PopCalleeSavedRegisters();

  // Helpers ------------------------------------------------------------------

  static int SafepointRegisterStackIndex(int reg_code);

  template<typename Field>
  void DecodeField(Register dst, Register src) {
    static const int shift = Field::kShift;
    static const int setbits = CountSetBits(Field::kMask, 32);
    Ubfx(dst, src, shift, setbits);
  }

  template<typename Field>
  void DecodeField(Register reg) {
    DecodeField<Field>(reg, reg);
  }

  // ---- SMI and Number Utilities ----

  inline void SmiTag(Register dst, Register src);
  inline void SmiTag(Register smi);

  inline void JumpIfNotSmi(Register value, Label* not_smi_label);
  inline void JumpIfBothSmi(Register value1, Register value2,
                            Label* both_smi_label,
                            Label* not_smi_label = nullptr);
  inline void JumpIfEitherSmi(Register value1, Register value2,
                              Label* either_smi_label,
                              Label* not_smi_label = nullptr);
  inline void JumpIfEitherNotSmi(Register value1,
                                 Register value2,
                                 Label* not_smi_label);
  inline void JumpIfBothNotSmi(Register value1,
                               Register value2,
                               Label* not_smi_label);

  // Abort execution if argument is a smi, enabled via --debug-code.
  void AssertNotSmi(Register object,
                    AbortReason reason = AbortReason::kOperandIsASmi);

  inline void ObjectTag(Register tagged_obj, Register obj);
  inline void ObjectUntag(Register untagged_obj, Register obj);

  // Abort execution if argument is not a Constructor, enabled via --debug-code.
  void AssertConstructor(Register object);

  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
  void AssertFunction(Register object);

  // Abort execution if argument is not a JSGeneratorObject (or subclass),
  // enabled via --debug-code.
  void AssertGeneratorObject(Register object);

  // Abort execution if argument is not a JSBoundFunction,
  // enabled via --debug-code.
  void AssertBoundFunction(Register object);

  // Abort execution if argument is not undefined or an AllocationSite, enabled
  // via --debug-code.
  void AssertUndefinedOrAllocationSite(Register object);

  // Try to represent a double as a signed 64-bit int.
  // This succeeds if the result compares equal to the input, so inputs of -0.0
  // are represented as 0 and handled as a success.
  //
  // On output the Z flag is set if the operation was successful.
  void TryRepresentDoubleAsInt64(Register as_int, VRegister value,
                                 VRegister scratch_d,
                                 Label* on_successful_conversion = nullptr,
                                 Label* on_failed_conversion = nullptr) {
    DCHECK(as_int.Is64Bits());
    TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
                            on_failed_conversion);
  }

  // ---- Calling / Jumping helpers ----

  void CallStub(CodeStub* stub);
  void TailCallStub(CodeStub* stub);

  void CallRuntime(const Runtime::Function* f,
                   int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs, save_doubles);
  }

  void TailCallRuntime(Runtime::FunctionId fid);

  // Jump to a runtime routine.
  void JumpToExternalReference(const ExternalReference& builtin,
                               bool builtin_exit_frame = false);

  // Generates a trampoline to jump to the off-heap instruction stream.
  void JumpToInstructionStream(Address entry);

  // Registers used through the invocation chain are hard-coded.
  // We force passing the parameters to ensure the contracts are correctly
  // honoured by the caller.
  // 'function' must be x1.
  // 'actual' must use an immediate or x0.
  // 'expected' must use an immediate or x2.
  // 'call_kind' must be x5.
  void InvokePrologue(const ParameterCount& expected,
                      const ParameterCount& actual, Label* done,
                      InvokeFlag flag, bool* definitely_mismatches);

  // On function call, call into the debugger if necessary.
  void CheckDebugHook(Register fun, Register new_target,
                      const ParameterCount& expected,
                      const ParameterCount& actual);
  void InvokeFunctionCode(Register function, Register new_target,
                          const ParameterCount& expected,
                          const ParameterCount& actual, InvokeFlag flag);
  // Invoke the JavaScript function in the given register.
  // Changes the current context to the context in the function before invoking.
  void InvokeFunction(Register function, Register new_target,
                      const ParameterCount& actual, InvokeFlag flag);
  void InvokeFunction(Register function, const ParameterCount& expected,
                      const ParameterCount& actual, InvokeFlag flag);

  // ---- Code generation helpers ----

  // Frame restart support
  void MaybeDropFrames();

  // ---------------------------------------------------------------------------
  // Support functions.

  // Compare object type for heap object.  heap_object contains a non-Smi
  // whose object type should be compared with the given type.  This both
  // sets the flags and leaves the object type in the type_reg register.
  // It leaves the map in the map register (unless the type_reg and map register
  // are the same register).  It leaves the heap object in the heap_object
  // register unless the heap_object register is the same register as one of the
  // other registers.
  void CompareObjectType(Register heap_object,
                         Register map,
                         Register type_reg,
                         InstanceType type);


  // Compare object type for heap object, and branch if equal (or not.)
  // heap_object contains a non-Smi whose object type should be compared with
  // the given type.  This both sets the flags and leaves the object type in
  // the type_reg register. It leaves the map in the map register (unless the
  // type_reg and map register are the same register).  It leaves the heap
  // object in the heap_object register unless the heap_object register is the
  // same register as one of the other registers.
  void JumpIfObjectType(Register object,
                        Register map,
                        Register type_reg,
                        InstanceType type,
                        Label* if_cond_pass,
                        Condition cond = eq);

  // Compare instance type in a map.  map contains a valid map object whose
  // object type should be compared with the given type.  This both
  // sets the flags and leaves the object type in the type_reg register.
  void CompareInstanceType(Register map,
                           Register type_reg,
                           InstanceType type);

  // Load the elements kind field from a map, and return it in the result
  // register.
  void LoadElementsKindFromMap(Register result, Register map);

  // Compare the object in a register to a value from the root list.
  void CompareRoot(const Register& obj, Heap::RootListIndex index);

  // Compare the object in a register to a value and jump if they are equal.
  void JumpIfRoot(const Register& obj,
                  Heap::RootListIndex index,
                  Label* if_equal);

  // Compare the object in a register to a value and jump if they are not equal.
  void JumpIfNotRoot(const Register& obj,
                     Heap::RootListIndex index,
                     Label* if_not_equal);

  // Compare the contents of a register with an operand, and branch to true,
  // false or fall through, depending on condition.
  void CompareAndSplit(const Register& lhs,
                       const Operand& rhs,
                       Condition cond,
                       Label* if_true,
                       Label* if_false,
                       Label* fall_through);

  // Test the bits of register defined by bit_pattern, and branch to
  // if_any_set, if_all_clear or fall_through accordingly.
  void TestAndSplit(const Register& reg,
                    uint64_t bit_pattern,
                    Label* if_all_clear,
                    Label* if_any_set,
                    Label* fall_through);

  // ---------------------------------------------------------------------------
  // Frames.

  void ExitFramePreserveFPRegs();
  void ExitFrameRestoreFPRegs();

  // Enter exit frame. Exit frames are used when calling C code from generated
  // (JavaScript) code.
  //
  // The only registers modified by this function are the provided scratch
  // register, the frame pointer and the stack pointer.
  //
  // The 'extra_space' argument can be used to allocate some space in the exit
  // frame that will be ignored by the GC. This space will be reserved in the
  // bottom of the frame immediately above the return address slot.
  //
  // Set up a stack frame and registers as follows:
  //         fp[8]: CallerPC (lr)
  //   fp -> fp[0]: CallerFP (old fp)
  //         fp[-8]: SPOffset (new sp)
  //         fp[-16]: CodeObject()
  //         fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
  //         sp[8]: Memory reserved for the caller if extra_space != 0.
  //                 Alignment padding, if necessary.
  //   sp -> sp[0]: Space reserved for the return address.
  //
  // This function also stores the new frame information in the top frame, so
  // that the new frame becomes the current frame.
  void EnterExitFrame(bool save_doubles, const Register& scratch,
                      int extra_space = 0,
                      StackFrame::Type frame_type = StackFrame::EXIT);

  // Leave the current exit frame, after a C function has returned to generated
  // (JavaScript) code.
  //
  // This effectively unwinds the operation of EnterExitFrame:
  //  * Preserved doubles are restored (if restore_doubles is true).
  //  * The frame information is removed from the top frame.
  //  * The exit frame is dropped.
  void LeaveExitFrame(bool save_doubles, const Register& scratch,
                      const Register& scratch2);

  // Load the global proxy from the current context.
  void LoadGlobalProxy(Register dst) {
    LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
  }

  // ---------------------------------------------------------------------------
  // In-place weak references.
  void LoadWeakValue(Register out, Register in, Label* target_if_cleared);

  // ---------------------------------------------------------------------------
  // StatsCounter support

  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2);
  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2);

  // ---------------------------------------------------------------------------
  // Garbage collector support (GC).

  // Push and pop the registers that can hold pointers, as defined by the
  // RegList constant kSafepointSavedRegisters.
  void PushSafepointRegisters();
  void PopSafepointRegisters();

  void CheckPageFlag(const Register& object, const Register& scratch, int mask,
                     Condition cc, Label* condition_met);

  // Notify the garbage collector that we wrote a pointer into an object.
  // |object| is the object being stored into, |value| is the object being
  // stored.  value and scratch registers are clobbered by the operation.
  // The offset is the offset from the start of the object, not the offset from
  // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
  void RecordWriteField(
      Register object, int offset, Register value, Register scratch,
      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK);

  // For a given |object| notify the garbage collector that the slot |address|
  // has been written.  |value| is the object being stored. The value and
  // address registers are clobbered by the operation.
  void RecordWrite(
      Register object, Register address, Register value,
      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK);

  // ---------------------------------------------------------------------------
  // Debugging.

  void AssertRegisterIsRoot(
      Register reg, Heap::RootListIndex index,
      AbortReason reason = AbortReason::kRegisterDidNotMatchExpectedRoot);

  // Abort if the specified register contains the invalid color bit pattern.
  // The pattern must be in bits [1:0] of 'reg' register.
  //
  // If emit_debug_code() is false, this emits no code.
  void AssertHasValidColor(const Register& reg);

  void LoadNativeContextSlot(int index, Register dst);

  // Like printf, but print at run-time from generated code.
  //
  // The caller must ensure that arguments for floating-point placeholders
  // (such as %e, %f or %g) are VRegisters, and that arguments for integer
  // placeholders are Registers.
  //
  // Format placeholders that refer to more than one argument, or to a specific
  // argument, are not supported. This includes formats like "%1$d" or "%.*d".
  //
  // This function automatically preserves caller-saved registers so that
  // calling code can use Printf at any point without having to worry about
  // corruption. The preservation mechanism generates a lot of code. If this is
  // a problem, preserve the important registers manually and then call
  // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
  // implicitly preserved.
  void Printf(const char * format,
              CPURegister arg0 = NoCPUReg,
              CPURegister arg1 = NoCPUReg,
              CPURegister arg2 = NoCPUReg,
              CPURegister arg3 = NoCPUReg);

  // Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
  //
  // The return code from the system printf call will be returned in x0.
  void PrintfNoPreserve(const char * format,
                        const CPURegister& arg0 = NoCPUReg,
                        const CPURegister& arg1 = NoCPUReg,
                        const CPURegister& arg2 = NoCPUReg,
                        const CPURegister& arg3 = NoCPUReg);

 private:
  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
  void InNewSpace(Register object,
                  Condition cond,  // eq for new space, ne otherwise.
                  Label* branch);

  // Try to represent a double as an int so that integer fast-paths may be
  // used. Not every valid integer value is guaranteed to be caught.
  // It supports both 32-bit and 64-bit integers depending whether 'as_int'
  // is a W or X register.
  //
  // This does not distinguish between +0 and -0, so if this distinction is
  // important it must be checked separately.
  //
  // On output the Z flag is set if the operation was successful.
  void TryRepresentDoubleAsInt(Register as_int, VRegister value,
                               VRegister scratch_d,
                               Label* on_successful_conversion = nullptr,
                               Label* on_failed_conversion = nullptr);

 public:
  // Far branches resolving.
  //
  // The various classes of branch instructions with immediate offsets have
  // different ranges. While the Assembler will fail to assemble a branch
  // exceeding its range, the MacroAssembler offers a mechanism to resolve
  // branches to too distant targets, either by tweaking the generated code to
  // use branch instructions with wider ranges or generating veneers.
  //
  // Currently branches to distant targets are resolved using unconditional
  // branch isntructions with a range of +-128MB. If that becomes too little
  // (!), the mechanism can be extended to generate special veneers for really
  // far targets.
};


// Use this scope when you need a one-to-one mapping between methods and
// instructions. This scope prevents the MacroAssembler from being called and
// literal pools from being emitted. It also asserts the number of instructions
// emitted is what you specified when creating the scope.
class InstructionAccurateScope BASE_EMBEDDED {
 public:
  explicit InstructionAccurateScope(TurboAssembler* tasm, size_t count = 0)
      : tasm_(tasm)
#ifdef DEBUG
        ,
        size_(count * kInstructionSize)
#endif
  {
    // Before blocking the const pool, see if it needs to be emitted.
    tasm_->CheckConstPool(false, true);
    tasm_->CheckVeneerPool(false, true);

    tasm_->StartBlockPools();
#ifdef DEBUG
    if (count != 0) {
      tasm_->bind(&start_);
    }
    previous_allow_macro_instructions_ = tasm_->allow_macro_instructions();
    tasm_->set_allow_macro_instructions(false);
#endif
  }

  ~InstructionAccurateScope() {
    tasm_->EndBlockPools();
#ifdef DEBUG
    if (start_.is_bound()) {
      DCHECK(tasm_->SizeOfCodeGeneratedSince(&start_) == size_);
    }
    tasm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
#endif
  }

 private:
  TurboAssembler* tasm_;
#ifdef DEBUG
  size_t size_;
  Label start_;
  bool previous_allow_macro_instructions_;
#endif
};

// This scope utility allows scratch registers to be managed safely. The
// TurboAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
// registers. These registers can be allocated on demand, and will be returned
// at the end of the scope.
//
// When the scope ends, the MacroAssembler's lists will be restored to their
// original state, even if the lists were modified by some other means. Note
// that this scope can be nested but the destructors need to run in the opposite
// order as the constructors. We do not have assertions for this.
class UseScratchRegisterScope {
 public:
  explicit UseScratchRegisterScope(TurboAssembler* tasm)
      : available_(tasm->TmpList()),
        availablefp_(tasm->FPTmpList()),
        old_available_(available_->list()),
        old_availablefp_(availablefp_->list()) {
    DCHECK_EQ(available_->type(), CPURegister::kRegister);
    DCHECK_EQ(availablefp_->type(), CPURegister::kVRegister);
  }

  ~UseScratchRegisterScope();

  // Take a register from the appropriate temps list. It will be returned
  // automatically when the scope ends.
  Register AcquireW() { return AcquireNextAvailable(available_).W(); }
  Register AcquireX() { return AcquireNextAvailable(available_).X(); }
  VRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
  VRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
  VRegister AcquireQ() { return AcquireNextAvailable(availablefp_).Q(); }
  VRegister AcquireV(VectorFormat format) {
    return VRegister::Create(AcquireNextAvailable(availablefp_).code(), format);
  }

  Register AcquireSameSizeAs(const Register& reg);
  VRegister AcquireSameSizeAs(const VRegister& reg);

 private:
  static CPURegister AcquireNextAvailable(CPURegList* available);

  // Available scratch registers.
  CPURegList* available_;     // kRegister
  CPURegList* availablefp_;   // kVRegister

  // The state of the available lists at the start of this scope.
  RegList old_available_;     // kRegister
  RegList old_availablefp_;   // kVRegister
};

MemOperand ContextMemOperand(Register context, int index = 0);
MemOperand NativeContextMemOperand();

// Encode and decode information about patchable inline SMI checks.
class InlineSmiCheckInfo {
 public:
  explicit InlineSmiCheckInfo(Address info);

  bool HasSmiCheck() const { return smi_check_ != nullptr; }

  const Register& SmiRegister() const {
    return reg_;
  }

  Instruction* SmiCheck() const {
    return smi_check_;
  }

  int SmiCheckDelta() const { return smi_check_delta_; }

  // Use MacroAssembler::InlineData to emit information about patchable inline
  // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
  // indicate that there is no inline SMI check. Note that 'reg' cannot be sp.
  //
  // The generated patch information can be read using the InlineSMICheckInfo
  // class.
  static void Emit(MacroAssembler* masm, const Register& reg,
                   const Label* smi_check);

  // Emit information to indicate that there is no inline SMI check.
  static void EmitNotInlined(MacroAssembler* masm) {
    Label unbound;
    Emit(masm, NoReg, &unbound);
  }

 private:
  Register reg_;
  int smi_check_delta_;
  Instruction* smi_check_;

  // Fields in the data encoded by InlineData.

  // A width of 5 (Rd_width) for the SMI register precludes the use of sp,
  // since kSPRegInternalCode is 63. However, sp should never hold a SMI or be
  // used in a patchable check. The Emit() method checks this.
  //
  // Note that the total size of the fields is restricted by the underlying
  // storage size handled by the BitField class, which is a uint32_t.
  class RegisterBits : public BitField<unsigned, 0, 5> {};
  class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
};

}  // namespace internal
}  // namespace v8

#define ACCESS_MASM(masm) masm->

#endif  // V8_ARM64_MACRO_ASSEMBLER_ARM64_H_