// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/pipeline.h" #include <fstream> // NOLINT(readability/streams) #include <sstream> #include "src/base/adapters.h" #include "src/base/platform/elapsed-timer.h" #include "src/compiler/ast-graph-builder.h" #include "src/compiler/ast-loop-assignment-analyzer.h" #include "src/compiler/basic-block-instrumentor.h" #include "src/compiler/branch-elimination.h" #include "src/compiler/bytecode-graph-builder.h" #include "src/compiler/change-lowering.h" #include "src/compiler/code-generator.h" #include "src/compiler/common-operator-reducer.h" #include "src/compiler/control-flow-optimizer.h" #include "src/compiler/dead-code-elimination.h" #include "src/compiler/escape-analysis.h" #include "src/compiler/escape-analysis-reducer.h" #include "src/compiler/frame-elider.h" #include "src/compiler/graph-replay.h" #include "src/compiler/graph-trimmer.h" #include "src/compiler/graph-visualizer.h" #include "src/compiler/greedy-allocator.h" #include "src/compiler/instruction.h" #include "src/compiler/instruction-selector.h" #include "src/compiler/js-builtin-reducer.h" #include "src/compiler/js-call-reducer.h" #include "src/compiler/js-context-relaxation.h" #include "src/compiler/js-context-specialization.h" #include "src/compiler/js-frame-specialization.h" #include "src/compiler/js-generic-lowering.h" #include "src/compiler/js-global-object-specialization.h" #include "src/compiler/js-inlining-heuristic.h" #include "src/compiler/js-intrinsic-lowering.h" #include "src/compiler/js-native-context-specialization.h" #include "src/compiler/js-typed-lowering.h" #include "src/compiler/jump-threading.h" #include "src/compiler/live-range-separator.h" #include "src/compiler/load-elimination.h" #include "src/compiler/loop-analysis.h" #include "src/compiler/loop-peeling.h" #include "src/compiler/machine-operator-reducer.h" #include "src/compiler/move-optimizer.h" #include "src/compiler/osr.h" #include "src/compiler/pipeline-statistics.h" #include "src/compiler/register-allocator.h" #include "src/compiler/register-allocator-verifier.h" #include "src/compiler/schedule.h" #include "src/compiler/scheduler.h" #include "src/compiler/select-lowering.h" #include "src/compiler/simplified-lowering.h" #include "src/compiler/simplified-operator.h" #include "src/compiler/simplified-operator-reducer.h" #include "src/compiler/tail-call-optimization.h" #include "src/compiler/type-hint-analyzer.h" #include "src/compiler/typer.h" #include "src/compiler/value-numbering-reducer.h" #include "src/compiler/verifier.h" #include "src/compiler/zone-pool.h" #include "src/ostreams.h" #include "src/register-configuration.h" #include "src/type-info.h" #include "src/utils.h" namespace v8 { namespace internal { namespace compiler { class PipelineData { public: // For main entry point. PipelineData(ZonePool* zone_pool, CompilationInfo* info, PipelineStatistics* pipeline_statistics) : isolate_(info->isolate()), info_(info), outer_zone_(info_->zone()), zone_pool_(zone_pool), pipeline_statistics_(pipeline_statistics), compilation_failed_(false), code_(Handle<Code>::null()), graph_zone_scope_(zone_pool_), graph_zone_(graph_zone_scope_.zone()), graph_(nullptr), loop_assignment_(nullptr), simplified_(nullptr), machine_(nullptr), common_(nullptr), javascript_(nullptr), jsgraph_(nullptr), schedule_(nullptr), instruction_zone_scope_(zone_pool_), instruction_zone_(instruction_zone_scope_.zone()), sequence_(nullptr), frame_(nullptr), register_allocation_zone_scope_(zone_pool_), register_allocation_zone_(register_allocation_zone_scope_.zone()), register_allocation_data_(nullptr) { PhaseScope scope(pipeline_statistics, "init pipeline data"); graph_ = new (graph_zone_) Graph(graph_zone_); source_positions_.Reset(new SourcePositionTable(graph_)); simplified_ = new (graph_zone_) SimplifiedOperatorBuilder(graph_zone_); machine_ = new (graph_zone_) MachineOperatorBuilder( graph_zone_, MachineType::PointerRepresentation(), InstructionSelector::SupportedMachineOperatorFlags()); common_ = new (graph_zone_) CommonOperatorBuilder(graph_zone_); javascript_ = new (graph_zone_) JSOperatorBuilder(graph_zone_); jsgraph_ = new (graph_zone_) JSGraph(isolate_, graph_, common_, javascript_, simplified_, machine_); } // For machine graph testing entry point. PipelineData(ZonePool* zone_pool, CompilationInfo* info, Graph* graph, Schedule* schedule) : isolate_(info->isolate()), info_(info), outer_zone_(nullptr), zone_pool_(zone_pool), pipeline_statistics_(nullptr), compilation_failed_(false), code_(Handle<Code>::null()), graph_zone_scope_(zone_pool_), graph_zone_(nullptr), graph_(graph), source_positions_(new SourcePositionTable(graph_)), loop_assignment_(nullptr), simplified_(nullptr), machine_(nullptr), common_(nullptr), javascript_(nullptr), jsgraph_(nullptr), schedule_(schedule), instruction_zone_scope_(zone_pool_), instruction_zone_(instruction_zone_scope_.zone()), sequence_(nullptr), frame_(nullptr), register_allocation_zone_scope_(zone_pool_), register_allocation_zone_(register_allocation_zone_scope_.zone()), register_allocation_data_(nullptr) {} // For register allocation testing entry point. PipelineData(ZonePool* zone_pool, CompilationInfo* info, InstructionSequence* sequence) : isolate_(info->isolate()), info_(info), outer_zone_(nullptr), zone_pool_(zone_pool), pipeline_statistics_(nullptr), compilation_failed_(false), code_(Handle<Code>::null()), graph_zone_scope_(zone_pool_), graph_zone_(nullptr), graph_(nullptr), loop_assignment_(nullptr), simplified_(nullptr), machine_(nullptr), common_(nullptr), javascript_(nullptr), jsgraph_(nullptr), schedule_(nullptr), instruction_zone_scope_(zone_pool_), instruction_zone_(sequence->zone()), sequence_(sequence), frame_(nullptr), register_allocation_zone_scope_(zone_pool_), register_allocation_zone_(register_allocation_zone_scope_.zone()), register_allocation_data_(nullptr) {} ~PipelineData() { DeleteRegisterAllocationZone(); DeleteInstructionZone(); DeleteGraphZone(); } Isolate* isolate() const { return isolate_; } CompilationInfo* info() const { return info_; } ZonePool* zone_pool() const { return zone_pool_; } PipelineStatistics* pipeline_statistics() { return pipeline_statistics_; } bool compilation_failed() const { return compilation_failed_; } void set_compilation_failed() { compilation_failed_ = true; } Handle<Code> code() { return code_; } void set_code(Handle<Code> code) { DCHECK(code_.is_null()); code_ = code; } // RawMachineAssembler generally produces graphs which cannot be verified. bool MayHaveUnverifiableGraph() const { return outer_zone_ == nullptr; } Zone* graph_zone() const { return graph_zone_; } Graph* graph() const { return graph_; } SourcePositionTable* source_positions() const { return source_positions_.get(); } MachineOperatorBuilder* machine() const { return machine_; } CommonOperatorBuilder* common() const { return common_; } JSOperatorBuilder* javascript() const { return javascript_; } JSGraph* jsgraph() const { return jsgraph_; } MaybeHandle<Context> native_context() const { if (info()->is_native_context_specializing()) { return handle(info()->native_context(), isolate()); } return MaybeHandle<Context>(); } LoopAssignmentAnalysis* loop_assignment() const { return loop_assignment_; } void set_loop_assignment(LoopAssignmentAnalysis* loop_assignment) { DCHECK(!loop_assignment_); loop_assignment_ = loop_assignment; } TypeHintAnalysis* type_hint_analysis() const { return type_hint_analysis_; } void set_type_hint_analysis(TypeHintAnalysis* type_hint_analysis) { DCHECK_NULL(type_hint_analysis_); type_hint_analysis_ = type_hint_analysis; } Schedule* schedule() const { return schedule_; } void set_schedule(Schedule* schedule) { DCHECK(!schedule_); schedule_ = schedule; } Zone* instruction_zone() const { return instruction_zone_; } InstructionSequence* sequence() const { return sequence_; } Frame* frame() const { return frame_; } Zone* register_allocation_zone() const { return register_allocation_zone_; } RegisterAllocationData* register_allocation_data() const { return register_allocation_data_; } void DeleteGraphZone() { // Destroy objects with destructors first. source_positions_.Reset(nullptr); if (graph_zone_ == nullptr) return; // Destroy zone and clear pointers. graph_zone_scope_.Destroy(); graph_zone_ = nullptr; graph_ = nullptr; loop_assignment_ = nullptr; type_hint_analysis_ = nullptr; simplified_ = nullptr; machine_ = nullptr; common_ = nullptr; javascript_ = nullptr; jsgraph_ = nullptr; schedule_ = nullptr; } void DeleteInstructionZone() { if (instruction_zone_ == nullptr) return; instruction_zone_scope_.Destroy(); instruction_zone_ = nullptr; sequence_ = nullptr; frame_ = nullptr; } void DeleteRegisterAllocationZone() { if (register_allocation_zone_ == nullptr) return; register_allocation_zone_scope_.Destroy(); register_allocation_zone_ = nullptr; register_allocation_data_ = nullptr; } void InitializeInstructionSequence() { DCHECK(sequence_ == nullptr); InstructionBlocks* instruction_blocks = InstructionSequence::InstructionBlocksFor(instruction_zone(), schedule()); sequence_ = new (instruction_zone()) InstructionSequence( info()->isolate(), instruction_zone(), instruction_blocks); } void InitializeRegisterAllocationData(const RegisterConfiguration* config, CallDescriptor* descriptor, const char* debug_name) { DCHECK(frame_ == nullptr); DCHECK(register_allocation_data_ == nullptr); int fixed_frame_size = 0; if (descriptor != nullptr) { fixed_frame_size = (descriptor->IsCFunctionCall()) ? StandardFrameConstants::kFixedSlotCountAboveFp + StandardFrameConstants::kCPSlotCount : StandardFrameConstants::kFixedSlotCount; } frame_ = new (instruction_zone()) Frame(fixed_frame_size, descriptor); register_allocation_data_ = new (register_allocation_zone()) RegisterAllocationData(config, register_allocation_zone(), frame(), sequence(), debug_name); } private: Isolate* isolate_; CompilationInfo* info_; Zone* outer_zone_; ZonePool* const zone_pool_; PipelineStatistics* pipeline_statistics_; bool compilation_failed_; Handle<Code> code_; // All objects in the following group of fields are allocated in graph_zone_. // They are all set to nullptr when the graph_zone_ is destroyed. ZonePool::Scope graph_zone_scope_; Zone* graph_zone_; Graph* graph_; // TODO(dcarney): make this into a ZoneObject. base::SmartPointer<SourcePositionTable> source_positions_; LoopAssignmentAnalysis* loop_assignment_; TypeHintAnalysis* type_hint_analysis_ = nullptr; SimplifiedOperatorBuilder* simplified_; MachineOperatorBuilder* machine_; CommonOperatorBuilder* common_; JSOperatorBuilder* javascript_; JSGraph* jsgraph_; Schedule* schedule_; // All objects in the following group of fields are allocated in // instruction_zone_. They are all set to nullptr when the instruction_zone_ // is // destroyed. ZonePool::Scope instruction_zone_scope_; Zone* instruction_zone_; InstructionSequence* sequence_; Frame* frame_; // All objects in the following group of fields are allocated in // register_allocation_zone_. They are all set to nullptr when the zone is // destroyed. ZonePool::Scope register_allocation_zone_scope_; Zone* register_allocation_zone_; RegisterAllocationData* register_allocation_data_; DISALLOW_COPY_AND_ASSIGN(PipelineData); }; namespace { struct TurboCfgFile : public std::ofstream { explicit TurboCfgFile(Isolate* isolate) : std::ofstream(isolate->GetTurboCfgFileName().c_str(), std::ios_base::app) {} }; void TraceSchedule(CompilationInfo* info, Schedule* schedule) { if (FLAG_trace_turbo) { FILE* json_file = OpenVisualizerLogFile(info, nullptr, "json", "a+"); if (json_file != nullptr) { OFStream json_of(json_file); json_of << "{\"name\":\"Schedule\",\"type\":\"schedule\",\"data\":\""; std::stringstream schedule_stream; schedule_stream << *schedule; std::string schedule_string(schedule_stream.str()); for (const auto& c : schedule_string) { json_of << AsEscapedUC16ForJSON(c); } json_of << "\"},\n"; fclose(json_file); } } if (!FLAG_trace_turbo_graph && !FLAG_trace_turbo_scheduler) return; OFStream os(stdout); os << "-- Schedule --------------------------------------\n" << *schedule; } class AstGraphBuilderWithPositions final : public AstGraphBuilder { public: AstGraphBuilderWithPositions(Zone* local_zone, CompilationInfo* info, JSGraph* jsgraph, LoopAssignmentAnalysis* loop_assignment, TypeHintAnalysis* type_hint_analysis, SourcePositionTable* source_positions) : AstGraphBuilder(local_zone, info, jsgraph, loop_assignment, type_hint_analysis), source_positions_(source_positions), start_position_(info->shared_info()->start_position()) {} bool CreateGraph(bool stack_check) { SourcePositionTable::Scope pos_scope(source_positions_, start_position_); return AstGraphBuilder::CreateGraph(stack_check); } #define DEF_VISIT(type) \ void Visit##type(type* node) override { \ SourcePositionTable::Scope pos(source_positions_, \ SourcePosition(node->position())); \ AstGraphBuilder::Visit##type(node); \ } AST_NODE_LIST(DEF_VISIT) #undef DEF_VISIT private: SourcePositionTable* const source_positions_; SourcePosition const start_position_; }; class SourcePositionWrapper final : public Reducer { public: SourcePositionWrapper(Reducer* reducer, SourcePositionTable* table) : reducer_(reducer), table_(table) {} ~SourcePositionWrapper() final {} Reduction Reduce(Node* node) final { SourcePosition const pos = table_->GetSourcePosition(node); SourcePositionTable::Scope position(table_, pos); return reducer_->Reduce(node); } void Finalize() final { reducer_->Finalize(); } private: Reducer* const reducer_; SourcePositionTable* const table_; DISALLOW_COPY_AND_ASSIGN(SourcePositionWrapper); }; class JSGraphReducer final : public GraphReducer { public: JSGraphReducer(JSGraph* jsgraph, Zone* zone) : GraphReducer(zone, jsgraph->graph(), jsgraph->Dead()) {} ~JSGraphReducer() final {} }; void AddReducer(PipelineData* data, GraphReducer* graph_reducer, Reducer* reducer) { if (data->info()->is_source_positions_enabled()) { void* const buffer = data->graph_zone()->New(sizeof(SourcePositionWrapper)); SourcePositionWrapper* const wrapper = new (buffer) SourcePositionWrapper(reducer, data->source_positions()); graph_reducer->AddReducer(wrapper); } else { graph_reducer->AddReducer(reducer); } } class PipelineRunScope { public: PipelineRunScope(PipelineData* data, const char* phase_name) : phase_scope_( phase_name == nullptr ? nullptr : data->pipeline_statistics(), phase_name), zone_scope_(data->zone_pool()) {} Zone* zone() { return zone_scope_.zone(); } private: PhaseScope phase_scope_; ZonePool::Scope zone_scope_; }; } // namespace template <typename Phase> void Pipeline::Run() { PipelineRunScope scope(this->data_, Phase::phase_name()); Phase phase; phase.Run(this->data_, scope.zone()); } template <typename Phase, typename Arg0> void Pipeline::Run(Arg0 arg_0) { PipelineRunScope scope(this->data_, Phase::phase_name()); Phase phase; phase.Run(this->data_, scope.zone(), arg_0); } struct LoopAssignmentAnalysisPhase { static const char* phase_name() { return "loop assignment analysis"; } void Run(PipelineData* data, Zone* temp_zone) { AstLoopAssignmentAnalyzer analyzer(data->graph_zone(), data->info()); LoopAssignmentAnalysis* loop_assignment = analyzer.Analyze(); data->set_loop_assignment(loop_assignment); } }; struct TypeHintAnalysisPhase { static const char* phase_name() { return "type hint analysis"; } void Run(PipelineData* data, Zone* temp_zone) { TypeHintAnalyzer analyzer(data->graph_zone()); Handle<Code> code(data->info()->shared_info()->code(), data->isolate()); TypeHintAnalysis* type_hint_analysis = analyzer.Analyze(code); data->set_type_hint_analysis(type_hint_analysis); } }; struct GraphBuilderPhase { static const char* phase_name() { return "graph builder"; } void Run(PipelineData* data, Zone* temp_zone) { bool stack_check = !data->info()->IsStub(); bool succeeded = false; if (data->info()->shared_info()->HasBytecodeArray()) { BytecodeGraphBuilder graph_builder(temp_zone, data->info(), data->jsgraph()); succeeded = graph_builder.CreateGraph(stack_check); } else { AstGraphBuilderWithPositions graph_builder( temp_zone, data->info(), data->jsgraph(), data->loop_assignment(), data->type_hint_analysis(), data->source_positions()); succeeded = graph_builder.CreateGraph(stack_check); } if (!succeeded) { data->set_compilation_failed(); } } }; struct InliningPhase { static const char* phase_name() { return "inlining"; } void Run(PipelineData* data, Zone* temp_zone) { JSGraphReducer graph_reducer(data->jsgraph(), temp_zone); DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common()); CommonOperatorReducer common_reducer(&graph_reducer, data->graph(), data->common(), data->machine()); JSCallReducer call_reducer(data->jsgraph(), data->info()->is_deoptimization_enabled() ? JSCallReducer::kDeoptimizationEnabled : JSCallReducer::kNoFlags, data->native_context()); JSContextSpecialization context_specialization( &graph_reducer, data->jsgraph(), data->info()->is_function_context_specializing() ? data->info()->context() : MaybeHandle<Context>()); JSFrameSpecialization frame_specialization(data->info()->osr_frame(), data->jsgraph()); JSGlobalObjectSpecialization global_object_specialization( &graph_reducer, data->jsgraph(), data->info()->is_deoptimization_enabled() ? JSGlobalObjectSpecialization::kDeoptimizationEnabled : JSGlobalObjectSpecialization::kNoFlags, data->native_context(), data->info()->dependencies()); JSNativeContextSpecialization native_context_specialization( &graph_reducer, data->jsgraph(), data->info()->is_deoptimization_enabled() ? JSNativeContextSpecialization::kDeoptimizationEnabled : JSNativeContextSpecialization::kNoFlags, data->native_context(), data->info()->dependencies(), temp_zone); JSInliningHeuristic inlining(&graph_reducer, data->info()->is_inlining_enabled() ? JSInliningHeuristic::kGeneralInlining : JSInliningHeuristic::kRestrictedInlining, temp_zone, data->info(), data->jsgraph()); AddReducer(data, &graph_reducer, &dead_code_elimination); AddReducer(data, &graph_reducer, &common_reducer); if (data->info()->is_frame_specializing()) { AddReducer(data, &graph_reducer, &frame_specialization); } AddReducer(data, &graph_reducer, &global_object_specialization); AddReducer(data, &graph_reducer, &native_context_specialization); AddReducer(data, &graph_reducer, &context_specialization); AddReducer(data, &graph_reducer, &call_reducer); AddReducer(data, &graph_reducer, &inlining); graph_reducer.ReduceGraph(); } }; struct TyperPhase { static const char* phase_name() { return "typer"; } void Run(PipelineData* data, Zone* temp_zone, Typer* typer) { NodeVector roots(temp_zone); data->jsgraph()->GetCachedNodes(&roots); typer->Run(roots); } }; struct OsrDeconstructionPhase { static const char* phase_name() { return "OSR deconstruction"; } void Run(PipelineData* data, Zone* temp_zone) { OsrHelper osr_helper(data->info()); osr_helper.Deconstruct(data->jsgraph(), data->common(), temp_zone); } }; struct TypedLoweringPhase { static const char* phase_name() { return "typed lowering"; } void Run(PipelineData* data, Zone* temp_zone) { JSGraphReducer graph_reducer(data->jsgraph(), temp_zone); DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common()); LoadElimination load_elimination(&graph_reducer); JSBuiltinReducer builtin_reducer(&graph_reducer, data->jsgraph()); JSTypedLowering::Flags typed_lowering_flags = JSTypedLowering::kNoFlags; if (data->info()->is_deoptimization_enabled()) { typed_lowering_flags |= JSTypedLowering::kDeoptimizationEnabled; } if (data->info()->shared_info()->HasBytecodeArray()) { typed_lowering_flags |= JSTypedLowering::kDisableBinaryOpReduction; } JSTypedLowering typed_lowering(&graph_reducer, data->info()->dependencies(), typed_lowering_flags, data->jsgraph(), temp_zone); JSIntrinsicLowering intrinsic_lowering( &graph_reducer, data->jsgraph(), data->info()->is_deoptimization_enabled() ? JSIntrinsicLowering::kDeoptimizationEnabled : JSIntrinsicLowering::kDeoptimizationDisabled); CommonOperatorReducer common_reducer(&graph_reducer, data->graph(), data->common(), data->machine()); AddReducer(data, &graph_reducer, &dead_code_elimination); AddReducer(data, &graph_reducer, &builtin_reducer); AddReducer(data, &graph_reducer, &typed_lowering); AddReducer(data, &graph_reducer, &intrinsic_lowering); AddReducer(data, &graph_reducer, &load_elimination); AddReducer(data, &graph_reducer, &common_reducer); graph_reducer.ReduceGraph(); } }; struct BranchEliminationPhase { static const char* phase_name() { return "branch condition elimination"; } void Run(PipelineData* data, Zone* temp_zone) { JSGraphReducer graph_reducer(data->jsgraph(), temp_zone); BranchElimination branch_condition_elimination(&graph_reducer, data->jsgraph(), temp_zone); DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common()); AddReducer(data, &graph_reducer, &branch_condition_elimination); AddReducer(data, &graph_reducer, &dead_code_elimination); graph_reducer.ReduceGraph(); } }; struct EscapeAnalysisPhase { static const char* phase_name() { return "escape analysis"; } void Run(PipelineData* data, Zone* temp_zone) { EscapeAnalysis escape_analysis(data->graph(), data->jsgraph()->common(), temp_zone); escape_analysis.Run(); JSGraphReducer graph_reducer(data->jsgraph(), temp_zone); EscapeAnalysisReducer escape_reducer(&graph_reducer, data->jsgraph(), &escape_analysis, temp_zone); escape_reducer.SetExistsVirtualAllocate( escape_analysis.ExistsVirtualAllocate()); AddReducer(data, &graph_reducer, &escape_reducer); graph_reducer.ReduceGraph(); escape_reducer.VerifyReplacement(); } }; struct SimplifiedLoweringPhase { static const char* phase_name() { return "simplified lowering"; } void Run(PipelineData* data, Zone* temp_zone) { SimplifiedLowering lowering(data->jsgraph(), temp_zone, data->source_positions()); lowering.LowerAllNodes(); JSGraphReducer graph_reducer(data->jsgraph(), temp_zone); DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common()); SimplifiedOperatorReducer simple_reducer(data->jsgraph()); ValueNumberingReducer value_numbering(temp_zone); MachineOperatorReducer machine_reducer(data->jsgraph()); CommonOperatorReducer common_reducer(&graph_reducer, data->graph(), data->common(), data->machine()); AddReducer(data, &graph_reducer, &dead_code_elimination); AddReducer(data, &graph_reducer, &simple_reducer); AddReducer(data, &graph_reducer, &value_numbering); AddReducer(data, &graph_reducer, &machine_reducer); AddReducer(data, &graph_reducer, &common_reducer); graph_reducer.ReduceGraph(); } }; struct ControlFlowOptimizationPhase { static const char* phase_name() { return "control flow optimization"; } void Run(PipelineData* data, Zone* temp_zone) { ControlFlowOptimizer optimizer(data->graph(), data->common(), data->machine(), temp_zone); optimizer.Optimize(); } }; struct ChangeLoweringPhase { static const char* phase_name() { return "change lowering"; } void Run(PipelineData* data, Zone* temp_zone) { JSGraphReducer graph_reducer(data->jsgraph(), temp_zone); DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common()); SimplifiedOperatorReducer simple_reducer(data->jsgraph()); ValueNumberingReducer value_numbering(temp_zone); ChangeLowering lowering(data->jsgraph()); MachineOperatorReducer machine_reducer(data->jsgraph()); CommonOperatorReducer common_reducer(&graph_reducer, data->graph(), data->common(), data->machine()); AddReducer(data, &graph_reducer, &dead_code_elimination); AddReducer(data, &graph_reducer, &simple_reducer); AddReducer(data, &graph_reducer, &value_numbering); AddReducer(data, &graph_reducer, &lowering); AddReducer(data, &graph_reducer, &machine_reducer); AddReducer(data, &graph_reducer, &common_reducer); graph_reducer.ReduceGraph(); } }; struct EarlyGraphTrimmingPhase { static const char* phase_name() { return "early graph trimming"; } void Run(PipelineData* data, Zone* temp_zone) { GraphTrimmer trimmer(temp_zone, data->graph()); NodeVector roots(temp_zone); data->jsgraph()->GetCachedNodes(&roots); trimmer.TrimGraph(roots.begin(), roots.end()); } }; struct LateGraphTrimmingPhase { static const char* phase_name() { return "late graph trimming"; } void Run(PipelineData* data, Zone* temp_zone) { GraphTrimmer trimmer(temp_zone, data->graph()); NodeVector roots(temp_zone); data->jsgraph()->GetCachedNodes(&roots); trimmer.TrimGraph(roots.begin(), roots.end()); } }; struct StressLoopPeelingPhase { static const char* phase_name() { return "stress loop peeling"; } void Run(PipelineData* data, Zone* temp_zone) { // Peel the first outer loop for testing. // TODO(titzer): peel all loops? the N'th loop? Innermost loops? LoopTree* loop_tree = LoopFinder::BuildLoopTree(data->graph(), temp_zone); if (loop_tree != nullptr && loop_tree->outer_loops().size() > 0) { LoopPeeler::Peel(data->graph(), data->common(), loop_tree, loop_tree->outer_loops()[0], temp_zone); } } }; struct GenericLoweringPhase { static const char* phase_name() { return "generic lowering"; } void Run(PipelineData* data, Zone* temp_zone) { JSGraphReducer graph_reducer(data->jsgraph(), temp_zone); JSContextRelaxation context_relaxing; DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common()); CommonOperatorReducer common_reducer(&graph_reducer, data->graph(), data->common(), data->machine()); JSGenericLowering generic_lowering(data->info()->is_typing_enabled(), data->jsgraph()); SelectLowering select_lowering(data->jsgraph()->graph(), data->jsgraph()->common()); TailCallOptimization tco(data->common(), data->graph()); AddReducer(data, &graph_reducer, &context_relaxing); AddReducer(data, &graph_reducer, &dead_code_elimination); AddReducer(data, &graph_reducer, &common_reducer); AddReducer(data, &graph_reducer, &generic_lowering); AddReducer(data, &graph_reducer, &select_lowering); AddReducer(data, &graph_reducer, &tco); graph_reducer.ReduceGraph(); } }; struct ComputeSchedulePhase { static const char* phase_name() { return "scheduling"; } void Run(PipelineData* data, Zone* temp_zone) { Schedule* schedule = Scheduler::ComputeSchedule( temp_zone, data->graph(), data->info()->is_splitting_enabled() ? Scheduler::kSplitNodes : Scheduler::kNoFlags); if (FLAG_turbo_verify) ScheduleVerifier::Run(schedule); data->set_schedule(schedule); } }; struct InstructionSelectionPhase { static const char* phase_name() { return "select instructions"; } void Run(PipelineData* data, Zone* temp_zone, Linkage* linkage) { InstructionSelector selector( temp_zone, data->graph()->NodeCount(), linkage, data->sequence(), data->schedule(), data->source_positions(), data->info()->is_source_positions_enabled() ? InstructionSelector::kAllSourcePositions : InstructionSelector::kCallSourcePositions); selector.SelectInstructions(); } }; struct MeetRegisterConstraintsPhase { static const char* phase_name() { return "meet register constraints"; } void Run(PipelineData* data, Zone* temp_zone) { ConstraintBuilder builder(data->register_allocation_data()); builder.MeetRegisterConstraints(); } }; struct ResolvePhisPhase { static const char* phase_name() { return "resolve phis"; } void Run(PipelineData* data, Zone* temp_zone) { ConstraintBuilder builder(data->register_allocation_data()); builder.ResolvePhis(); } }; struct BuildLiveRangesPhase { static const char* phase_name() { return "build live ranges"; } void Run(PipelineData* data, Zone* temp_zone) { LiveRangeBuilder builder(data->register_allocation_data(), temp_zone); builder.BuildLiveRanges(); } }; struct SplinterLiveRangesPhase { static const char* phase_name() { return "splinter live ranges"; } void Run(PipelineData* data, Zone* temp_zone) { LiveRangeSeparator live_range_splinterer(data->register_allocation_data(), temp_zone); live_range_splinterer.Splinter(); } }; template <typename RegAllocator> struct AllocateGeneralRegistersPhase { static const char* phase_name() { return "allocate general registers"; } void Run(PipelineData* data, Zone* temp_zone) { RegAllocator allocator(data->register_allocation_data(), GENERAL_REGISTERS, temp_zone); allocator.AllocateRegisters(); } }; template <typename RegAllocator> struct AllocateDoubleRegistersPhase { static const char* phase_name() { return "allocate double registers"; } void Run(PipelineData* data, Zone* temp_zone) { RegAllocator allocator(data->register_allocation_data(), DOUBLE_REGISTERS, temp_zone); allocator.AllocateRegisters(); } }; struct MergeSplintersPhase { static const char* phase_name() { return "merge splintered ranges"; } void Run(PipelineData* pipeline_data, Zone* temp_zone) { RegisterAllocationData* data = pipeline_data->register_allocation_data(); LiveRangeMerger live_range_merger(data, temp_zone); live_range_merger.Merge(); } }; struct LocateSpillSlotsPhase { static const char* phase_name() { return "locate spill slots"; } void Run(PipelineData* data, Zone* temp_zone) { SpillSlotLocator locator(data->register_allocation_data()); locator.LocateSpillSlots(); } }; struct AssignSpillSlotsPhase { static const char* phase_name() { return "assign spill slots"; } void Run(PipelineData* data, Zone* temp_zone) { OperandAssigner assigner(data->register_allocation_data()); assigner.AssignSpillSlots(); } }; struct CommitAssignmentPhase { static const char* phase_name() { return "commit assignment"; } void Run(PipelineData* data, Zone* temp_zone) { OperandAssigner assigner(data->register_allocation_data()); assigner.CommitAssignment(); } }; struct PopulateReferenceMapsPhase { static const char* phase_name() { return "populate pointer maps"; } void Run(PipelineData* data, Zone* temp_zone) { ReferenceMapPopulator populator(data->register_allocation_data()); populator.PopulateReferenceMaps(); } }; struct ConnectRangesPhase { static const char* phase_name() { return "connect ranges"; } void Run(PipelineData* data, Zone* temp_zone) { LiveRangeConnector connector(data->register_allocation_data()); connector.ConnectRanges(temp_zone); } }; struct ResolveControlFlowPhase { static const char* phase_name() { return "resolve control flow"; } void Run(PipelineData* data, Zone* temp_zone) { LiveRangeConnector connector(data->register_allocation_data()); connector.ResolveControlFlow(temp_zone); } }; struct OptimizeMovesPhase { static const char* phase_name() { return "optimize moves"; } void Run(PipelineData* data, Zone* temp_zone) { MoveOptimizer move_optimizer(temp_zone, data->sequence()); move_optimizer.Run(); } }; struct FrameElisionPhase { static const char* phase_name() { return "frame elision"; } void Run(PipelineData* data, Zone* temp_zone) { FrameElider(data->sequence()).Run(); } }; struct JumpThreadingPhase { static const char* phase_name() { return "jump threading"; } void Run(PipelineData* data, Zone* temp_zone) { ZoneVector<RpoNumber> result(temp_zone); if (JumpThreading::ComputeForwarding(temp_zone, result, data->sequence())) { JumpThreading::ApplyForwarding(result, data->sequence()); } } }; struct GenerateCodePhase { static const char* phase_name() { return "generate code"; } void Run(PipelineData* data, Zone* temp_zone, Linkage* linkage) { CodeGenerator generator(data->frame(), linkage, data->sequence(), data->info()); data->set_code(generator.GenerateCode()); } }; struct PrintGraphPhase { static const char* phase_name() { return nullptr; } void Run(PipelineData* data, Zone* temp_zone, const char* phase) { CompilationInfo* info = data->info(); Graph* graph = data->graph(); { // Print JSON. FILE* json_file = OpenVisualizerLogFile(info, nullptr, "json", "a+"); if (json_file == nullptr) return; OFStream json_of(json_file); json_of << "{\"name\":\"" << phase << "\",\"type\":\"graph\",\"data\":" << AsJSON(*graph, data->source_positions()) << "},\n"; fclose(json_file); } if (FLAG_trace_turbo_graph) { // Simple textual RPO. OFStream os(stdout); os << "-- Graph after " << phase << " -- " << std::endl; os << AsRPO(*graph); } } }; struct VerifyGraphPhase { static const char* phase_name() { return nullptr; } void Run(PipelineData* data, Zone* temp_zone, const bool untyped) { Verifier::Run(data->graph(), FLAG_turbo_types && !untyped ? Verifier::TYPED : Verifier::UNTYPED); } }; void Pipeline::BeginPhaseKind(const char* phase_kind_name) { if (data_->pipeline_statistics() != nullptr) { data_->pipeline_statistics()->BeginPhaseKind(phase_kind_name); } } void Pipeline::RunPrintAndVerify(const char* phase, bool untyped) { if (FLAG_trace_turbo) { Run<PrintGraphPhase>(phase); } if (FLAG_turbo_verify) { Run<VerifyGraphPhase>(untyped); } } Handle<Code> Pipeline::GenerateCode() { ZonePool zone_pool; base::SmartPointer<PipelineStatistics> pipeline_statistics; if (FLAG_turbo_stats) { pipeline_statistics.Reset(new PipelineStatistics(info(), &zone_pool)); pipeline_statistics->BeginPhaseKind("initializing"); } if (FLAG_trace_turbo) { FILE* json_file = OpenVisualizerLogFile(info(), nullptr, "json", "w+"); if (json_file != nullptr) { OFStream json_of(json_file); Handle<Script> script = info()->script(); FunctionLiteral* function = info()->literal(); base::SmartArrayPointer<char> function_name = info()->GetDebugName(); int pos = info()->shared_info()->start_position(); json_of << "{\"function\":\"" << function_name.get() << "\", \"sourcePosition\":" << pos << ", \"source\":\""; if (!script->IsUndefined() && !script->source()->IsUndefined()) { DisallowHeapAllocation no_allocation; int start = function->start_position(); int len = function->end_position() - start; String::SubStringRange source(String::cast(script->source()), start, len); for (const auto& c : source) { json_of << AsEscapedUC16ForJSON(c); } } json_of << "\",\n\"phases\":["; fclose(json_file); } } PipelineData data(&zone_pool, info(), pipeline_statistics.get()); this->data_ = &data; BeginPhaseKind("graph creation"); if (FLAG_trace_turbo) { OFStream os(stdout); os << "---------------------------------------------------\n" << "Begin compiling method " << info()->GetDebugName().get() << " using Turbofan" << std::endl; TurboCfgFile tcf(isolate()); tcf << AsC1VCompilation(info()); } data.source_positions()->AddDecorator(); if (FLAG_loop_assignment_analysis) { Run<LoopAssignmentAnalysisPhase>(); } if (info()->is_typing_enabled()) { Run<TypeHintAnalysisPhase>(); } Run<GraphBuilderPhase>(); if (data.compilation_failed()) return Handle<Code>::null(); RunPrintAndVerify("Initial untyped", true); // Perform OSR deconstruction. if (info()->is_osr()) { Run<OsrDeconstructionPhase>(); RunPrintAndVerify("OSR deconstruction", true); } // Perform function context specialization and inlining (if enabled). Run<InliningPhase>(); RunPrintAndVerify("Inlined", true); // Remove dead->live edges from the graph. Run<EarlyGraphTrimmingPhase>(); RunPrintAndVerify("Early trimmed", true); if (FLAG_print_turbo_replay) { // Print a replay of the initial graph. GraphReplayPrinter::PrintReplay(data.graph()); } base::SmartPointer<Typer> typer; if (info()->is_typing_enabled()) { // Type the graph. typer.Reset(new Typer(isolate(), data.graph(), info()->is_deoptimization_enabled() ? Typer::kDeoptimizationEnabled : Typer::kNoFlags, info()->dependencies())); Run<TyperPhase>(typer.get()); RunPrintAndVerify("Typed"); } BeginPhaseKind("lowering"); if (info()->is_typing_enabled()) { // Lower JSOperators where we can determine types. Run<TypedLoweringPhase>(); RunPrintAndVerify("Lowered typed"); if (FLAG_turbo_stress_loop_peeling) { Run<StressLoopPeelingPhase>(); RunPrintAndVerify("Loop peeled"); } if (FLAG_turbo_escape) { Run<EscapeAnalysisPhase>(); RunPrintAndVerify("Escape Analysed"); } // Lower simplified operators and insert changes. Run<SimplifiedLoweringPhase>(); RunPrintAndVerify("Lowered simplified"); Run<BranchEliminationPhase>(); RunPrintAndVerify("Branch conditions eliminated"); // Optimize control flow. if (FLAG_turbo_cf_optimization) { Run<ControlFlowOptimizationPhase>(); RunPrintAndVerify("Control flow optimized"); } // Lower changes that have been inserted before. Run<ChangeLoweringPhase>(); // TODO(jarin, rossberg): Remove UNTYPED once machine typing works. RunPrintAndVerify("Lowered changes", true); } // Lower any remaining generic JSOperators. Run<GenericLoweringPhase>(); // TODO(jarin, rossberg): Remove UNTYPED once machine typing works. RunPrintAndVerify("Lowered generic", true); Run<LateGraphTrimmingPhase>(); // TODO(jarin, rossberg): Remove UNTYPED once machine typing works. RunPrintAndVerify("Late trimmed", true); BeginPhaseKind("block building"); data.source_positions()->RemoveDecorator(); // Kill the Typer and thereby uninstall the decorator (if any). typer.Reset(nullptr); return ScheduleAndGenerateCode( Linkage::ComputeIncoming(data.instruction_zone(), info())); } Handle<Code> Pipeline::GenerateCodeForCodeStub(Isolate* isolate, CallDescriptor* call_descriptor, Graph* graph, Schedule* schedule, Code::Flags flags, const char* debug_name) { CompilationInfo info(debug_name, isolate, graph->zone(), flags); // Construct a pipeline for scheduling and code generation. ZonePool zone_pool; PipelineData data(&zone_pool, &info, graph, schedule); base::SmartPointer<PipelineStatistics> pipeline_statistics; if (FLAG_turbo_stats) { pipeline_statistics.Reset(new PipelineStatistics(&info, &zone_pool)); pipeline_statistics->BeginPhaseKind("stub codegen"); } Pipeline pipeline(&info); pipeline.data_ = &data; DCHECK_NOT_NULL(data.schedule()); if (FLAG_trace_turbo) { FILE* json_file = OpenVisualizerLogFile(&info, nullptr, "json", "w+"); if (json_file != nullptr) { OFStream json_of(json_file); json_of << "{\"function\":\"" << info.GetDebugName().get() << "\", \"source\":\"\",\n\"phases\":["; fclose(json_file); } pipeline.Run<PrintGraphPhase>("Machine"); } return pipeline.ScheduleAndGenerateCode(call_descriptor); } Handle<Code> Pipeline::GenerateCodeForTesting(CompilationInfo* info, Graph* graph, Schedule* schedule) { CallDescriptor* call_descriptor = Linkage::ComputeIncoming(info->zone(), info); return GenerateCodeForTesting(info, call_descriptor, graph, schedule); } Handle<Code> Pipeline::GenerateCodeForTesting(CompilationInfo* info, CallDescriptor* call_descriptor, Graph* graph, Schedule* schedule) { // Construct a pipeline for scheduling and code generation. ZonePool zone_pool; PipelineData data(&zone_pool, info, graph, schedule); base::SmartPointer<PipelineStatistics> pipeline_statistics; if (FLAG_turbo_stats) { pipeline_statistics.Reset(new PipelineStatistics(info, &zone_pool)); pipeline_statistics->BeginPhaseKind("test codegen"); } Pipeline pipeline(info); pipeline.data_ = &data; if (data.schedule() == nullptr) { // TODO(rossberg): Should this really be untyped? pipeline.RunPrintAndVerify("Machine", true); } return pipeline.ScheduleAndGenerateCode(call_descriptor); } bool Pipeline::AllocateRegistersForTesting(const RegisterConfiguration* config, InstructionSequence* sequence, bool run_verifier) { CompilationInfo info("testing", sequence->isolate(), sequence->zone()); ZonePool zone_pool; PipelineData data(&zone_pool, &info, sequence); Pipeline pipeline(&info); pipeline.data_ = &data; pipeline.AllocateRegisters(config, nullptr, run_verifier); return !data.compilation_failed(); } Handle<Code> Pipeline::ScheduleAndGenerateCode( CallDescriptor* call_descriptor) { PipelineData* data = this->data_; DCHECK_NOT_NULL(data->graph()); if (data->schedule() == nullptr) Run<ComputeSchedulePhase>(); TraceSchedule(data->info(), data->schedule()); BasicBlockProfiler::Data* profiler_data = nullptr; if (FLAG_turbo_profiling) { profiler_data = BasicBlockInstrumentor::Instrument(info(), data->graph(), data->schedule()); } data->InitializeInstructionSequence(); // Select and schedule instructions covering the scheduled graph. Linkage linkage(call_descriptor); Run<InstructionSelectionPhase>(&linkage); if (FLAG_trace_turbo && !data->MayHaveUnverifiableGraph()) { TurboCfgFile tcf(isolate()); tcf << AsC1V("CodeGen", data->schedule(), data->source_positions(), data->sequence()); } std::ostringstream source_position_output; if (FLAG_trace_turbo) { // Output source position information before the graph is deleted. data_->source_positions()->Print(source_position_output); } data->DeleteGraphZone(); BeginPhaseKind("register allocation"); bool run_verifier = FLAG_turbo_verify_allocation; // Allocate registers. AllocateRegisters( RegisterConfiguration::ArchDefault(RegisterConfiguration::TURBOFAN), call_descriptor, run_verifier); if (data->compilation_failed()) { info()->AbortOptimization(kNotEnoughVirtualRegistersRegalloc); return Handle<Code>(); } BeginPhaseKind("code generation"); // Optimimize jumps. if (FLAG_turbo_jt) { Run<JumpThreadingPhase>(); } // Generate final machine code. Run<GenerateCodePhase>(&linkage); Handle<Code> code = data->code(); if (profiler_data != nullptr) { #if ENABLE_DISASSEMBLER std::ostringstream os; code->Disassemble(nullptr, os); profiler_data->SetCode(&os); #endif } info()->SetCode(code); v8::internal::CodeGenerator::PrintCode(code, info()); if (FLAG_trace_turbo) { FILE* json_file = OpenVisualizerLogFile(info(), nullptr, "json", "a+"); if (json_file != nullptr) { OFStream json_of(json_file); json_of << "{\"name\":\"disassembly\",\"type\":\"disassembly\",\"data\":\""; #if ENABLE_DISASSEMBLER std::stringstream disassembly_stream; code->Disassemble(nullptr, disassembly_stream); std::string disassembly_string(disassembly_stream.str()); for (const auto& c : disassembly_string) { json_of << AsEscapedUC16ForJSON(c); } #endif // ENABLE_DISASSEMBLER json_of << "\"}\n],\n"; json_of << "\"nodePositions\":"; json_of << source_position_output.str(); json_of << "}"; fclose(json_file); } OFStream os(stdout); os << "---------------------------------------------------\n" << "Finished compiling method " << info()->GetDebugName().get() << " using Turbofan" << std::endl; } return code; } void Pipeline::AllocateRegisters(const RegisterConfiguration* config, CallDescriptor* descriptor, bool run_verifier) { PipelineData* data = this->data_; // Don't track usage for this zone in compiler stats. base::SmartPointer<Zone> verifier_zone; RegisterAllocatorVerifier* verifier = nullptr; if (run_verifier) { verifier_zone.Reset(new Zone()); verifier = new (verifier_zone.get()) RegisterAllocatorVerifier( verifier_zone.get(), config, data->sequence()); } base::SmartArrayPointer<char> debug_name; #ifdef DEBUG debug_name = info()->GetDebugName(); #endif data->InitializeRegisterAllocationData(config, descriptor, debug_name.get()); if (info()->is_osr()) { OsrHelper osr_helper(info()); osr_helper.SetupFrame(data->frame()); } Run<MeetRegisterConstraintsPhase>(); Run<ResolvePhisPhase>(); Run<BuildLiveRangesPhase>(); if (FLAG_trace_turbo_graph) { OFStream os(stdout); PrintableInstructionSequence printable = {config, data->sequence()}; os << "----- Instruction sequence before register allocation -----\n" << printable; } if (verifier != nullptr) { CHECK(!data->register_allocation_data()->ExistsUseWithoutDefinition()); CHECK(data->register_allocation_data() ->RangesDefinedInDeferredStayInDeferred()); } if (FLAG_turbo_preprocess_ranges) { Run<SplinterLiveRangesPhase>(); } if (FLAG_turbo_greedy_regalloc) { Run<AllocateGeneralRegistersPhase<GreedyAllocator>>(); Run<AllocateDoubleRegistersPhase<GreedyAllocator>>(); } else { Run<AllocateGeneralRegistersPhase<LinearScanAllocator>>(); Run<AllocateDoubleRegistersPhase<LinearScanAllocator>>(); } if (FLAG_turbo_preprocess_ranges) { Run<MergeSplintersPhase>(); } if (FLAG_turbo_frame_elision) { Run<LocateSpillSlotsPhase>(); Run<FrameElisionPhase>(); } Run<AssignSpillSlotsPhase>(); Run<CommitAssignmentPhase>(); Run<PopulateReferenceMapsPhase>(); Run<ConnectRangesPhase>(); Run<ResolveControlFlowPhase>(); if (FLAG_turbo_move_optimization) { Run<OptimizeMovesPhase>(); } if (FLAG_trace_turbo_graph) { OFStream os(stdout); PrintableInstructionSequence printable = {config, data->sequence()}; os << "----- Instruction sequence after register allocation -----\n" << printable; } if (verifier != nullptr) { verifier->VerifyAssignment(); verifier->VerifyGapMoves(); } if (FLAG_trace_turbo && !data->MayHaveUnverifiableGraph()) { TurboCfgFile tcf(data->isolate()); tcf << AsC1VRegisterAllocationData("CodeGen", data->register_allocation_data()); } data->DeleteRegisterAllocationZone(); } } // namespace compiler } // namespace internal } // namespace v8