// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_FACTORY_H_ #define V8_HEAP_FACTORY_H_ // Clients of this interface shouldn't depend on lots of heap internals. // Do not include anything from src/heap here! #include "src/builtins/builtins.h" #include "src/function-kind.h" #include "src/globals.h" #include "src/handles.h" #include "src/heap/heap.h" #include "src/maybe-handles.h" #include "src/messages.h" #include "src/objects/code.h" #include "src/objects/dictionary.h" #include "src/objects/js-array.h" #include "src/objects/js-regexp.h" #include "src/objects/string.h" namespace v8 { namespace internal { // Forward declarations. class AliasedArgumentsEntry; class ObjectBoilerplateDescription; class BreakPoint; class BreakPointInfo; class CallableTask; class CallbackTask; class CallHandlerInfo; class Expression; class EmbedderDataArray; class ArrayBoilerplateDescription; class CoverageInfo; class DebugInfo; class EnumCache; class FinalizationGroupCleanupJobTask; class FreshlyAllocatedBigInt; class Isolate; class JSDataView; class JSGeneratorObject; class JSMap; class JSMapIterator; class JSModuleNamespace; class JSPromise; class JSProxy; class JSSet; class JSSetIterator; class JSTypedArray; class JSWeakMap; class LoadHandler; class ModuleInfo; class NativeContext; class NewFunctionArgs; class PreparseData; class PromiseResolveThenableJobTask; class RegExpMatchInfo; class ScriptContextTable; class StackFrameInfo; class StackTraceFrame; class StoreHandler; class TemplateObjectDescription; class UncompiledDataWithoutPreparseData; class UncompiledDataWithPreparseData; class WasmExportedFunctionData; class WeakCell; struct SourceRange; template <typename T> class ZoneVector; enum class SharedFlag : uint32_t; enum FunctionMode { kWithNameBit = 1 << 0, kWithHomeObjectBit = 1 << 1, kWithWritablePrototypeBit = 1 << 2, kWithReadonlyPrototypeBit = 1 << 3, kWithPrototypeBits = kWithWritablePrototypeBit | kWithReadonlyPrototypeBit, // Without prototype. FUNCTION_WITHOUT_PROTOTYPE = 0, METHOD_WITH_NAME = kWithNameBit, METHOD_WITH_HOME_OBJECT = kWithHomeObjectBit, METHOD_WITH_NAME_AND_HOME_OBJECT = kWithNameBit | kWithHomeObjectBit, // With writable prototype. FUNCTION_WITH_WRITEABLE_PROTOTYPE = kWithWritablePrototypeBit, FUNCTION_WITH_NAME_AND_WRITEABLE_PROTOTYPE = kWithWritablePrototypeBit | kWithNameBit, FUNCTION_WITH_HOME_OBJECT_AND_WRITEABLE_PROTOTYPE = kWithWritablePrototypeBit | kWithHomeObjectBit, FUNCTION_WITH_NAME_AND_HOME_OBJECT_AND_WRITEABLE_PROTOTYPE = kWithWritablePrototypeBit | kWithNameBit | kWithHomeObjectBit, // With readonly prototype. FUNCTION_WITH_READONLY_PROTOTYPE = kWithReadonlyPrototypeBit, FUNCTION_WITH_NAME_AND_READONLY_PROTOTYPE = kWithReadonlyPrototypeBit | kWithNameBit, }; // Interface for handle based allocation. class V8_EXPORT_PRIVATE Factory { public: Handle<Oddball> NewOddball( Handle<Map> map, const char* to_string, Handle<Object> to_number, const char* type_of, byte kind, AllocationType allocation = AllocationType::kReadOnly); // Marks self references within code generation. Handle<Oddball> NewSelfReferenceMarker( AllocationType allocation = AllocationType::kOld); // Allocates a fixed array-like object with given map and initialized with // undefined values. template <typename T = FixedArray> Handle<T> NewFixedArrayWithMap( RootIndex map_root_index, int length, AllocationType allocation = AllocationType::kYoung); // Allocates a weak fixed array-like object with given map and initialized // with undefined values. template <typename T = WeakFixedArray> Handle<T> NewWeakFixedArrayWithMap( RootIndex map_root_index, int length, AllocationType allocation = AllocationType::kYoung); // Allocates a fixed array initialized with undefined values. Handle<FixedArray> NewFixedArray( int length, AllocationType allocation = AllocationType::kYoung); // Allocates a fixed array which may contain in-place weak references. The // array is initialized with undefined values Handle<WeakFixedArray> NewWeakFixedArray( int length, AllocationType allocation = AllocationType::kYoung); // Allocates a property array initialized with undefined values. Handle<PropertyArray> NewPropertyArray( int length, AllocationType allocation = AllocationType::kYoung); // Tries allocating a fixed array initialized with undefined values. // In case of an allocation failure (OOM) an empty handle is returned. // The caller has to manually signal an // v8::internal::Heap::FatalProcessOutOfMemory typically by calling // NewFixedArray as a fallback. V8_WARN_UNUSED_RESULT MaybeHandle<FixedArray> TryNewFixedArray( int length, AllocationType allocation = AllocationType::kYoung); // Allocate a new fixed array with non-existing entries (the hole). Handle<FixedArray> NewFixedArrayWithHoles( int length, AllocationType allocation = AllocationType::kYoung); // Allocates an uninitialized fixed array. It must be filled by the caller. Handle<FixedArray> NewUninitializedFixedArray( int length, AllocationType allocation = AllocationType::kYoung); // Allocates a closure feedback cell array whose feedback cells are // initialized with undefined values. Handle<ClosureFeedbackCellArray> NewClosureFeedbackCellArray( int num_slots, AllocationType allocation = AllocationType::kYoung); // Allocates a feedback vector whose slots are initialized with undefined // values. Handle<FeedbackVector> NewFeedbackVector( Handle<SharedFunctionInfo> shared, Handle<ClosureFeedbackCellArray> closure_feedback_cell_array, AllocationType allocation = AllocationType::kYoung); // Allocates a clean embedder data array with given capacity. Handle<EmbedderDataArray> NewEmbedderDataArray( int length, AllocationType allocation = AllocationType::kYoung); // Allocates a fixed array for name-value pairs of boilerplate properties and // calculates the number of properties we need to store in the backing store. Handle<ObjectBoilerplateDescription> NewObjectBoilerplateDescription( int boilerplate, int all_properties, int index_keys, bool has_seen_proto); // Allocate a new uninitialized fixed double array. // The function returns a pre-allocated empty fixed array for length = 0, // so the return type must be the general fixed array class. Handle<FixedArrayBase> NewFixedDoubleArray( int length, AllocationType allocation = AllocationType::kYoung); // Allocate a new fixed double array with hole values. Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles( int size, AllocationType allocation = AllocationType::kYoung); // Allocates a FeedbackMedata object and zeroes the data section. Handle<FeedbackMetadata> NewFeedbackMetadata( int slot_count, int feedback_cell_count, AllocationType allocation = AllocationType::kOld); Handle<FrameArray> NewFrameArray( int number_of_frames, AllocationType allocation = AllocationType::kYoung); Handle<OrderedHashSet> NewOrderedHashSet(); Handle<OrderedHashMap> NewOrderedHashMap(); Handle<OrderedNameDictionary> NewOrderedNameDictionary(); Handle<SmallOrderedHashSet> NewSmallOrderedHashSet( int capacity = kSmallOrderedHashSetMinCapacity, AllocationType allocation = AllocationType::kYoung); Handle<SmallOrderedHashMap> NewSmallOrderedHashMap( int capacity = kSmallOrderedHashMapMinCapacity, AllocationType allocation = AllocationType::kYoung); Handle<SmallOrderedNameDictionary> NewSmallOrderedNameDictionary( int capacity = kSmallOrderedHashMapMinCapacity, AllocationType allocation = AllocationType::kYoung); // Create a new PrototypeInfo struct. Handle<PrototypeInfo> NewPrototypeInfo(); // Create a new EnumCache struct. Handle<EnumCache> NewEnumCache(Handle<FixedArray> keys, Handle<FixedArray> indices); // Create a new Tuple2 struct. Handle<Tuple2> NewTuple2(Handle<Object> value1, Handle<Object> value2, AllocationType allocation); // Create a new Tuple3 struct. Handle<Tuple3> NewTuple3(Handle<Object> value1, Handle<Object> value2, Handle<Object> value3, AllocationType allocation); // Create a new ArrayBoilerplateDescription struct. Handle<ArrayBoilerplateDescription> NewArrayBoilerplateDescription( ElementsKind elements_kind, Handle<FixedArrayBase> constant_values); // Create a new TemplateObjectDescription struct. Handle<TemplateObjectDescription> NewTemplateObjectDescription( Handle<FixedArray> raw_strings, Handle<FixedArray> cooked_strings); // Create a pre-tenured empty AccessorPair. Handle<AccessorPair> NewAccessorPair(); // Finds the internalized copy for string in the string table. // If not found, a new string is added to the table and returned. Handle<String> InternalizeUtf8String(Vector<const char> str); Handle<String> InternalizeUtf8String(const char* str) { return InternalizeUtf8String(CStrVector(str)); } Handle<String> InternalizeOneByteString(Vector<const uint8_t> str); Handle<String> InternalizeOneByteString(Handle<SeqOneByteString>, int from, int length); Handle<String> InternalizeTwoByteString(Vector<const uc16> str); template <class StringTableKey> Handle<String> InternalizeStringWithKey(StringTableKey* key); // Internalized strings are created in the old generation (data space). inline Handle<String> InternalizeString(Handle<String> string); inline Handle<Name> InternalizeName(Handle<Name> name); // String creation functions. Most of the string creation functions take // an AllocationType argument to optionally request that they be // allocated in the old generation. Otherwise the default is // AllocationType::kYoung. // // Creates a new String object. There are two String encodings: one-byte and // two-byte. One should choose between the three string factory functions // based on the encoding of the string buffer that the string is // initialized from. // - ...FromOneByte initializes the string from a buffer that is Latin1 // encoded (it does not check that the buffer is Latin1 encoded) and // the result will be Latin1 encoded. // - ...FromUtf8 initializes the string from a buffer that is UTF-8 // encoded. If the characters are all ASCII characters, the result // will be Latin1 encoded, otherwise it will converted to two-byte. // - ...FromTwoByte initializes the string from a buffer that is two-byte // encoded. If the characters are all Latin1 characters, the result // will be converted to Latin1, otherwise it will be left as two-byte. // // One-byte strings are pretenured when used as keys in the SourceCodeCache. V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromOneByte( Vector<const uint8_t> str, AllocationType allocation = AllocationType::kYoung); template <size_t N> inline Handle<String> NewStringFromStaticChars( const char (&str)[N], AllocationType allocation = AllocationType::kYoung) { DCHECK(N == StrLength(str) + 1); return NewStringFromOneByte(StaticCharVector(str), allocation) .ToHandleChecked(); } inline Handle<String> NewStringFromAsciiChecked( const char* str, AllocationType allocation = AllocationType::kYoung) { return NewStringFromOneByte(OneByteVector(str), allocation) .ToHandleChecked(); } // UTF8 strings are pretenured when used for regexp literal patterns and // flags in the parser. V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromUtf8( Vector<const char> str, AllocationType allocation = AllocationType::kYoung); V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromUtf8SubString( Handle<SeqOneByteString> str, int begin, int end, AllocationType allocation = AllocationType::kYoung); V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromTwoByte( Vector<const uc16> str, AllocationType allocation = AllocationType::kYoung); V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromTwoByte( const ZoneVector<uc16>* str, AllocationType allocation = AllocationType::kYoung); Handle<JSStringIterator> NewJSStringIterator(Handle<String> string); // Allocates an internalized string in old space based on the character // stream. Handle<String> NewInternalizedStringFromUtf8(Vector<const char> str, int chars, uint32_t hash_field); Handle<String> NewOneByteInternalizedString(Vector<const uint8_t> str, uint32_t hash_field); Handle<String> NewOneByteInternalizedSubString( Handle<SeqOneByteString> string, int offset, int length, uint32_t hash_field); Handle<String> NewTwoByteInternalizedString(Vector<const uc16> str, uint32_t hash_field); Handle<String> NewInternalizedStringImpl(Handle<String> string, int chars, uint32_t hash_field); // Compute the matching internalized string map for a string if possible. // Empty handle is returned if string is in new space or not flattened. V8_WARN_UNUSED_RESULT MaybeHandle<Map> InternalizedStringMapForString( Handle<String> string); // Creates an internalized copy of an external string. |string| must be // of type StringClass. template <class StringClass> Handle<StringClass> InternalizeExternalString(Handle<String> string); // Allocates and partially initializes an one-byte or two-byte String. The // characters of the string are uninitialized. Currently used in regexp code // only, where they are pretenured. V8_WARN_UNUSED_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString( int length, AllocationType allocation = AllocationType::kYoung); V8_WARN_UNUSED_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString( int length, AllocationType allocation = AllocationType::kYoung); // Creates a single character string where the character has given code. // A cache is used for Latin1 codes. Handle<String> LookupSingleCharacterStringFromCode(uint32_t code); // Create a new cons string object which consists of a pair of strings. V8_WARN_UNUSED_RESULT MaybeHandle<String> NewConsString(Handle<String> left, Handle<String> right); V8_WARN_UNUSED_RESULT Handle<String> NewConsString(Handle<String> left, Handle<String> right, int length, bool one_byte); // Create or lookup a single characters tring made up of a utf16 surrogate // pair. Handle<String> NewSurrogatePairString(uint16_t lead, uint16_t trail); // Create a new string object which holds a proper substring of a string. Handle<String> NewProperSubString(Handle<String> str, int begin, int end); // Create a new string object which holds a substring of a string. inline Handle<String> NewSubString(Handle<String> str, int begin, int end); // Creates a new external String object. There are two String encodings // in the system: one-byte and two-byte. Unlike other String types, it does // not make sense to have a UTF-8 factory function for external strings, // because we cannot change the underlying buffer. Note that these strings // are backed by a string resource that resides outside the V8 heap. V8_WARN_UNUSED_RESULT MaybeHandle<String> NewExternalStringFromOneByte( const ExternalOneByteString::Resource* resource); V8_WARN_UNUSED_RESULT MaybeHandle<String> NewExternalStringFromTwoByte( const ExternalTwoByteString::Resource* resource); // Create a new external string object for one-byte encoded native script. // It does not cache the resource data pointer. Handle<ExternalOneByteString> NewNativeSourceString( const ExternalOneByteString::Resource* resource); // Create a symbol in old or read-only space. Handle<Symbol> NewSymbol(AllocationType allocation = AllocationType::kOld); Handle<Symbol> NewPrivateSymbol( AllocationType allocation = AllocationType::kOld); Handle<Symbol> NewPrivateNameSymbol(Handle<String> name); // Create a global (but otherwise uninitialized) context. Handle<NativeContext> NewNativeContext(); // Create a script context. Handle<Context> NewScriptContext(Handle<NativeContext> outer, Handle<ScopeInfo> scope_info); // Create an empty script context table. Handle<ScriptContextTable> NewScriptContextTable(); // Create a module context. Handle<Context> NewModuleContext(Handle<Module> module, Handle<NativeContext> outer, Handle<ScopeInfo> scope_info); // Create a function or eval context. Handle<Context> NewFunctionContext(Handle<Context> outer, Handle<ScopeInfo> scope_info); // Create a catch context. Handle<Context> NewCatchContext(Handle<Context> previous, Handle<ScopeInfo> scope_info, Handle<Object> thrown_object); // Create a 'with' context. Handle<Context> NewWithContext(Handle<Context> previous, Handle<ScopeInfo> scope_info, Handle<JSReceiver> extension); Handle<Context> NewDebugEvaluateContext(Handle<Context> previous, Handle<ScopeInfo> scope_info, Handle<JSReceiver> extension, Handle<Context> wrapped, Handle<StringSet> whitelist); // Create a block context. Handle<Context> NewBlockContext(Handle<Context> previous, Handle<ScopeInfo> scope_info); // Create a context that's used by builtin functions. // // These are similar to function context but don't have a previous // context or any scope info. These are used to store spec defined // context values. Handle<Context> NewBuiltinContext(Handle<NativeContext> native_context, int length); Handle<Struct> NewStruct(InstanceType type, AllocationType allocation = AllocationType::kYoung); Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry( int aliased_context_slot); Handle<AccessorInfo> NewAccessorInfo(); Handle<Script> NewScript(Handle<String> source, AllocationType allocation = AllocationType::kOld); Handle<Script> NewScriptWithId( Handle<String> source, int script_id, AllocationType allocation = AllocationType::kOld); Handle<Script> CloneScript(Handle<Script> script); Handle<BreakPointInfo> NewBreakPointInfo(int source_position); Handle<BreakPoint> NewBreakPoint(int id, Handle<String> condition); Handle<StackTraceFrame> NewStackTraceFrame(Handle<FrameArray> frame_array, int index); Handle<StackFrameInfo> NewStackFrameInfo(); Handle<StackFrameInfo> NewStackFrameInfo(Handle<FrameArray> frame_array, int index); Handle<SourcePositionTableWithFrameCache> NewSourcePositionTableWithFrameCache( Handle<ByteArray> source_position_table, Handle<SimpleNumberDictionary> stack_frame_cache); // Allocate various microtasks. Handle<CallableTask> NewCallableTask(Handle<JSReceiver> callable, Handle<Context> context); Handle<CallbackTask> NewCallbackTask(Handle<Foreign> callback, Handle<Foreign> data); Handle<PromiseResolveThenableJobTask> NewPromiseResolveThenableJobTask( Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> then, Handle<JSReceiver> thenable, Handle<Context> context); Handle<FinalizationGroupCleanupJobTask> NewFinalizationGroupCleanupJobTask( Handle<JSFinalizationGroup> finalization_group); // Foreign objects are pretenured when allocated by the bootstrapper. Handle<Foreign> NewForeign( Address addr, AllocationType allocation = AllocationType::kYoung); Handle<ByteArray> NewByteArray( int length, AllocationType allocation = AllocationType::kYoung); Handle<BytecodeArray> NewBytecodeArray(int length, const byte* raw_bytecodes, int frame_size, int parameter_count, Handle<FixedArray> constant_pool); Handle<FixedTypedArrayBase> NewFixedTypedArrayWithExternalPointer( ExternalArrayType array_type, void* external_pointer, AllocationType allocation = AllocationType::kYoung); Handle<FixedTypedArrayBase> NewFixedTypedArray( size_t length, size_t byte_length, ExternalArrayType array_type, bool initialize, AllocationType allocation = AllocationType::kYoung); Handle<Cell> NewCell(Handle<Object> value); Handle<PropertyCell> NewPropertyCell( Handle<Name> name, AllocationType allocation = AllocationType::kOld); Handle<FeedbackCell> NewNoClosuresCell(Handle<HeapObject> value); Handle<FeedbackCell> NewOneClosureCell(Handle<HeapObject> value); Handle<FeedbackCell> NewManyClosuresCell(Handle<HeapObject> value); Handle<DescriptorArray> NewDescriptorArray( int number_of_entries, int slack = 0, AllocationType allocation = AllocationType::kYoung); Handle<TransitionArray> NewTransitionArray(int number_of_transitions, int slack = 0); // Allocate a tenured AllocationSite. Its payload is null. Handle<AllocationSite> NewAllocationSite(bool with_weak_next); // Allocates and initializes a new Map. Handle<Map> NewMap(InstanceType type, int instance_size, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND, int inobject_properties = 0); // Initializes the fields of a newly created Map. Exposed for tests and // heap setup; other code should just call NewMap which takes care of it. Map InitializeMap(Map map, InstanceType type, int instance_size, ElementsKind elements_kind, int inobject_properties); // Allocate a block of memory of the given AllocationType (filled with a // filler). Used as a fall-back for generated code when the space is full. Handle<HeapObject> NewFillerObject(int size, bool double_align, AllocationType allocation); Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function); Handle<WeakCell> NewWeakCell(); // Returns a deep copy of the JavaScript object. // Properties and elements are copied too. Handle<JSObject> CopyJSObject(Handle<JSObject> object); // Same as above, but also takes an AllocationSite to be appended in an // AllocationMemento. Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object, Handle<AllocationSite> site); Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array, Handle<Map> map); Handle<FixedArray> CopyFixedArrayAndGrow( Handle<FixedArray> array, int grow_by, AllocationType allocation = AllocationType::kYoung); Handle<WeakFixedArray> CopyWeakFixedArrayAndGrow( Handle<WeakFixedArray> array, int grow_by, AllocationType allocation = AllocationType::kYoung); Handle<WeakArrayList> CopyWeakArrayListAndGrow( Handle<WeakArrayList> array, int grow_by, AllocationType allocation = AllocationType::kYoung); Handle<PropertyArray> CopyPropertyArrayAndGrow( Handle<PropertyArray> array, int grow_by, AllocationType allocation = AllocationType::kYoung); Handle<FixedArray> CopyFixedArrayUpTo( Handle<FixedArray> array, int new_len, AllocationType allocation = AllocationType::kYoung); Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array); // This method expects a COW array in new space, and creates a copy // of it in old space. Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array); Handle<FixedDoubleArray> CopyFixedDoubleArray(Handle<FixedDoubleArray> array); Handle<FeedbackVector> CopyFeedbackVector(Handle<FeedbackVector> array); // Numbers (e.g. literals) are pretenured by the parser. // The return value may be a smi or a heap number. Handle<Object> NewNumber(double value, AllocationType allocation = AllocationType::kYoung); Handle<Object> NewNumberFromInt( int32_t value, AllocationType allocation = AllocationType::kYoung); Handle<Object> NewNumberFromUint( uint32_t value, AllocationType allocation = AllocationType::kYoung); inline Handle<Object> NewNumberFromSize( size_t value, AllocationType allocation = AllocationType::kYoung); inline Handle<Object> NewNumberFromInt64( int64_t value, AllocationType allocation = AllocationType::kYoung); inline Handle<HeapNumber> NewHeapNumber( double value, AllocationType allocation = AllocationType::kYoung); inline Handle<HeapNumber> NewHeapNumberFromBits( uint64_t bits, AllocationType allocation = AllocationType::kYoung); // Creates heap number object with not yet set value field. Handle<HeapNumber> NewHeapNumber( AllocationType allocation = AllocationType::kYoung); Handle<MutableHeapNumber> NewMutableHeapNumber( AllocationType allocation = AllocationType::kYoung); inline Handle<MutableHeapNumber> NewMutableHeapNumber( double value, AllocationType allocation = AllocationType::kYoung); inline Handle<MutableHeapNumber> NewMutableHeapNumberFromBits( uint64_t bits, AllocationType allocation = AllocationType::kYoung); inline Handle<MutableHeapNumber> NewMutableHeapNumberWithHoleNaN( AllocationType allocation = AllocationType::kYoung); // Allocates a new BigInt with {length} digits. Only to be used by // MutableBigInt::New*. Handle<FreshlyAllocatedBigInt> NewBigInt( int length, AllocationType allocation = AllocationType::kYoung); Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length); // Allocates and initializes a new JavaScript object based on a // constructor. // JS objects are pretenured when allocated by the bootstrapper and // runtime. Handle<JSObject> NewJSObject( Handle<JSFunction> constructor, AllocationType allocation = AllocationType::kYoung); // JSObject without a prototype. Handle<JSObject> NewJSObjectWithNullProto( AllocationType allocation = AllocationType::kYoung); // Global objects are pretenured and initialized based on a constructor. Handle<JSGlobalObject> NewJSGlobalObject(Handle<JSFunction> constructor); // Allocates and initializes a new JavaScript object based on a map. // Passing an allocation site means that a memento will be created that // points to the site. // JS objects are pretenured when allocated by the bootstrapper and // runtime. Handle<JSObject> NewJSObjectFromMap( Handle<Map> map, AllocationType allocation = AllocationType::kYoung, Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null()); Handle<JSObject> NewSlowJSObjectFromMap( Handle<Map> map, int number_of_slow_properties = NameDictionary::kInitialCapacity, AllocationType allocation = AllocationType::kYoung); // Allocates and initializes a new JavaScript object with the given // {prototype} and {properties}. The newly created object will be // in dictionary properties mode. The {elements} can either be the // empty fixed array, in which case the resulting object will have // fast elements, or a NumberDictionary, in which case the resulting // object will have dictionary elements. Handle<JSObject> NewSlowJSObjectWithPropertiesAndElements( Handle<HeapObject> prototype, Handle<NameDictionary> properties, Handle<FixedArrayBase> elements, AllocationType allocation = AllocationType::kYoung); // JS arrays are pretenured when allocated by the parser. // Create a JSArray with a specified length and elements initialized // according to the specified mode. Handle<JSArray> NewJSArray( ElementsKind elements_kind, int length, int capacity, ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS, AllocationType allocation = AllocationType::kYoung); Handle<JSArray> NewJSArray( int capacity, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND, AllocationType allocation = AllocationType::kYoung) { if (capacity != 0) { elements_kind = GetHoleyElementsKind(elements_kind); } return NewJSArray(elements_kind, 0, capacity, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, allocation); } // Create a JSArray with the given elements. Handle<JSArray> NewJSArrayWithElements( Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length, AllocationType allocation = AllocationType::kYoung); inline Handle<JSArray> NewJSArrayWithElements( Handle<FixedArrayBase> elements, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND, AllocationType allocation = AllocationType::kYoung); void NewJSArrayStorage( Handle<JSArray> array, int length, int capacity, ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS); Handle<JSWeakMap> NewJSWeakMap(); Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function); Handle<JSModuleNamespace> NewJSModuleNamespace(); Handle<Module> NewModule(Handle<SharedFunctionInfo> code); Handle<JSArrayBuffer> NewJSArrayBuffer( SharedFlag shared, AllocationType allocation = AllocationType::kYoung); static void TypeAndSizeForElementsKind(ElementsKind kind, ExternalArrayType* array_type, size_t* element_size); Handle<JSTypedArray> NewJSTypedArray( ExternalArrayType type, AllocationType allocation = AllocationType::kYoung); Handle<JSTypedArray> NewJSTypedArray( ElementsKind elements_kind, AllocationType allocation = AllocationType::kYoung); // Creates a new JSTypedArray with the specified buffer. Handle<JSTypedArray> NewJSTypedArray( ExternalArrayType type, Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t length, AllocationType allocation = AllocationType::kYoung); // Creates a new on-heap JSTypedArray. Handle<JSTypedArray> NewJSTypedArray( ElementsKind elements_kind, size_t number_of_elements, AllocationType allocation = AllocationType::kYoung); Handle<JSDataView> NewJSDataView(Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length); Handle<JSIteratorResult> NewJSIteratorResult(Handle<Object> value, bool done); Handle<JSAsyncFromSyncIterator> NewJSAsyncFromSyncIterator( Handle<JSReceiver> sync_iterator, Handle<Object> next); Handle<JSMap> NewJSMap(); Handle<JSSet> NewJSSet(); // Allocates a bound function. MaybeHandle<JSBoundFunction> NewJSBoundFunction( Handle<JSReceiver> target_function, Handle<Object> bound_this, Vector<Handle<Object>> bound_args); // Allocates a Harmony proxy. Handle<JSProxy> NewJSProxy(Handle<JSReceiver> target, Handle<JSReceiver> handler); // Reinitialize an JSGlobalProxy based on a constructor. The object // must have the same size as objects allocated using the // constructor. The object is reinitialized and behaves as an // object that has been freshly allocated using the constructor. void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global, Handle<JSFunction> constructor); Handle<JSGlobalProxy> NewUninitializedJSGlobalProxy(int size); // Creates a new JSFunction according to the given args. This is the function // you'll probably want to use when creating a JSFunction from the runtime. Handle<JSFunction> NewFunction(const NewFunctionArgs& args); // For testing only. Creates a sloppy function without code. Handle<JSFunction> NewFunctionForTest(Handle<String> name); // Function creation from SharedFunctionInfo. Handle<JSFunction> NewFunctionFromSharedFunctionInfo( Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info, Handle<Context> context, Handle<FeedbackCell> feedback_cell, AllocationType allocation = AllocationType::kOld); Handle<JSFunction> NewFunctionFromSharedFunctionInfo( Handle<SharedFunctionInfo> function_info, Handle<Context> context, Handle<FeedbackCell> feedback_cell, AllocationType allocation = AllocationType::kOld); Handle<JSFunction> NewFunctionFromSharedFunctionInfo( Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info, Handle<Context> context, AllocationType allocation = AllocationType::kOld); Handle<JSFunction> NewFunctionFromSharedFunctionInfo( Handle<SharedFunctionInfo> function_info, Handle<Context> context, AllocationType allocation = AllocationType::kOld); // The choke-point for JSFunction creation. Handles allocation and // initialization. All other utility methods call into this. Handle<JSFunction> NewFunction( Handle<Map> map, Handle<SharedFunctionInfo> info, Handle<Context> context, AllocationType allocation = AllocationType::kOld); // Create a serialized scope info. Handle<ScopeInfo> NewScopeInfo(int length); Handle<ModuleInfo> NewModuleInfo(); Handle<PreparseData> NewPreparseData(int data_length, int children_length); Handle<UncompiledDataWithoutPreparseData> NewUncompiledDataWithoutPreparseData(Handle<String> inferred_name, int32_t start_position, int32_t end_position, int32_t function_literal_id); Handle<UncompiledDataWithPreparseData> NewUncompiledDataWithPreparseData( Handle<String> inferred_name, int32_t start_position, int32_t end_position, int32_t function_literal_id, Handle<PreparseData>); // Create an External object for V8's external API. Handle<JSObject> NewExternal(void* value); // Creates a new CodeDataContainer for a Code object. Handle<CodeDataContainer> NewCodeDataContainer(int flags); // Allocates a new code object (fully initialized). All header fields of the // returned object are immutable and the code object is write protected. // The reference to the Code object is stored in self_reference. // This allows generated code to reference its own Code object // by containing this handle. Handle<Code> NewCode(const CodeDesc& desc, Code::Kind kind, Handle<Object> self_reference, int32_t builtin_index = Builtins::kNoBuiltinId, MaybeHandle<ByteArray> maybe_source_position_table = MaybeHandle<ByteArray>(), MaybeHandle<DeoptimizationData> maybe_deopt_data = MaybeHandle<DeoptimizationData>(), Movability movability = kMovable, bool is_turbofanned = false, int stack_slots = 0); // Like NewCode, this function allocates a new code object (fully // initialized). It may return an empty handle if the allocation does not // succeed. V8_WARN_UNUSED_RESULT MaybeHandle<Code> TryNewCode( const CodeDesc& desc, Code::Kind kind, Handle<Object> self_reference, int32_t builtin_index = Builtins::kNoBuiltinId, MaybeHandle<ByteArray> maybe_source_position_table = MaybeHandle<ByteArray>(), MaybeHandle<DeoptimizationData> maybe_deopt_data = MaybeHandle<DeoptimizationData>(), Movability movability = kMovable, bool is_turbofanned = false, int stack_slots = 0); // Allocates a new code object and initializes it as the trampoline to the // given off-heap entry point. Handle<Code> NewOffHeapTrampolineFor(Handle<Code> code, Address off_heap_entry); Handle<Code> CopyCode(Handle<Code> code); Handle<BytecodeArray> CopyBytecodeArray(Handle<BytecodeArray>); // Interface for creating error objects. Handle<Object> NewError(Handle<JSFunction> constructor, Handle<String> message); Handle<Object> NewInvalidStringLengthError(); inline Handle<Object> NewURIError(); Handle<Object> NewError(Handle<JSFunction> constructor, MessageTemplate template_index, Handle<Object> arg0 = Handle<Object>(), Handle<Object> arg1 = Handle<Object>(), Handle<Object> arg2 = Handle<Object>()); #define DECLARE_ERROR(NAME) \ Handle<Object> New##NAME(MessageTemplate template_index, \ Handle<Object> arg0 = Handle<Object>(), \ Handle<Object> arg1 = Handle<Object>(), \ Handle<Object> arg2 = Handle<Object>()); DECLARE_ERROR(Error) DECLARE_ERROR(EvalError) DECLARE_ERROR(RangeError) DECLARE_ERROR(ReferenceError) DECLARE_ERROR(SyntaxError) DECLARE_ERROR(TypeError) DECLARE_ERROR(WasmCompileError) DECLARE_ERROR(WasmLinkError) DECLARE_ERROR(WasmRuntimeError) #undef DECLARE_ERROR Handle<String> NumberToString(Handle<Object> number, bool check_cache = true); Handle<String> NumberToString(Smi number, bool check_cache = true); inline Handle<String> Uint32ToString(uint32_t value, bool check_cache = true); #define ROOT_ACCESSOR(Type, name, CamelName) inline Handle<Type> name(); ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR // Allocates a new SharedFunctionInfo object. Handle<SharedFunctionInfo> NewSharedFunctionInfoForApiFunction( MaybeHandle<String> maybe_name, Handle<FunctionTemplateInfo> function_template_info, FunctionKind kind); Handle<SharedFunctionInfo> NewSharedFunctionInfoForBuiltin( MaybeHandle<String> name, int builtin_index, FunctionKind kind = kNormalFunction); Handle<SharedFunctionInfo> NewSharedFunctionInfoForLiteral( FunctionLiteral* literal, Handle<Script> script, bool is_toplevel); static bool IsFunctionModeWithPrototype(FunctionMode function_mode) { return (function_mode & kWithPrototypeBits) != 0; } static bool IsFunctionModeWithWritablePrototype(FunctionMode function_mode) { return (function_mode & kWithWritablePrototypeBit) != 0; } static bool IsFunctionModeWithName(FunctionMode function_mode) { return (function_mode & kWithNameBit) != 0; } static bool IsFunctionModeWithHomeObject(FunctionMode function_mode) { return (function_mode & kWithHomeObjectBit) != 0; } Handle<Map> CreateSloppyFunctionMap( FunctionMode function_mode, MaybeHandle<JSFunction> maybe_empty_function); Handle<Map> CreateStrictFunctionMap(FunctionMode function_mode, Handle<JSFunction> empty_function); Handle<Map> CreateClassFunctionMap(Handle<JSFunction> empty_function); // Allocates a new JSMessageObject object. Handle<JSMessageObject> NewJSMessageObject( MessageTemplate message, Handle<Object> argument, int start_position, int end_position, Handle<Script> script, Handle<Object> stack_frames); Handle<ClassPositions> NewClassPositions(int start, int end); Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared); Handle<CoverageInfo> NewCoverageInfo(const ZoneVector<SourceRange>& slots); // Return a map for given number of properties using the map cache in the // native context. Handle<Map> ObjectLiteralMapFromCache(Handle<NativeContext> native_context, int number_of_properties); Handle<LoadHandler> NewLoadHandler(int data_count); Handle<StoreHandler> NewStoreHandler(int data_count); Handle<RegExpMatchInfo> NewRegExpMatchInfo(); // Creates a new FixedArray that holds the data associated with the // atom regexp and stores it in the regexp. void SetRegExpAtomData(Handle<JSRegExp> regexp, JSRegExp::Type type, Handle<String> source, JSRegExp::Flags flags, Handle<Object> match_pattern); // Creates a new FixedArray that holds the data associated with the // irregexp regexp and stores it in the regexp. void SetRegExpIrregexpData(Handle<JSRegExp> regexp, JSRegExp::Type type, Handle<String> source, JSRegExp::Flags flags, int capture_count); // Returns the value for a known global constant (a property of the global // object which is neither configurable nor writable) like 'undefined'. // Returns a null handle when the given name is unknown. Handle<Object> GlobalConstantFor(Handle<Name> name); // Converts the given boolean condition to JavaScript boolean value. Handle<Object> ToBoolean(bool value); // Converts the given ToPrimitive hint to it's string representation. Handle<String> ToPrimitiveHintString(ToPrimitiveHint hint); Handle<JSPromise> NewJSPromiseWithoutHook( AllocationType allocation = AllocationType::kYoung); Handle<JSPromise> NewJSPromise( AllocationType allocation = AllocationType::kYoung); Handle<CallHandlerInfo> NewCallHandlerInfo(bool has_no_side_effect = false); HeapObject NewForTest(Handle<Map> map, AllocationType allocation) { return New(map, allocation); } private: Isolate* isolate() { // Downcast to the privately inherited sub-class using c-style casts to // avoid undefined behavior (as static_cast cannot cast across private // bases). // NOLINTNEXTLINE (google-readability-casting) return (Isolate*)this; // NOLINT(readability/casting) } HeapObject AllocateRawWithImmortalMap( int size, AllocationType allocation, Map map, AllocationAlignment alignment = kWordAligned); HeapObject AllocateRawWithAllocationSite( Handle<Map> map, AllocationType allocation, Handle<AllocationSite> allocation_site); // Allocate memory for an uninitialized array (e.g., a FixedArray or similar). HeapObject AllocateRawArray(int size, AllocationType allocation); HeapObject AllocateRawFixedArray(int length, AllocationType allocation); HeapObject AllocateRawWeakArrayList(int length, AllocationType allocation); Handle<FixedArray> NewFixedArrayWithFiller(RootIndex map_root_index, int length, Object filler, AllocationType allocation); // Allocates new context with given map, sets length and initializes the // after-header part with uninitialized values and leaves the context header // uninitialized. Handle<Context> NewContext(RootIndex map_root_index, int size, int variadic_part_length, AllocationType allocation); template <typename T> Handle<T> AllocateSmallOrderedHashTable(Handle<Map> map, int capacity, AllocationType allocation); // Creates a heap object based on the map. The fields of the heap object are // not initialized, it's the responsibility of the caller to do that. HeapObject New(Handle<Map> map, AllocationType allocation); template <typename T> Handle<T> CopyArrayWithMap(Handle<T> src, Handle<Map> map); template <typename T> Handle<T> CopyArrayAndGrow(Handle<T> src, int grow_by, AllocationType allocation); template <bool is_one_byte, typename T> Handle<String> AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field); Handle<SeqOneByteString> AllocateRawOneByteInternalizedString( int length, uint32_t hash_field); Handle<String> AllocateTwoByteInternalizedString(Vector<const uc16> str, uint32_t hash_field); MaybeHandle<String> NewStringFromTwoByte(const uc16* string, int length, AllocationType allocation); // Attempt to find the number in a small cache. If we finds it, return // the string representation of the number. Otherwise return undefined. Handle<Object> NumberToStringCacheGet(Object number, int hash); // Update the cache with a new number-string pair. Handle<String> NumberToStringCacheSet(Handle<Object> number, int hash, const char* string, bool check_cache); // Create a JSArray with no elements and no length. Handle<JSArray> NewJSArray( ElementsKind elements_kind, AllocationType allocation = AllocationType::kYoung); Handle<SharedFunctionInfo> NewSharedFunctionInfo( MaybeHandle<String> name, MaybeHandle<HeapObject> maybe_function_data, int maybe_builtin_index, FunctionKind kind = kNormalFunction); void InitializeAllocationMemento(AllocationMemento memento, AllocationSite allocation_site); // Initializes a JSObject based on its map. void InitializeJSObjectFromMap(Handle<JSObject> obj, Handle<Object> properties, Handle<Map> map); // Initializes JSObject body starting at given offset. void InitializeJSObjectBody(Handle<JSObject> obj, Handle<Map> map, int start_offset); }; // Utility class to simplify argument handling around JSFunction creation. class NewFunctionArgs final { public: static NewFunctionArgs ForWasm( Handle<String> name, Handle<WasmExportedFunctionData> exported_function_data, Handle<Map> map); V8_EXPORT_PRIVATE static NewFunctionArgs ForBuiltin(Handle<String> name, Handle<Map> map, int builtin_id); static NewFunctionArgs ForFunctionWithoutCode(Handle<String> name, Handle<Map> map, LanguageMode language_mode); static NewFunctionArgs ForBuiltinWithPrototype( Handle<String> name, Handle<HeapObject> prototype, InstanceType type, int instance_size, int inobject_properties, int builtin_id, MutableMode prototype_mutability); static NewFunctionArgs ForBuiltinWithoutPrototype(Handle<String> name, int builtin_id, LanguageMode language_mode); Handle<Map> GetMap(Isolate* isolate) const; private: NewFunctionArgs() = default; // Use the static factory constructors. void SetShouldCreateAndSetInitialMap(); void SetShouldSetPrototype(); void SetShouldSetLanguageMode(); // Sentinel value. static const int kUninitialized = -1; Handle<String> name_; MaybeHandle<Map> maybe_map_; MaybeHandle<WasmExportedFunctionData> maybe_exported_function_data_; bool should_create_and_set_initial_map_ = false; InstanceType type_; int instance_size_ = kUninitialized; int inobject_properties_ = kUninitialized; bool should_set_prototype_ = false; MaybeHandle<HeapObject> maybe_prototype_; bool should_set_language_mode_ = false; LanguageMode language_mode_; int maybe_builtin_id_ = kUninitialized; MutableMode prototype_mutability_; friend class Factory; }; } // namespace internal } // namespace v8 #endif // V8_HEAP_FACTORY_H_