// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // The reason we write our own hash map instead of using unordered_map in STL, // is that STL containers use a mutex pool on debug build, which will lead to // deadlock when we are using async signal handler. #ifndef V8_BASE_HASHMAP_H_ #define V8_BASE_HASHMAP_H_ #include <stdlib.h> #include "src/base/bits.h" #include "src/base/hashmap-entry.h" #include "src/base/logging.h" namespace v8 { namespace base { class DefaultAllocationPolicy { public: V8_INLINE void* New(size_t size) { return malloc(size); } V8_INLINE static void Delete(void* p) { free(p); } }; template <typename Key, typename Value, class MatchFun, class AllocationPolicy> class TemplateHashMapImpl { public: typedef TemplateHashMapEntry<Key, Value> Entry; // The default capacity. This is used by the call sites which want // to pass in a non-default AllocationPolicy but want to use the // default value of capacity specified by the implementation. static const uint32_t kDefaultHashMapCapacity = 8; // initial_capacity is the size of the initial hash map; // it must be a power of 2 (and thus must not be 0). TemplateHashMapImpl(uint32_t capacity = kDefaultHashMapCapacity, MatchFun match = MatchFun(), AllocationPolicy allocator = AllocationPolicy()); // Clones the given hashmap and creates a copy with the same entries. TemplateHashMapImpl(const TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>* original, AllocationPolicy allocator = AllocationPolicy()); ~TemplateHashMapImpl(); // If an entry with matching key is found, returns that entry. // Otherwise, nullptr is returned. Entry* Lookup(const Key& key, uint32_t hash) const; // If an entry with matching key is found, returns that entry. // If no matching entry is found, a new entry is inserted with // corresponding key, key hash, and default initialized value. Entry* LookupOrInsert(const Key& key, uint32_t hash, AllocationPolicy allocator = AllocationPolicy()); // If an entry with matching key is found, returns that entry. // If no matching entry is found, a new entry is inserted with // corresponding key, key hash, and value created by func. template <typename Func> Entry* LookupOrInsert(const Key& key, uint32_t hash, const Func& value_func, AllocationPolicy allocator = AllocationPolicy()); Entry* InsertNew(const Key& key, uint32_t hash, AllocationPolicy allocator = AllocationPolicy()); // Removes the entry with matching key. // It returns the value of the deleted entry // or null if there is no value for such key. Value Remove(const Key& key, uint32_t hash); // Empties the hash map (occupancy() == 0). void Clear(); // Empties the map and makes it unusable for allocation. void Invalidate() { AllocationPolicy::Delete(map_); map_ = nullptr; occupancy_ = 0; capacity_ = 0; } // The number of (non-empty) entries in the table. uint32_t occupancy() const { return occupancy_; } // The capacity of the table. The implementation // makes sure that occupancy is at most 80% of // the table capacity. uint32_t capacity() const { return capacity_; } // Iteration // // for (Entry* p = map.Start(); p != nullptr; p = map.Next(p)) { // ... // } // // If entries are inserted during iteration, the effect of // calling Next() is undefined. Entry* Start() const; Entry* Next(Entry* entry) const; void Reset(AllocationPolicy allocator) { Initialize(capacity_, allocator); occupancy_ = 0; } protected: void Initialize(uint32_t capacity, AllocationPolicy allocator); private: Entry* map_; uint32_t capacity_; uint32_t occupancy_; // TODO(leszeks): This takes up space even if it has no state, maybe replace // with something that does the empty base optimisation e.g. std::tuple MatchFun match_; Entry* map_end() const { return map_ + capacity_; } Entry* Probe(const Key& key, uint32_t hash) const; Entry* FillEmptyEntry(Entry* entry, const Key& key, const Value& value, uint32_t hash, AllocationPolicy allocator = AllocationPolicy()); void Resize(AllocationPolicy allocator); DISALLOW_COPY_AND_ASSIGN(TemplateHashMapImpl); }; template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>:: TemplateHashMapImpl(uint32_t initial_capacity, MatchFun match, AllocationPolicy allocator) : match_(match) { Initialize(initial_capacity, allocator); } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>:: TemplateHashMapImpl(const TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>* original, AllocationPolicy allocator) : capacity_(original->capacity_), occupancy_(original->occupancy_), match_(original->match_) { map_ = reinterpret_cast<Entry*>(allocator.New(capacity_ * sizeof(Entry))); memcpy(map_, original->map_, capacity_ * sizeof(Entry)); } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::~TemplateHashMapImpl() { AllocationPolicy::Delete(map_); } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Lookup( const Key& key, uint32_t hash) const { Entry* entry = Probe(key, hash); return entry->exists() ? entry : nullptr; } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::LookupOrInsert( const Key& key, uint32_t hash, AllocationPolicy allocator) { return LookupOrInsert(key, hash, []() { return Value(); }, allocator); } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> template <typename Func> typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::LookupOrInsert( const Key& key, uint32_t hash, const Func& value_func, AllocationPolicy allocator) { // Find a matching entry. Entry* entry = Probe(key, hash); if (entry->exists()) { return entry; } return FillEmptyEntry(entry, key, value_func(), hash, allocator); } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::InsertNew( const Key& key, uint32_t hash, AllocationPolicy allocator) { Entry* entry = Probe(key, hash); return FillEmptyEntry(entry, key, Value(), hash, allocator); } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> Value TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Remove( const Key& key, uint32_t hash) { // Lookup the entry for the key to remove. Entry* p = Probe(key, hash); if (!p->exists()) { // Key not found nothing to remove. return nullptr; } Value value = p->value; // To remove an entry we need to ensure that it does not create an empty // entry that will cause the search for another entry to stop too soon. If all // the entries between the entry to remove and the next empty slot have their // initial position inside this interval, clearing the entry to remove will // not break the search. If, while searching for the next empty entry, an // entry is encountered which does not have its initial position between the // entry to remove and the position looked at, then this entry can be moved to // the place of the entry to remove without breaking the search for it. The // entry made vacant by this move is now the entry to remove and the process // starts over. // Algorithm from http://en.wikipedia.org/wiki/Open_addressing. // This guarantees loop termination as there is at least one empty entry so // eventually the removed entry will have an empty entry after it. DCHECK(occupancy_ < capacity_); // p is the candidate entry to clear. q is used to scan forwards. Entry* q = p; // Start at the entry to remove. while (true) { // Move q to the next entry. q = q + 1; if (q == map_end()) { q = map_; } // All entries between p and q have their initial position between p and q // and the entry p can be cleared without breaking the search for these // entries. if (!q->exists()) { break; } // Find the initial position for the entry at position q. Entry* r = map_ + (q->hash & (capacity_ - 1)); // If the entry at position q has its initial position outside the range // between p and q it can be moved forward to position p and will still be // found. There is now a new candidate entry for clearing. if ((q > p && (r <= p || r > q)) || (q < p && (r <= p && r > q))) { *p = *q; p = q; } } // Clear the entry which is allowed to en emptied. p->clear(); occupancy_--; return value; } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> void TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Clear() { // Mark all entries as empty. for (size_t i = 0; i < capacity_; ++i) { map_[i].clear(); } occupancy_ = 0; } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Start() const { return Next(map_ - 1); } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Next( Entry* entry) const { const Entry* end = map_end(); DCHECK(map_ - 1 <= entry && entry < end); for (entry++; entry < end; entry++) { if (entry->exists()) { return entry; } } return nullptr; } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Probe( const Key& key, uint32_t hash) const { DCHECK(base::bits::IsPowerOfTwo(capacity_)); size_t i = hash & (capacity_ - 1); DCHECK(i < capacity_); DCHECK(occupancy_ < capacity_); // Guarantees loop termination. while (map_[i].exists() && !match_(hash, map_[i].hash, key, map_[i].key)) { i = (i + 1) & (capacity_ - 1); } return &map_[i]; } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::FillEmptyEntry( Entry* entry, const Key& key, const Value& value, uint32_t hash, AllocationPolicy allocator) { DCHECK(!entry->exists()); new (entry) Entry(key, value, hash); occupancy_++; // Grow the map if we reached >= 80% occupancy. if (occupancy_ + occupancy_ / 4 >= capacity_) { Resize(allocator); entry = Probe(key, hash); } return entry; } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> void TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Initialize( uint32_t capacity, AllocationPolicy allocator) { DCHECK(base::bits::IsPowerOfTwo(capacity)); map_ = reinterpret_cast<Entry*>(allocator.New(capacity * sizeof(Entry))); if (map_ == nullptr) { FATAL("Out of memory: HashMap::Initialize"); return; } capacity_ = capacity; Clear(); } template <typename Key, typename Value, typename MatchFun, class AllocationPolicy> void TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Resize( AllocationPolicy allocator) { Entry* map = map_; uint32_t n = occupancy_; // Allocate larger map. Initialize(capacity_ * 2, allocator); // Rehash all current entries. for (Entry* entry = map; n > 0; entry++) { if (entry->exists()) { Entry* new_entry = Probe(entry->key, entry->hash); new_entry = FillEmptyEntry(new_entry, entry->key, entry->value, entry->hash, allocator); n--; } } // Delete old map. AllocationPolicy::Delete(map); } // Match function which compares hashes before executing a (potentially // expensive) key comparison. template <typename Key, typename MatchFun> struct HashEqualityThenKeyMatcher { explicit HashEqualityThenKeyMatcher(MatchFun match) : match_(match) {} bool operator()(uint32_t hash1, uint32_t hash2, const Key& key1, const Key& key2) const { return hash1 == hash2 && match_(key1, key2); } private: MatchFun match_; }; // Hashmap<void*, void*> which takes a custom key comparison function pointer. template <typename AllocationPolicy> class CustomMatcherTemplateHashMapImpl : public TemplateHashMapImpl< void*, void*, HashEqualityThenKeyMatcher<void*, bool (*)(void*, void*)>, AllocationPolicy> { typedef TemplateHashMapImpl< void*, void*, HashEqualityThenKeyMatcher<void*, bool (*)(void*, void*)>, AllocationPolicy> Base; public: typedef bool (*MatchFun)(void*, void*); CustomMatcherTemplateHashMapImpl( MatchFun match, uint32_t capacity = Base::kDefaultHashMapCapacity, AllocationPolicy allocator = AllocationPolicy()) : Base(capacity, HashEqualityThenKeyMatcher<void*, MatchFun>(match), allocator) {} CustomMatcherTemplateHashMapImpl( const CustomMatcherTemplateHashMapImpl<AllocationPolicy>* original, AllocationPolicy allocator = AllocationPolicy()) : Base(original, allocator) {} private: DISALLOW_COPY_AND_ASSIGN(CustomMatcherTemplateHashMapImpl); }; typedef CustomMatcherTemplateHashMapImpl<DefaultAllocationPolicy> CustomMatcherHashMap; // Match function which compares keys directly by equality. template <typename Key> struct KeyEqualityMatcher { bool operator()(uint32_t hash1, uint32_t hash2, const Key& key1, const Key& key2) const { return key1 == key2; } }; // Hashmap<void*, void*> which compares the key pointers directly. template <typename AllocationPolicy> class PointerTemplateHashMapImpl : public TemplateHashMapImpl<void*, void*, KeyEqualityMatcher<void*>, AllocationPolicy> { typedef TemplateHashMapImpl<void*, void*, KeyEqualityMatcher<void*>, AllocationPolicy> Base; public: PointerTemplateHashMapImpl(uint32_t capacity = Base::kDefaultHashMapCapacity, AllocationPolicy allocator = AllocationPolicy()) : Base(capacity, KeyEqualityMatcher<void*>(), allocator) {} }; typedef PointerTemplateHashMapImpl<DefaultAllocationPolicy> HashMap; // A hash map for pointer keys and values with an STL-like interface. template <class Key, class Value, class MatchFun, class AllocationPolicy> class TemplateHashMap : private TemplateHashMapImpl<void*, void*, HashEqualityThenKeyMatcher<void*, MatchFun>, AllocationPolicy> { typedef TemplateHashMapImpl<void*, void*, HashEqualityThenKeyMatcher<void*, MatchFun>, AllocationPolicy> Base; public: STATIC_ASSERT(sizeof(Key*) == sizeof(void*)); // NOLINT STATIC_ASSERT(sizeof(Value*) == sizeof(void*)); // NOLINT struct value_type { Key* first; Value* second; }; class Iterator { public: Iterator& operator++() { entry_ = map_->Next(entry_); return *this; } value_type* operator->() { return reinterpret_cast<value_type*>(entry_); } bool operator!=(const Iterator& other) { return entry_ != other.entry_; } private: Iterator(const Base* map, typename Base::Entry* entry) : map_(map), entry_(entry) {} const Base* map_; typename Base::Entry* entry_; friend class TemplateHashMap; }; TemplateHashMap(MatchFun match, AllocationPolicy allocator = AllocationPolicy()) : Base(Base::kDefaultHashMapCapacity, HashEqualityThenKeyMatcher<void*, MatchFun>(match), allocator) {} Iterator begin() const { return Iterator(this, this->Start()); } Iterator end() const { return Iterator(this, nullptr); } Iterator find(Key* key, bool insert = false, AllocationPolicy allocator = AllocationPolicy()) { if (insert) { return Iterator(this, this->LookupOrInsert(key, key->Hash(), allocator)); } return Iterator(this, this->Lookup(key, key->Hash())); } }; } // namespace base } // namespace v8 #endif // V8_BASE_HASHMAP_H_